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1 Introduction

For large, complex software systems, the design of the overall system structure
(the software architecture) is an essential challenge. The architecture of a software
system defines that system in terms of components and connections among those
components [55, 58]. It is not the design of that system which is more detailed.
The architecture shows the correspondence between the requirements and the
constructed system, thereby providing some rationale for the design decisions.
This level of design has been addressed in a number of ways including informal
diagrams and descriptive terms, module interconnection languages, and frameworks
for systems that serve the needs of specific application domains. An architecture
embodies decisions about quality properties. It represents the earliest opportunity
for evaluating those decisions. Furthermore, reusability of components and services
depends on how strongly coupled they are with other components in the system
architecture. Performance, for instance, depends largely upon the complexity of
the required coordination, in particular when the components are distributed via
some network. The architecture is usually the first artifact to be examined when a
programmer (particularly a maintenance programmer) unfamiliar with the system
begins to work on it. Software architecture is often the first design artifact that
represents decisions on how requirements of all types are to be achieved. As the
manifestation of early design decisions, it represents design decisions that are
hardest to change and hence most deserving of careful consideration.
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In the following, I take a look backwards to the past development of software
architecture as a discipline (Sect. 2) and at the present state (Sect. 3) and provide
my view on the envisioned future (Sect. 4), before I summarize in Sect. 5.

2 Past: Focus on Architecture Description and Reuse

Long before software architecture emerged as a discipline [55], pioneers such as
Parnas [49] and others [19] observed that it is not enough for a software system to
produce the correct functions. Other software qualities such as dependability and
maintainability are also important and can only be achieved by careful structuring
of software systems.

The concept of software architecture as a distinct discipline started to emerge
in the 1990s with architecture description languages, formalization, and classifica-
tion of architectural styles. The study of software architecture has evolved from
the seminal work of Perry and Wolf [50], Shaw and Garlan [55], and others.
Architecture description languages (ADLs) [42] have emerged to provide formal
rigor to architecture representation. The ANSI/IEEE standard, IEEE-Std-1471-
2000, aims to codify the best practices and insights of both the systems and software
engineering communities in the area of architecture documentation [36].

The structures proven in practice were cataloged and explained as patterns
[13]. On the programming level, reuse is usually accomplished by means of high-
level programming language constructs, function libraries, or object-oriented class
frameworks. On the design level, design patterns and established software architec-
tures are essential. Design patterns [26] are “micro-architectures” while software
architectures are more coarse-grained designs. A design pattern describes solutions
to a recurring problem. Patterns form larger wholes like pattern languages to provide
guidance for solving complex problems. Patterns express the understanding gained
from practice in software design and construction. The patterns community catalogs
useful design fragments and the context that guides their use.

An architecture description language is a set of notations, languages, standards,
and conventions for architectural models. In Sect. 2.1, the formalization of such
architectural models is discussed. An architectural model captures part of the
knowledge about an architecture for a single system or a family of systems in
a domain (i.e., a reference architecture). In Sect. 2.2, the reuse of reference
architectures in the context of software product line engineering is discussed.

2.1 Formalization of Architectural Models

In industrial practice, software architectures are usually described informally or
semi-formally with diagrams using boxes, circles, and lines together with accom-
panying prose. The prose explains the diagrams and provides some rationale for
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Fig. 1 Typical pipeline architecture for the various phases of a compiler (left) and a client-server
architecture for information systems (right)

the chosen architecture. Typical examples are pipeline architectures for the various
phases of a compiler or a client-server architecture for information systems, as
illustrated in Fig. 1. Shaw and Clements called this method “boxology” [54].

Such figures often give an intuitive picture of the system’s construction, but the
semantics of the components and their connections/interactions may be interpreted
by different people in different ways (due to the informality). Thus, such descrip-
tions have been criticized because they lack (formal) semantics. However, they are
useful for communication with stakeholders and for project planning. The degree of
formality depends on the intended use of architectural models.

The UML is often employed for architecture documentation [40]. However,
the UML—as a general object-oriented modeling language—provides only limited
support for architecture documentation. For instance, it still lacks basic architectural
concepts such as layers.

