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Abstract 

The equatorial Pacific is subject to strong variability on various timescales, which affects climate on 

a regional as well as on a global scale. The dominant modes of variability are the eastern equatorial 

Pacific (EEP) sea surface temperature (SST) annual cycle (AC) and the interannual El 

Niño/Southern Oscillation (ENSO). A realistic simulation of the EEP SST AC and ENSO in climate 

models together with a profound understanding of the underlying simulated dynamics is crucial for 

a robust employment of climate models in many different aspects. In this thesis, the simulation of 

the EEP SST AC and ENSO in climate models is investigated.  

The EEP SST AC originates from complex interactions of the coupled ocean-atmosphere system 

and its realistic representation presents a long-standing difficulty in climate models. This thesis 

investigates the simulation of the EEP SST AC in a set of coupled experiments with the Kiel 

Climate Model (KCM) which differ in atmospheric resolution. The KCM experiment employing 

coarse atmospheric resolution depicts significant biases in the EEP SST AC concerning the phase as 

well as the amplitude of the seasonal variation of the equatorial cold tongue. A large portion of 

these biases is linked to an erroneous simulation of zonal surface winds, which is associated with an 

incorrect representation of rainfall to the north and south of the equator. An additional source for 

EEP SST AC biases originates from a simulated deficit in shortwave radiation related to cloud 

cover biases. Analyzing the analogous uncoupled atmospheric model integrations forced by 

observed SSTs suggests that zonal wind and cloud cover biases are inherent to the atmospheric 

model component. When atmospheric model resolution is enhanced, both wind and cloud cover 

biases are markedly reduced and the simulation of the EEP SST AC improves. The effect of 

enhanced atmospheric resolution is, on the one hand, to reduce convection biases over the 

equatorial Pacific sector and, on the other hand, to improve the simulation of surface winds near 

landmasses as a result of a refined representation of orography. A subset of models from the 5th 

phase of the Coupled Model Intercomparison Project (CMIP5) exhibits very similar biases and 

associated dynamics of the EEP SST AC to those identified in the KCM. 

The interannual variability associated with ENSO is characterized by a distinct seasonal phase 

locking with strongest SST anomalies (SSTa) during boreal winter and weakest SSTa in boreal 

spring. This feature is here investigated in an ensemble of KCM integrations created from perturbed 

atmospheric physics. The KCM ensemble-mean depicts a realistic seasonal phase locking of the 

SST variability and of the relevant ENSO feedbacks as inferred from conducting a Bjerknes 

Stability index analysis. However, the amplitude of the seasonal phase locking is underestimated, 
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which is linked to an excessive simulation of the equatorial cold tongue that reduces the amplitude 

of the simulated feedbacks. The simulation of eastern equatorial SST variability, mean-state SST 

and ENSO feedbacks is very sensitive to perturbed atmospheric physics. KCM simulations with a 

more realistic mean state and ENSO feedbacks also exhibit a more realistic seasonal ENSO phase 

locking. A similar relationship also is obtained from a set of CMIP5 models. 

A problematic feature of ENSO simulation in climate models is the large diversity in the simulated 

strength of ENSO variability. This thesis investigates ENSO-amplitude diversity in a CMIP5 multi-

model ensemble by means of the linear recharge oscillator model, which reduces ENSO dynamics 

to a two-dimensional problem in terms of central and eastern equatorial SSTa (T) and equatorial 

heat content anomalies (h). Two major sources of the diversity are identified: One originates from 

stochastic forcing of T and h, the other from interactions of the dynamical processes. The latter 

suggests competing effects of the growth rate of T and h and the stochastic forcing. These identified 

sources explain more than 80% of the ENSO-amplitude diversity in the CMIP5 multi-model 

ensemble. 
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Zusammenfassung 

Der äquatoriale Pazifik ist durch starke Variabilität auf verschiedenen Zeitskalen gekennzeichnet, 

mit regionalen und globalen Auswirkungen auf das Klima. Dabei stellen der Jahresgang der 

Meeresoberflächentemperatur im östlich-äquatorialen Pazifik (engl. eastern equatorial Pacific sea 

surface temperature annual cycle, Abk. EEP SST AC) sowie das El Niño/Southern Oscillation 

(ENSO)-Phänomen die dominanten Moden dar. Eine realistische Simulation dieser beiden Moden 

sowie ein tiefreichendes Verständnis von den zugrunde liegenden simulierten Dynamiken ist für 

eine verlässliche Verwendung von Klimamodellen von großer Wichtigkeit. In dieser Doktorarbeit 

wird die Simulation des EEP SST AC und ENSO in Klimamodellen untersucht. 

Der EEP SST AC wird von einem komplexem Zusammenspiel von Ozean und Atmosphäre 

bestimmt und wird in den meisten Klimamodellsimulationen im Vergleich zu Beobachtungen 

fehlerhaft dargestellt. In dieser Doktorarbeit wird die Simulation des EEP SST AC im Kieler 

Klimamodell (engl. Kiel Climate Model, Abk. KCM) untersucht. Dabei bilden sechs Simulationen 

mit dem KCM, welche sich in der Gitterauflösung der atmosphärischen Modellkomponente 

unterscheiden, die Grundlage der Studie. In der KCM-Simulation mit grober atmosphärischer 

Auflösung lassen sich deutliche Simulationsfehler in der Phase sowie in der Amplitude des EEP 

SST AC identifizieren. Ein erheblicher Anteil der fehlerhaften Simulation des EEP SST AC hängt 

mit einer fehlerhaften Darstellung von oberflächennahen zonalen Winden zusammen. Dies 

wiederum geht mit einer fehlerhaften Simulation von Niederschlag und Konvektion im Sektor des 

tropischen Pazifiks einher. Außerdem führt eine ungenaue Simulation der Bewölkung zu einem 

Defizit in der simulierten kurzwelligen Strahlung an der Meeresoberfläche, welche die Darstellung 

der Meeresoberflächentemperatur beeinflusst. Es lässt sich zeigen, dass im KCM ein Großteil der 

fehlerhaften Simulation sowohl des zonalen Windes als auch der Bewölkung seinen Ursprung in der 

atmosphärischen Modellkomponente hat. Darüberhinaus führt eine Erhöhung der atmosphärischen 

Modellauflösung im KCM zu einer deutlichen Verbesserung der Simulation der zonalen Winde, der 

Bewölkung und des EEP SST AC im Vergleich zu Beobachtungen. Die Erhöhung der 

atmosphärischen Modellauflösung bewirkt eine verbesserte Darstellung des Niederschlags und der 

Konvektion im tropischen Pazifik, was die Simulation von zonalen Winden und Bewölkung 

beeinflusst. Zusätzlicher Einfluss wird einer genaueren Darstellung der Orography unter erhöhter 

atmosphärischer Auflösung zugeschrieben. Ein Vergleich der Ergebnisse mit Simulationsdaten von 

Modellen aus dem fünften Coupled Model Intercomparison Project (CMIP5) zeigt, dass diese 
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Mechanismen auch in anderen Klimamodellen eine wichtige Rolle für die Simulation des EEP SST 

AC spielen. 

Die zwischenjährliche Variabilität im äquatorialen Pazifik aufgrund von ENSO ist ebenfalls durch 

einen Jahresgang gekennzeichnet, mit stärksten Meeresoberflächentemperaturanomalien im 

borealen Winter und schwächsten Anomalien im Frühling. In dieser Doktorarbeit wird die 

Simulation dieser Charakteristik (engl. seasonal ENSO phase locking) im KCM untersucht. Dabei 

stellt ein große Anzahl von KCM-Simulationen die Grundlage für die Analyse, welche sich durch 

Variationen physikalischer Koeffizienten in atmosphärischen Parameterisierungen unterscheiden. 

Der Mittelwert über alle Simulationen zeigt ein in der Phase realistisches aber in der Ausprägung zu 

schwaches seasonal ENSO phase locking im Vergleich zu Beobachtungen. Die Ergebnisse deuten 

an, dass eine im KCM zu stark ausgeprägte äquatoriale Kaltwasserzunge eine zu schwache 

Simulation der physikalischen Rückkopplungen bewirkt, welche wiederum das phase locking 

kontrollieren. Außerdem lässt sich eine hohe Empfindlichkeit der Simulation der Kaltwasserzunge, 

der Rückkopplungen sowie des phase locking auf die Variationen der oben-genannte physikalischen 

Koeffizienten im KCM feststellen. Zwischen der realistischen Darstellung der Kaltwasserzunge, 

den physikalischen Rückkopplungsprozessen und dem phase locking besteht im KCM ein 

systematischer Zusammenhang. Ein Vergleich mit Ergebnissen aus CMIP5-Modelldaten bestätigt 

diese Relation. 

Eine weitere Problematik ist die große Diversität an ENSO-Stärke-Simulationen in Klimamodellen. 

In der vorliegenden Doktorarbeit wird dies mit Hilfe des linearen zwei-dimensionalen recharge 

oscillator-Modells in CMIP5-Klimamodellsimulationen untersucht. Zwei signifikante Faktoren für 

die Diversität lassen sich identifizieren: Ein Faktor ist der stochastiche Antrieb der 

Meeresoberflächentemperatur und des äquatorialen Wärmeinhalts, ein anderer das Zusammenspiel 

der unterschiedlichen dynamischen Prozesse. Letzterer bewirkt einen konkurrierenden Effekt auf 

die Simulation der ENSO-Stärke in Klimamodellen. Die genannten Faktoren verursachen über 80% 

der ENSO-Stärke-Diversität in CMIP5-Klimamodellsimulationen. 
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1 Introduction 

1.1 General introduction 

The equatorial Pacific depicts the largest annual-mean equatorial zonal sea surface temperature 

(SST) contrast on the globe with a difference of up to 6K. Warm waters are located in the west and 

cold water in the east (Fig. 1a; color shading), which are referred to as the western warm pool and 

the equatorial cold tongue, respectively. This structure is determined by interactions of the ocean 

with the atmosphere. In the annual mean, the Intertropical Convergence Zone (ITCZ) is located 

north of the equator (Fig. 1a; indicated by mean precipitation in contours), which drives cross-

equatorial southeasterly winds over the central and eastern equatorial Pacific (Fig. 1a; arrows). The 

winds generate equatorial and coastal upwelling of cold subsurface water, which maintains the 

cross-equatorial SST gradient. The zonal SST gradient in the equatorial Pacific is associated with a 

zonally asymmetric atmospheric circulation (Walker circulation), which is linked to a westward 

transport of warm surface water and maintains the zonal SST contrast. Consequently, isotherms in 

the upper equatorial Pacific are tilted upward from the west towards the east with a thermocline 

located at approximately 200m depth in the western part and at approximately 50m near the eastern 

boundary (Fig. 1b). The nutrient-rich cold water in the equatorial cold tongue leads to high 

phytoplankton concentration and to a fishery production of crucial economic importance for parts of 

the South American population. The western warm pool on the other hand features the largest 

extent of high SSTs in the global oceans and is linked to an enormous amount of precipitation (Fig. 

1a; contours) and latent heat release. 

The equatorial Pacific is subject to large variability on various timescales, which locally and 

globally affects weather, ecosystem, agriculture and human populations (Diaz and Markgraf 2000; 

Hsu and Moura 2001; Alexander et al. 2002; Barsugli and Sardeshmukh 2002). The dominant 

modes of equatorial Pacific variability are the eastern equatorial Pacific (EEP) SST annual cycle 

(AC) and the interannual El Niño/Southern Oscillation (ENSO). A realistic simulation of these 

modes of variability in coupled general circulation models (climate models hereafter) is of 

fundamental importance to, for example, more accurate climate predictions on various temporal and 

spatial scales. The aim of this thesis is to add detailed insights on the simulation of the EEP SST AC 

and ENSO in climate models.  

The following subsections provide an introduction to the EEP SST AC and ENSO. It should be 

noted that there are strong indications that these two modes of variability are linked (e.g. Liu 2002), 

which is, however, not the subject of this thesis. 
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Fig. 1 Tropical Pacific long-term mean of (a) SST (color shading), precipitation (contours) and wind at 10m (black 

arrows) and (b) upper ocean temperature section averaged over 5°S - 5°N. For SST the HadISST 1.1 data set (Rayner et 

al. 2003) is used for the period 1958 – 2001, precipitation from the CMAP (Xie and Arkin 1997) for 1979 – 2014, 10m 

wind from CCMP V2.0 wind product (Wentz et al. 2015) for 1988 – 2014 and subsurface ocean temperature from 

Levitus et al. (1998) climatology. Temperature is in units of °C, precipitation in mm day-1 and wind in ms-1. 

 

1.2 Equatorial Pacific seasonal cycle 

The equatorial Pacific features different seasonal variability patterns in the western and eastern part 

of the basin. Western equatorial Pacific SST varies semi-annually (Fig. 2a), following the semi-

annual variation of shortwave radiation at the surface (Fig. 2d). In the EEP, SST varies annually and 

with much larger amplitude compared to the semi-annual cycle in the west (Fig. 2a). The EEP SST 

AC exhibits warm conditions during the first half and cold conditions during the second half of the 

calendar year, which is not determined by the equatorial semi-annual cycle of shortwave radiation 

as the underlying dynamics are more complex. In the review study of Xie (2005), the seasonal 

variation of the ITCZ is suggested as the ultimate driving factor of the EEP SST AC. The eastern 

part of the ITCZ is located north of the equator almost throughout the year (Xie 2005), which is 

because the equatorial cold tongue prevents the seasonal migration from the northern to the 

southern hemisphere. Annual variations in insolation drive a seasonal strengthening/weakening of 

the ITCZ, which determines an increase/decrease of equatorial southeasterly winds (Fig. 2b,c).
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Fig. 2 Equatorial Pacific seasonal cycle with the annual mean removed of (a) SST, (b) zonal wind at 10m, (c) 

meridional wind at 10m and (d) shortwave radiative surface heat flux. All data is averaged over 0.5°S – 0.5°N. SST data 

is taken from NOAA_OI_SST_V2 (Reynolds et al. 2002) for 1981 – 2016, wind from the CCMP V2.0 product (Wentz 

et al. 2015) for 1988 – 2014 and shortwave heat flux from ISCCP (Rossow and Schiffer 1999) for 1984 – 2009. 

Temperature is in units of °C, wind in ms-1 and shortwave heat flux in Wm-2. 

 

This, in turn, leads to seasonal differences in evaporation and ocean upwelling at the equator. 

Furthermore, seasonal changes in EEP SST alter the amount of low-level clouds via modifications 

of atmospheric stability, which induces local changes in the shortwave radiative heat flux (Fig. 2d). 

These mechanisms all contribute to define the EEP SST AC. 

 

Simulation of the eastern equatorial Pacific sea surface temperature annual cycle in climate models 

A realistic simulation of the EEP SST AC in climate models can be critical for a correct simulation 

of climate variability on various timescales as well as for carrying out more accurate climate 

predictions. According to Song et al. (2014), the simulation of the EEP SST AC in climate models 

has improved from the Coupled Model Intercomparison Project (CMIP) phase 3 to phase 5. 

Nevertheless, models from CMIP5 exhibit severe errors such as a wrong timing of the seasonal 

onset and termination of the equatorial cold tongue by a few months. Therefore, the driving 

mechanisms of climate model biases in simulating the EEP SST AC and options to alleviate these 

biases must be identified. 

The aim of the study presented in chapter 2 of this thesis is to identify driving mechanisms of 

climate model biases in the simulation of the EEP SST AC. A set of experiments with the Kiel 

Climate Model (KCM) and a subset of models from CMIP5 are investigated. The standard 
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model configuration of the KCM exhibits qualitatively similar biases as the CMIP5 models. 

Key drivers of the EEP SST AC such as winds, upper ocean dynamics and atmospheric heat 

fluxes are investigated. The fact that coupled ocean-atmosphere dynamics determine the EEP 

SST AC highly complicates the identification of sources for model biases. Therefore, both 

coupled and uncoupled simulations from the atmospheric model component are investigated 

to pin down the sources. The KCM is further used to test the potential of increased 

atmospheric resolution for improving the simulation of the EEP SST AC. 

 

1.3 El Niño/Southern Oscillation 

ENSO is a composite term that relates the oceanic phenomenon El Niño and the atmospheric 

seesaw pattern Southern Oscillation. It is the dominant interannual natural climate fluctuation and it 

is characterized by large SST anomalies (SSTa) primarily in the eastern and central equatorial 

Pacific giving rise to a basin-scale climate perturbation that has a global socioeconomic impact 

(Siedler et al. 2013). As an example, it was estimated that the occurrence of very large warm 

anomalies during 1997/1998, which were associated with ENSO, has caused 23.00 fatalities and a 

damage of 33 Bil. US$ worldwide (McPhaden 1999). 

The warm phase of ENSO is termed El Niño, the cold phase La Niña and the events occur 

irregularly within the 2-7 year band. Another robust and important feature of ENSO is that El Niño 

and La Niña events typically peak in boreal winter, which is referred to as seasonal ENSO phase 

locking (e.g. Tziperman et al. 1998; Neelin et al. 2000; McGregor et al. 2012). 

The different conditions during El Niño and La Niña are schematically shown in Fig. 3, the 

conditions referred to as “normal” are depicted in Fig. 3a. El Niño is characterized by an anomalous 

warming of the central and eastern equatorial Pacific (Fig. 3b), which is associated with westerly 

wind anomalies, an eastward shift of the western Pacific atmospheric deep-convective pattern and a 

reduced zonal slope of the ocean thermocline along the equator. During La Niña (Fig. 3c), central 

and eastern SST are anomalously low with stronger trade winds and an increased zonal thermocline 

slope. In this respect, Bjerknes (1969) discusses the existence of a coupled positive feedback that 

explains the growth of SSTa - the so-called Bjerknes feedback: An initial eastern equatorial warm 

sea surface anomaly induces a weakening of the wind field due to a reduced zonal SST gradient. 

The weakening of the wind field leads to a deepening of the thermocline in the east, which 

reinforces the initial warm anomaly (vice versa for La Niña). The Bjerknes feedback can explain 

how El Niño and La Niña reach a mature stage, but it does not provide an explanation for the 
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Fig. 3 Schematic of the equatorial Pacific under (a) normal conditions, (b) El Niño conditions and (c) La Niña 

conditions. Source: NOAA / PMEL / TAO under https://www.pmel.noaa.gov/elnino/schematic-diagrams. 

 

transition of the two phases. In contrast to that, the conceptual recharge oscillator model (Jin 1997) 

offers a description of the oscillatory mode via a recharge and discharge of equatorial heat content. 

The oscillation is explained via the well-established Sverdrup balance between the meridional shear 

of zonal wind anomalies and the meridional upper-ocean mass transport. The discharge (recharge) 

of equatorial heat content during an El Niño (La Niña) phase eventually leads to a transition 

between the two phases. 

A formidable challenge is to understand and predict ENSO on seasonal to multi-decadal time scales 

using climate models (Guilyardi et al. 2009; Wittenberg 2009; Bellenger et al. 2014). The difficulty 

arises from the complex interaction between ocean and atmosphere. Bellenger et al. (2014) identify 

large biases and great diversity in ENSO simulations among CMIP3 and CMIP5 models, 

introducing uncertainties in a realistic simulation of global climate variability and in predicting 

future climate changes. 

 

Simulation of seasonal ENSO phase locking in climate models 

Seasonal ENSO phase locking, which is the tendency of ENSO-related variability to peak in boreal 

winter, is poorly represented in climate models. An incorrect simulation of the peak season together 

with a large diversity in the simulated ENSO dynamics characterizes the models behavior (e.g. Ham 

et al. 2012; Bellenger et al. 2014; Ham and Kug 2014). This can have severe consequences for 

ENSO forecast (Jin and Kinter 2009) and for the simulation of ENSO teleconnections in climate 

models (e.g. Webster et al. 1998). Over the past years, progress has been made in identifying 

mechanisms that are responsible for an erroneous simulation of seasonal ENSO phase locking 

(Zheng and Yu 2007; Ham et al. 2012; Ham and Kug 2014; Rashid and Hirst 2015). However, the 

underlying mechanisms differ quite substantially among the models and there is only a modest 

amount of studies that have investigated this feature in individual climate models. Therefore, the 
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understanding of the controlling mechanisms of seasonal ENSO phase locking in climate models 

must be furthered. Advances in this regard would contribute to an improved simulation of tropical 

climate variability on various timescales, their teleconnections to the extratropics and to uncertainty 

reduction in seasonal forecasting. 

