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Abstract Iron (Fe), cobalt (Co), and vitamin B12 addition experiments were performed in the eastern
Equatorial Pacific/Peruvian upwelling zone during the 2015 El Niño event. Near the Peruvian coastline,
apparent photosystem II photochemical efficiencies (Fv/Fm) were unchanged by nutrient addition and
chlorophyll a tripled in untreated controls over 2 days, indicating nutrient replete conditions. Conversely, Fe
amendment further away from the coastline in the high nitrate, low Fe zone significantly increased Fv/Fm and
chlorophyll a concentrations. Mean chlorophyll a was further enhanced following supply of Fe + Co and
Fe + B12 relative to Fe alone, but this was not statistically significant; further offshore, reported Co depletion
relative to Fe could enhance responses. The persistence of Fe limitation in this system under a developing El
Niño, as previously demonstrated under non-El Niño conditions, suggests that diminished upwelled Fe is
likely an important factor driving reductions in offshore phytoplankton productivity during these events.

Plain Language Summary Phytoplankton productivity in the Equatorial Pacific is critical for
curbing CO2 outgassing from upwelling waters and sustaining globally important fisheries. We tested
which micronutrients were limiting phytoplankton growth in the Equatorial Pacific during the 2015 El Niño.
To date evidence for nutrient limitation status during these events remains indirect. We show iron is limiting
offshore of Peru and that cobalt or vitamin B12 could be approaching limitation, with limitation by the latter
micronutrients possibly becoming more important further offshore. Linked to satellite data, the new results
shed light on critical controls on marine productivity in this biogeochemically/economically important
region. Our results suggest reduced upwelled iron-predicted under El Niño conditions would be primarily
responsible for observed offshore Peru productivity decreases.

1. Introduction

High levels of phytoplankton productivity in the upwelling regions of the Equatorial Pacific and Peru margin
mitigate major CO2 outgassing (Chavez et al., 1999), lead to emissions of other climate-relevant gases
(e.g., Andreae & Raemdonck, 1983; Arevalo-Martínez et al., 2015), and fuel substantial fisheries (e.g., Bakun
& Weeks, 2008). The processes regulating phytoplankton growth in these waters are therefore important
to resolve. This is particularly pertinent if periodic high magnitude changes in environmental forcing from
the El Niño–Southern Oscillation cycle are further modulated by ongoing anthropogenically induced
reductions in seawater pH, lowered oxygen concentrations, altered nutrient inputs, and stratification-driven
changes in light intensities (Capone & Hutchins, 2013; Chavez et al., 1999).

The potential for Fe-limited growth conditions in this region has been demonstrated by Fe enrichment
experiments and via comparison of dissolved Fe concentrations, chlorophyll a biomass, phytoplankton
fluorescence characteristics, and molecular Fe stress signatures (Bruland et al., 2005; DiTullio et al., 2005;
Eldridge et al., 2004; Hutchins et al., 2002; Martin et al., 1994). The possible role of cobalt (Co) in (co-)limiting
part of the extant phytoplankton community has also been predicted for this region (Hawco et al., 2016; Saito
et al., 2004); furthermore, this has been demonstrated directly in the Costa Rica Dome further to the north
(Saito et al., 2005). Co substitutes for zinc (Zn) in carbonic anhydrase in eukaryotic cells (Yee & Morel,
1996), is a metal center in vitamin B12 (Morel et al., 2003), and has other probable roles in phosphatases,
acyltransferases, and hydratases (e.g., Martinez et al., 2017; Saito et al., 2017). Multiple definitions of
“co-limitation” exist (Saito et al., 2008), but it is here tested as a situation where both Fe and Co (or B12)
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have been simultaneously depleted such that only supplying both in combination results in a statistically
significant biomass growth response (Browning et al., 2017). Serial limitation is defined as the sequential
biomass enhancement resulting from supplying both the primary (or proximally) limiting nutrient and the
next most deficient nutrient (Browning et al., 2017; Moore et al., 2013; Sperfeld et al., 2016).

