
Toward Measuring Software Coupling via
Weighted Dynamic Metrics

Henning Schnoor
Software Engineering Group, Kiel University

Kiel, Germany

henning.schnoor@email.uni-kiel.de

Wilhelm Hasselbring
Software Engineering Group, Kiel University

Kiel, Germany

hasselbring@email.uni-kiel.de

ABSTRACT

Coupling metrics are an established way to measure internal soft-

ware quality with respect to modularity. Dynamic metrics have

been used to improve the accuracy of static metrics for object-

oriented software. We introduce a dynamic metric NOI that takes

into account the number of interactions (method calls) during the

run of a system. We used the data collected from an experiment to

compute our NOI metric and compared the results to a static cou-

pling analysis. We observed an unexpected level of correlation and

significant differences between class- and package-level analyses.

ACM Reference Format:

Henning Schnoor and Wilhelm Hasselbring. 2018. Toward Measuring Soft-

ware Coupling via Weighted Dynamic Metrics. In ICSE ’18 Companion:

40th International Conference on Software Engineering Companion, May

27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3183440.3195000

1 INTRODUCTION

Coupling [11]—the number of inter-module interactions in soft-

ware systems—has long been identified as a software quality metric

for modularity [10]. High cohesion and low coupling is a design

guideline in software engineering. For microservice architectures,

low coupling among microservices is of particular relevance [8, 9].

The coupling degree of a module (class or package) is usually

measured statically, based on source or compiled code. For object-

oriented software, static coupling measurement often fails to ac-

count for effects of inheritance with polymorphism and dynamic

binding [3]. Dynamic analysis addresses these issues, using moni-

toring logs generated during the run of the software. Usually, such

analyses use the data to detect the occurrence of methods calls, but

do not take the frequency of these calls into account.

We use dynamic analysis for weighted measurements and count

the number of interactions, NOI, during program execution. The

NOI coupling degree of a module A is the number of method calls

of A. This results in three flavors of the metric, considering import,

export, or combined coupling. NOI and static coupling degrees

are very different: A class with low static coupling degree does

not necessarily have low NOI coupling degree, since a method call

appearing once in the static analysis can be performed millions of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3195000

times during runtime. Our analysis investigates the relationship

between our dynamic NOI metric and static coupling measures.

Contributions

Weperformed an experimentmonitoring usage of Atlassian JIRA [4]

over four weeks, and computed our NOI metric based on the ob-

tained data. We compared these results to static coupling degrees.

Our results show that NOI and static coupling are different but cor-

related. When considering package-level coupling, the correlation

is significantly stronger than for class-level coupling. A possible

interpretation of this result is that effects like polymorphism and

dynamic binding often do not cross package boundaries.

Related Work

Allier et al. [1] compare static and dynamic metrics. Dynamic (un-

weighted) metrics have been investigated in numerous papers (see,

e.g., Arisholm et al. [3] as a starting point, also the surveys by

Chhabra and Gupta [6] and Geetika and Singh [7]). Yacoub et al. [13]

use weighted metrics. However, to obtain the data, they do not use

runtime instrumentation but “early-stage executable models.” They

also assume a fixed number of objects during the software’s runtime,

while our approach also allows dynamic object instantiation.

2 INITIAL EXPERIMENTS

Our dynamic analysis is based on an experiment monitoring At-

lassian JIRA, version 7.3.0 [4] using the Kieker monitoring frame-

work [12] for dynamic analysis and Apache BCEL (Byte Code Engi-

neering Library) [2] for static analysis. The workload used for the

dynamic analysis contained 196,442,043 logged method calls, the

maximal throughput was 176,116 monitored actions per second.

Preliminary Results

A central goal of this paper is to study the relationship between

static and dynamic couplings. We compare two fundamentally dif-

ferent ways to measure coupling of modules:

(1) The static analysis counts, for each module A, the number

of modules B to which A is connected via a method call.

(2) Our dynamic analysis computes the NOI metric: For each

moduleA, it counts the number of interactions to anymodule

B during a given run of the system.