The aim of the study presented in chapter 3 of this thesis is to identify the controls of seasonal 

ENSO phase locking in the KCM. A large ensemble of experiments generated from perturbed 

atmospheric physics and from the employment of different vertical atmospheric resolutions 

depicts a similarly large spread in the simulation of seasonal ENSO phase locking as obtained 

from a CMIP5 multi-model ensemble. This suggests a strong sensitivity to slightly different 

model configurations, which, in turn, can introduce large uncertainty in the simulation of 

global climate variability. A Bjerknes Stability (BJ) index analysis is employed to investigate 

the relevant feedbacks that control seasonal ENSO phase locking in the KCM. The final 

results are compared to those from models participating in CMIP5. 

 

ENSO-amplitude diversity in climate models 

A broadly discussed problematic issue is the large diversity in the strength of ENSO variability in 

climate models (e.g. Latif et al. 2001; Bellenger et al. 2014). This diversity in ENSO amplitude 

introduces uncertainties in making robust statements about long-term ENSO projections. Recent 

studies have presented progress in identifying controlling factors of ENSO-amplitude diversity in 

climate models (Kim et al. 2014; An et al. 2017). However, Kim et al. 2014 show that an analysis of 

the relevant feedbacks provides inconclusive results for a set of CMIP5 models. Therefore, the 

investigation of the controls of ENSO-amplitude diversity in climate models must be extended.  

The study presented in chapter 4 of this thesis investigates ENSO-amplitude diversity in a 

large ensemble of models participating in CMIP5 by means of the linear recharge oscillator 

model (ReOsc model hereafter). The ReOsc model reduces ENSO dynamics to a two-

dimensional problem in terms of eastern equatorial Pacific sea surface temperature anomalies 

(T) and equatorial Pacific upper ocean heat content anomalies (h). First, a proof of concept of 

the ReOsc model in reproducing ENSO amplitudes from the CMIP5 models is conducted. The 

ReOsc model is then used to identify the controlling dynamical processes of ENSO-amplitude 

diversity in the CMIP5 model ensemble. 
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2 Eastern equatorial Pacific sea surface temperature 
annual cycle in the Kiel Climate Model: Simulation 
benefits from enhancing atmospheric resolution  

 

 

Citation: Wengel, C., Latif, M., Park, W., Harlaß, J., and Bayr, T. (2017): Eastern Equatorial 

Pacific Sea Surface Temperature Annual Cycle in the Kiel Climate Model: Simulation Benefits from 

Enhancing Atmospheric Resolution. Climate Dynamics, in revision. 
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Abstract 

A long-standing difficulty of climate models is to capture the annual cycle (AC) of eastern 

equatorial Pacific (EEP) sea surface temperature (SST). In this study, we first examine the EEP SST 

AC in a set of integrations of the coupled Kiel Climate Model (KCM) in which only atmosphere 

model resolution differs. When employing coarse horizontal and vertical atmospheric resolution, 

significant biases in the EEP SST AC are observed. These are reflected in an erroneous timing of 

the cold tongue’s onset and termination as well as in an underestimation of the boreal spring 

warming amplitude. A large portion of these biases are linked to a wrong simulation of zonal 

surface winds, which can be traced back to precipitation biases on both sides of the equator and an 

erroneous low-level atmospheric circulation over land. Part of the SST biases also is related to 

shortwave radiation biases related to cloud cover biases. Both wind and cloud cover biases are 

inherent to the atmospheric component, as shown by companion uncoupled atmosphere model 

integrations forced by observed SSTs. Enhancing atmosphere model resolution, horizontal and 

vertical, markedly reduces zonal wind and cloud cover biases in coupled as well as uncoupled mode 
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and generally improves simulation of the EEP SST AC. Enhanced atmospheric resolution reduces 

convection biases and improves simulation of surface winds over land. Analysis of a subset of 

models from the Coupled Model Intercomparison Project phase 5 (CMIP5) reveals that in these 

models, very similar mechanisms are at work in driving EEP SST AC biases.  
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1. Introduction 

Sea surface temperature (SST) in the eastern equatorial Pacific (EEP) depicts a pronounced annual 

cycle (AC) with warmest temperatures in March – April and coldest in August – October (Mitchell 

and Wallace 1992). The amplitude of the EEP SST AC is relatively large (up to 5°C in localized 

regions) despite relatively little seasonal change in insolation (Xie 2005). This contrasts to 

subtropical SST at 20° N that varies seasonally only half as much in spite of much larger annual 

variation in insolation. The reason for this peculiarity can be traced back to the zonal and 

meridional asymmetries in the tropical Pacific climatology (Xie 2005). That is a zonal SST gradient 

along the equator and a cross-equatorial SST gradient in the eastern equatorial regime due to the 

inter-tropical convergence zone (ITCZ) located to the north of the equator and cold water south of 

it. These asymmetries are maintained by ocean-atmosphere interaction associated with southeasterly 

winds across the equator, driving ocean upwelling and evaporative cooling, and by formation of 

stratus-clouds over cold waters (Philander et al. 1996; Xie 2005). The associated physical processes 

are termed upwelling-SST feedback, wind-evaporation-SST (WES) feedback and stratus cloud-SST 

feedback, respectively (Yu and Mechoso 1999a; Xie 2005). The strength of the ITCZ varies with 

the seasonal variation of insolation, but the ITCZ is located north of the equator almost throughout 

the year. Consequently, the strength of southeasterly winds varies seasonally, which drives seasonal 

variations in ocean upwelling and evaporation at the equator. Furthermore, the seasonal variation of 

SST alters the amount of low-level clouds via modifications of atmospheric stability. These 

mechanisms all contribute to define the EEP SST AC with its cold phase during August-September 

and warm phase during March-April (for a review see Xie 2005). An important feature of the warm 

phase is the westward propagation of the warming signal, which is attributed to the interaction of 

the SST with the zonal wind (Mitchell and Wallace 1992; Xie 2005) and can be understood within 

the SST mode concept (Neelin 1991). 
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The realistic simulation of the EEP SST AC in climate models, i.e. coupled general circulation 

models (CGCMs), still presents a great challenge (Mechoso et al. 1995; Covey et al. 2000; Latif et 

al. 2001; Xie et al. 2007; Song et al. 2014). For example, several models participating in the 

Coupled Model Intercomparison Project phase 3 (CMIP3) simulate a semiannual cycle (de Szoeke 

and Xie 2008). Improvement has been achieved towards CMIP5. Song et al. (2014) find 14 out of a 

set of 18 models are able to simulate a reasonable EEP SST AC. The multi-model mean captures 

the annual signal with a correlation coefficient of approximately 0.9 as well as the westward 

propagation of the warming signal. However, a large warm SST bias in boreal fall is still present in 

nearly all models, which the authors link to a poor representation of surface winds.  

Yu and Mechoso (1999b) show that a CGCM can realistically simulate the EEP SST AC despite 

errors in the surface latent heat fluxes, suggesting that these heat fluxes play a secondary role. The 

Monsoonal circulation, on the other hand, is suggested to be an important driver of the EEP SST 

AC. 

Chen and Jin (2017) diagnose too weak mean cross-equatorial winds as an important reason why 

the EEP SST AC is too weak in many CMIP5 models. In a dynamic diagnostics framework, they 

further attribute the large diversity in the simulations of the EEP SST AC to the spread in the 

internal dynamics as measured by the damping rate of the SST AC and phase speed of westward 

propagation. Another important source of uncertainty is the solar forcing at the surface, which is 

influenced by biases in the representation of stratus clouds in the EEP. 

Due to the complex interactions between dynamics and physics in setting up the EEP SST AC, its 

simulation is a welcome test for CGCMs. Moreover, the EEP SST AC impacts tropical Pacific 

sector climate variability (e.g. El Niño/Southern Oscillation (ENSO), Stein et al. 2011) and 

predictability (Latif and Graham 1992). Here we investigate the role of the atmospheric resolution, 

horizontal and vertical, in determining the quality of simulating the EEP SST AC in the Kiel 

Climate Model (KCM) and a number of CMIP5 models. It has been shown in previous work that 
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enhanced atmospheric resolution strongly reduces tropical mean-state biases in the KCM. For 

example, enhancing atmospheric resolution improves the simulation of the surface zonal wind in the 

western equatorial Atlantic, which also improves eastern tropical Atlantic SST simulation via 

remote effects. Further, the better representation of the local coastline in the eastern tropical 

Atlantic improves the simulation of alongshore winds and hence local upwelling dynamics. These 

improvements also have a beneficial effect on the simulation of interannual SST variability in the 

eastern equatorial Atlantic (Harlaß et al. 2015, Harlaß et al. 2017). 

This paper is structured as follows. Section 2 introduces the KCM and the experiments, the 

observational data used for model verification as well as the CMIP5 model data. Section 3 describes 

the performance of the KCM in simulating the EEP SST AC at different atmosphere model 

resolutions. In Section 4, we investigate a subset of CMIP5 models. Conclusions and discussion of 

the main findings are provided in Section 5. 

 

2. Coupled models, observational data and methods 

We analyze a series of simulations with the Kiel Climate Model (KCM, Park et al. 2009). The KCM 

consists of the atmospheric general circulation model (AGCM) ECHAM5 (Roeckner et al. 2003), 

which is coupled to the Nucleus for European Modeling of the Ocean (NEMO; Madec et al. 1998) 

ocean-sea ice general circulation model via the Ocean Atmosphere Sea Ice Soil version 3 (OASIS3; 

Valcke 2006) coupler.  

A set of “present-day” control integrations of the KCM employing constant atmospheric CO2-

concentration of 348 ppm, each 100-years-long, is investigated. We skip the first 20 years of each 

simulation in the analyses. The horizontal ocean model resolution is identical in all experiments, 

based on a 2° Mercator mesh (ORCA2 grid), on average 1.3° with increased meridional resolution 

of 0.5° near the equator and 31 vertical levels. We conducted 6 experiments, which only differ in 

atmospheric horizontal and vertical resolution (Table 1). In the horizontal, we use spectral



 26       

Table 1 List of the KCM experiments, which differ in horizontal and vertical atmospheric resolution. 

KCM experiment 

label 

Atmospheric resolution 

Horizontal resolution  Number of vertical levels 

1 T42 (~ 2.8°) 19 

2  T42 (~ 2.8°) 31 

3  T42 (~ 2.8°) 62 

4  T159 (~ 0.75°) 31 

5  T159 (~ 0.75°) 62 

6  T255 (~ 0.47°) 62 

 

resolutions of T42 (~2.8°), T159 (~0.75) and T255 (~0.47°) and in the vertical 19, 31 and 62 levels 

with the top level at 10 hPa in all cases. The additional levels are placed in between the original 

levels, which effectively provides a higher amount of vertical levels in the lower atmosphere. This 

is the dynamical relevant part for the EEP SST AC, as discussed above, whereas vertical resolution 

in the upper atmosphere is expected to only have a minor influence. We note that no re-tuning of 

the coupled model was performed when changing the atmospheric resolution. Additionally, we 

performed six 30-yr long standalone experiments with the atmospheric component of the KCM, the 

ECHAM5 AGCM, forced by monthly climatological observed SSTs and sea ice concentrations 

using a combined data set consisting of GISST 2.2a (UKMO) and OISST (NCEP) for SST and 

ECMWF and NCEP for sea-ice concentration (Taylor et al. 2000; see below). The uncoupled 

experiments allow us to investigate whether errors in atmospheric circulation observed in the 

coupled model versions are inherent to the AGCM or due to coupling. 

Data from a subset of CMIP5 models (Table 2) is additionally used. Historical simulations (1850 – 

2005) with observed external forcing are taken from 12 CMIP5 models (Taylor et al. 2012)
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 Table 2 List of the CMIP5 models used in the analysis. 

Label 
number 

Modeling 
Group 

CMIP5 ID Atmosphere 

(1) Horizontal grid 

      (longitude x 
latitude) 

(2) Number of  
vertical levels 

Ocean 

(1) Horizontal res. 

(2) Number of vertical 
levels 

Time 
period 
(year 

1 CSIRO-

BOM 

ACCESS1.0 (1) 192 ×  145 N96 

       (1.875°x1.25°) 

(2) 38 

(1) 1° latitude/longitude 

tripolar with enhanced 

resolution near the equator 

and at high latitudes 

(2) 50 

156 

2 CSIRO-

BOM 

ACCESS1.3 (1) 192 x 145 N96 

       (1.875°x1.25°) 

(2) 38 

(1) 1° latitude/longitude 

tripolar with enhanced 

resolution near the equator 

and at high latitudes 

(2) 50 

156 

3 BCC bcc-csm1-1 (1) T42 

       (2.8°x2.8°) 

(2) 26 

(1) 1° with enhanced 

resolution in the 

meridional direction in the 

tropics (1/3° meridional 

resolution at the equator) 

tripolar 

(2) 40 

156 

4 CMCC CMCC-CM (1) T159 

       (0.75°x0.75°) 

(2) 31 

(1) 2° average, 0.5° at the 

equator (ORCA2) 

(2) 31 

156 

5 

 

CNRM-

CERFACS 

CNRM-

CM5 

(1) TL127 

       (1.4°x1.4°) 

(2) 31 

(1) 0.7° on average 

ORCA1 

(2) 42 

156 

6 NOAA 

GFDL 

GFDL-CM3 (1) ~200 km C48L48 

         (2.5°x2.0°) 

(1) 1° tripolar 360 × 200 

(2) 50 

146 
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(2) 48 

7 NASA 

GISS 

GISS-E2-R (1) 2° latitude × 2.5° 

longitude F 

        (2.5°x2.0°) 

(2) 40 

(1) 1° latitude × 1.25° 

longitude Russell 1 × 1Q 

(2) 32 

156 

8 IPSL IPSL-

CM5A-LR 

(1) LMDZ 96 × 95 

         (3.75°x1.9°) 

(2) 39 

(1) 2 × 2-0.5° ORCA2 

(2) 31 

156 

9 IPSL IPSL-

CM5A-MR 

(1) LMDZ 144 × 143 

         (2.5°x1.25°) 

(2) 39 

(1) 2 × 2-0.5° ORCA2 

(2) 31 

156 

10 MIROC MIROC5 (1) T85 

         (1.4°x1.4°) 

(2) 40 

(1) 1.4° (zonally) × 0.5–
1.4° (meridionally) 

(2) 50 

156 

11 MRI MRI-

CGCM3 

(1) 320 × 160 TL159 

        (1.125°x1.125°) 

(2) 48 

(1) 1 × 0.5 

(2) 50 + 1 Bottom 

Boundary Layer 

156 

12 NCC NorESM1-

M 

(1) Finite Volume  

        (2.5°x1.9°) 

(2) 26 

(1) 1.125° along the 

equator 

(2) 53 

156 

 

and interpolated to a 2.5° x 2.5° regular grid. Due to technical reasons the subset had to be limited 

to 12 representative models. We also investigate the standalone integrations with the corresponding 

AGCMs, obtained from the Atmospheric Model Intercomparison Project (AMIP). 

For model comparison, SST provided for the time period 1981 – 2016 from National Oceanic and 

Atmospheric Administration Optimum Interpolation SST version 2 (NOAA_OI_SST_V2; 

Reynolds et al. 2002, http://www.esrl.noaa.gov/psd/) is used. Furthermore, we use zonal and 
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meridional winds at 10 m height for 1988 – 2014 from the Cross-Calibrated Multi-Platform 

(CCMP) V2.0 wind product (Wentz et al. 2015). The CCMP dataset combines cross-calibrated 

satellite microwave winds and instrumental observations to produce high resolution (0.25°) gridded 

analyses. Atmospheric heat fluxes for 1984–2009 are from the Objectively Analyzed air–sea heat 

Fluxes (OAFlux) dataset (Yu and Weller 2007). Output from the Simple Ocean Data Assimilation 

(SODA) ocean reanalysis product version 2.0.2 (Carton and Giese 2008) for the period 1958-2001 

is used for ocean temperatures and velocities. Precipitation for the period 1979–2014 is from 

CMAP (Xie and Arkin 1997) and the vertical distribution of winds for 1982–2009 on a 0.75° grid 

from ECMWF Re-Analysis (ERA-interim, Dee et al. 2011). 

Zonal sections along the equator are calculated as averages from 2.8°S to 2.8°N, accounting for the 

coarsest horizontal atmosphere model resolution (T42) used here and the lack of a grid point 

directly at the equator in ECHAM5. Monthly deviations from the long-term annual mean are 

considered.

 

3. SST annual cycle in the KCM 

The EEP SST AC simulated by the KCM at the different atmospheric resolutions is compared to 

observations in Fig. 1. Relative to the KCM version using the coarsest atmospheric resolution 

(T42L19), the obvious changes in SST when employing higher atmospheric resolution are 

statistically significant at the 95% level (t-test). All 6 simulations feature a warming during the first 

half and a cooling during the second half of the calendar year. Several biases are noticed. First, the 

magnitude of the boreal spring warming is underestimated by approximately 1° C in all simulations. 

Second, the equatorial cold tongue appears 1 – 2 months earlier in comparison to observations and 

third, the cold tongue disappears too early in the calendar year by up to 3 months, especially in the 

KCM versions with coarse atmospheric resolution. For example, the simulation with the lowest 

atmospheric resolution (T42L19; Fig. 1b) depicts positive SST anomalies in the very east that 
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Fig. 1 Seasonal cycle of equatorial Pacific SST (°C) with the annual mean removed for (a) observations and (b) – (g) 

the Kiel Climate Model (KCM) with different atmospheric resolutions. All data are averaged over 2.8°S – 2.8°N. 

 

already develop in October, whereas in the observations, positive SST anomalies in the east do not 

appear before January. The erroneous warm anomaly in boreal fall disappears at the highest 

atmospheric resolution, however, the negative SST anomaly in the east is still too small (T255L62; 

Fig. 1g). 

We next study the processes determining the EEP SST AC in the KCM and investigate the origin of 

the model biases, which also are observed in other CGCMs (Song et al. 2014, see below). Figure 2 

shows the bias in the SST AC along the equator. All KCM simulations depict a cold bias peaking in 

early boreal summer of the order of 2°C to 3°C, and a warm bias peaking in boreal fall of the order 

of 1.5°C to 2.5°C. The simulations employing lower atmospheric resolution (Fig. 2a,b) exhibit a 

second peak in the cold SST bias in boreal spring. The cold bias reflects the weaker seasonal 
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Fig. 2 Seasonal cycle of SST bias in the equatorial Pacific. The bias is calculated by subtracting observed monthly 

anomalies from KCM monthly anomalies. Anomalies are defined with respect to the annual mean. All data are averaged 

over 2.8°S – 2.8°N. SST bias is in units °C. 

 

warming in boreal spring together with an earlier onset of the equatorial cold tongue in boreal 

summer (Fig. 1). The warm bias reflects the too early disappearance of the equatorial cold tongue, 

as discussed above. We note that the magnitude of the SST biases become smaller when 

atmospheric resolution is increased but remain significant even at the highest atmospheric 

resolution. 