In an attempt to clarify the potential influences of Fe, Co, and vitamin B12 (hereafter referred to simply as B12)
on phytoplankton chlorophyll a biomass and photophysiological characteristics in Equatorial Pacific and Peru
upwelling waters, we conducted five short duration (41–45 hr) Fe, Co, Fe + Co, and supplementary Fe + B12
amendment experiments on a research cruise in October 2015. Our experimental testing for limiting nutri-
ents coincided serendipitously with the 2015/2016 El Niño conditions, further allowing us to place our results
within the context of physical and chemical anomalies observed on the same research cruise (Stramma et al.,
2016) and in the satellite record.

2. Materials and Methods

Experiments were conducted in October 2015 on cruise SO243 (RV Sonne; Figure 1). Seawater was collected
from a trace-metal-clean towed sampling device at 1–2 m depth linked to a Teflon bellows pump
(e.g., Browning et al., 2014, 2017). Mixed layer depths (MLDs) were calculated using water column density
derived from conductivity-temperature depth profiles and a 0.125 kg m�3 threshold criterion (de Boyer
Montégut et al., 2004). Satellite data were downloaded from the NASA ocean color website (https://

Figure 1. Study region highlighting the biogeochemical setting during occupation. (a) Cruise track showing measured
chlorophyll a concentrations (colored dots) and incubation experiment locations (numbered stars). The gray contours
show bathymetry (1-km depth intervals). The black dots and triangle respectively show the locations of bottle-scale Fe
amendment experiments performed by Hutchins et al. (2002) and IronExI reported by Martin et al. (1994). The blue line is
the 0.5 μmol L�1 climatological World Ocean Atlas nitrate contour for October, displayed for a wider region in the inset
map. (b) October 2015 SST anomaly (October 2015 data subtracted from 2002 to 2016 October climatology). (c) As for “b”
but for chlorophyll a concentration. (d) Boxed region in “c” highlighting Peruvian shelf chlorophyll a anomalies. The dark
gray line is the 1-km depth contour, and the green line highlights the region used for calculating shelf-averaged chlorophyll
a anomalies (Figures S1 and S4).
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oceancolor.gsfc.nasa.gov; all products 9-km resolution reprocessing version R2014.0). Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) chlorophyll a concentrations performed better than Visible
Infrared Imaging Radiometer Suite (VIIRS) for match-ups with in situ high performance liquid
chromatography (HPLC) concentrations (MODIS: R2 = 0.83, RMSE = 0.25; VIIRS: R2 = 0.82, RMSE = 0.43), and
data from this sensor were therefore used for further analyses. Temporally overlapping, average
chlorophyll a concentrations for the Peru shelf were offset between different sensors (see Figure S1 in the
supporting information), showing generally much lower values for Sea-viewing Wide Field-of-view Sensor
and VIIRS as compared to MODIS. Multivariate El Niño–Southern Oscillation Index (MEI) time series
(characterizing El Niño intensity) were downloaded from National Oceanic and Atmospheric
Administration (http://www.esrl.noaa.gov/psd/enso/mei/table.html).

Incubation experiments followed a protocol used in several previous expeditions (e.g., Browning et al., 2014,
2017; Ryan-Keogh et al., 2013). Briefly, 18 × 1 L acid-washed polycarbonate bottles were filled following a
procedure distributing continuously flowing unfiltered seawater from the trace-metal-clean sampling device
across all bottles. Treatment bottles were spiked with 2 nmol L�1 Fe, 2 nmol L�1 Co, Fe + Co, and Fe + B12 (B12
concentration of 100 pmol L�1). Fe and Co spikes weremade up from 99+% purity salts in acidified deionized
water (Milli-Q, Millipore; FeCl3, ACROS Organics; CoCl2, Carl Roth), and the B12 spike solution
(Cyanocobalamin; Carl Roth) was passed through a column of a prepared cation exchange resin (Chelex
100) to remove trace metal contamination (Price et al., 1989). Treatments were conducted in triplicate and
accompanied by a set of unamended controls. Bottles were incubated in on-deck incubators shaded to
~30% surface irradiance via blue screen filters (Lee filters, type “Blue Lagoon”) and maintained at
temperatures of surface waters at the time of cruising by continuous flushing from the ship’s underway
seawater supply system.