Formalizations of architecture descriptions developed in parallel with language
development [2, 3]. Some specific advantages of formality in software architecture
description may be summarized as follows:

* Software architectures become amenable to analysis and evaluation [16]. This
helps to evaluate architectures and to guide in the selection of architectural
variations as solutions to specific problems.

* Software architectures can be a basis for design reuse [24, 53], provided that the
individual elements of the architectural descriptions are defined independently
and in a precise way. Reusable architectures give designers a blueprint in
development by helping them avoid typical design errors.

* Software architectures support improved program understanding as a basis for
system evolution if its specification is well understood: Retaining the designer’s
intention about a system organization should help maintainers preserve the
system’s design integrity [8, 45].

» Formality can allow prototyping for early design evaluation [14].

e Testing may be supported by deriving test plans from formal architectural
descriptions [10, 44].

* Proper tool support for designing and analyzing software architectures becomes
possible [56].
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The recognition that architectural analysis must reconcile multiple views helped to
frame the requirements for formalism. An ADL defines a set of notations (e.g.,
diagrams, formal languages, natural language text fields) for each view that the
ADL includes. Architecture models provide one or more views of an architecture.
Views highlight certain types of information and hide other types. Examples of well-
known architectural views include data-flow control-flow diagrams, state-transition
diagrams, data models and entity-relation diagrams, structure charts, and object-
oriented hierarchy diagrams.

Formalization of architectural styles aims to allow formal checks of conformance
between architecture and implementation, to predict the impact of changes, and to
formally reason about a system’s architectural description [2]. Various approaches
to formalizing architectural styles have been proposed [9, 31, 48]. The formal
comparison allows for a detailed analysis of similarities and differences among the
architectural variations.

2.2 Software Product Lines for Reusing Software Components

Software architectures usually address the quality attributes for individual systems.
Systems in the same domain often have similar architectures that reflect domain
concepts. Reference architectures capture architectural commonality of multiple,
related systems, that is, systems within the same domain. Reference architectures are
central to domain-specific reuse, in that they provide a framework for creating assets
and constructing systems within a domain. Domain engineering thus allows for
product line development, which seeks to achieve reuse across a family of systems.

A software product line consists of software systems that have some common
functionality and some variable functionality [11]. The interest in software product
lines emerged from the field of software reuse when developers and managers
realized that they could obtain much greater reuse benefits by reusing software
architectures instead of only reusing individual software components. The basic phi-
losophy of software product lines is reuse through the explicitly planned exploitation
of commonalities of related products and proper management of variability in
software systems [25].

Product development in software product lines is organized into two stages:
domain engineering and application engineering with reuse of software compo-
nents [29]. The idea behind this approach to application engineering is that the
investments required to develop the reusable artifacts during domain engineering
are outweighed by the benefits of deriving the individual products during application
engineering.

Reference architectures play an important role in domain engineering. Domain
engineering is an activity for building reusable components, whereby the systematic
creation of domain models and architectures is addressed. Domain engineering aims
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Fig. 2 Domain and application engineering for component-based software product lines [29]. In
application engineering, software systems are developed from reusable components created by a
domain engineering process. As indicated by the dashed arrows, multifaceted feedback is possible

at supporting application engineering which uses the domain models and reference
architectures to build concrete systems, as illustrated in Fig. 2 [29]. The domain
model characterizes the problem space, while the reference architecture addresses
the solution space in domain engineering. The emphasis is on reuse and product
lines.

3 Present: Establishment of Domain-Specific Architectures
and Focus on Quality Attributes

As discussed in the previous section, the past emphasis was mainly on generic
architectural styles such as pipe-and-filter architectures. However, the Domain-
Specific Software Architecture (DSSA) engineering process was introduced early
in the 1990s to promote a clear distinction between domain and application
requirements [57]. A Domain-Specific Software Architecture consists of a domain
model and a reference architecture. DSSA was promoted for domains such as
avionics.