The analyses focus on the KCM versions with the lowest (T42L19) and highest atmospheric 

resolution (T255L62). Analyses from the simulations employing all atmospheric resolutions are 
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shown in Fig. S1 – Fig. S24. According to Yu et al. (2013) the three major driving mechanisms of 

the EEP SST AC are: the wind-evaporation-SST (WES) feedback, the upwelling-SST feedback and 

the stratus cloud-SST feedback. Figure 3 depicts equatorial near-surface (10m) zonal and 

meridional wind and net surface heat flux biases (color shading) together with the SST biases 

(contours). First, we study the role of the near-surface zonal winds in biasing the EEP SST AC. The 

seasonal strengthening (weakening) of the trade winds, i.e. strengthening (weakening) easterlies at 

the equator, forces equatorial SST to fall (rise) by increased (decreased) upwelling of cold water. In 

Fig. 3a and Fig. 3d, equatorial near-surface zonal wind biases (color shading) are compared to 

equatorial SST biases (contours). In boreal fall, the KCM version with coarse atmospheric 

resolution exhibits a westerly wind bias (positive values) of up to 1.5 ms-1 in the vicinity of the EEP 

warm SST bias and a westerly zonal wind bias over the western equatorial Pacific (Fig. 3a). The 

latter could potentially contribute to the warm SST bias in the EEP via downwelling equatorial 

Kelvin waves. The response timescale of SST to remote zonal wind forcing can be explained by 

intraseasonal equatorial Kelvin waves of the 2nd baroclinic mode, which propagate eastward at a 

speed of about 2.4 ms-1 (Kessler et al. 1995) corresponding to a travel time of 1-2 months along the 

equator. A coupled feedback between the zonal wind and SST potentially enhances the biases. The 

westerly zonal wind bias in the EEP during boreal fall substantially reduces at higher atmospheric 

resolution in the very east (Fig. 3d) whereas near 120°W, the magnitude of the zonal wind bias is 

basically unchanged. Furthermore, the high atmospheric resolution version does not feature a 

westerly zonal wind bias in the western equatorial Pacific during boreal fall, but instead an easterly 

zonal wind bias with smaller magnitude. We therefore argue that on the one hand, enhancing the 

atmospheric resolution reduces the warm SST bias in the EEP in boreal fall due to locally reduced 

westerly wind biases and also potentially due to smaller zonal wind biases over the western 

equatorial Pacific. The remaining SST bias in the KCM version employing high atmospheric 

resolution (Fig. 3d) may be due to the zonal wind bias near 120°W. 
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Fig. 3 Seasonal cycle of SST bias (superimposed contours) with (a) and (d) zonal (10 m) wind bias, (b) and (e) 

meridional (10 m) wind bias in the equatorial Pacific and (c) and (f) net surface heat flux bias in the EEP (color 

shading) of the KCM for (a) – (c) coarse and (d) – (f) high atmospheric resolution. The bias is calculated by subtracting 

observed monthly anomalies from KCM monthly anomalies. Anomalies are defined with respect to the annual mean. 

All data are averaged over 2.8°S – 2.8°N. SST bias is in units °C, wind in ms-1 and net heat fluxes in Wm-2. 

 

In boreal winter and spring, the KCM predominantly simulates easterly wind biases (negative 

values) in the central and eastern equatorial Pacific at coarse and high atmospheric resolution, 

which favors enhanced equatorial upwelling and thus would support a cold SST bias. At low 

atmospheric resolution (Fig. 3a), the western equatorial Pacific features easterly zonal wind biases 

in boreal winter, which potentially enhances the cold SST bias  a couple of months later in the east 
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via equatorial Kelvin waves. When increasing the atmospheric resolution, the easterly wind bias in 

the east in boreal winter and spring is considerably reduced and partly replaced by a small westerly 

wind bias (Fig. 3d). Furthermore, the KCM version with high atmospheric resolution features a 

distinct westerly zonal wind bias in the far western equatorial Pacific during boreal winter and 

spring, which is not observed at low atmospheric resolution (Fig. 3a). This rather strong westerly 

zonal wind bias may additionally contribute to the reduction of the EEP cold SST bias via 

downwelling equatorial Kelvin waves. We conclude that in the KCM, biases in the near-surface 

zonal winds are an important factor driving biases in the EEP SST AC. 

The near-surface (10 m) meridional wind biases are compared to the SST biases in Fig. 3b and Fig. 

3e for the KCM versions with coarse and high atmospheric resolution, respectively. Both model 

versions exhibit a northerly wind bias (green-blue color shading) after the development of the warm 

SST bias (positive values) in boreal winter and spring and a southerly wind bias (yellow-orange 

color shading) after the development of the cold bias (negative values) in boreal summer and fall. 

The meridional wind biases, however, are much smaller in the KCM version with high atmospheric 

resolution in comparison the version with coarse atmospheric resolution, which is due to much 

better representation of the ITCZ (see below). We suggest that the meridional wind biases are a 

response to rather than a driver of the SST biases in the EEP, as the meridional wind biases lag the 

SST biases and the SST impacts the meridional SST gradient and the position of the ITCZ. Coupled 

feedbacks probably further enhance the biases. This conjecture is supported by the horizontal 

patterns of the near-surface wind biases in the tropical Pacific sector (see below). Furthermore, 

conditions off the equator (Fig. S3) suggest a rather instantaneous meridional-wind response to 

changes in the meridional SST gradient, which appears as a lagged equatorial wind response to SST 

change. 

Next, net surface heat flux biases in the EEP are compared to SST biases at coarse (Fig. 3c) and 

high (Fig. 3f) atmospheric resolution. We note that these biases only are shown for the region east 
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of 140° W, as are the biases shown in Fig. 4. Positive heat fluxes imply ocean warming and vice 

versa. The largest heat flux biases with values of up to 60 Wm-2 are seen in the KCM version 

employing coarse atmospheric resolution (Fig. 3c). They decrease to about 30 Wm-2 at high 

atmospheric resolution (Fig. 3f). The heat flux and SST biases are out of phase, with positive heat 

flux bias over cold SST bias and vice versa, and regions of large SST bias also are regions of large 

heat flux bias. This suggests that the net surface heat flux damps the SST biases rather than is a 

source of the SST biases. We conclude that the net surface heat flux cannot explain the biases in the 

EEP SST AC in the KCM. 

In contrast to the net surface heat flux, the shortwave radiation bias partly shows positive values 

over warm SST bias and vice versa (Fig. 4a,c), despite noting that the large values near the coast are 

less reliable in the satellite data. A flawed representation of stratus clouds in the eastern part of the 

tropical oceans, leading to shortwave radiation biases, is a common problem in CGCMs (Giese and 

Carton 1994; Stockdale et al. 1994; Ma et al. 1996). Although the shortwave radiation bias does not 

dominate the net surface heat flux bias over most regions (Fig. 3c,e), shortwave radiation can 

potentially influence the SST via an oceanic bridge. Solar radiation is allowed in climate models to 

penetrate through the sea surface into lower ocean layers, which can cause subsurface temperature 

biases and in turn SST biases mostly via vertical mixing processes. Ocean mixing in the EEP as 

quantified by turbulent heat fluxes in the upper 60 m is largest in boreal summer and found to be 

important in maintaining the annual cycle of the cold tongue (Moum et al. 2013). 

Cloud cover and shortwave radiation biases are compared with the SST biases (Fig. 4). We note the 

following findings: first, apart from the less reliable coastal signal in the satellite data, there are 

large shortwave radiation biases in both KCM versions (Fig. 4a,c), typically amounting to up to 40 

Wm-2 in limited regions. Second, at coarse atmospheric resolution a radiation surplus dominates in 

the region west of 90°W during the first half of the calendar year and a radiation deficit during the 

second half (Fig. 4a). Particularly noteworthy is the coincidence of the radiation deficit with the 
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Fig. 4 Seasonal cycle of SST bias (superimposed contours) with (a) and (c) shortwave heat flux bias and (b) and (d) 

total cloud cover bias in the EEP (color shading) of the KCM for (a) – (b) coarse and (c) – (d) high atmospheric 

resolution. The bias is calculated by subtracting observed monthly anomalies from KCM monthly anomalies. 

Anomalies are defined with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. SST bias is in units 

°C, shortwave heat fluxes in Wm-2 and cloud cover in %. 

 

cold SST bias maximum in boreal summer (Fig. 4a). These biases are considerably alleviated at 

high atmospheric resolution (Fig. 4c). Third, the shortwave radiation biases are clearly linked to 

cloud cover biases in both model versions (Fig. 4b,d). We therefore argue that shortwave radiation 

biases due to cloud cover biases could be partly responsible for the SST biases, especially during 

boreal summer when zonal wind biases do not provide a consistent explanation (see above). 
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In Fig. 5, we investigate the subsurface temperature biases in the EEP averaged over 2.8°S – 2.8°N. 

We note the small deviations in magnitude between the SST biases shown in Fig. 5 and those in the 

previous figures, which is a consequence of using SODA instead of NOAA_OI_SST_V2. In both 

model versions, maximum temperature biases are located in the very east and below the surface. In 

boreal spring (MAM), early summer (MJJ) and fall (SON), temperature biases are reduced near the 

sea surface when employing high atmospheric resolution (Fig. 5d – f). Interestingly, temperature 

biases are not reduced below 30 m in MAM and SON (Fig. 5d,f) whereas in MJJ, the bias also is 

reduced at deeper levels (Fig. 5e). This supports the hypothesis that in boreal summer, a shortwave 

radiation deficit is important in driving the large cold subsurface temperature bias at coarse 

atmospheric resolution, which is considerably reduced due to a smaller shortwave radiation bias at 

higher atmospheric resolution (Fig. 4a,c). 

We also investigate EEP subsurface ocean velocity biases during MAM, MJJ and SON (Fig. 6 and 

Fig. 7). Both model versions show westward velocity biases in MAM (Fig. 6a,d) and to a lesser 

extent in MJJ (Fig. 6b,e) whereas in SON, an eastward velocity bias dominates in the EEP. This is 

consistent with easterly wind biases prevailing in MAM and to a lesser extent in MJJ, and with a 

westerly wind bias prevailing in SON (Fig. 3a,d). Zonal velocity biases are generally reduced at 

higher atmospheric resolution, especially near the sea surface (Fig. 6d – f). We note that biases 

become larger near 100 m depth. 

Vertical ocean velocity biases are quite noisy but nevertheless yield spatially coherent structures in 

the region east of 110°W (Fig. 7). Here, both model versions exhibit an upwelling bias (positive 

values) in MAM (Fig. 7a,d) and to a lesser extent in MJJ (Fig. 7b,e) while in SON, a downwelling 

bias is observed (Fig. 7c,f). The vertical velocity biases are reduced at high atmospheric resolution, 

especially during MAM and SON (Fig. 7d,f). This supports our hypothesis that zonal wind biases 

(Fig. 3a,d) drive upwelling/downwelling biases in these two seasons. We further note that 

meridional currents do not provide any conclusive evidence for driving SST biases (not shown). 
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Fig. 5 Seasonal average of subsurface ocean temperature bias in the EEP during the months (a) and (d) MAM, (b) and 

(e) MJJ and (c) and (f) SON of the KCM for (a) - (c) coarse and (d) and (f) high atmospheric resolution. The bias is 

calculated by subtracting observed seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly 

anomalies. Anomalies are defined with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. 

Temperature bias is in units °C. 

 

We depict in Fig. 8 horizontal maps of near-surface wind and precipitation biases in MAM and 

SON. The aforementioned easterly wind bias at the equator in the east during MAM is clearly 

visible in both model versions (arrows and dashed contours in Fig. 8a,c) and can be related to the 

double-ITCZ problem (Mechoso et al. 1995; Lin 2007; de Szoeke et al. 2008), which is marked by 

excessive precipitation south of the equator (color shading). Further, the westerly wind bias in the 

east during SON can be linked in both KCM versions to an excess of precipitation north of the
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Fig. 6 Seasonal average of subsurface ocean zonal velocity bias in the EEP during the months (a) and (d) MAM, (b) and 

(e) MJJ and (c) and (f) SON of the KCM for (a) - (c) coarse and (d) and (f) high atmospheric resolution. The bias is 

calculated by subtracting observed seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly 

anomalies. Anomalies are defined with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. Velocity 

bias is in units dm s-1. 

 

equator and to a too strong land-sea flow (Fig. 8b,d). Surface wind and precipitation biases in both 

MAM and SON are considerably reduced when atmospheric resolution is increased (Fig. 8c,d). 

We next investigate the latitude-height structure of the wind biases in the eastern tropical Pacific 

and compare it with the precipitation biases (Fig. 9). In MAM, both model versions overestimate 

precipitation south and underestimate it north of the equator (Fig. 9a,c; black line), which is very 

pronounced in the version employing coarse atmospheric resolution (Fig. 9a). The
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Fig. 7 Seasonal average of subsurface ocean vertical velocity bias in the EEP during the months (a) and (d) MAM, (b) 

and (e) MJJ and (c) and (f) SON of the KCM for (a) - (c) coarse and (d) and (f) high atmospheric resolution. The bias is 

calculated by subtracting observed seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly 

anomalies. Anomalies are defined with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. Velocity 

bias is in units m day-1. 

 

precipitation bias south of the equator is associated with the double-ITCZ problem (Fig. 8a,c). 

Further, convection is overestimated south of the equator, which leads to too strong cross-equatorial 

surface winds (arrows) and to an easterly wind bias at the equator (green color shading). 

Furthermore, both KCM versions overestimate precipitation and convection north of the equator 

during SON (Fig. 9b,d). This is associated with a westerly zonal wind bias at the equator (yellow-

red color shading) as shown above. Increasing the atmospheric resolution in the KCM reduces 
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Fig. 8 Seasonal average of tropical Pacific precipitation bias (color shading), zonal wind bias (contours) and surface 

wind bias (arrows) during the months (a) and (c) MAM and (b) and (d) SON of the KCM for (a) and (b) coarse and (c) 

and (d) high atmospheric resolution. The bias is calculated by subtracting observed seasonally-averaged monthly 

anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined with respect to the annual mean. 

Precipitation bias is in units mm day-1 and wind in ms-1. 

 

precipitation, convection and equatorial surface wind biases in the eastern tropical Pacific during 

MAM and SON (Fig. 9c,d). We argue that improved meridional and vertical transport of 

momentum at high atmospheric resolution accounts for reducing these biases, as discussed by 
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Fig. 9 Seasonal average of zonal wind bias (color shading), meridional-vertical wind bias (arrows) and precipitation 

bias (black line) centered about the equator in the eastern tropical Pacific during the months (a), (c) MAM and (b), (d) 

SON in the KCM at (a), (c) coarse and (b), (d) high atmospheric resolution. The bias is calculated by subtracting 

observed seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Shown are 

anomalies defined with respect to the annual mean. All data are averaged over 140°W – 85°W. The horizontal black 

line marks zero precipitation anomalies. Precipitation bias is in units mm day-1 and wind in ms-1. Vertical wind is scaled 

by 90. 

 

Harlaß et al. (2017) analyzing the same set of KCM integrations over the Eastern Equatorial 

Atlantic. Another important contribution to bias reduction in the EEP may result from the enhanced 
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representation of orography at higher atmospheric resolution, especially during SON when a land-

sea circulation influences surface winds in the EEP. 

In order to further diagnose the origin of the zonal surface wind biases at the equator, we compare 

the equatorial zonal wind biases in the two KCM versions with those simulated in the 

corresponding uncoupled AGCM (ECHAM5) integrations forced by observed monthly SST 

climatology. The zonal wind biases in the coupled and uncoupled model versions are in qualitative 

agreement at both resolutions (Fig. 10a,c). For example, the westerly wind bias in the east in late 

boreal summer and boreal fall observed in coupled mode also is present in the corresponding 

uncoupled integrations. In the western equatorial Pacific, both the westerly zonal wind bias during 

boreal fall at coarse atmospheric resolution and that during boreal spring at high resolution also are 

seen in uncoupled mode. We conclude that, independent of atmospheric resolution, a large part of 

the equatorial zonal wind biases observed in coupled mode originates in the atmosphere model 

itself. 

The total cloud cover in the two KCM versions also exhibits very similar biases to those in the 

uncoupled AGCM integrations (Fig. 10b,d). We note that in both coupled and uncoupled mode, 

model biases are largely reduced when atmospheric resolution is increased but not in the very east 

near the coast. Our findings could suggest that the origin of the cloud cover biases in this region 

resides in the parameterization of stratocumulus clouds and is independent of the choice of 

atmospheric resolution. The highest vertical resolution (L62) used here may be still inadequate to 

resolve the processes relevant to stratus cloud formation, e.g. the sharpness of the capping inversion 

layer. The reduction of cloud cover biases in the region to the west is likely linked to an improved 

representation of convection due to enhancing atmospheric resolution (see above). The simulation 

of tropical clouds strongly depends on the level of simulated precipitation as only models with 

much higher vertical resolution can resolve the processes relevant to stratus cloud formation.
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Fig. 10 Seasonal cycle of (a) and (c) 10 m zonal wind bias in the equatorial Pacific and (b) and (d) total cloud cover bias 

in the EEP of the KCM (color shading) and in the atmospheric model component ECHAM5 forced by observed 

monthly SST climatology (contours) at (a) – (b) coarse and (c) – (d) high atmospheric resolution, respectively. The bias 

is calculated by subtracting observed monthly anomalies from KCM and ECHAM5 monthly anomalies. Anomalies are 

calculated with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. Wind bias is in units ms-1 and 

cloud cover in %. 

 

The near-surface (10 m) meridional wind biases in the KCM simulations considerably differ from 

those in the SST-forced atmosphere model integrations (not shown). Hence, the meridional wind 

biases in the EEP must be strongly influenced by coupled feedbacks, as outlined above. The same 
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conclusion is obtained when comparing the net surface heat flux biases in coupled and uncoupled 

mode (not shown). 

 

4. SST annual cycle in CMIP5 models 

A set of 12 models from the CMIP5 database is analyzed (Table 2). As in the analyses of the KCM, 

we consider anomalies with respect to the long-term annual-mean to highlight seasonal changes. 

This is different to Song et al. (2014) who analyzed the EEP SST AC in CMIP5 models in terms of 

the full temperatures. The CMIP5 ensemble-mean SST AC biases in the EEP are depicted by 

contours in Fig. 11. In agreement with the KCM simulations, there is an EEP cold SST bias peaking 

in boreal summer with values up to 2.5°C and a warm bias peaking in boreal winter with values up 

to up to 2°C. The model spread is largest when the SST bias is most distinct in July and December 

and amounts to 0.64°C and 0.7°C, respectively, with all models agreeing on the sign of bias in all 

seasons (not shown). The relationship of the near-surface (10 m) zonal wind biases (color shading) 

to the SST biases is analyzed by means of Fig. 11a. Also similar to the KCM, an anomalous 

equatorial westerly wind bias in the vicinity of the largest SST biases in the EEP is present in boreal 

fall with values up to 1 ms-1, which likely contributes to the SST warm bias in that season. The cold 

bias maximum in boreal summer seen in the ensemble-mean of the subset of CMIP5 models is not 

associated with significant easterly wind biases anywhere at the equator, only during the onset of 

the cold bias in late boreal winter to early boreal spring. 

Next, ensemble-means of the meridional surface wind bias and SST bias are compared (Fig. 11b). 

As in the KCM (Fig. 3b,e), the SST and meridional wind biases exhibit a marked phase lag, with 

the meridional wind bias with opposite polarity lagging the SST bias. This is consistent with the 

conjecture, which has been put forward above when describing the KCM results, that the meridional 

wind biases are a response to the SST biases and not a driver. 
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Fig. 11 Seasonal cycle of SST bias (superimposed contours) with (a) zonal (10 m) wind bias, (b) meridional (10 m) 

wind bias in the equatorial Pacific (c) net surface heat flux bias, (d) shortwave heat flux bias and (e) total cloud cover 

bias in the EEP (color shading) of the CMIP5 models (Table 2) ensemble-mean. The bias is calculated by subtracting 

observed monthly anomalies from ensemble-mean monthly anomalies. Anomalies are calculated with respect to the 

annual mean. All data are averaged over 2.8°S – 2.8°N. SST bias is in units °C, wind in ms-1, net surface and shortwave 

heat fluxes in Wm-2 and cloud cover in %. 

 

The CMIP5 ensemble-mean net surface heat flux bias is compared with the SST bias in the EEP 

east of 140° W in Fig. 11c. As in the KCM, the net heat flux tends to damp the SST biases rather 

than being a source of them. However, the opposite picture, consistent with the KCM results, is 

obtained when the surface shortwave radiative part alone is compared with the SST bias (Fig. 11d), 
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with positive values over warm SST bias and vice versa. Although the shortwave radiation bias 

does not dominate the net heat flux bias over large regions, it nevertheless can influence the SST via 

an oceanic bridge, as argued above (Section 3). Further, shortwave radiation biases are clearly 

linked to cloud cover biases (Fig. 11e). 