Chlorophyll a concentrations were determined fluorometrically using a calibrated fluorometer (Turner
Designs, Trilogy) after extraction of pigment from GF/F filters (100-mL seawater filtered) in 90% acetone after
12–24 hr in a dark �20 °C freezer (Welschmeyer, 1994). Quantification of extracted phytoplankton pigments
(1.1–3.4 L seawater samples filtered onto Whatman GF/F filters, flash frozen, and stored at �80 °C) was
performed via HPLC following Barlow et al. (1997) with modifications described in Taylor et al. (2011).
Phytoplankton groups were derived from phytoplankton pigments as described in Booge et al. (2018).

Phytoplankton photophysiological measurements were performed using a FASTOcean Fast Repetition Rate
fluorometer in bench top mode with an integrated FASTact laboratory system (Chelsea Technologies Ltd).
Single acquisitions were performed using 100 × 1 μs blue excitation flashes, and data were fit using the
model of Kolber et al. (1998) within the manufacturer’s software (FASTPro8). Blanks (0.2-μm syringe-filtered
samples) were typically run for one replicate per treatment, and blank fluorescence was subtracted from Fo
and Fm before calculation of Fv/Fm = (Fm � Fo)/Fm.

Seawater samples for dissolved trace element analysis were collected in acid-washed 125-mL low-density
polyethylene sample bottles (Nalgene), filtered inline using a 0.8/0.2-μm AcroPak1000™ (Pall) filter capsule.
Samples were acidified with ultrapure hydrochloric acid (UpA grade, Romil) to pH 1.9 for>6 months, subject
to 4-hr UV irradiation in 30-mL fluorinated ethylene propylene bottles, preconcentrated on a modified
SeaFAST system (Elemental Scientific Inc), and then analyzed using an Element XR inductively coupled
plasma-mass spectrometer (Thermo Finnigan; Rapp et al., 2017). Isotope dilution and standard additions
were used to quantify Fe and Co, respectively. Manifold and buffer blanks were determined and subtracted
from analyzed concentrations as described in Rapp et al. (2017)—Fe buffer blank: 0.024 nmol L�1 + manifold
blank: 0.0334 ± 0.0044 nmol L�1 (n = 17); Co buffer blank: 0.001 nmol L�1 + manifold blank:
0.0021 ± 0.0007 nmol L�1 (n = 17). Analyzed concentrations were validated via good agreement with certified
reference material (Table S1 in the supporting information). Macronutrient samples were analyzed on-ship
using a QuAAtro autoanalyzer (Seal Analytical), as described by Stramma et al. (2016).

3. Results and Discussion
3.1. Initial Conditions

Cruise dates were at the onset of the 2015/2016 El Niño: MEI was near the maximum observed for this event
(October 2015 MEI = 2.3 cf. event maximum in August 2015 = 2.5), with positive surface temperature
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anomalies throughout the cruise region (Figure 1b; Stramma et al., 2016). Bioassay experiments were
conducted in three distinct oceanographic regimes (Figures 1, S2, and S3 and Table 1): (i) experiment 1:
warm (26.2 °C) equatorial waters with depleted nitrate (0.06 μmol L�1), 21 m MLD, and a relatively low
chlorophyll a concentration (0.20 mg m�3), with diagnostic pigments suggesting dominance of
cyanobacteria (both Prochlorococcus and Synechococcus) and haptophytes; (ii) experiments 2, 4, and 5:
cooler Humboldt Current waters (18.0–22.3 °C) with residual nitrate (7.46–26.0 μmol L�1), MLDs
~20–33.8 m, and elevated chlorophyll a (0.33–1.62 mg m�3) and diagnostic pigments suggesting
dominance of diatoms, haptophytes, and chlorophytes; (iii) experiment 3: Peruvian shelf waters with
elevated nitrate concentrations (20.3 μmol L�1), shoaled MLDs (~13 m), and an enhanced chlorophyll a
concentration (4.26 mg m�3) with diagnostic pigments suggesting dominance of diatoms and chlorophytes.