We first studied the distribution of coupling degrees in our two

types of analyses. For export coupling on a class level, the two

analyses lead to similar results (see Figures 1 and 2). The difference

between import coupling degrees was significantly higher. In the

figures, for the ratios α1 = 0.2%, α2 = 0.4%, . . . , αk = 100%, the bar
above the value αi indicates the ratio of modules whose coupling

342

2018 ACM/IEEE 40th International Conference on Software Engineering: Companion Proceedings



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Schnoor, Hasselbring

degree is between αi−1 (or 0 if i = 1) and αi (where 100% is the

maximal occurring degree). The dashed line indicates the position

of the mean coupling degree on the x-axis.

62
.9
%

0.
2%

12
.8
%

0.
4%

6.
1%

0.
6%

5.
5%

0.
8%

1.
8%

1%
1.
7%

1.
2%

1.
2%

1.
4%

0.
7%

1.
6%

0.
7%

1.
8%

1.
2%

2%
0.
6%

2.
25
%

0.
4%

2.
5%

0.
5%

2.
75
%

0.
6%

3%
0.
2%

3.
25
%

0.
3%

3.
5%

0.
2%

3.
75
%

0%
3%

0%
3.
5%

0.
3%

4%
0.
4%

4.
5%

0.
3%

5%
0.
3%

5.
5%

0.
3%

6%
0.
3%

7%
0.
1%

8%
0.
1%

9%
0.
1%

10
%

0.
1%

12
.5
%

0.
1%

15
%

0%
17
.5
%

0%
20
%

0.
1%

25
%

0%
30
%

0%
40
%

0%
50
%

0%
60
%

0%
70
%

0%
80
%

0%
90
%

0.
1%

10
0%

max = 1160

Figure 1: Static coupling degree for classes

81
.3
%

0.
2%

4.
2%

0.
4%

2.
7%

0.
6%

1.
8%

0.
8%

0.
8%

1%
1%

1.
2%

0.
9%

1.
4%

0.
6%

1.
6%

0.
5%

1.
8%

0.
2%

2%
0.
4%

2.
25
%

0.
1%

2.
5%

0.
2%

2.
75
%

0.
3%

3%
0.
4%

3.
25
%

0.
2%

3.
5%

0.
1%

3.
75
%

0%
3%

0%
3.
5%

0.
4%

4%
0.
4%

4.
5%

0.
3%

5%
0.
2%

5.
5%

0.
1%

6%
0.
3%

7%
0.
2%

8%
0.
2%

9%
0.
2%

10
%

0.
4%

12
.5
%

0.
3%

15
%

0.
1%

17
.5
%

0.
1%

20
%

0.
3%

25
%

0.
2%

30
%

0.
3%

40
%

0%
50
%

0.
1%

60
%

0.
1%

70
%

0%
80
%

0%
90
%

0.
1%

10
0%

max = 5844274

Figure 2: Import NOI for classes

As a second analysis, we compared the coupling degrees of in-

dividual modules. Obviously, the raw numerical values cannot be

compared meaningfully. However, a key reason to use metrics is

to identify modules with the highest coupling degrees. Therefore,

we analyze the relationship between the ranks among the modules

in the two analyses: Each analysis yields a coupling-rank of the

modules, ranking the ones with highest coupling degree first. We

compare these ranks using the Kendall-Tau distance [5]. Values

smaller than 0.5 can be interpreted as the ranks being closer to

each other than expected from two random ranks. Values larger

than 0.5 indicate the opposite. Values further away from 0.5 im-

ply higher correlation. Depending on whether we aggregate at the

class- or package-level and on whether we consider import, export,

or combined coupling, we obtain the following six distance values:

class-level package-level

import 0.45 0.36

export 0.41 0.33

combined 0.41 0.33

Discussion

All distances are below 0.5, many of them significantly so. This,

and the coupling degree distribution, indicate a significant simi-

larity between our NOI metric and static coupling measures and

suggests that these different types of analyses are correlated. As

argued above, this was not necessarily to be expected. Hence, the

NOI coupling degree seems to give additional, but not unrelated

information compared to the static case.