The subsurface ocean temperature biases in the EEP averaged over 2.8°S – 2.8°N and over MAM, 

MJJ and SON are shown in Fig. 12. Deviations from the SST bias pattern shown in Fig. 11 are a 

consequence of using SODA instead of NOAA_OI_SST_V as noted also above. The cold 

subsurface temperature bias in MJJ with its maximum below the sea surface (Fig. 12b) is possibly 

driven by a deficit in shortwave radiation (Fig. 11d). As in the KCM, the signal is expected to return 

to the surface via mixing processes. In contrast, the cold bias in MAM (Fig. 12a) and the warm bias 

in SON (Fig. 12c) are linked probably to easterly and westerly surface wind biases, respectively 

(Fig. 11a). 

The subsurface zonal and vertical velocity biases in the EEP averaged over MAM, MJJ and SON 

are depicted in Fig 13. A westward-directed zonal velocity bias dominates in the EEP in MAM (Fig. 

13a) and to a lesser extent also in MJJ (Fig. 13b). An eastward-directed current bias is found SON 

(Fig. 13c). An upwelling bias is observed in MAM (Fig. 13d) and a downwelling bias in SON (Fig. 

13f) whereas in MJJ, no robust signal in the vertical velocity is present (Fig. 13e). These findings 

support the hypothesis that SST biases in boreal spring and boreal fall are largely linked to zonal 

wind biases whereas a deficit in shortwave radiation likely is the cause of the SST biases in early 

boreal summer. 

In Fig. 14, horizontal maps of near-surface wind and precipitation biases in MAM and SON are 

shown. As in the KCM, there is a pronounced double-ITCZ with excessive rainfall south of the 

equator during MAM (Fig. 14a; color shading). In contrast to the KCM, no easterly wind bias in the 

EEP during MAM (arrows and contours) is observed. An easterly wind bias, however, is present in 

late boreal winter and early boreal spring (Fig. 11a). In SON, the westerly wind bias in the EEP can
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Fig. 12 Seasonal average of subsurface ocean temperature bias in the EEP during the months (a) and (d) MAM, (b) and 

(e) MJJ and (c) and (f) SON of the CMIP5 models (Table 2). The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from ensemble-mean seasonally-averaged monthly anomalies. Anomalies are defined with 

respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. Temperature bias is in units °C. 

 

be linked to an excessive precipitation north of the equator and to too strong near-surface winds 

towards the land (Fig. 14b), as in the KCM (Fig. 8b,d). Due to the large data size of the four-

dimensional atmospheric variables we could not investigate the vertical structure of equatorial 

winds in the subset of CMIP5 models. Based on the above results, we expect that the important 

biases are similar to those identified in the KCM version employing coarse atmospheric resolution 

(Fig. 9). 

We next compare the CMIP5 ensemble-mean biases with those of the corresponding AMIP 

ensemble-mean (Fig. 15) to investigate whether the biases in the atmospheric circulation are 

systematic to the atmosphere models. The zonal wind bias in the CMIP5 ensemble-mean is in 

qualitative agreement with that in the AMIP ensemble-mean (Fig. 15a). As for the KCM, this 

finding shows that zonal wind biases observed in the set of CMIP5 models largely have their origin 

in the atmospheric model components. The meridional wind biases greatly differ between the 

coupled (CMIP5) and uncoupled atmosphere model (AMIP) simulations (not shown), which also 

was found in the comparison of the KCM with the forced AGCM (ECHAM5) integrations. Finally,
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Fig. 13 Seasonal average of subsurface ocean (a) – (c) zonal and (d) – (f) vertical velocity bias in the EEP during the 

months (a) and (d) MAM, (b) and (e) MJJ and (c) and (f) SON of the CMIP5 models (Table 2). The bias is calculated 

by subtracting observed seasonally-averaged monthly anomalies from ensemble-mean seasonally-averaged monthly 

anomalies. Anomalies are defined with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. Zonal 

velocity bias is in units dm s-1 and vertical velocity bias in m day-1. 

 

the total cloud cover biases in the CMIP5 ensemble-mean largely agrees with that in the AMIP 

ensemble-mean (Fig. 15b). This implies that the erroneous cloud cover, as the zonal wind biases, 

also have parts of their origin in the atmospheric components. Thus both sets of coupled/uncoupled 

model integrations, KCM/ECHAM5 and CMIP5/AMIP, support that coupled model simulation of 

the EEP SST AC can significantly benefit from improvements in the atmospheric model 

components. 
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Fig. 14 Seasonal average of tropical Pacific precipitation bias (color shading), zonal wind bias (contours) and surface 

wind bias (arrows) during the months (a) MAM and (b) SON of the CMIP5 models (Table 2) ensemble-mean. The bias 

is calculated by subtracting observed seasonally-averaged monthly anomalies from ensemble-mean seasonally-averaged 

monthly anomalies. Anomalies are defined with respect to the annual mean. Precipitation bias is in units mm day-1 and 

wind in ms-1. 

 

A controversial issue is the relative importance of the zonal and meridional surface wind 

components in driving the EEP SST AC. Xie (1994) suggest that the meridional wind across the 

equator is the most significant driver. DeWitt and Schneider (1999) find that the wind-driven 

upwelling near the coast of South America is caused in approximately equal parts by the zonal and 

meridional component. We find that in the KCM, the zonal wind biases are most important in 

driving biases in the EEP SST AC during boreal fall and early boreal spring, which also appears to 

be the case for the subset of CMIP5 models investigated here. 

In both the KCM and the CMIP5 models, the meridional near-surface wind across the equator 

exhibits biases of larger magnitude compared to the zonal near-surface wind. To compare the 

contribution of the individual wind components to the seasonal SST biases we calculate the linear 

regression coefficient of the wind-SST relationship in the EEP in boreal fall among the 
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Fig. 15 Seasonal cycle of (a) 10m zonal wind bias in the equatorial Pacific and (b) total cloud cover bias in the EEP 

calculated from the CMIP5 model (Table 2) ensemble-mean (color shading) and the corresponding AMIP model 

ensemble-mean (contours) in the EEP. The bias is calculated by subtracting observed monthly anomalies from 

ensemble-mean monthly anomalies. Anomalies are calculated with respect to the annual mean. All data are averaged 

over 2.8°S – 2.8°N. Zonal wind is in unit ms-1 and cloud cover in %. 

 

CMIP5 models. A reduction of the meridional wind bias of 1ms-1 during September – November is 

associated with a reduction of the SST bias of 0.33°C in October – December, whereas a decrease 

of the zonal wind bias of the same magnitude is associated with an SST bias reduction of 0.85°C. 

This suggests that despite weaker amplitude, biases in the zonal wind component are of larger 

importance compared to the meridional component. 

 

5. Summary and discussion 

We have investigated the eastern equatorial Pacific (EEP) sea surface temperature (SST) annual 

cycle (AC) simulated by the Kiel Climate Model (KCM) at different atmospheric but fixed oceanic 

resolution (2° zonally) and compared the results with those obtained from a subset of models 

participating in the Coupled Model Intercomparison phase 5 (CMIP5). Overall, a coarse 

atmospheric resolution setup of the KCM is sufficient to simulate an EEP SST AC. Biases in such a 
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setup, however, are rather large. For example, the warming signal of the SST in boreal spring 

though significant is underestimated in magnitude by about 1°C. Moreover, the equatorial cold 

tongue appears 1 – 2 months too early and disappears up to 3 months earlier than observed. 

Enhancing the atmospheric model resolution in the KCM helps to improve the simulation of the 

EEP SST AC with regard to the westward propagating character of the warming signal in boreal 

spring and the timing of the cold tongue’s onset and termination. Overall, the KCM results imply 

that the atmosphere model resolution plays an important role in simulating the EEP SST AC, as the 

coarse oceanic model resolution was held fixed and atmospheric parameterizations were not re-

tuned. 

We diagnose the near-surface (10 m) zonal wind as a crucial factor in controlling the simulation of 

the EEP SST AC in the KCM. In boreal spring, an easterly wind bias contributes to a smaller 

warming and, to a lesser extent, to a too early onset of the cold tongue. In boreal fall, a westerly 

wind bias drives the too early termination of the equatorial cold tongue. Increasing the atmospheric 

resolution leads to a reduction of the zonal wind biases. Furthermore, the net surface heat flux and 

near-surface meridional wind are responding to rather than generating the SST bias. We further 

show that the zonal wind and the SST biases are linked via ocean upwelling/downwelling biases. 

This agrees with DeWitt and Schneider (1999) who show that seasonal SST variations in the EEP 

are primarily caused by upwelling variations. We also show that in early boreal summer, shortwave 

radiation biases may contribute to SST biases by penetrating through the subsurface, whereby the 

signal can be returned to the surface by vertical mixing. Shortwave radiation biases are associated 

with cloud cover biases, which are reduced in the KCM when atmospheric resolution is increased. 

The subset of CMIP5 models yields very similar relationships: models with a larger warm SST bias 

in October – December exhibit a larger westerly wind bias in September – November (correlation 

of 0.67) and models with a larger cold SST bias in March – May exhibit a larger easterly wind bias 

in February – April (correlation of 0.50). As in the KCM, a deficit of shortwave surface radiation 
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also appears to be important, especially in early boreal summer. This deficit drives a subsurface 

cooling bias influencing the sea surface via vertical mixing. The shortwave radiation bias can be 

linked to excessive cloud cover, with a tendency of models with a larger SST cold bias in May – 

July exhibiting a larger cloud cover bias in April – June (correlation of 0.56). Chen and Jin (2017) 

also find that the influence of solar radiation on the EEP SST AC is overestimated in a number of 

CMIP5 models.  

We showed that zonal wind biases are largely related to precipitation biases in both the KCM and 

CMIP5, in particular to the double ITCZ-problem in boreal spring and to excessive rainfall north of 

the equator over the EEP in boreal fall. Also, an erroneous land-surface circulation probably 

induced by an inaccurate representation of the adjacent orography can be linked to zonal wind 

biases in the EEP. For the KCM, we showed that increasing atmospheric resolution reduces 

precipitation biases, which improves the convection and thus surface winds in the EEP. We argue 

that these improvements are due to a better simulation of meridional and vertical momentum 

transport in the atmosphere and due to an improved land-surface circulation related to an enhanced 

representation of orography. 

Further, we emphasize the importance of systematic errors in the atmospheric component of the 

KCM for the simulation of the EEP SST AC, which was shown by conducting uncoupled AGCM 

simulations forced by observed climatological SST. The systematic errors in zonal wind are 

strongly reduced in the AGCM when increasing the resolution. Consequently, a significant 

improvement in the simulation of the EEP SST AC is achieved in coupled mode by only increasing 

the atmospheric resolution while keeping coarse zonal ocean model resolution (2°). This is 

consistent with Harlaß et al. (2015, 2017) using the same set of coupled and uncoupled simulations 

and yield a substantial reduction of a warm SST bias in the southeastern Tropical Atlantic as well as 

realistic SST variability in that region, when especially the vertical atmosphere model resolution is 
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increased. For the EEP SST AC, we note that the largest improvement comes from enhancing the 

horizontal resolution (not shown). 

Song et al. (2014) assessed the ability of a subset of CMIP5 models to simulate the EEP SST AC. 

Similar to our results, they find a westerly surface wind bias in boreal fall to be related with a warm 

SST bias in the east. In contrast to the present study stressing the importance of zonal wind biases, 

Song et al. (2014) find a northerly wind bias (with regard to absolute values) in boreal fall to be 

related with a coastal warm SST bias via weaker evaporative cooling and ocean upwelling. 

Furthermore, they discuss the CMIP5 models’ ability to simulate the observed zonally-instant 

development of the cold tongue in August and September and find that models tend to produce a 

spurious westward propagation of the cold tongues’ onset. We add that the KCM too is not able to 

reproduce this zonally-instant onset of the cold tongue but rather exhibits a westward propagation 

similar to the SST warming signal in boreal spring. Consistent with the results from the KCM, 

systematic errors in the atmospheric components largely explain the biases observed in the subset of 

CMIP5 models analyzed here. This result has been derived from the (uncoupled) AMIP-simulations 

and relates to surface wind and cloud cover/solar radiation biases. 

We also addressed the relative importance of the zonal and meridional surface wind components in 

driving the EEP SST AC. Our results suggested that despite weaker amplitude, biases in the zonal 

wind component are of larger importance compared to the meridional component. 
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Supplementary figures 
 

 
Fig. S1 Seasonal cycle of 10m zonal wind bias (color shading) and SST bias (contours) along the equator for an 

ensemble of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed 

monthly anomalies from KCM monthly anomalies. Anomalies are calculated with respect to the annual mean. All data 

are averaged over 2.8°S – 2.8°N. SST bias is in units °C and wind bias in ms-1. 
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Fig. S2 Seasonal cycle of 10m meridional wind bias (color shading) and SST bias (contours) along the equator for an 

ensemble of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed 

monthly anomalies from KCM monthly anomalies. Anomalies are calculated with respect to the annual mean. All data 

are averaged over 2.8°S – 2.8°N. SST bias is in units °C and wind bias in ms-1.
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Fig. S3 Seasonal cycle of 10m meridional wind bias (color shading) and SST bias (contours) in the EEP for an 

ensemble of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed 

monthly anomalies from KCM monthly anomalies. Anomalies are calculated with respect to the annual mean. All data 

are averaged over 140°W – 85°W. SST bias is in units °C and wind bias in ms-1. 
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Fig. S4 Seasonal cycle of net surface heat flux (color shading; positive values of heat flux refer to a heat transfer from 

the atmosphere into the ocean) and SST bias (contours) in the EEP for an ensemble of six KCM integrations at different 

atmospheric resolutions. The bias is calculated by subtracting observed monthly anomalies from KCM monthly 

anomalies. Anomalies are calculated with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. SST 

bias is in units °C and net heat flux bias in Wm-2. 
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Fig. S5 Seasonal cycle of shortwave heat flux (color shading; positive values of heat flux refer to a heat transfer from 

the atmosphere into the ocean) and SST bias (contours) in the EEP for an ensemble of six KCM integrations at different 

atmospheric resolutions. The bias is calculated by subtracting observed monthly anomalies from KCM monthly 

anomalies. Anomalies are calculated with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. SST 

bias is in units °C and shortwave heat flux bias in Wm-2. 
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Fig. S6 Seasonal cycle of total cloud cover (color shading) and SST bias (contours) in the EEP for an ensemble of six 

KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed monthly 

anomalies from KCM monthly anomalies. Anomalies are calculated with respect to the annual mean. All data are 

averaged over 2.8°S – 2.8°N. SST bias is in units °C and total cloud cover in %.  
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Fig. S7 Seasonal average of subsurface ocean temperature bias in the EEP during the months MAM for an ensemble of 

six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined with respect to 

the annual mean. All data are averaged over 2.8°S – 2.8°N. Temperature bias is in units °C. 
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Fig. S8 Seasonal average of subsurface ocean temperature bias in the EEP during the months MJJ for an ensemble of 

six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined with respect to 

the annual mean. All data are averaged over 2.8°S – 2.8°N. Temperature bias is in units °C.  
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Fig. S9 Seasonal average of subsurface ocean temperature bias in the EEP during the months SON for an ensemble of 

six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined with respect to 

the annual mean. All data are averaged over 2.8°S – 2.8°N. Temperature bias is in units °C.  
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Fig. S10 Seasonal average of subsurface ocean zonal velocity bias in the EEP during the months MAM for an ensemble 

of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined with respect to 

the annual mean. All data are averaged over 2.8°S – 2.8°N. Velocity bias is in units dm s-1. 
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Fig. S11 Seasonal average of subsurface ocean zonal velocity bias in the EEP during the months MJJ for an ensemble 

of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined with respect to 

the annual mean. All data are averaged over 2.8°S – 2.8°N. Velocity bias is in units dm s-1. 
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Fig. S12 Seasonal average of subsurface ocean zonal velocity bias in the EEP during the months SON for an ensemble 

of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined with respect to 

the annual mean. All data are averaged over 2.8°S – 2.8°N. Velocity bias is in units dm s-1. 
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Fig. S13 Seasonal average of subsurface ocean meridional velocity bias in the EEP during the months MAM for an 

ensemble of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed 

seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined 

with respect to the annual mean. All data are averaged over 140°W – 85°W. Velocity bias is in units dm s-1. 
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Fig. S14 Seasonal average of subsurface ocean meridional velocity bias in the EEP during the months MJJ for an 

ensemble of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed 

seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined 

with respect to the annual mean. All data are averaged over 140°W – 85°W. Velocity bias is in units dm s-1. 
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Fig. S15 Seasonal average of subsurface ocean meridional velocity bias in the EEP during the months SON for an 

ensemble of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed 

seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined 

with respect to the annual mean. All data are averaged over 140°W – 85°W. Velocity bias is in units dm s-1. 

 

 

 

 

 

 



 77       

 

Fig. S16 Seasonal average of subsurface ocean vertical velocity bias in the EEP during the months MAM for an 

ensemble of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed 

seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined 

with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. Velocity bias is in units m day-1. 
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Fig. S17 Seasonal average of subsurface ocean vertical velocity bias in the EEP during the months MJJ for an ensemble 

of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined with respect to 

the annual mean. All data are averaged over 2.8°S – 2.8°N. Velocity bias is in units m day-1. 
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Fig. S18 Seasonal average of subsurface ocean vertical velocity bias in the EEP during the months SON for an 

ensemble of six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed 

seasonally-averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Anomalies are defined 

with respect to the annual mean. All data are averaged over 2.8°S – 2.8°N. Velocity bias is in units m day-1. 
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Fig. S19 Seasonal average of tropical Pacific precipitation bias (color shading), zonal wind bias (contours) and surface 

wind bias (arrows) during the months MAM for an ensemble of six KCM integrations at different atmospheric 

resolutions. The bias is calculated by subtracting observed seasonally-averaged monthly anomalies from KCM 

seasonally-averaged monthly anomalies. Anomalies are defined with respect to the annual mean. Precipitation bias is in 

units mm day-1 and wind in ms-1. 
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Fig. S20 Seasonal average of tropical Pacific precipitation bias (color shading), zonal wind bias (contours) and surface 

wind bias (arrows) during the months SON for an ensemble of six KCM integrations at different atmospheric 

resolutions. The bias is calculated by subtracting observed seasonally-averaged monthly anomalies from KCM 

seasonally-averaged monthly anomalies. Anomalies are defined with respect to the annual mean. Precipitation bias is in 

units mm day-1 and wind in ms-1. 
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Fig. S21 Seasonal average of zonal wind bias (color shading), meridional-vertical wind bias (arrows) and precipitation 

bias (black line) centered about the equator in the eastern tropical Pacific during the months MAM for an ensemble of 

six KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Shown are anomalies defined with 

respect to the annual mean. All data are averaged over 140°W – 85°W. The horizontal black line marks zero 

precipitation anomalies. Precipitation bias is in units mm day-1 and wind in ms-1. Vertical wind is scaled by 90. 
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Fig. S22 Seasonal average of zonal wind bias (color shading), meridional-vertical wind bias (arrows) and precipitation 

bias (black line) centered about the equator in the eastern tropical Pacific during the months SON for an ensemble of six 

KCM integrations at different atmospheric resolutions. The bias is calculated by subtracting observed seasonally-

averaged monthly anomalies from KCM seasonally-averaged monthly anomalies. Shown are anomalies defined with 

respect to the annual mean. All data are averaged over 140°W – 85°W. The horizontal black line marks zero 

precipitation anomalies. Precipitation bias is in units mm day-1 and wind in ms-1. Vertical wind is scaled by 90. 
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Fig. S23 Seasonal cycle of 10 m zonal wind bias in the equatorial Pacific of the KCM (color shading) and in the 

atmospheric model component ECHAM5 forced by observed monthly SST climatology (contours) for an ensemble of 

six integrations at different atmospheric resolutions. The bias is calculated by subtracting observed monthly anomalies 

from KCM and ECHAM5 monthly anomalies. Anomalies are calculated with respect to the annual mean. All data are 

averaged over 2.8°S – 2.8°N. Wind bias is in units ms-1.
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Fig. S24 Seasonal cycle of total cloud cover bias in the equatorial Pacific of the KCM (color shading) and in the 

atmospheric model component ECHAM5 forced by observed monthly SST climatology (contours) for an ensemble of 

six integrations at different atmospheric resolutions. The bias is calculated by subtracting observed monthly anomalies 

from KCM and ECHAM5 monthly anomalies. Anomalies are calculated with respect to the annual mean. All data are 

averaged over 2.8°S – 2.8°N. Cloud cover bias is in units %.  
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Fig. S25 Seasonal average of subsurface ocean meridional velocity bias in the EEP during the months (a) MAM, (b) 

MJJ and (c) SON of the CMIP5 models (Table 2). The bias is calculated by subtracting observed seasonally-averaged 

monthly anomalies from ensemble-mean seasonally-averaged monthly anomalies. Anomalies are defined with respect 

to the annual mean. All data are averaged over 140°W – 85°W. 
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1 Introduction

The El Niño/Southern Oscillation (ENSO) is the domi-

nant mode of interannual climate variability in the tropics. 