3.2. Spatial Patterns of Fe Limitation

Fe stress at experimental sites was evaluated via Fv/Fm changes following incubation of seawater with added
Fe, with increases interpreted to reflect coupling of energetically “detached” light harvesting complexes with
PSII reaction centers (Behrenfeld & Milligan, 2013; Macey et al., 2014). Associated increases in chlorophyll a
were interpreted as representing proximal limitation of biomass accumulation by Fe availability.
Micronutrient amendment in experiment 1 resulted in no statistically significant Fv/Fm or chlorophyll a
increases over control bottles (Figures 2a and 2f), suggesting that the community was not proximally
Fe/Co/B12 stressed/limited (Browning et al., 2014, 2017; Ryan-Keogh et al., 2013). This contrasts with previous
experiments conducted nearby. Both Martin et al. (1994) and Hutchins et al. (2002) reported proximal Fe
limitation of phytoplankton communities at nearby locations (Figure 1a) in the same season
(September–October), and Saito et al. (2005) found Fe-Co co-limitation further to the north in the Costa
Rica upwelling dome. In all three previous studies residual nitrate was present (~3.5–10.8 μmol L�1), whereas
at our experimental site nitrate was depleted (0.06 μmol L�1; Table 1), which suggested that the site was

Table 1
Starting Conditions for Bioassay Experiments

Experiment number

1 2 3 4 5

Eq. Pacific Off-shelf Peru On-shelf Peru Off-shelf Peru Midshelf Peru

Longitude (°W) 85.49 82.42 78.50 77.94 75.89
Latitude (°N) 0.82 �8.34 �9.97 �13.10 �15.67
Coast distance (km) 420 266 26 143 73
SST (°C) 26.2 22.3 17.8 18.2 18.0
SST variability (°C)a 3.2 2.4 3.2 2.9 4.1
MLD (m) 21.0 ∼20b ∼13b 33.8 24.5
NO2 + NO3 (μmol L�1) 0.06 7.46 20.33 26.02 9.67
PO4 (μmol L�1) 0.20 1.02 1.79 2.18 1.31
SiO2 (μmol L�1) 1.09 3.34 14.14 16.13 6.15
dFe (nmol L�1) 0.06 0.13 2.22 0.31 0.68
dCo (nmol L�1) 0.021 0.041 0.086 0.13 0.11
FeN* (nmol L�1) 0.036 �2.86 �5.93 �10.12 �3.20
CoFe* (nmol L�1) 0.019 0.038 0.030 0.122 0.093
Chl a (mg m�3) 0.20 0.33 4.26 1.45 1.62
Fv/Fm 0.30 0.31 0.47 0.37 0.44
Dominant accessory pigments Zea> Fuco> Fuco> 190Hex> Chl b>

190Hex> 190Hex> Chl b> Chl b> 190But>
190But Chl c1 + c2 Chl c1 + c2 190But 190Hex

Dominant phytoplankton Cyanobacteria,
Haptophytes

Diatoms,
Haptophytes

Diatoms,
Chlorophytes

Haptophytes,
Chlorophytes

Chlorophytes,
Haptophytes

Note. FeN* and CoFe* are Fe and Co concentrations in excess of assumed-average phytoplankton requirements relative to nitrate and Fe, respectively.
FeN* = Fe � (NO2 + NO3) RFe:N.
CoFe* = Co � Fe RCo:Fe.
Where RFe:N and RCo:Fe are assumed-average Fe:N (0.469 × 10�3 mol:mol) and Co:Fe (0.025 mol: mol) stoichiometry in phytoplankton (Moore et al., 2013). After
Parekh et al. (2005) and Ito et al. (2005).
Zea = zeaxanthin; 190Hex = 190-hexanoyloxyfucoxanthin; 190But = 190-butanoyloxyfucoxanthin; Fuco = fucoxanthin.
aMaximum variability in underway SST over the time course of the incubation. bCalculated from nearest conductivity-temperature depth station profile.
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proximally N-limited or possibly N-Fe co-limited (Behrenfeld et al., 2006; Browning et al., 2017; DiTullio et al.,
1993; Saito et al., 2014).