Meanwhile, various architectures are established for many domains and applica-
tions. Where total architectural solutions do not yet exist, partial ones certainly do
in the form of catalogs of architectural patterns that help solve many problems and
achieve various quality attributes. Various domain-specific architectures emerged,
particularly from industrial practice. Examples are data warehouse architectures
[60] for business analytics and, more recently, microservice architectures [46] for
Internet services. Exemplary, we will take a closer look at recent microservice
architectures in Sect. 3.1. Many present architecture approaches focus on quality
requirements, which are discussed in Sect. 3.2.
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3.1 Example: Microservice Architectures

Microservices [41, 46] are an architectural style for software which currently
receives a lot of attention in both industry and academia. Especially so-called
Internet-scale systems use them to satisfy their enormous scalability requirements
and to rapidly deliver new features to their users. As the name implies, ser-
vices are the building blocks and main means of modularization in microservice
architectures. Services run in separate process contexts and can be individually
deployed, replaced, and retired. The services are built around business capabilities
by cross-functional teams, which are responsible for every aspect of the service from
development to productive operation.

Traditionally, information system integration aims at achieving high data coher-
ence among heterogeneous information sources [28, 30]. However, a great challenge
with integrated databases is the inherently limited horizontal scalability of transac-
tional database management [1]. One of the intentions of microservice architectures
is to overcome the limited scalability of such monolithic architectures [32]. A
system has a microservice architecture when that system is composed of many
collaborating microservices, typically without centralized control [46]. Microser-
vices are built around business capabilities and take a full-stack implementation of
software for that business area, including individual data stores.

Microservice architectures provide small services that may be deployed and
scaled independently of each other and may employ different middleware stacks
for their implementation. Microservice architectures intend to overcome the short-
comings of monolithic architectures where all of the application’s logic and data are
managed in one deployable unit.

A vertical decomposition into self-contained systems (scs-architecture.org)
along business services is recommended. Besides scalability, an appropriate
modular structure supports program comprehension, resilience (inhibiting error
propagation), and autonomous teams with good knowledge of their vertical domain.
Microservice architectures facilitate scalability [32], as well as agility and reliability
[33].

An example vertical decomposition of an e-commerce system into self-contained
services is illustrated in Fig. 3. A vertical microservice is a part of the platform that is
responsible for a single bounded context in a business domain [20]. Verticals could
be as small as a microservice, but most of the time, they are more coarse grained.
The trade-off between many small components and a few large components must be
considered in service and system design [29].

Microservices should follow the “Shared Nothing” principle: They do not share
state, no infrastructure component, no database, or other shared resources. The big
advantages of shared-nothing architectures are horizontal scalability and improved
fault tolerance. The reason for this is apparent: If two components are not sharing
anything, they are obviously unable to have a negative impact on each other. Small
services are easier to deploy and, since they are autonomous, are less likely to cause
system failures when they go wrong.


scs-architecture.org

Software Architecture 175

Page Assembly Proxy

I N N I

I_
I_
I_
I_
I_
|_

Backoffice
Shoppages
Product
Promotion
Insights
Order
User
AfterSales
Auth
Link Handler
Tracking

-| Search & Navigation

_|

T T T T T T T T T

Backend Integration Proxy

_|
_|

Fig. 3 Example vertical decomposition of an e-commerce system into self-contained microser-
vices [33]

The well-known Conway’s law states that organizations which design systems
are constrained to produce designs which are copies of the communication struc-
tures of these organizations [17]. If the organizational structure is decomposed
vertically and according to the microservices structure into cross-functional feature
teams, scaling development capacities according to changing business requirements
is enabled. The feature teams should be highly independent, having members of
all roles and skills that are required to build and maintain their microservices.
Microservices reinforce modular structure, which is particularly important for larger
teams. Decoupling teams is as relevant as decoupling software modules.