ENSO is characterized by sea surface temperature (SST) 

anomalies of a few centigrade primarily in the eastern 

and central equatorial Pacific, which drive global telecon-

nections (e.g. Brönnimann et  al. 2004). The warm phase 

of ENSO is termed El Niño, its cold phase La Niña. A 

robust feature of ENSO is its preference to exhibit peak 

SST anomalies in boreal winter and to depict only small 

anomalies in boreal spring. This behavior is referred to as 

seasonal ENSO phase locking (e.g. Tziperman et al. 1998; 

Neelin et al. 2000; McGregor et al. 2012).

Several previous studies have discussed the dynamics 

that cause the seasonal phase locking of ENSO (e.g. Chang 

et  al. 1995; Tziperman et  al. 1995; Jin et  al. 1996; Har-

rison and Vecchi 1999; Neelin et al. 2000; Stuecker et al. 

2013; McGregor et al. 2013; Zhu et al. 2015). Yet there are 

still significant gaps in our understanding of these dynam-

ics. A majority of these studies provide an explanation in 

terms of stochastic forcing acting on a seasonally changing 

background state. Others argue in terms of feedbacks. For 

example, the termination of ENSO in boreal spring can be 

linked to the southward shift of wind anomalies (Harrison 

and Vecchi 1999; Stuecker et al. 2013 and; McGregor et al. 

2013) or to the relatively weak linkage between SST and 

thermocline depth in that season (Zhu et al. 2015). Results 

by Stein et al. (2010) on the basis of the recharge oscillator 

suggest that the seasonally varying growth rate is critical 

to ENSO phase locking, where damping by the mean flow 

Abstract The El Niño/Southern Oscillation (ENSO) is 

characterized by a seasonal phase locking, with strong-

est eastern and central equatorial Pacific sea surface tem-

perature (SST) anomalies during boreal winter and weak-

est SST anomalies during boreal spring. In this study, key 

feedbacks controlling seasonal ENSO phase locking in the 

Kiel Climate Model (KCM) are identified by employing 

Bjerknes index stability analysis. A large ensemble of sim-
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els or coefficients used in selected atmospheric parameteri-
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shortwave feedback as part of the thermal damping in early 

boreal spring, which strongly depends on eastern and cen-

tral equatorial Pacific SST. The results obtained from the 
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field dominates the seasonally changing dynamics. Dom-

menget and Yu (2016) show that ENSO phase locking is 

strongly linked to seasonal changes in shortwave radiation 

due to changes in cloud cover.

In the past, significant progress has been made in under-

standing ENSO dynamics (see e.g. Wang and Picaut 2004 

for a review) and in simulating ENSO (e.g. Bellenger et al. 

2014). However, many coupled ocean–atmosphere general 

circulation models (CGCMs) still have difficulties in simu-

lating seasonal ENSO phase locking as observed. Amongst 

others, ENSO phase locking is particularly important to 

ENSO forecast (Jin and Kinter 2009) and ENSO telecon-

nections. For example, the influence of ENSO on the Indian 

summer monsoon critically depends on the CGCMs’ ability 

to realistically represent ENSO phase locking (e.g. Webster 

et  al. 1998). Typical problems in CGCMs are that ENSO 

extremes either peak in the wrong season (e.g. Ham et al. 

2012; Ham and Kug 2014; Rashid and Hirst 2015) or that 

the annual variation of SST variability is too weak (Ham 

and Kug 2014; Bellenger et al. 2014).

Zheng and Yu (2007) link the spurious summer peak in 

ENSO variability in the FGCM model to the double Inter-

tropical Convergence Zone (ITCZ) problem. This model 

bias sets conditions for heat content anomalies originating 

erroneously south of the equator and at the wrong time of 

the year. Ham et  al. (2012) identify an excessively large 

SST gradient and resultant thermocline shoaling in boreal 

summer to enhance zonal advection feedback and thermo-

cline feedback as reasons for spurious boreal summer vari-

ability in the GFDL CGCM. Similar results are obtained by 

Ham and Kug (2014) for a set of CMIP3 and CMIP5 mod-

els. Rashid and Hirst (2015) find an incorrect simulation of 

the shortwave feedback and thermocline feedback to cause 

variability to peak in March instead December-February in 

the ACCESS CGCM and link the biases to errors in long-

term mean SST.

A number of studies have focused on finding reasons 

for too weak annual variation of interannual variability in 

CGCMs, but with the seasonal phase being overall correct. 

Xiao and Mechoso (2009) show that the seasonal warm-

ing of the cold tongue in January-April favors the onset of 

an El Niño or La Niña event, whereas the termination of 

an event is connected to a southward shift of surface zonal 

wind anomalies. Ham and Kug (2014) also link the impor-

tance of the southward shift of surface zonal wind anoma-

lies to a models’ ability to have ENSO phase-locked to the 

annual cycle. Furthermore, Bellenger et al. (2014) suggest 

that a better simulation of the shortwave feedback helps to 

simulate a more pronounced annual variation of equatorial 

Pacific SST variability in CMIP3 and CMIP5 models.

ENSO originates from large-scale ocean–atmosphere 

interactions and is based on a feedback cycle, as origi-

nally proposed by Bjerknes (1969). The Bjerknes stability 

index (BJ index) of Jin et  al. (2006) is a powerful tool 

to examine feedbacks, positive and negative, relevant to 

ENSO and the relative importance of the contributing 

terms on the basis of a linearized SST equation. The BJ 

index therefore is a measure of coupled ocean–atmos-

phere stability or growth rate of SST anomalies. Stein 

et  al. (2014) argue that the seasonal modulation of the 

coupled stability is responsible for the ENSO being 

phase-locked to the annual cycle. Hence, the BJ index 

would form a useful and comprehensive tool for investi-

gating ENSO phase locking, particularly because it com-

prises those processes in both atmosphere and ocean that 

are known to determine interannual variability. This also 

is consistent with Stein et al. (2010) who use the season-

ally changing BJ index to examine ENSO phase locking 

in a simple recharge oscillator model.

In the equatorial Pacific, a pervasive systematic bias 

in CGCMs is an excessive equatorial cold tongue (e.g. 

Davey et al. 2002; Zhang et al. 2007; Guilyardi et al. 2009). 

Although relatively small in magnitude compared to other 

tropical SST biases (e.g. the southeastern tropical Pacific 

warm SST bias), the cold equatorial Pacific SST bias has 

far reaching implications. Too cold sea surface conditions 

in the cold tongue region suppress precipitation at the equa-

tor (Li and Xie 2014), among others one reason for the 

double ITCZ problem, and thus reduce ocean–atmosphere 

coupling. Therefore it is not surprising that the cold SST 

bias influences a CGCM’s ability to simulate ENSO (e.g. 

Kim et  al. 2013) and in particular ENSO phase locking 

(Battisti and Hirst 1989; Ham and Kug 2014).

In this study, the controls of seasonal ENSO phase lock-

ing in the Kiel Climate Model (KCM) are investigated. A 

novel approach applied here is the usage of the BJ index 

to identify the processes that determine ENSO phase lock-

ing in a CGCM. The BJ index is calculated for each cal-

endar month separately to investigate its seasonal varia-

tion. Analysis of the individual feedbacks contributing to 

the BJ index reveals the importance of specific physical 

processes that control ENSO phase locking in the KCM. 

Moreover, the feedbacks are linked to the long-term mean-

state. Thus possible reasons for ENSO phase locking biases 

in the KCM are discussed in terms of both the feedbacks 

and mean-state. A set of 40 KCM experiments provides the 

basis for this study. The experiments differ in atmospheric 

parameters used in selected physical parameterizations and 

vertical atmospheric model resolution, whereas the ocean 

configuration is held fixed. In previous studies, similar 

changes to the atmospheric component were shown to have 

large influence on both climatology and interannual vari-

ability of the tropical regions (Kim et al. 2011; Ham et al. 

2012; Harlaß et  al. 2015). The results from the KCM are 

compared to those obtained from climate models partici-

pating in the CMIP5.
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First results based on the ensemble-mean calculated over 

all experiments conducted with the KCM are discussed. 

Furthermore, all sensitivity experiments are compared with 

each other and thus factors critical to ENSO phase lock-

ing in the KCM are identified. This paper is structured as 

follows. Section 2 introduces the KCM, experiment setup, 

observational datasets and the methodology applied in the 

stability analysis. Section  3 briefly describes the perfor-

mance of the KCM in simulating tropical Pacific mean-

state. In Sect. 4, the main results about factors controlling 

the ENSO phase locking in the KCM are presented. Major 

conclusions, comparison with CMIP5 models and discus-

sion of the main findings follow in Sect. 5 and conclude the 

paper.

2  Coupled model, data and method

We employ a version of the Kiel Climate Model (KCM; 

Park et al. 2009). The atmospheric component of the KCM 

is the European Centre for Medium Range Weather Fore-

casts (ECMWF) Hamburg atmospheric general circulation 

model version 5 (ECHAM5; Roeckner et  al. 2003). The 

ECHAM5 model used in this study, differently from Park 

et al. (2009) where a prognostic cloud scheme (Tompkins 

2002) is used, predicts cloud fraction on the basis of rela-

tive humidity (Sundqvist 1978) and uses a cumulus mass 

flux scheme that includes vertical transport by shallow and 

deep convective clouds (Nordeng 1994). ECHAM5 is cou-

pled to the Nucleus for European Modeling of the Ocean 

(NEMO; Madec et  al. 1998; Madec 2008) ocean-sea ice 

general circulation model via the Ocean Atmosphere Sea 

Ice Soil version 3 (OASIS3; Valcke 2006) coupler.

A set of 40 “present-day” integrations of the KCM (each 

100 years long) is analyzed (see Table  1 for a list of all 

experiments), in which the atmospheric  CO2-concentration 

is constant at 348 ppm. The atmospheric horizontal resolu-

tion is T42 (~2.8°) in all experiments. The horizontal ocean 

resolution also is the same throughout the experiments and 

based on a 2° Mercator mesh (ORCA2 grid) and is on aver-

age 1.3° with increased meridional resolution of 0.5° near 

the equator and 31 levels in the vertical. The experiments 

differ in two respects. First, in atmospheric vertical resolu-

tion: experiments 1–28 use a model version with 19 verti-

cal levels, experiments 29–34 a model version with 31 ver-

tical levels, and experiments 35–40 a model version with 

62 vertical levels. Second, the experiments differ in atmos-

pheric parameters.

Cloud and radiation processes cannot be resolved in 

current climate models and are thus parameterized. A 

variation of the parameters in the corresponding schemes 

can produce rather different mean-states, as indicated by 

Kim et al. (2011) and Ham et al. (2012) by investigating 

model sensitivity to the Tokiaka parameter—a minimum 

entrainment rate threshold in the cumulus convection 

parameterization. Ham et  al. (2012) further show how a 

variation of this parameter can lead to a dramatic change 

in ENSO phase locking. The three parameters changed 

in this study represent convective cloud conversion rate 

from cloud water to rain, entrainment rate for shallow 

convection and convective mass-flux above level of non-

buoyancy (see Mauritsen et  al. 2012 for a detailed dis-

cussion). The chosen parameter range corresponds to the 

suggested values by Mauritsen et al. (2012). The primary 

quantity to determine ENSO phase locking is SST.

CMIP5 model SST data is used for comparison with 

the KCM results. Historical simulations (1850–2005) are 

taken from 43 CMIP5 models (Taylor et al. 2012) and are 

interpolated to a 2.5° × 2.5° regular grid (see Table 2 for 

a list).

Additionally, we performed an atmosphere standalone 

experiment with the same atmospheric component as 

used in the KCM, ECHAM5 (T42, 31 levels), forced by 

observed daily SST and sea ice concentration (Reynolds 

et al. 2007; Reynolds 2009). The time period of the simula-

tion is 1982–2009.

Several observational and reanalysis datasets are used to 

evaluate the model results. For SST, the HadISST 1.1 data-

set from the Met Office Hadley Centre (Rayner et al. 2003) 

is used for 1958–2001. For the BJ index calculation, output 

from the Simple Ocean Data Assimilation (SODA) ocean 

reanalysis product version 2.0.2 (Carton and Giese 2008) 

is used for ocean temperatures and velocities (1958–2001). 

SST and zonal wind stress are taken from SODA as well 

to provide consistency among the datasets for the BJ index 

calculation. Surface heat fluxes are taken from ERA40 

(Simmons and Gibson 2000) that spans the same time 

period as SODA 2.0.2.

The BJ index calculation is based on the original formu-

lation from Jin et al. (2006) with some modifications made 

by Lübbecke and McPhaden (2013) and references therein. 

The BJ index includes the zonal advection feedback (ZAF), 

Ekman feedback (EF), thermocline feedback (TF), dynami-

cal damping (DD) and thermal damping (TD). The formu-

lation of the positive feedbacks (ZAF, EF and TF) is based 

on mean-state variables and a series of coefficients that 

measure the sensitivity of the atmosphere (i.e. zonal wind 

stress) to SST changes, and the ocean (i.e. zonal currents, 

upwelling and thermocline tilt) to changes in the zonal 

wind stress. The negative feedbacks (DD and TD) describe 

the damping effects on SST anomalies (SSTa) from mean 

ocean currents and changes in atmospheric heat fluxes 

(see Table 3 for an overview of the contributing feedback 

terms to the BJ index). The sum of all feedbacks is defined 

as the BJ index which is therefore a measure of coupled 

ocean–atmosphere stability or growth rate of SSTa.
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The region selection for computing area averages is 

adapted from Kim and Jin (2011a). The latitudinal range is 

5°S–5°N. In the zonal direction, 120°E–180°E for western 

equatorial thermocline depth, 180°E–80°W for SST, sub-

surface ocean temperature, eastern equatorial thermocline 

depth, upper ocean currents and atmospheric heatfluxes 

and 120°E–80°W for zonal wind stress is taken. 90%-confi-

dence intervals for the BJ index calculated from reanalysis 

data are estimated from linear regression via the standard 

error of the regression slope. For the analysis of interannual 

variability, the linear trend and the mean seasonal cycle 

were removed from all datasets.

Table 1  List of all KCM experiments which differ in three atmospheric parameters (column 2–4) and vertical atmospheric resolution (column 

5)

KCM experiment 

label

Convective mass-flux above 

level of non-buoyancy

Entrainment rate for shallow 

convection  (10−4)

Convective cloud conversion rate from 

cloud water to rain  (10−4)

Amount of atmos-

pheric vertical 

levels

1 0.15 3 1 19

2 0.175 3 1 19

3 0.20 3 1 19

4 0.225 3 1 19

5 0.25 3 1 19

6 0.275 3 1 19

7 0.30 3 1 19

8 0.325 3 1 19

9 0.35 3 1 19

10 0.2 1 1 19

11 0.2 2 1 19

12 0.2 4 1 19

13 0.2 5 1 19

14 0.2 6 1 19

15 0.2 7 1 19

16 0.2 8 1 19

17 0.2 9 1 19

18 0.2 3 2.1 19

19 0.2 3 2.5 19

20 0.2 3 3 19

21 0.2 3 4 19

22 0.2 5 4 19

23 0.30 1 4 19

24 0.13 10 4 19

25 0.3 1 1.5 19

26 0.3 10 1.5 19

27 0.2 1 4 19

28 0.35 10 1 19

29 0.3 10 1.5 31

30 0.35 3 1 31

31 0.2 3 1 31

32 0.2 5 1 31

33 0.2 1 4 31

34 0.35 10 1 31

35 0.3 10 1.5 62

36 0.35 3 1 62

37 0.2 3 1 62

38 0.2 5 1 62

39 0.2 1 4 62

40 0.35 10 1 62
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Table 2  List of all CMIP5 models used in the analysis

Label number Modeling group CMIP5 ID Atmosphere 

(1) Horizontal grid

(2) Number of vertical levels

Ocean 

(1) Horizontal res.

(2) Number of vertical levels

Time 

period 

(year)

1 CSIRO-BOM ACCESS1.0 (1) 192 × 145 N96

(2) 38

(1) 1° Latitude/longitude tripolar 

with enhanced resolution near the 

equator and at high latitudes

(2) 50

156

2 CSIRO-BOM ACCESS1.3 (1) 192 × 145 N96

(2) 38

(1) 1° Latitude/longitude tripolar 

with enhanced resolution near the 

equator and at high latitudes

(2) 50

156

3 BCC bcc-csm1-1-m (1) T106

(2) 26

(1) 1° With enhanced resolution in 

the meridional direction in the 

tropics (1/3° meridional resolu-

tion at the equator) tripolar

(2) 40

156

4 BCC bcc-csm1-1 (1) T42

(2) 26

(1) 1° With enhanced resolution in 

the meridional direction in the 

tropics (1/3° meridional resolu-

tion at the equator) tripolar

(2) 40

156

5 GCESS BNU-ESM (1) T42

(2) 26

(1) 200(lat) × 360(lon)

(2) 50

156

6 CCCMA CanCM4 (1) T63

(2) 26

(1) 256 × 192

(2) 40

45

7 CCCMA CanESM2 (1) T63

(2) 35

(1) 256 × 192

(2) 40

156

8 NCAR CCSM4 (1) 0.9° ×1.25°

(2) 27

(1) Nominal 1° (1.125° in lon-

gitude, 0.27–0.64° variable in 

latitude)

(2) 60

156

9 NSF-DOE-NCAR CESM1-BGC (1) 0.9° ×1.25°

(2) 27

(1) Nominal 1° (1.125° in lon-

gitude, 0.27–0.64° variable in 

latitude)

(2) 60

156

10 NSF-DOE-NCAR CESM1-CAM5 (1) 0.9° × 1.25°

(2) 27

(1) Nominal 1° (1.125° in lon-

gitude, 0.27–0.64° variable in 

latitude)

(2) 60

156

11 NSF-DOE-NCAR CESM1-FASTCHEM (1) 0.9° × 1.25°

(2) 27

(1) Nominal 1° (1.125° in lon-

gitude, 0.27–0.64° variable in 

latitude)

(2) 60

156

12 NSF-DOE-NCAR CESM1-WACCM (1) 1.9° × 2.5°

(2) 66

(1) Nominal 1° (1.125° in lon-

gitude, 0.27–0.64° variable in 

latitude)

(2) 60

156

13 CMCC CMCC-CESM (1) T31

(2) 39

(1) 2° average, 0.5° at the equator 

(ORCA2)

(2) 31

156

14 CMCC CMCC-CM (1) T159

(2) 31

(1) 2° Average, 0.5° at the equator 

(ORCA2)

(2) 31

156

15 CMCC CMCC-CMS (1) T63

(2) 95

(1) 2° Average, 0.5° at the equator 

(ORCA2)

(2) 31

156

16 CNRM-CERFACS CNRM-CM5 (1) TL127

(2) 31

(1) 0.7° On average ORCA1

(2) 42

156
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Table 2  (continued)

Label number Modeling group CMIP5 ID Atmosphere 

(1) Horizontal grid

(2) Number of vertical levels

Ocean 

(1) Horizontal res.