In all three cases, the distance in the package case is smaller than

the distance in the class case, sometimes significantly. A possible

explanation is that in the package case, the object-oriented effects

that are often cited as the main reasons for performing dynamic

analysis are less present, as, e.g., inheritance relationships are often

between classes residing in the same package.

3 CONCLUSIONS

We compared static andNOImeasurements. Our preliminary results

suggest that dynamic coupling metrics complement their static

counterparts: Despite the large (and expected) difference, there is

significant correlation. This suggests that further study of dynamic

quantitative measurements is an promising line of research. In

particular, it will be interesting to investigate how these metrics

can be used to evaluate the quality of software systems.

REFERENCES
[1] Simon Allier, Stéphane Vaucher, Bruno Dufour, and Houari A. Sahraoui. 2010.

Deriving Coupling Metrics from Call Graphs. In Tenth IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2010, Timisoara,
Romania, 12-13 September 2010. IEEE Computer Society, 43–52. https://doi.org/
10.1109/SCAM.2010.25

[2] Apache Software Foundation. 2016. Commons BCEL: Byte Code Engineering
Library. (2016). https://commons.apache.org/proper/commons-bcel/.

[3] Erik Arisholm, Lionel C. Briand, and Audun Føyen. 2004. Dynamic Coupling
Measurement for Object-Oriented Software. IEEE Trans. Software Eng. 30, 8
(2004), 491–506. https://doi.org/10.1109/TSE.2004.41

[4] Atlassian. 2018. JIRA Project and issue tracking. (2018). https://www.atlassian.
com/software/jira/.

[5] Lionel Briand, Khaled El Emam, and Sandro Morasca. 1996. On the application
of measurement theory in software engineering. Empirical Software Engineering
1, 1 (01 Jan 1996), 61–88. https://doi.org/10.1007/BF00125812

[6] Jitender Kumar Chhabra and Varun Gupta. 2010. A Survey of Dynamic Software
Metrics. J. Comput. Sci. Technol. 25, 5 (2010), 1016–1029. https://doi.org/10.1007/
s11390-010-9384-3

[7] Rani Geetika and Paramvir Singh. 2014. Dynamic Coupling Metrics for Object
Oriented Software Systems: A Survey. SIGSOFT Softw. Eng. Notes 39, 2 (March
2014), 1–8. https://doi.org/10.1145/2579281.2579296

[8] Wilhelm Hasselbring. 2016. Microservices for Scalability: Keynote Talk Abstract.
In Proceedings of the 7th ACM/SPEC on International Conference on Performance
Engineering (ICPE 2016). ACM, New York, NY, USA, 133–134. https://doi.org/10.
1145/2851553.2858659

[9] Wilhelm Hasselbring and Guido Steinacker. 2017. Microservice Architectures for
Scalability, Agility and Reliability in E-Commerce. In Proceedings 2017 IEEE Inter-
national Conference on Software Architecture Workshops (ICSAW). IEEE, Gothen-
burg, Sweden, 243–246. https://doi.org/10.1109/ICSAW.2017.11

[10] David Lorge Parnas. 1972. On the Criteria to Be Used in Decomposing Systems
into Modules. 15, 12 (Dec. 1972), 1053–1058. https://doi.org/10.1145/361598.
361623

[11] W. Stevens, G. Myers, and L. Constantine. 1979. Structured Design. In Classics in
Software Engineering, Edward Nash Yourdon (Ed.). Yourdon Press, Upper Saddle
River, NJ, USA, 205–232. http://dl.acm.org/citation.cfm?id=1241515.1241533

[12] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. 2012. Kieker: A Frame-
work for Application Performance Monitoring and Dynamic Software Analysis.
In Proceedings of the 3rd ACM/SPEC International Conference on Performance En-
gineering (ICPE 2012). ACM, 247–248. https://doi.org/10.1145/2188286.2188326

[13] Sherif M. Yacoub, Hany H. Ammar, and Tom Robinson. 1999. Dynamic Metrics for
Object Oriented Designs. In 6th IEEE International Software Metrics Symposium
(METRICS 1999), 4-6 November 1999, Boca Raton, FL, USA. IEEE Computer Society,
50–61. https://doi.org/10.1109/METRIC.1999.809725

343