Although the prevalent El Niño conditions appeared to induce near-cessation of the Equatorial Undercurrent
upwelling (Stramma et al., 2016), which could be hypothesized to have reduced supply rates of waters with
low Fe:N ratios to the site of experiment 1, nitrate concentrations at this site from the World Ocean Atlas
climatology show depletion to <2.9 μmol L�1 from July to January (0.76 μmol L�1 in October). Surface
seawaters in these months are warmer and fresher, with an altered surface ocean current direction
(Figure S3). Therefore, while nitrate depletion was slightly accentuated beyond climatological averages
during our El Niño occupation, observed differences in responses to Fe amendment in our experiment 1
and previous studies probably originate primarily from relatively subtle geographic position within the strong
regional nitrate gradient (Figures 1a inset and S3; Hutchins et al., 2002; Martin et al., 1994).

The one experiment conducted near the Peruvian coastline (experiment 3; Figures 2c and 2h) showed no
significant Fv/Fm or chlorophyll a response to Fe amendment relative to controls (alone or in combination
with Co/B12). This suggested that Fe availability was neither stressing the initial phytoplankton community
nor limiting chlorophyll a biomass accumulation. This was consistent with the relatively high dissolved Fe
concentrations measured in initial experimental seawater (2.22 nmol L�1). Although statistically insignificant,
mean chlorophyll a for all Fe amended combinations at this site were enhanced relative to non-Fe treatments
(control, +Co). This could suggest the substantial growth that occurred across all incubated bottles led to
significant Fe drawdown, with the supplementary Fe supply enabling additional growth. However, Fv/Fm in
non-Fe treatments remained high, arguing against such an interpretation.

In contrast, Fe amendment—alone or in combination with Co or B12—in experiments located further
offshore (experiments 2, 4, and 5) led to significant Fv/Fm increases relative to control and Co-amended
bottles (Figure 2). Significant increases in chlorophyll a concentrations were also observed for all Fe-amended
combinations in experiments 2 and 4. In experiment 5, although Fe stress was evident in the control and +Co
bottles (i.e., having significantly lower Fv/Fm than Fe amended combinations), both Fv/Fm and chlorophyll a
declined from initial values, possibly caused by high levels of grazing and/or significant photoacclimation
during the incubation (e.g., Behrenfeld & Milligan, 2013). Regardless of the latter, experiments 2–5

Figure 2. Phytoplankton responses to nutrient amendment. (a–e) Fv/Fm and (f–j) chlorophyll a biomass changes bioassay experiments. The bar heights indicate
means (n = 3); the dots show individual bottle replicates and lines indicate the range (n = 3). The letters show the results of a test for statistically significant differ-
ent means (ANOVA p < 0.05 followed by a Tukey honesty significant difference test): The bars labeled with the same letter are statistically indistinguishable and n.
s. = not significant. The gray horizontal lines indicate initial conditions (dashed lines = range; solid lines =mean). Themean starting chlorophyll a in experiment 5 was
1.62 mg m�3.
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collectively confirmed reductions in dissolved Fe in the transition offshore from the Peruvian coastline
(Figures 3a and 3b) as being a key driver for matching declines in chlorophyll a (Figures 1a and 3c) and
nighttime Fv/Fm (Figure 3d), both measured in this study and previously under non-El Niño conditions by
Bruland et al. (2005).