(2) Number of vertical levels

Time 

period 

(year)

17 CSIRO-QCCCE CSIRO-Mk3-6-0 (1) T63

(2) 18

(1) ~0.9 × 1.875

(2) 31

156

18 LASG-CESS FGOALS-g2 (1) 2.8125° × 2.8125°

(2) 26

(1) 1 × 1° with 0.5 meridional 

degree in the tropical region

(2) 30

156

19 LASG-IAP FGOALS-s2 (1) R42 (2.81° × 1.66°)

(2) 26

(1) LICOM

(2) The zonal resolution is 1°. The 

meridional resolution is 0.5° 

between 10°S and 10°N and 

increases from 0.5° to 1° from 

10°

(2) 30

156

20 FIO FIO-ESM (1) T42

(2) 26

(1) 1.125° In longitude, 0.27–0.64° 

variable in latitude

(2) 40

156

21 NOAA GFDL GFDL-CM3 (1) ~ 200 km C48L48

(2) 48

(1) 1° Tripolar 360 × 200

(2) 50

146

22 NOAA GFDL GFDL-ESM2G (1) 2.5° longitude, 2° latitude M45

(2) 24

(1) 1° Tripolar 360 × 210

(2) 63

145

23 NOAA GFDL GFDL-ESM2M (1) 2.5° longitude, 2° latitude M45

(2) 24

(1) 1° Tripolar 360 × 200

(2) 50

145

24 NASA GISS GISS-E2-H-CC (1) Nominally 1°

(2) 40

(1) 0.2 To 1° latitude × 1° longitude 

HYCOM

(2) 26

156

25 NASA GISS GISS-E2-R-CC (1) Nominally 1°

(2) 40

(1) 1° Latitude × 1.25° longitude 

Russell 1 × 1Q

(2) 32

156

26 NASA GISS GISS-E2-R (1) 2° latitude × 2.5° longitude F

(2) 40

(1) 1° Latitude × 1.25° longitude 

Russell 1 × 1Q

(2) 32

156

27 MOHC HadCM3 (1) N48 3.75 × 2.5°

(2) 19

(1) 1.25° In longitude by 1.25° in 

latitude N144

(2) 20

146

28 MOHC HadGEM2-AO (1) 1.875° in longitude by 1.25° in 

latitude N96

(2) 60

(1) 1.875° In longitude by 1.25° in 

latitude N96

(2) 40

146

29 MOHC HadGEM2-CC (1) 1.875° in longitude by

1.25°in latitude N96

(2) 60

(1) 1.875° In longitude by 1.25° in 

latitude N96

(2) 40

146

30 MOHC HadGEM2-ES (1) 1.875° in longitude by 1.25° in 

latitude N96

(2) 38

(1)1° By 1° between 30 N/S and 

the poles; meridional resolution 

increases to 1/3° at the equator

(2) 40

146

31 INM INM-CM4 (1) 2 × 1.5° in longitude and lati-

tude latitude- longitude

(2) 21

(1) 1 × 0.5° In longitude and 

latitude generalized spherical 

coordinates with poles displaced 

outside ocean

(2) 40

156

32 IPSL IPSL-CM5A-LR (1) 96 × 95 equivalent to 1.9° × 

3.75° LMDZ96 × 95

(2) 39

(1) 2 × 2-0.5° ORCA2

(2) 31

156

33 IPSL IPSL-CM5A-MR (1) 144 × 143 equivalent to 1.25° × 

2.5° LMDZ144 × 143

(2) 39

(1) 2 × 2-0.5° ORCA2

(2) 31

156
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When analyzing ENSO phase locking, the Niño3.4 index 

region (170°W–120°W; 5°S–5°N) is chosen, because it 

captures both a large part of the main region of SST varia-

bility as well as the area where coupling processes between 

ocean and atmosphere associated with ENSO are assumed 

to take place. A phase locking index (PLI) is defined after 

Bellenger et al. (2014):

With SSTa denoting interannual SST anomalies and 

STD the corresponding standard deviation. A larger PLI is 

either determined by stronger variability in DJF or weaker 

variability in AMJ or both and therefore reflects stronger 

phase locking.

3  Mean‑state SST

The long-term annual-mean SST in the tropical Pacific 

from observations is shown in Fig.  1a and the ensemble-

mean SST derived from all KCM simulations in Fig.  1b. 

PLI =

STD DEV
(

SSTa
Nino3.4

)

DJF

STD DEV
(

SSTa
Nino3.4

)

AMJ

Table 2  (continued)

Label number Modeling group CMIP5 ID Atmosphere 

(1) Horizontal grid

(2) Number of vertical levels

Ocean 

(1) Horizontal res.

(2) Number of vertical levels

Time 

period 

(year)

34 MIROC MIROC4h (1) T213

(2) 56

(1) 1/4° By 1/6° (average grid spac-

ing is 0.28° and 0.19° for zonal 

and meridional directions)

(2) 48

56

35 MIROC MIROC5 (1) T85

(2) 40

(1) 1.4° (zonally) × 0.5–1.4° 

(meridionally)

(2) 50

156

36 MIROC MIROC-ESM-CHEM (1) T42

(2) 80

(1) 1.4° (zonally) × 0.5–1.4° 

(meridionally)

(2) 44

156

37 MIROC MIROC-ESM (1) T42

(2) 80

(1) 1.4° (zonally) × 0.5–1.4° 

(meridionally)

(2) 44

156

38 MPI-M MPI-ESM-LR (1) T63

(2) 47

(1) Average 1.5° GR15

(2) 40

156

39 MPI-M MPI-ESM-MR (1) T63

(2) 95

(1) Approx. 0.4° TP04

(2) 40

156

40 MPI-M MPI-ESM-P (1) T63

(2) 47

(1) Average 1.5° GR15

(2) 40

156

41 MRI MRI-CGCM3 (1) 320 × 160 TL159

(2) 48

(1) 1 × 0.5

(2) 50 + 1 Bottom Boundary Layer

156

42 NCC NorESM1-ME (1) Finite volume 1.9° latitude, 2.5° 

longitude

(2) 26

(1) 1.125° Along the equator

(2) 53

156

43 NCC NorESM1-M (1) Finite volume 1.9° latitude, 2.5° 

longitude

(2) 26

(1) 1.125° Along the equator

(2) 53

156

Table 3  Contributing feedbacks in the Bjerknes stability index and 

their formulation

�
a
denotes equatorial zonal wind stress response to eastern equatorial 

SSTa, �
u
 zonal ocean velocity response, �

w
 ocean upwelling response 

and �
h
 thermocline slope response to equatorial zonal wind stress 

anomalies. a
h
 is the ocean subsurface temperature response to ther-

mocline depth anomalies and � the net surface heat flux response 

to SSTa. ū, v̄, w̄ denote mean zonal, meridional and vertical ocean 

velocities, T̄  mean SST and H
m
 mean mixed layer depth. ⟨⋅⟩

E
 denotes 

volume-averaged quantities over the eastern equatorial regime with 

L
x
 and Ly as zonal and meridional extent. H(w̄) is a step function 

to account only for upstream vertical advection. The responses are 

estimated via linear regressions. The methodology is adapted from 

Lübbecke and McPhaden (2013), region selection after Kim and Jin 

(2011a)

Contributing feedbacks Formulation

Zonal advection feedback (ZAF) μ
a
β

u

⟨

−𝜕T̄

𝜕x

⟩

E

Ekman feedback (EF) μ
a
β

w

⟨

−𝜕T̄

𝜕z

⟩

E

Thermocline feedback (TF) μ
a
β

h

⟨

H(w̄)w̄

H
m

a
h

⟩

E

Dynamical damping (DD)
−

(

ūE

L
x

+
−2yv̄E

Ly
2 +

w̄E

Hm

)

Thermal damping (TD) −α
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The model captures the western Pacific warm pool, the 

zonal band of relatively high SST north of the equator as 

well as the equatorial cold tongue. Large spread among 

the model realizations exists, as indicated by the standard 

deviation among the individual ensemble members (con-

tour lines). Ensemble-mean SSTs are too warm in several 

regions (Fig. 1c). Largest warm SST biases are observed in 

the coastal upwelling regions in the eastern Pacific, a prob-

lem that is seen in most climate models (Latif et al. 2001). 

The model spread is rather small in the coastal upwelling 

regions, indicating the changes applied to the KCM do not 

significantly influence the SST in these regions. SST biases 

in the equatorial region are considerably smaller, with 

the exception of the very eastern part. However, model 

spread is large, especially west of 140°W. This indicates 

that SST in this region is sensitive to the changes applied 

to the KCM. When the areal-mean SST is subtracted from 

the map (Fig.  1d) to obtain the relative SST biases, the 

equatorial cold bias becomes obvious (as indicated by the 

green color in Fig.  1d). Using relative temperatures has 

the advantage that it resembles the corresponding atmos-

pheric circulation more accurately (Bayr and Dommenget 

2013). The double-ITCZ problem is also seen in the SSTs, 

as bands of warm SST biases stretching from the western 

equatorial Pacific eastward in both hemispheres and merg-

ing with the warm SST biases in the subtropical coastal 

upwelling areas (Fig.  1c). We note that the model spread 

is strongly reduced when subtracting the areal-mean SST 

from the individual ensemble members.

Perturbing the physics (Sect. 2) has implications for the 

equatorial cold bias (Fig. 2). This is because the region of 

the equatorial cold tongue is characterized by boundary 

Fig. 1  a Long-term annual-mean SSTs from observations and b as 

given by the ensemble-mean calculated over all experiments with the 

KCM. c Total SST bias, d with regional mean SSTs (120°E–60°W; 

15°S–15°N) subtracted. Contour lines depict the standard deviation 

over all model realizations. Unit is °C
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layer cloud cover (e.g. Klein and Hartmann 1993; Laca-

gnina and Selten 2013) and this is affected by our pertur-

bations. First, we need to clarify the role of the perturbed 

parameters, which is explained in detail in Mauritsen et al. 

(2012). The perturbed atmospheric parameters of inter-

est are the convective mass-flux above the level of non-

buoyancy and the entrainment rate for shallow convec-

tion. They both control the updraft in shallow convective 

processes and thus the amount and thickness of bound-

ary layer clouds. Increasing the first parameter increases 

the strength of the updraft and thus leads to a reduction 

of boundary layer cloud cover. This is because a stronger 

updraft is associated with more evaporation of cloud water 

in the boundary layer. Increasing the second parameter 

has the opposite effect, because a larger entrainment rate 

weakens the updraft and therefore increases boundary layer 

cloud cover. The effect of modifications in the cloud cover 

is to change the amount of solar radiation reaching the 

sea surface. Therefore, the cold SST bias could in princi-

ple be reduced by decreasing shallow cloud cover over the 

Fig. 2  Scatter plot of the cold equatorial SST bias (160°E–80°W; 

5°S–5°N) with areal-mean (120°E–60°W; 15°S–15°N) subtracted 

versus different parameter values in the cloud parameterization 

of a the convective mass-flux above level of non-buoyancy and b 

the entrainment rate for shallow convection for a selection of KCM 

experiments. Model experiments 41 and 42 are not included in the set 

of experiments used in the previous part of the analysis due to their 

extreme parameter values. c Scatter plot of the cold equatorial SST 

bias versus atmospheric vertical resolution with color denoting same 

cloud parameters
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cold tongue region by increasing insolation at the surface. 

A considerably reduced cold SST bias can be achieved by 

increasing the convective mass-flux above the level of non-

buoyancy (Fig. 2a) or with a less consistent but still visible 

effect by decreasing the entrainment rate for shallow con-

vection (Fig.  2b). Changing the convective cloud conver-

sion rate from cloud water to rain has no significant impact 

on the cold SST bias (not shown).

We also investigate the influence of changing the verti-

cal atmospheric resolution, as motivated by Harlaß et  al. 

(2015) who achieved a considerable reduction of SST 

biases in the tropical Atlantic by enhancing the vertical res-

olution. We find that varying the number of vertical levels 

in the atmosphere has no systematic effect on the strength 

of the cold bias in the equatorial Pacific (Fig. 2c). This may 

be partly due to the relative small number of sensitivity 

experiments (6 sets of KCM-experiments; each set differs 

in the cloud parameters). A reduction of the cold SST bias 

is achieved by increasing the resolution from 19 to 31 lev-

els in 5 out of the 6 sets of sensitivity experiments, but at 

62 levels the bias again increases. It should be mentioned in 

this context that horizontal and vertical atmosphere model 

resolution should be consistent with each other (Harlaß 

et al. 2015).

Figure  3 depicts the seasonal cycle of equatorial SST 

directly at the equator relative to the annual-mean SST 

calculated from observations (Fig.  3a) and the KCM 

(Fig. 3b). The ensemble-mean SST annual cycle is shown 

from the KCM (color shading in Fig.  3b). It captures the 

warming during the first half and the cooling during the 

second half of the year in the eastern equatorial Pacific as 

well as the westward propagation of the signal. However, 

the amplitude of the SST seasonal cycle is underestimated, 

and the cold phase terminates 3 months too early compared 

to the observations. The model spread is shown by contours 

in Fig. 3b. Largest spread is found in the very eastern equa-

torial Pacific during the first half of the year.

4  Seasonal ENSO phase locking and feedback 

analysis

In the ensemble-mean, the KCM produces a sea-

sonal ENSO phase locking comparable to observations 

(Fig. 4a), with largest variability in December to Febru-

ary and smallest in April to June. There are, however, 

several noticeable differences. First, the interannual 

variability is too strong in the model during all calen-

dar months. In the KCM, ENSO is sensitive to the mean 

temperature of the tropical Pacific, with a warmer mean-

state leading to stronger interannual variability. This has 

been shown by Park et al. (2009) and Latif et al. (2015), 

Fig. 3  Seasonal cycle of 

equatorial SST at the equator 

with the annual mean removed 

for a observations and b the 

ensemble-mean calculated over 

all experiments with the KCM. 

Contour lines depict the stand-

ard deviation over all model 

realizations. Unit is °C
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both describing the ENSO response to global warming in 

a T31-version of the KCM. Regarding this relationship, 

Fig. 5 shows tropical Pacific mean (25°N–25°S) SST for 

each ensemble member of the T42-version of the KCM 

analyzed here together with annual mean ENSO ampli-

tude as assessed by Niño3.4-averaged SSTa standard 

deviation. The correlation amounts to 0.59, consistent 

with the T31-version. Compared to observations (black 

cross), the KCM ensemble-mean shows higher tropi-

cal Pacific mean SST along with a stronger ENSO (red 

cross). Second, the seasonal variation of monthly SSTa 

is smaller than that in observations, as indicated by the 

much less accentuated minimum in boreal spring and by 

the less distinct maximum in boreal winter (Fig. 4a). This 

becomes especially clear when normalizing the seasonal 

cycle of SST variability by its annual mean (Fig.  4b). 

And third, there is significant spread about the ensemble-

mean as shown by the individual realizations. This indi-

cates that the seasonal cycle of interannual SST variabil-

ity is rather sensitive to changes in vertical atmosphere 

model resolution and changes in cloud and convective 

parameters, as shown below.

A similar analysis has been carried out for the CMIP5 

models (Fig.  4c, d). In the ensemble mean, the CMIP5 

models exhibit similar biases as the KCM. Most notewor-

thy is the weak variability minimum in boreal spring. The 

spread is larger than that obtained from the KCM ensem-

ble. This is expected, since the CMIP5 ensemble covers a 

wider range of resolutions and physical parameterizations.

In the following, the controls of seasonal ENSO phase 

locking in the KCM are investigated. Biases in seasonal 

ENSO phase locking may be linked to a flawed simulation 

of the mean-state SST seasonal cycle. We calculate from 

each member of the KCM ensemble the correlation (on the 

basis of the monthly values) of the simulated mean-state 

SST seasonal cycle in the Niño3.4 box with the observed 

seasonal cycle in this region. The PLI, which was intro-

duced above, quantifies the strength of the annual varia-

tion of interannual SST variability. Figure 6 shows the PLI 

against the models’ ability to capture the mean-state SST 

seasonal cycle in the eastern equatorial Pacific. There is no 

significant relationship (correlation of 0.02). This agrees 

with Stein et al. (2014), in which it is found that the sea-

sonal modulation of the coupled stability is responsible for 

Fig. 4  Monthly standard devia-

tion of Niño3.4 SSTa for (a) 

all 40 KCM experiments (blue) 

together with its ensemble-mean 

(red) and (b) normalized by the 

annual mean. The same for a set 

of (c) 43 CMIP5 models with 

(d) normalized by the annual 

mean. Observations are added 

in black
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the ENSO being phase-locked to the annual cycle rather 

than a periodic forcing by the annual cycle.

Next, we make use of the BJ index which measures 

the linear stability of the coupled atmosphere–ocean sys-

tem and is hence a measure of SSTa growth rate. Figure 7 

shows the BJ index and the individual feedbacks as a func-

tion of calendar month calculated from observations and 

the set of experiments with the KCM. Figure 7a–c displays 

the positive feedbacks, Fig. 7d, e the damping terms, and 

Fig. 7f the BJ index which is calculated as the sum of all 

feedbacks. Again, both the ensemble-mean and the indi-

vidual experiments are shown from the KCM. Confidence 

intervals in the observations, as estimated from the stand-

ard error of the contributing terms (see Sect.  2 for more 

details), are quite large for the TF term, which is mainly 

attributed to the short time period of 44 years and the lack 

of subsurface data prior the TAO-array. First, we note that 

the annual-mean BJ index is negative in SODA (−0.18 

 year−1; close to the value calculated in Kim et  al. 2013) 

and in the KCM ensemble mean (−1.24  year−1), which is 

expected since the coupled system should be overall stable. 

According to the BJ index calculated from observations, 

the coupled system is unstable from July through Novem-

ber, allowing SSTa to grow, and most strongly damped at 

the beginning of the year (Fig. 7f). This finding agrees with 

Stein et al. (2010) who assess the seasonal growth rate of 

ENSO via the BJ index and show that the coupled system 

is unstable around boreal fall and stable during the rest of 

the year. The seasonal cycle of the BJ index matches the 

seasonal cycle of interannual SST variability (Fig. 4) with 

a phase shift of a few months. This is reasonable, because 

SSTa, owing to the inertia of linear perturbations, may still 

grow after SSTa growth rate has reached its annual maxi-

mum. The BJ index can thus explain the seasonal ENSO 

phase locking.

The positive feedback terms derived from observa-

tions, namely EF and TF and to a lesser extent ZAF, tend 

to destabilize the system in late boreal summer and boreal 

fall. DD and TF on the other hand are strongest in early 

boreal spring. Together with the small positive feedbacks 

during that time, this contributes to stable conditions, giv-

ing rise to the so-called spring predictability barrier (Latif 

and Graham 1992; Torrence and Webster 1998; Levine and 

McPhaden 2015). The ensemble-mean of the KCM runs 

reproduces the seasonal cycle of the BJ index quite well. 

All individual feedbacks peak approximately at the right 

time of the year. In boreal fall, however, the SSTa growth 

rate is not as strong as in observations, which results from 

too weak positive feedbacks at that time of the year. Fur-

thermore, in the annual mean the system is too strongly 

damped compared to observations. This is mostly a result 

of too strong DD and overall too weak positive feedbacks. 

We note that the relatively small ensemble-mean BJ index 

Fig. 5  Scatter plot of Niño3.4-averaged SSTa standard deviation ver-

sus tropical Pacific mean SST (120°E–60°W; 25°S–25°N) for the set 

of 40 KCM experiments (blue) together with the annual-mean SST 

(red cross) and observations (black cross). The correlation over all 

KCM experiments is given and it is significant at the 90% level. A 

regression line is also added

Fig. 6  Scatter plot of the phase locking index PLI versus the correla-

tion of the mean SST seasonal cycle in the Niño3.4 between obser-

vations and the set of 40 KCM experiment (blue) together with the 

ensemble-mean (red cross) and observations (black cross). The cor-

relation over all KCM experiments is given but not significant and a 

regression line also is added
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cannot explain the too strong SST variability in the KCM 

(Fig.  4a), since low values of the BJ index would favor 

weak variability (Kim and Jin 2011b; Kim et  al. 2013). 

Furthermore, it is noteworthy that TD is underestimated, 

especially at the beginning of the year.