Being a highly distributed architecture, microservices are particularly susceptible
to partial failures. Therefore, microservices must be designed to cope gracefully
with the unavailability of required services to prevent cascading failures. Several
patterns have emerged for this purpose [47], such as the circuit-breaker pattern.
In this pattern, dependencies such as other services are wrapped in a so-called
circuit-breaker object, which serves as a proxy for the dependency and monitors
its availability. If the dependency becomes unavailable or unresponsive, the circuit
breaker trips and takes appropriate measures, such as immediately returning cached
data or default values. After some time, the circuit breaker may check whether the
dependency is available again, and if so, return to proxy mode.

Decentralizing responsibility for data across microservices has implications
for managing updates. The traditional approach to dealing with updates is to
use transactions to guarantee consistency when updating multiple resources. This
approach is often used within monoliths. Using transactions this way helps with con-
sistency, but imposes significant coupling, which is problematic across distributed
services. Distributed transactions are notoriously difficult to implement, and as a
consequence, microservice architectures emphasize transaction-less coordination
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between services, with explicit recognition that consistency may only be eventual
consistency and problems are dealt with by compensating operations.

However, be aware that microservice architectures also come with costs. Main-
taining consistency, monitoring, alarming, and fault tolerance are difficult for a
distributed system, which means that you have to operate a much more complex
system than in monolithic architectures. You need a mature operations team to
manage lots of services, which are being redeployed frequently.

3.2 Focus on Quality Requirements

Quality requirements are the most important requirements for architectural work.
The study of software architecture recognizes the dependency between an architec-
ture and a software system’s quality attributes such as performance, modifiability,
and security. Architectural analysis and evaluation emerged connecting quality
attributes and architectural design decisions [16]. For the analysis of quality
attributes, software architecture models are used to analyze whether the system can
meet its nonfunctional requirements [18]. The goals of architectural evaluations are
estimations about the effects of architectural decisions, concerning quality attributes
of software. Scenario-based software architecture evaluation methods, for instance,
usually assess maintainability [4]. Architectural evaluation for software design helps
to understand the consequences of design decisions, enables substantiated design
decisions, helps to identify trade-offs, helps to check compliance, and supports
managing risks.

Quality can be addressed by a model-based or a measurement-based approach.
Model-based quality analysis provides information at an early stage, that is, before
the system is implemented [51]. This approach may identify problems early and
may reduce rework costs. However, developing the appropriate models requires
additional effort and time. Measurement-based approaches to quality perform
real measurements [62]. However, this is only applicable when the system is
implemented, but can provide real-life data.

Nonfunctional attributes, such as scalability and fault tolerance for high availabil-
ity, are addressed by microservice architectures (Sect. 3.1). A consequence of using
microservices is that applications need to be designed such that they can tolerate the
failure of individual services. Since services can fail at any time, it is important to
be able to detect the failures quickly and, if possible, automatically restore services.
Thus, microservice applications put a lot of emphasis on real-time monitoring of the
application, checking both technical metrics (e.g., how many requests per second
is the database getting) and business-relevant metrics (such as how many orders
per minute are received). Monitoring [62] can provide an early warning system of
something going wrong that triggers development teams to follow up.

Quality does not just happen. It needs to be thought about and carefully
considered. If you do not pay attention to system qualities, they can be hard to
achieve at the last moment.
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4 Future: Proper Integration of Architecture Work into
Agile Software Development

The tension between the agile and architecture communities still is fairly high. Ford
is often cited for his statements “Architecture is the stuff that’s hard to change
later” and “By deferring important architectural and design decisions until the last
responsible moment, you can prevent unnecessary complexity from undermining
your software projects” [23]. However, software architecture should be recognized
as a key foundation to agile software development, despite the fact that it is often
ignored by the agile community who has nicknamed it BUFD (big up-front design).

Meanwhile, the agile community observes a renaissance with innovation in
software architecture [59]: Organizations have accepted that “cloud” is the de facto
platform of the future, and the benefits and flexibility it brings have ushered in a
“renaissance” in software architecture. The disposable infrastructure of cloud has
enabled the first “cloud native” architecture, namely, microservices. Continuous
delivery, a technique that is radically changing how tech-based businesses evolve,
amplifies the impact of cloud as an architecture. ThoughtWorks [59] expect archi-
tectural innovation to continue, with trends such as containerization and software-
defined networking providing even more technical options and capabilities.