3.3. Potential Role for Co/Vitamin B12 in Coregulating Phytoplankton Yield in the Equatorial Pacific

Some limited evidence was found for Co and/or B12 becoming serially limiting at the community level in the
Peru upwelling following supply of Fe. For all experiments conducted in waters with elevated nitrate
(experiments 2–5), the mean chlorophyll a response following amendment with Fe + Co or Fe + B12 was
always higher than that following amendment with Fe or Co alone (Figures 2g–2j). These responses were,
however, not statistically resolvable, either within individual experiments (Figure 2) or when normalized
chlorophyll a responses were aggregated across all experiments (not shown). Therefore, while mean changes
at individual sites could be interpreted to suggest the potential for serial Co/B12 limitation, such conditions
were not fully established in these waters (cf. Bertrand et al., 2007; Browning et al., 2017; Saito et al., 2005).
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This may not have been the case if sites had been occupied further
offshore (Figure 4). Calculations using available GEOTRACES data show
continued Co loss from surface waters, relative to Fe, with distance
offshore from Peru. Eventually, the biological “excess” of Co over Fe
becomes less than SE Atlantic experimental sites where clear serial
responses to Co addition have been observed previously (Figure 4;
Browning et al., 2017; Hawco et al., 2016; Resing et al., 2015).
Acknowledging the potential for changes in community-level Co/B12
demand and bioavailability, this enhanced loss of Co offshore from Peru
could be hypothesized to result in similar observations of widespread
serial or co-limitation by Co in the Equatorial Pacific (Bertrand et al.,
2007, 2011, 2015; Heal et al., 2017; Helliwell et al., 2015, 2016; Panzeca
et al., 2008; Saito et al., 2004, 2005; Sañudo-Wilhelmy et al., 2012).

3.4. Potential Impact of El Niño Conditions on Chlorophyll a

The isopycnal and macronutrient distribution in October 2015 suggested
active wind-driven upwelling along the Peruvian shelf—despite El Niño
status—but was dominated by warmer, more oxygenated waters than
non-El Niño conditions (Stramma et al., 2016). Discrete sampling within
the on-shelf, near coastal zone revealed high surface nitrate
(13.6–23.6 μmol L�1) and relatively high chlorophyll a (up to 14.7 mg m�3

measured), as found during non-El Niño conditions (Bruland et al., 2005;
DiTullio et al., 2005).

Area-averaged, on-shelf satellite-derived chlorophyll a for October 2015
was similar to a 2002–2016 climatology (Figures S1 and S4). However,
there was a geographic redistribution of temporally averaged
concentrations over the shelf, with positive anomalies (higher chlorophyll
concentrations) in the near-coastal zone and negative anomalies (lower
chlorophyll concentrations) further offshore toward the 1-km water depth
contour (Figures 1c and 1d). Geographically patchy, high magnitude
chlorophyll a anomalies in this region are common in the satellite record

and not uniquely associated with El Niño events (Figure S5). The one experiment conducted in the near-
coastal zone (experiment 3) led to chlorophyll a accumulation in all incubated experimental bottles, including
unamended controls (e.g., mean average of 3.5 × chlorophyll a increases in control bottles over initial
concentrations). This suggested that these near-coastal seawaters, in addition to having sufficient macronu-
trients, were also Fe/Co/B12-replete, with experimental confinement potentially resulting in (i) relief of light
limitation and/or (ii) isolation from grazing and/or (iii) prohibited dilution/dispersal, which subsequently
allowed chlorophyll a to accumulate (e.g., Cullen et al., 1992; Moore et al., 2006). Given (micro) nutrient con-
centrations under non-El Niño conditions in this near-coastal regime are also elevated (Bruland et al., 2005),
such factors (i.e., enhanced light and reduced phytoplankton loss) could be hypothesized to have contribu-
ted to the positive satellite chlorophyll a anomalies observed (Figures 1c and 1d).