Some of the feedback biases can explain why ENSO 

phase locking is overall too weak in the KCM:

1. The too weak positive feedbacks (ZAF, EF and TF) 

explain why the annual maximum of SSTa growth rate 

is underestimated in boreal fall. This results in a too 

weak SST variability maximum in boreal winter.

2. The too weak negative feedback TD at the beginning 

of the calendar year (February-March-April, FMA) can 

explain why SST variability in boreal spring does not 

decay as strongly as in observations.

Regarding the second point, it can be argued that too 

weak TD may be compensated by too strong DD. When 

adding TD and DD it becomes clear that in FMA, the total 

damping rate is underestimated with respect to observa-

tions, whereas during the remainder of the year there is 

compensation. Therefore the bias in TD is here considered 

as a potential cause for biasing ENSO phase locking.

To better assess the role of the feedbacks in controlling 

ENSO phase locking in the KCM, the feedbacks are com-

puted for each single model experiment and plotted against 

the phase locking index, PLI. Figure  8 shows scatter dia-

grams of ZAF, EF, TF, TD, DD and the BJ index at their 

peak season with respect to the PLI. The results indicate 

that a stronger EF, TF and TD during September-Decem-

ber (SOND) and January-April (JFMA) is associated with 

stronger ENSO phase locking (Fig. 8b, c, e), and with sig-

nificant correlations of 0.69, 0.54 and −0.67, respectively. 

ZAF is of less relevance for ENSO phase locking, being 

small in magnitude and exhibiting a correlation with PLI 

of only 0.21 (Fig. 8a). Also the DD is not correlated with 

PLI (−0.1; Fig.  8d). The highest correlation is found for 

the EF term. However, TF and TD are of greater magnitude 

and therefore may have an equivalent impact. This can be 

quantified by the slope of the fitted linear regression lines 

between PLI and EF, TF and TD in Fig. 8b, c, e, amounting 

to 1.18, 1.21, and −2.35  year−1, respectively. We also com-

pare the PLI with the total BJ index by taking the difference 

of the simulated BJ index maximum and minimum season, 

i.e. in SOND and JFMA, respectively (Fig.  8f). This is 

because the BJ index measures both the instability towards 

the end of the calendar year as well as the stability at the 

beginning of the calendar year. The results show that the 

BJ index is in close relation to the PLI (correlation of 0.76), 

which supports our hypothesis that it can to a large extent 

explain seasonal ENSO phase locking.

We conclude that the major controls of seasonal ENSO 

phase locking in the KCM is mostly due to EF and TF 

Fig. 7  Monthly a zonal advection feedback, b Ekman feedback, 

c thermocline feedback, d dynamical damping, e thermal damp-

ing and f the Bjerknes stability index for the set of 40 KCM experi-

ments (blue) together with the ensemble-mean (red) and observations 

(black). Error bars for observations show 90% confidence intervals
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around boreal fall and TD in late boreal winter/early boreal 

spring. A stronger EF and TF in boreal fall increases the 

growth rate of the SST anomalies, which leads to larger 

SST variability in boreal winter. A stronger TD from the 

atmospheric heat fluxes in late  boreal winter/early boreal 

spring on the other hand stabilizes the coupled system, 

which keeps SST variability low in boreal spring.

ENSO stability is tightly linked to the mean-state (e.g., 

Battisti and Hirst 1989; Neelin et al. 1998; An and Jin 2000; 

Fedorov and Philander 2001; Guilyardi 2006; Bejarano and 

Jin 2008; Kim et al. 2013). Therefore, as the next step we 

connect the feedback biases outlined above with the mean-

state. The KCM exhibits a cold SST bias in the equatorial 

Pacific (Fig. 1d), which is common to many CGCMs (e.g. 

Fig. 8  Scatter plots of the 

phase locking index PLI versus 

a the zonal advection feedback 

in September-December, b the 

Ekman feedback in September–

December, c the thermocline 

feedback in September–Decem-

ber, d the dynamical damping 

in January–April, e the thermal 

damping in January–April and 

f for the BJ index difference 

between September–December 

and January–April for the set 

of 40 KCM experiments (blue) 

together with the ensemble-

mean (red cross) and observa-

tions (black cross). The correla-

tion over all KCM experiments 

is given and it is significant at 

the 90% level. A regression line 

is also added
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Zheng et al. 2012) and has previously been linked to feed-

back biases in terms of the BJ index (Kim et al. 2013).

Figure 9 displays the equatorial cold bias calculated over 

the region 160°E–80W; 5°S–5°N against the feedbacks 

which we identified to be important for controlling ENSO 

phase locking in the KCM, i.e. EF, TF and TD. The cold 

bias is computed for SOND and compared to EF and TF in 

SOND, and to TD in JFMA. A smaller cold bias in SOND 

goes along with an enhanced EF (correlation of 0.69; 

Fig. 9a) and TF (correlation of 0.70; Fig. 9b) in SOND, and 

an increased TD in JFMA (correlation of −0.87; Fig. 9c). 

Xiang et al. (2011) and Kim et al. (2013) discuss in detail 

what implications the equatorial cold SST bias can have 

for the feedbacks. For example, an equatorial cold tongue 

extending too far west places the deep convection too far 

west, thereby reducing the response of low-level winds to 

SST changes over the central equatorial Pacific. A weaker 

low-level wind response to SST forcing contributes to the 

underestimation of both the EF and TF (see Table 3 for the 

definition of the feedbacks). Furthermore, the cold SST 

bias reduces the thermal stratification in the upper ocean. 

This too affects EF which is proportional to the strength of 

the mean vertical temperature gradient. Kim et  al. (2013) 

argue that in a weaker stratified upper ocean, wind stress-

forced momentum is less confined towards the sea surface. 

This would result in a lower ocean-upwelling response sen-

sitivity to wind stress forcing as part of the EF. Consistent 

with this, we find that in the KCM a smaller cold SST bias 

is associated with a stronger upwelling response to wind 

stress forcing in SOND (correlation of 0.64; not shown). 

Further, the weaker stratification can lead to an underesti-

mation of the thermocline-subsurface temperature feedback 

(Xiang et  al. 2011) and influences the thermocline slope 

response to wind forcing (Kim et al. 2013). The influences 

on TD likely result from biases in the shortwave feedback. 

Lloyd et al. (2012) and Dommenget et al. (2014) show that 

the cold SST bias weakens the shortwave damping and 

can even reverse it to a positive feedback. We find in the 

KCM that a smaller cold bias is strongly related to a larger 

shortwave feedback in JFMA (correlation of −0.87; not 

shown). Finally, we analyze the results from an uncoupled 

ECHAM5 simulation forced by observed daily SSTs during 

1982–2009. Here the shortwave feedback is stronger than 

that in any of the coupled simulations (not shown). This 

Fig. 9  Scatter plots of a the 

cold equatorial Pacific SST 

bias (160°E–80°W; 5°S–5°N) 

with areal-mean (120°E–60°W; 

15°S–5°N) subtracted in Sep-

tember–December versus the 

Ekman feedback in September–

December, b the equatorial cold 

SST bias in September–Decem-

ber versus the thermocline feed-

back in September–December 

and c the equatorial cold SST 

bias in January–April versus the 

thermal damping January–April 

for the set of 40 KCM experi-

ments (blue) together with its 

ensemble-mean (red cross) 

and observations (black cross). 

The correlation over all KCM 

experiments is given and it is 

significant at the 90% level. A 

regression line is also added
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corroborates our hypothesis that the shortwave feedback is 

strongly controlled by the SST bias. Based on these results, 

we conclude that an excessive equatorial cold tongue is the 

main cause for too weak seasonal ENSO phase locking in 

the KCM.

5  Summary and discussion

In this study, processes controlling seasonal ENSO phase 

locking are identified in the Kiel Climate Model (KCM) 

and compared to observations. A large ensemble of simu-

lations with the KCM has been conducted, which differ in 

vertical atmospheric resolution and physical parameteriza-

tions. ENSO phase locking in observations is explained by 

the seasonal variation of the coupled system’s stability and 

the associated feedbacks, here measured by the Bjerknes 

(BJ) index. Positive feedbacks are strongest towards the end 

of the calendar year, leading to a maximum in SST anom-

aly growth rate, whereas negative feedbacks are strongest at 

the beginning of the year, thereby setting relatively stable 

conditions. The ensemble-mean of the KCM simulations 

depicts ENSO phase locking and seasonal variation of the 

BJ index consistent with observations. The model spread, 

however, is rather large, as discussed below. A major result 

of this study is that the ability of a coupled model to real-

istically simulate seasonal ENSO phase locking is closely 

linked to the strength of the cold equatorial Pacific SST 

bias, with less biased models exhibiting more realistic 

phase locking owing to more realistic coupled feedbacks.

The KCM in the ensemble-mean features too weak sea-

sonal ENSO phase locking compared to observations, that 

is a less accentuated SST variability maximum and SST 

variability minimum in December to February and April 

to June, respectively. This bias is induced by a too weak 

Ekman feedback (EF) and thermocline feedback (TF) 

towards the end of the year and too weak thermal damp-

ing (TD) at the beginning of the year. When comparing the 

individual KCM experiments from the ensemble with each 

other, we find that stronger EF and TF in SOND and TD in 

JFMA are associated with stronger seasonal ENSO phase 

locking. Improving these feedbacks holds great potential to 

enhance seasonal ENSO phase locking in the KCM.

It is suggested that an excessive equatorial cold tongue 

significantly affects the simulation of these feedbacks and 

thus seasonal ENSO phase locking not only in the KCM 

but also in the CMIP5 models. Figure  10 depicts results 

from all KCM runs and from the CMIP5 models. The scat-

ter diagram shows for each simulation the seasonal ENSO 

phase locking index (PLI) and the strength of the cold 

equatorial Pacific SST bias. In both ensembles, a smaller 

cold SST bias corresponds to stronger seasonal ENSO 

phase locking, with significant correlations of 0.61 (KCM) 

and 0.48 (CMIP5). We note that the CMIP5 models tend to 

simulated overall warmer conditions.

We hypothesize that the link between seasonal ENSO 

phase locking and cold equatorial Pacific SST bias can 

be explained as follows: An excessive equatorial cold 

tongue weakens the low-level wind response to SST forc-

ing (Xiang et  al. 2011) and thus reduces the strength of 

both EF and TF. Furthermore, the cold SST bias weakens 

the thermal stratification in the upper ocean (Xiang et  al. 

2011; Kim et  al. 2013). This also reduces the strength of 

EF, because subsurface temperature influence on SST and 

ocean upwelling response to wind forcing are reduced. 

Furthermore, a weaker stratification can reduce the ther-

mocline-subsurface temperature feedback (Xiang et  al. 

2011) and the thermocline slope response to wind stress 

anomalies (Kim et al. 2013). Consequently, the total TF is 

reduced. Since these feedbacks are strongest in boreal fall, 

this lowers SST anomaly growth and eventually interannual 

SST variability in boreal winter. Further, the cold SST bias 

weakens the shortwave damping and can even cause it to 

Fig. 10  Scatter plot of the phase locking index PLI versus the cold 

equatorial SST bias (160°E–80°W; 5°S–5°N) with areal-mean 

(120°E–60°W; 15°S–15°N) subtracted in September–April for the 

set of 40 KCM experiments (blue) and the set of 43 CMIP5 models 

together with their ensemble-means (red crosses) and observations 

(black cross). The correlations over all KCM experiments and CMIP5 

models are given and they are significant at the 90% level. A regres-

sion line is also added
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be amplifying (Lloyd et al. 2012; Dommenget et al. 2014). 

This reduces TD and thus increases interannual SST vari-

ability in boreal spring. To summarize, the cold SST bias 

weakens seasonal ENSO phase locking by reducing SST 

variability in boreal winter and increasing SST variability 

in boreal spring.

We relate the strength of the equatorial cold SST bias 

to the perturbed physics in our set of experiments with the 

KCM. We show that changing specific parameters in the 

cloud scheme has an effect on the cold SST bias by altering 

the amount of low-level clouds over the cold tongue region, 

allowing realistic seasonal ENSO phase locking for spe-

cific parameter choices. We note that the applied changes 

to the convection scheme are specific to our atmospheric 

model, ECHAM5, and it is of interest whether this can be 

valid to other models. We also show that the vertical reso-

lution in the atmosphere model has no systematic effect on 

the strength of the cold Pacific SST bias. However, it has 

to be kept in mind that atmospheric horizontal resolution 

has been kept fixed and consistency between horizontal and 

vertical resolution may be required. We note that a realis-

tic seasonal ENSO phase locking can be achieved at coarse 

vertical atmosphere model resolution (e.g. experiment 28). 

This situation in the tropical Pacific is different to that in 

the tropical Atlantic: Harlaß et al. (2015) show that a rea-

sonable seasonal phase locking of interannual SST variabil-

ity in the equatorial Atlantic can only be achieved in the 

KCM at sufficiently high vertical and horizontal atmos-

pheric resolution.

Previous studies have discussed the relationship between 

the equatorial Pacific cold SST bias, ENSO feedbacks 

and seasonal ENSO phase locking, which are consistent 

with this study. For instance, Bellenger et  al. (2014) sug-

gest that a larger shortwave feedback strengthens seasonal 

ENSO phase locking in CMIP3 + CMIP5 models. Further-

more, Rashid and Hirst (2015) point out the dependency 

of the shortwave feedback on local SST. Kim et al. (2013) 

also connect cold tongue biases to atmospheric and oce-

anic response biases, restricting the analysis, however, to 

annual mean conditions. Ham and Kug (2014) and Rashid 

and Hirst (2015) link the cold SST bias with phase locking 

biases via errors in the simulated feedbacks, but referring 

to a SST variability peak in the wrong season. We provide, 

with the aid of the BJ index, a comprehensive analysis of 

the importance of the cold equatorial Pacific SST bias for 

the seasonal variation of coupled feedbacks that control 

seasonal ENSO phase locking.

Due to its comprehensiveness, the BJ index is highly 

valuable for highlighting out significant processes that con-

trol ENSO-associated variability, especially in the ocean. 

Nevertheless, there are arguments about limitations of the 

BJ index in representing ENSO feedbacks. We find that the 

relatively small ensemble-mean BJ index cannot explain the 

too strong SST variability in the KCM (Fig. 4a), since low 

values of the BJ index would favor weak variability. Similar 

results are obtained by Kim et al. (2013) for a set of CMIP5 

models. This suggests limitations of the BJ index in reflect-

ing the overall strength of ENSO variability and should be 

the subject of further investigation. Furthermore, Graham 

et  al. (2014) analyze the ability of the BJ index in repre-

senting ocean dynamics and point out the role of assuming 

linearity in the formulation, although ENSO processes can 

be inherently nonlinear (Lloyd et al. 2012; Bellenger et al. 

2014). Duan et al. (2013) also underpin the important role 

of nonlinearities in seasonal ENSO phase locking. Yet the 

consistency between the results obtained from the KCM 

ensemble with those obtained from the CMIP5 ensemble 

is reassuring.
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Supplementary material for chapter 3: 
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Supplementary figures 

 

Fig. 1s (a) Long-term annual-mean SSTs from observations and (b) as given by the ensemble-mean calculated over all 

experiments with the KCM. (c) Total SST bias, (d) with tropical mean SSTs (15°S-15°N) subtracted. Contour lines 

depict the standard deviation over all model realizations. Unit is °C.
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Abstract Climate models depict large diversity in the strength of the El Niño/Southern Oscillation (ENSO)

(ENSO amplitude). Here we investigate ENSO-amplitude diversity in the Coupled Model Intercomparison

Project Phase 5 (CMIP5) by means of the linear recharge oscillator model, which reduces ENSO dynamics to a

two-dimensional problem in terms of eastern equatorial Pacific sea surface temperature anomalies (T)

and equatorial Pacific upper ocean heat content anomalies (h). We find that a large contribution to

ENSO-amplitude diversity originates from stochastic forcing. Further, significant interactions exist between

the stochastic forcing and the growth rates of T and h with competing effects on ENSO amplitude. The

joint consideration of stochastic forcing and growth rates explains more than 80% of the ENSO-amplitude

variance within CMIP5. Our results can readily explain the lack of correlation between the Bjerknes Stability

index, a measure of the growth rate of T, and ENSO amplitude in a multimodel ensemble.

1. Introduction

The El Niño/Southern Oscillation (ENSO) is the dominant mode of interannual climate variability in the tro-

pics. ENSO is characterized by sea surface temperature (SST) anomalies of a few centigrade primarily in the

eastern and central equatorial Pacific, which drive global teleconnections (e.g., Brönnimann et al., 2004).

Large diversity among coupled general circulation models (CGCMs) in ENSO statistics such as ENSO ampli-

tude exists (Bellenger et al., 2014; Latif et al., 2001). Understanding the different ENSO dynamics among

CGCMs is fundamental for making robust statements about the level of related seasonal climate predictability

and uncertainty in long-term ENSO projections.

Over the past years, considerable progress has been made in understanding ENSO diversity in CGCMs by

applying conceptual models that condense the dynamics of ENSO into a simple theoretical framework.

One example is the Bjerknes Stability (BJ) index (Jin et al., 2006), which approximates the growth rate of

SST anomalies (T) in the eastern equatorial Pacific by the recharge oscillator framework (Jin, 1997) and allows

examination of the positive and negative feedbacks relevant to ENSO. The BJ index has been used to study

ENSO-amplitude diversity among CGCMs (Ferrett & Collins, 2016; Kim et al., 2014; Kim & Jin, 2011). A recent

study by An et al. (2017) showed that the diversity in the thermocline feedback is highly correlated to ENSO-

amplitude diversity. The BJ index has also been used to study potential ENSO changes in a warmer climate

(Ferrett & Collins, 2016; Kim & Jin, 2011). In theory, a larger BJ index is associated with larger ENSO amplitude.

Kim et al. (2014) have shown that the BJ index is correlated to ENSO amplitude in models from the Coupled

Model Intercomparison Project Phase 3 (CMIP3). However, this correlation breaks down in models participat-

ing in CMIP5 (due to a few outliers). One possible explanation is that nonlinear dynamics are not represented

by the BJ index (Graham et al., 2014). Further, the potential influence from atmospheric noise has been dis-

cussed in this context (Ferrett & Collins, 2016).

Another powerful tool for investigating ENSO diversity among models is the simplest version of the recharge

oscillator model of Burgers et al. (2005) (ReOsc model hereafter). The growth mechanism in this model is due

to a positive coupled feedback (Bjerknes, 1969), whereas the oscillatory component is driven by the recharge-

discharge of equatorial ocean heat content (Cane & Zebiak, 1985; Wyrtki, 1975, 1986). This dynamical frame-

work can be described by a damped harmonic oscillator (Burgers et al., 2005) with SST and thermocline depth

playing the roles of momentum and position, respectively. The oscillatory nature of ENSO allows the ReOsc

model to capture important characteristics of ENSO dynamics. Many studies have used the ReOsc model

to analyze ENSO dynamics in various approaches (Burgers et al., 2005; Frauen & Dommenget, 2010; Jansen

et al., 2009; Jin et al., 2007; Levine &McPhaden, 2015; Vijayeta & Dommenget, 2017; Yu et al., 2016). In contrast

to the one-dimensional framework underlying the BJ index, the ReOsc model is based on two coupled
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equations in which six parameters, including stochastic noise forcing (hereafter stochastic forcing), control

ENSO amplitude.

In this paper, the ReOsc model is used to investigate ENSO-amplitude diversity in CMIP5 models. We inves-

tigate the relative importance of the ReOsc model parameters for ENSO amplitude with a special focus on

the role of stochastic forcing for ENSO-amplitude diversity among CMIP5 models.

2. Data and Methods

We analyze the historical experiments from 35 CMIP5 models (Taylor et al., 2012) for the time period from

1921 to 2000 (Table S1). Output from the Simple Ocean Data Assimilation (SODA) ocean reanalysis product

version 2.0.2 (Carton & Giese, 2008) for the period 1958–2001 is used for comparison.