As observed by Keeling [37], promoting business agility requires sound architec-
ture design. The question is how best to achieve agility through architecture. Highly
modular architectures that allow for rapid experimentation are critical to a successful
integration of architecture work into agile software development. Lightweight, agile
methods are promising because they enable teams to learn fast, fail fast, change fast,
and communicate effectively. These factors are essential for self-organizing teams,
which in turn enable better designs to emerge [37].

Section 4.1 introduces the envisioned role of architecture owner in agile teams,
before the relationship between software development and operations is discussed
in Sect. 4.2. Achieving reliability with agile development, runtime adaptivity, and
keeping architecture knowledge up to date for long-living software systems are
discussed in Sects. 4.3-4.5.

4.1 Integrating Architecture Owners into Agile Teams

Treating architecture as a phase ignores its foundational role in software devel-
opment. Architecture work should be integrated with all software development
activities. With agile development, you may have an “Architecture Owner” role,
who should involve the entire team to make informed and accepted architectural
decisions. The big question is, how many architectural and design decisions upfront
(before Sprint 1)? A promising approach is to create an architecture vision in
Sprint “zero.” You need to accept constraints, identify and promote desired quality
attributes, assign functional responsibilities to elements, and guide the design with
patterns. Try to establish a clear architecture vision.
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With agile software development, you can design the architecture through stories
and use cases, so driven by requirements. Use case scenarios describe specific
interactions between the user of an application system and the system itself. We
should test the architecture against the scenarios that are associated with the
quality attribute requirements for the system, such as performance. You can add
backlog items for technical debt and quality-related architecture work. Quality-
related acceptance criteria can be attached to user stories. You should monitor
system qualities, for instance, via an operational dashboard. Do not worry about
getting your architecture right on the first day. Model and implement incrementally.
Prioritize the architecture features and mitigate the key risks.

Architecture validations encourage communication among project stakeholders.
Continuously validating the architecture tells us whether we still have the right
team structure. Fixing defects early is the best approach. Communication and
collaboration aspects of architecture are just as important as developing it. Archi-
tecture evaluations help significantly with collaboration and communication. The
architecture owner should provide architecture leadership in a collaborative manner
and help the team members enhance their capabilities in understanding architectural
principles and trade-offs involved. The architecture owner should be integrated with
day-to-day development and pay attention to details.

Some decisions are too important to leave until the last responsible moment, so
choose the most responsible moment. Choose an architecture, before it chooses you,
as may otherwise happen with emergent architectures.

4.2 Integrating Software Development and Operations:
DevOps

The DevOps movement continues what agile started. The DevOps movement
intends to improve communication, collaboration, and integration between soft-
ware developers (Dev) and IT operations professionals (Ops). Automation is key
to DevOps success: automated building of systems out of version management
repositories; automated execution of unit tests, integration and system tests; auto-
mated deployment in test and production environments; including performance
benchmarks [64]. DevOps is a set of practices intended to reduce the time between
committing a change to a system and the change being placed into normal
production, while ensuring high quality [6, 12].

The deployment pipeline is the place where the architectural aspects and the
process aspects of DevOps intersect [6]. Architectural choices need to facilitate
continuous delivery. Microservice architecture is designed for minimizing coordi-
nation needs and allowing independent deployment. Multiple simultaneous versions
may be managed with feature toggles and backward/forward compatibility. Feature
toggles support rollback, canary testing, and A/B testing. Microservices leverage
continuous integration [43] and continuous deployment [52] to promote DevOps.
Microservice architectures and DevOps benefit from each other [5].
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4.3 Achieving Reliability with Agile Software Development

For large software systems, a major difficulty for automated regression testing is
caused by the high computational costs of tests. To ensure high code coverage,
a potentially exponential set of test configurations must be executed. A solution
to this challenge could be a proper modularization of the software such that the
software components become testable in isolation. Modularization approaches such
as microservices may also facilitate automated regression testing of large software
systems. Tooling and automation is needed to satisfy quality assurance needs.
The combination of modular microservice architectures with automated quality
assurance allows to retain reliability with agile software development [33].