In contrast to near-coastal waters, experiments and across-shelf observations demonstrated a rapid offshore
transition to Fe limited conditions (experiments 2–5; Figure 2). Changes in Fe supply offshore could therefore
be an important factor regulating phytoplankton productivity in these waters (Bruland et al., 2005; Johnson
et al., 1999), potentially resulting in the generally negative surface chlorophyll a anomalies recorded by
satellite away from the Peru coastline during our occupation (Figure 3d). Although it is difficult to compare
the surface-most (1–2 m depth) Fe concentrations presented here with those collected under non-El Niño
conditions in the context of Fe delivery to the euphotic zone (Figures 3a and 3b; Bruland et al., 2005), several
factors can be hypothesized to have reduced bioavailable Fe supply under the atypical El Niño conditions
characterizing our cruise occupation. First, the upwelling of warmer, more oxygenated waters over the
northern Peruvian shelf during our occupation may have reduced sedimentary Fe efflux and water column
retention (Bruland et al., 2005; Johnson et al., 1999; Liu & Millero, 2002; Lohan & Bruland, 2008; Scholz
et al., 2016; Stramma et al., 2016). Second, warmer and more oxygenated seawaters may have reduced the
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GP16 and GAc01 cruises, respectively (Hawco et al., 2016; Noble et al., 2012;
Resing et al., 2015). The yellow shading highlights the CoFe* range at
experimental sites exhibiting significant serial co-limitation in the SE Atlantic
(Browning et al., 2017). Note the Atlantic-Pacific cruises were at similar lati-
tudes and that the two ocean basins represented in the figure have longi-
tude scales that differ but are of the same absolute magnitude.
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solubility of inorganic Fe (III) species (Schlosser et al., 2012) and/or the fraction of dissolved Fe in the form of
more bioavailable Fe (II) species (Liu & Millero, 2002; Shaked & Lis, 2012). Third, the formation and sinking of
more biogenic particles in higher chlorophyll a waters nearest the Peru coast would have removed more Fe
from the dissolved pool, leaving less Fe to be advected offshore (Figure 1d).

4. Conclusions

Following earlier studies testing for Fe limitation in the Equatorial Pacific (Bruland et al., 2005; Eldridge et al.,
2004; Hutchins et al., 2002; Martin et al., 1994), five new bioassay experiments have confirmed a patchwork of
community-level Fe limitation dictated by proximity to high-Fe coastal waters and position within the regio-
nal nitrate gradient. Our results suggest that any reduction in offshore supply of bioavailable Fe could play a
central role in reducing phytoplankton yields in proximity to the Peruvian shelf under El Niño conditions
(Figure 3; Barber and Chávez, 1986; Espinoza-Morriberón et al., 2017). However, alongside Fe availability,
the net effect of several environmental drivers affecting multiple trophic levels might be needed to resolve
the mechanisms underpinning chlorophyll a changes (Behrenfeld & Boss, 2014; Boyd et al., 2014; Chen
et al., 2012; Jackson et al., 2011; Mackas et al., 1985; Ulloa et al., 2001).

Evidence for Co and/or B12 becoming serially limiting following Fe supply was confined to statistically
insignificant mean chlorophyll a enhancements following Fe + Co/B12 addition relative to Fe alone.
Alterations in Fe:Co supply ratios to surface waters, for example, due to divergent metal source strengths
(e.g., via modified aerosol or sediment supply), solubility controls (e.g., seawater oxidation state, temperature,
and ligand types/concentrations), and removal process (e.g., precipitation, scavenging, and phytoplankton
elemental stoichiometry), could regulate whether Co/B12 (co-/serial) limitation ever occurs in the Peru
upwelling (Browning et al., 2017; Hawco et al., 2016; King et al., 2011; Koch et al., 2011; Saito et al.,
2004, 2005). Further offshore from the Peru coastline, open ocean GEOTRACES data show continued Co
loss relative to Fe in surface seawater, indicating that Co/B12 co-/serial limitation could be at least as
prevalent as that recently discovered in the SE Atlantic (Browning et al., 2017), potentially playing a role
in restricting phytoplankton growth and full nitrate drawdown following an excess supply of Fe (Martin
et al., 1994).
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