Many agile teams only focus on functional testing, but there is a lot more
to test, for instance, performance. Performance tests may be automated in con-
tinuous integration setting via regression benchmarking [64]. A strong model of
architecture-based testing, backed by formal reasoning and appropriate tooling,
could have a major economic impact on software system development.

4.4 Using Architecture Models for Runtime Adaptability

Scalable systems should allow to react to changing workloads automatically via
elastic capacity management [63], as offered by cloud infrastructures [35]. With
microservice architectures, you can dynamically replicate those microservices to
cloud infrastructures that are under heavy load. It is not necessary to scale the
complete system, as it would be required with a monolithic system.

Fault tolerance is intended to ensure the delivery of the correct services in the
presence of active faults. It is implemented by error detection and subsequent system
recovery. Error detection finds an erroneous system state. The following system
recovery transforms the system state that contains one or more errors into a state
without detected errors. A possible solution is given by dynamic adaptation. In
the case of errors, dynamic adaptation can ensure that the best possible system
functionality is achieved and that critical functions are kept alive (survivability).
Realizing survivability instead of fault tolerance provides an immense potential for
saving costs, for ensuring the safety of the system, and for achieving acceptable
availability. The abovementioned circuit-breaker pattern provides such properties.

To enable such runtime adaptability, we need architecture information in the
running system: architecture description as an executable deliverable, also called
models @runtime [7].
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4.5 Keeping Architecture Knowledge up to Date for
Long-Living Software Systems

The highest costs in software development are generally in system maintenance and
the addition of new features. If done early on, architectural evaluation can reduce
that cost by revealing a design’s implications [16]. This, in turn, can lead to an early
detection of errors and to the most predictable and cost-effective modifications to the
system over its life cycle. Software architecture captures and preserves designers’
intentions about system structure and behavior, thereby providing a defense against
design decay as a system ages [38]. The quality and longevity of a software-reliant
system is largely determined by its architecture. Technical debt [39] should be
avoided. Bad architectural decisions are a major contributor to technical debt.

Architecture knowledge is often lost as we move to code. The best architecture
is worthless if the code does not follow it [15]. For such long-living software, it
is important to keep the documentation and knowledge about the software up to
date [27]. Without conformance between architecture documentation and code, the
architecture documentation becomes irrelevant. We might establish conformance by
construction—yvia model-driven software engineering—or by reverse engineering
(analyzing an artifact statically or dynamically to determine its architecture).
Software system comprehension with reverse engineered architecture models is
helpful in this context [21, 22].

Successful, large systems have a long lifetime. They must evolve to meet chang-
ing requirements. Existing systems which must be maintained are sometimes called
legacy systems. Modernization of legacy software systems is required [34, 61].
When a software system evolves, ideally its prescriptive architecture is modified
first. In practice, however, the system—and thus its descriptive architecture—is
often directly modified. This happens because of perception of short deadlines, need
for code optimizations, inadequate tool support, etc.

Understanding the relationship between architectural decisions and a system’s
quality attributes reveals software architecture evaluation as a useful risk-reduction
strategy. Decisions are the main deliverable of (agile) architecture work, while
keeping a backlog of architectural concerns. Managing cost and risks is the primary
business goal and prioritizing factors for architecture owners. For longevity, decide
at the most responsible moment, not the last possible moment.

S Summary

Software architectures are essential to develop and maintain large-scale, long-living
software systems. The understanding of these systems is improved by a high-
level abstract view on a system. Architecture supports the reuse of components
and frameworks. Architecture makes expected evolution explicit and separates
functionality and connection mechanisms of components and services, so that
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they can evolve individually. Full automation of quality assurance and software
deployment allows for early fault and error detection, thus reducing repair times
both during development and during operations.

Finding the right balance for architecture work is the art of agile architecture

ownership. We can expect a coalescence of architecture work and agile software
development practices. Architecture owners should decide at the most responsible
moment, not the last possible moment.
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