The ReOsc model describes the oscillatory behavior of ENSO by the interaction of eastern equatorial Pacific

SST and equatorial Pacific zonal-mean upper ocean heat content:

dT

dt
¼ a11�T þ a12�hþ ξT (1)

dh

dt
¼ a21�T þ a22�hþ ξh (2)

where T is the monthly eastern equatorial Pacific SST anomaly; h is the monthly equatorial Pacific zonal-mean

thermocline depth anomaly, which is commonly used to approximate the upper ocean heat content anom-

aly; a11 and a22 are the growth rate of T and h, respectively; a12 and a21 are the coupling of T to h and h to T,

respectively; and ξT and ξh are stochastic forcing terms of T and h, respectively. T is averaged here over the

Niño3.4-region (170°W–120°W; 5°S–5°N), and h is averaged across the equatorial Pacific (130°E–80°W;

5°S–5°N). The ReOsc model parameters a11, a12, a21, and a22 are estimated via multivariate linear regression

of the T and h tendencies against T and h, respectively. The stochastic forcing terms are approximated as the

standard deviation (SD) of the residuals of the fit, which also may contain dynamics that cannot purely be

considered as noise in the sense that they are independent of the large-scale coupled dynamics. We note that

the stochastic forcing could be further separated into a state-dependent and a state-independent part

(Levine et al., 2016). This, however, would be beyond the scope of this paper. Following Kim et al. (2014)

we approximate ENSO amplitude by the SD of T.

The parameter a11 is influenced by a number of atmospheric and oceanic processes (Frauen & Dommenget,

2010; Vijayeta & Dommenget, 2017; Yu et al., 2016) such as the Bjerknes feedback and atmospheric heat

fluxes as well as ocean dynamics such as mixing and advection. In general, a22 is assumed to be close to zero

as changes in h are not determined by the thermocline depth itself but rather by the geostrophic response to

wind stress (Burgers et al., 2005). On the other hand, a damping of h can be achieved via wave-friction as in

the delayed action oscillator model (Suarez & Schopf, 1988). The oscillatory behavior of the ReOsc model is

determined by the coupling between T and h, whereby a12 is the local warming effect of h on T and a21 is

the influence of T on h via the atmospheric bridge. Parameter ξT is the stochastic forcing of T primarily related

to westerly wind bursts, whereas ξh is supposed to be largely influenced by ξT as both terms are correlated

(see below). The stochastic forcing introduces an irregularity to the harmonic oscillation.

The ReOscmodel equations can be integrated with stochastic forcing terms to generate time series of T and h

using fixed values for a11, a12, a21, and a22. We use a time step of 24 hr and assumed red-noise stochastic

forcing terms ξT and ξh with a decorrelation time of 3 days, mimicking weather systems, which effectively

results in white noise forcing when considering monthly means. Identical stochastic forcing is used in all inte-

grations, which allows us to discuss changes of T as functions of parameter changes without any uncertain-

ties resulting from the noise. The integration length of all experiments is 1000 years. Prior to analysis, the

linear trend was subtracted from all data and anomalies of T and h were obtained by subtracting the clima-

tological seasonal cycle.

3. Results

The relative importance of the growth rates, coupling, and stochastic forcing terms, as represented by the six

ReOsc model parameters, in determining ENSO amplitude is investigated in the CMIP5 model ensemble
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(Figure 1). We compare ENSO amplitude obtained from integrating the ReOsc model using the parameters

estimated separately for each CMIP5 model with that directly calculated from each model (Figure 1a). All

models are located near the diagonal with a correlation coefficient of 0.96, implying that the ReOsc model

is capable to reproduce ENSO amplitude with the respective parameters from each model. We then

repeated the integrations by only using from each model the stochastic forcing terms ξT and ξh (Figure 1b),

the respective growth rates a11 and a22 (Figure 1c) and a11 (Figure 1d), and the coupling terms a12 and a21
(Figure 1e) while keeping the other parameters fixed at the ensemble-mean value. The results suggest that

the largest influence on ENSO amplitude originates from the stochastic forcing terms of T and h with a

correlation of 0.58. The stochastic forcing term exhibits a large variability among the CMIP5 models, while it

is quite constant in time within each individual CMIP5 simulation. The model spread is roughly three times

larger than the temporal variability within each individual CMIP5 model simulation (Table S2). Second largest

influence on ENSO amplitude is due to the growth rates of T and h with a correlation of 0.45. When only

varying the growth rate of T (a11), the variation of ENSO amplitude is large but the correlation is very low

(0.18). The integrations of the ReOsc model by only using the coupling parameters from each CMIP5 model

yields very little variation in ENSO amplitude. The combined variation of the growth rates and the stochastic

Figure 1. Scatter plots of El Niño/Southern Oscillation (ENSO) amplitude (K) as simulated by the Coupled Model Intercomparison Project Phase 5 (CMIP5) models

(horizontal axes) and that obtained from integrating the recharge oscillator (ReOsc) model with parameters estimated for each CMIP5 model (vertical axis) where

(a) all six ReOsc parameters are used for the integration, (b) only ξT and ξh are used, (c) only a11 and a22, (d) only a11, (e) only a12 and a21, and (f) only a11, a22, ξT, and

ξh with the other parameters set fixed at the ensemble-mean values. Shown are also the CMIP5 ensemble-mean (red cross) and Simple Ocean Data Assimilation

(SODA) (black cross), the linear correlation coefficient over all CMIP5 models in the upper left corner of each figure panel (values marked in green indicate statistical

significance at the 95%) and the diagonal (black line).
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forcing terms (Figure 1f) yields a correlation of 0.91, which is very similar to the case in which all six parameters

were varied. Thus, besides the stochastic forcing, the growth rates of T and h are important factors in controlling

ENSO-amplitude diversity in CMIP5.

We next compare ENSO amplitude in the CMIP5 model ensemble and as derived from SODA (black cross)

with the parameters a11, a12, a21, a22, ξT, and ξh estimated separately for each model (Figure 2, blue

numbers). The uncertainty of the estimated parameters from each individual CMIP5 model (Table S3) is on

average smaller than the uncertainty estimated from SODA (black horizontal error bar), which in turn is much

smaller than the model spread in CMIP5. In CMIP5, the growth rate of T (a11) shows no significant correlation

with ENSO amplitude (Figure 2a), which is consistent with the results from Kim et al. (2014) applying the BJ

index. Both a11 and the BJ index are estimates of the growth rate of T.

Figure 2. Scatter plot of El Niño/Southern Oscillation (ENSO) amplitude versus the (a) growth rate of T (a11), (b) coupling of T to h (a12), (c) stochastic forcing of T (ξT),

(d) growth rate of h (a22), (e) coupling of h to T (a21), and (f) stochastic forcing of h (ξh) in the Coupled Model Intercomparison Project Phase 5 (CMIP5) models (blue

numbers), the CMIP5 ensemble mean (red cross), and Simple Ocean Data Assimilation (SODA) (black cross with 95% confidence interval). The linear correlation

coefficient over all CMIP5models is given in the upper left corner of each figure panel (statistically significant values at the 95% level are shown in green), and a linear

regression line is added (blue line) with a 95% uncertainty range (gray shading). Also shown is ENSO amplitude obtained from integrating the recharge oscillator

(ReOsc) model as a function of a single parameter (green graph) and as a function of covarying parameters based on EOF-1 (red graph). The red circles with an

upward arrow in (b) illustrate infinite growth of ENSO amplitude (see text for details). CMIP5 models 2 and 18 are highlighted in magenta for discussion (see text).
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The relationship between each single ReOsc parameter and ENSO

amplitude is modeled by a set of ReOsc model integrations. Each para-

meter is varied separately to cover the full range in CMIP5, while the

other parameters are set to the ensemble-mean values (see section 2

for details). The results (green lines in Figures 2a–2f) are quite different

from the linear relationships obtained from the CMIP5 models them-

selves (blue line in Figures 2a–2f), especially for the growth rates a11

(Figure 2a) and to a lesser extent a22 (Figure 2d).

The combined effect of all parameters ultimately determines the ENSO

amplitude in each CMIP5 model. There are significant cross relation-

ships between the variations of the ReOsc parameters within the

CMIP5 ensemble, as shown by their cross correlations (Table 1).

Largest anticorrelation is found between a11 and a22 (�0.57) as well as between a11 and ξT (�0.58) and lar-

gest positive correlation between ξT and ξh (0.52). This suggests the presence of competing ENSO processes,

which previously has been discussed in terms of ENSO feedbacks (e.g., Bayr et al., 2017; Bellenger et al., 2014;

Lloyd et al., 2009). These studies addressed the compensation between the too weak positive zonal wind

feedback and the too weak negative heat flux feedback observed in most climate models, which possibly

is reflected by the anticorrelation of a11 with a22 and ξT. The heat flux feedback is contributing to a11

(Frauen & Dommenget, 2010), and changes in h and hence in a22 are mainly governed by the geostrophic

response to wind stress (Burgers et al., 2005). Further, ξT is driven by atmospheric noise primarily associated

with westerly wind bursts. However, a detailed analysis of the origin of these covariations is beyond the scope

of this paper.

To investigate the impact of the competing processes on ENSO amplitude, we extract modes of covariance

from the ReOsc model parameters (Figure 3) by performing an empirical orthogonal function (EOF) analysis,

with the six ReOsc model parameters as one dimension and the individual CMIP5 models as the other dimen-

sion. The leading mode (EOF-1) explains 42% of the parameter variability (Figure 3a). Consistent with the

most significant cross correlations (Table 1), EOF-1 describes covariability between a11 and a22, between

a11 and ξT with opposite signs (Figure 3b), and between ξT and ξh with the same sign. Explained variances

for each parameter are depicted in Figure 3c. EOF-1 explains largest variance in a11 (59%), a22 (63%), and

ξT (77%), whereas it explains less variance in ξh (31%) and low variance in a12 (4%) and a21 (17%). EOF-2,

on the other hand, accounts for the largest explained variance in a12 (67%), a21 (26%), and ξh (50%) but only

less than 1% in the other parameters.

The sensitivity of ENSO amplitude to the covariability given by EOF-1 can be estimated by scaling the EOF-1

pattern (Figure 3b) over the range of a11. Using this new set of parameters, the ReOsc model is again

Figure 3. Results from the empirical orthogonal function (EOF) analysis of recharge oscillator parameters in the Coupled Model Intercomparison Project Phase 5.

Shown are (a) the explained variances of the EOFs, (b) EOF-1 and EOF-2 (normalized by the standard deviation of the parameters), and (c) the explained variances

of EOF-1 and EOF-2 for each parameter.

Table 1

ReOsc Parameter Cross Correlations in CMIP5

Cross correlations

a11 a12 a21 a22 ξT ξh

a11 �0.18 �0.07 �0.57 �0.58 �0.26

a12 0.20 0.17 0.17 �0.34

a21 0.23 0.44 �0.07

a22 0.49 0.38

ξT 0.52

Note. Correlation values marked in bold indicate statistical significance at the
95% level.
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integrated and ENSO-amplitude dependence calculated (red line in Figures 2a–2f). The covariation among

the parameters as given by EOF-1 leads to a dramatic change of ENSO-amplitude dependence on the

ReOsc model parameters (red lines in Figures 2a–2f). For example, ENSO amplitude decreases with larger

values of a11 (red line in Figure 2a), which is the opposite relationship as if only a11 is varied (green line).

Considering the covariability among the parameters reduces the root-mean-square errors (Table S4). This

demonstrates a significant influence of competing processes on ENSO amplitude, mainly between a11, a22,

and ξT.

We illustrate the impact of the competing processes for specific models using the growth rate of T (a11) as a

first guess of ENSO amplitude. For example, the Australian Community Climate and Earth System Simulator

1.3 (ACCESS1.3) model exhibits rather small ENSO amplitude compared to the other models and SODA (black

cross), although a11 is largest (magenta number 2 in Figure 2a).On the other hand, the growth rate of the

thermocline depth perturbation h (a22) is small in ACCESS1.3 (Figure 2d) as are the coupling terms

(Figures 2b and 2e). Further, there are rather small stochastic forcing terms in ACCESS1.3 (Figures 2c and

2f). Altogether, this may explain why ENSO amplitude is unexpectedly small in this model. Another

interesting example is the Geophysical Fluid Dynamics Laboratory Earth System Model 2M, which exhibits

the largest ENSO amplitude but not exceptionally large a11 (magenta number 18 in Figure 2a). In this

model, the growth rate of h (a22) is high as are the two stochastic forcing terms. It is this combination

that leads to large ENSO amplitude. Our results suggest that competing ENSO processes is a key to

explain ENSO-amplitude diversity in the CMIP5 model ensemble and that the growth rate of T (a11) alone

cannot explain the diversity.

With respect to the coupling parameter a12, the ReOsc model with the covariability of EOF-1 included

becomes unstable for certain parameter values and ENSO amplitude grows to infinity, which is illustrated in

Figure 2b (red circle with upward arrow). This is because EOF-1 explains only a small fraction of the total var-

iance in a12. Variations in this parameter are better modeled by EOF-2 (not shown), as suggested by Figure 3c.

We also repeated the analysis for those CMIP5 models that were selected by Kim et al. (2014), for a set of per-

turbed physics simulations with the Kiel Climate Model (Park et al., 2009; Wengel et al., 2017) and for the

CMIP3 models (Figures S1–S9 and Tables S5–S13). Qualitatively, the results from the KCM and CMIP3 ensem-

bles are very similar to the CMIP5 results presented here. The stochastic forcing, however, explains less var-

iance in ENSO-amplitude diversity in the former two ensembles relative to CMIP5, but the combined variation

of the stochastic forcing and the growth rate again explains the largest fraction of the spread as in CMIP5.

Further, the growth rate of T (a11) explains less variance in the parameter space in CMIP3 in comparison to

CMIP5 and yields slightly different behavior with respect to the competing processes.

4. Conclusions

We have investigated ENSO-amplitude diversity in models from the CMIP5 within the framework of the linear

ReOsc model. The model involves six parameters representing the growth rates of the eastern equatorial

Pacific sea surface temperature anomaly (T) and equatorial Pacific upper ocean heat content anomaly (h),

the mutual coupling and stochastic forcing of T and h. The ReOsc model has the form of a damped harmonic

oscillator with T and h playing the roles of momentum and position, respectively. Regardless of the ReOsc

models’ simplicity, it can well represent ENSO statistics in reanalysis data (SODA) and climate models.

A large fraction contributing to ENSO-amplitude diversity in the CMIP5model ensemble is due to variations in

stochastic forcing (34%). This was shown by comparing ENSO amplitudes calculated from the CMIP5 models

themselves with those obtained from ReOsc model integrations when only taking into account the effect of

stochastic forcing. This finding relates to the limited predictability of El Niño and La Niña events due to the

chaotic nature of high-frequency variability (Eckert & Latif, 1997). Relatively large influence on ENSO-

amplitude diversity also originates from the growth rates of T and h (20%), whereas their coupling strength

is of minor influence. The combined effect of stochastic forcing and the growth rates explains more than 80%

of the variance in ENSO amplitude.

Further analysis revealed competing effects in the ENSO dynamics of the CMIP5 models, primarily between

the growth rates of T and h, and the stochastic forcing of T. The competing processes present an important

source for ENSO-amplitude modulations in climate models. This was shown by integrating the ReOsc model

Geophysical Research Letters 10.1002/2017GL076849

WENGEL ET AL. 1994



for a range of parameters, with and without taking into account the effects of the competing processes, and

comparing the results with those directly obtained from the CMIP5 models. The effect of changes in the

growth rate of T on ENSO amplitude is largely offset by that of the growth rate of h and by the stochastic for-

cing of T. The cause of these dynamic cross relations is unclear at this point but presents an interesting aspect

of ENSO dynamics and requires further investigation. The possible relation to ENSO feedback compensation

has been noted (Bayr et al., 2017; Bellenger et al., 2014; Lloyd et al., 2009).

We find that the growth rate of T from the ReOsc model only explains a very little fraction of ENSO-amplitude

variance. Further, the growth rate does not significantly correlate with ENSO amplitude in CMIP5. This is con-

sistent with the finding by Kim et al. (2014), who applied the BJ index, which approximates the growth rate of

T in terms of positive and negative ENSO feedbacks. We show that the effects of stochastic forcing and com-

peting processes are important factors contributing to ENSO-amplitude diversity. Since the BJ index does not

account for these effects, it must not necessarily correlate with ENSO amplitude.
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Introduction  

In the following we list the CMIP5 models used in the main  analysis (Table A1). We 

further show the  temporal parameter variability within each CMIP5 model and 

compare it to the intermodel parameter spread across all CMIP5 models (Table A2). 

We further show the uncertainty of the ReOsc model parameter estimated for SODA 

and CMIP5 (Table A3). We also show the root-mean-square (RMS) errors between 

ENSO amplitude as simulated by CMIP5 and that obtained from the ReOsc model 

integrations with single parameter variation and with co-varying parameters from 

EOF-1 (Table A4). Furthermore, we show the results obtained for a Kiel Climate 

Model (KCM) perturbed physics ensemble (Figure A1-A3 and Table A5-A7), of the 

CMIP5 model selection from Kim et al. [2014] (Figure A4-A6 and Table A8-A10) 

and for the CMIP3 models (Figure A7-A9 and Table A11-A13). At last, the captions 

of the data sets describe the uploaded data files (Data sets A1 – A10).  
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CMIP5 model list 

Label number Model 

1 ACCESS1-0 

2 ACCESS1-3 

3 bcc-csm1-1 

4 bcc-csm1-1-m 

5 BNU-ESM 

6 CanESM2 

7 CCSM4 

8 CESM1-BGC 

9 CESM1-FASTCHEM 

10 CESM1-WACCM 

11 CMCC-CESM 

12 CMCC-CM 

13 CNRM-CM5 

14 CSIRO-Mk3-6-0 

15 FGOALS-g2 

16 GFDL-CM3 

17 GFDL-ESM2G 

18 GFDL-ESM2M 

19 GISS-E2-H-CC 

20 GISS-E2-H 

21 GISS-E2-R-CC 

22 GISS-E2-R 

23 HadCM3 

24 HadGEM2-CC 

25 HadGEM2-ES 

26 IPSL-CM5A-LR 

27 IPSL-CM5A-MR 

28 IPSL-CM5B-LR 

29 MIROC5 

30 MPI-ESM-LR 

31 MPI-ESM-MR 

32 MPI-ESM-P 

33 MRI-CGCM3 

34 NorESM1-ME 

35 NorESM1-M 

Table A1 List of CMIP5 models used in the analysis. 
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CMIP5 

model 

STD(a11) STD(a12) STD(a21) STD(a22) STD(  ) STD(  ) 

1 0.181 0.016 1.695 0.238 0.135 1.449 

2 0.286 0.013 1.415 0.225 0.105 1.109 

3 0.206 0.027 1.023 0.189 0.242 1.034 

4 0.079 0.051 0.957 0.176 0.235 1.688 

5 0.208 0.036 1.420 0.122 0.293 0.792 

6 0.197 0.032 1.484 0.189 0.177 0.680 

7 0.190 0.026 2.290 0.119 0.149 1.295 

8 0.080 0.035 1.054 0.109 0.105 1.145 

9 0.116 0.013 0.869 0.111 0.129 1.051 

10 0.172 0.029 1.493 0.080 0.275 1.982 

11 0.121 0.035 0.962 0.232 0.265 1.811 

12 0.128 0.042 2.603 0.185 0.183 0.588 

13 0.166 0.033 1.326 0.225 0.179 2.568 

14 0.132 0.037 1.189 0.232 0.231 0.893 

15 0.307 0.039 2.377 0.180 0.169 1.609 

16 0.113 0.017 2.467 0.266 0.181 2.050 

17 0.405 0.028 2.855 0.224 0.096 0.539 

18 0.145 0.024 1.728 0.090 0.198 2.450 

19 0.173 0.026 1.429 0.245 0.172 0.858 

20 0.121 0.014 2.126 0.225 0.170 0.346 

21 0.304 0.012 1.024 0.237 0.090 0.687 

22 0.152 0.044 0.623 0.170 0.101 0.845 

23 0.205 0.041 1.425 0.150 0.077 0.740 

24 0.432 0.020 2.168 0.124 0.218 1.629 

25 0.354 0.065 1.807 0.216 0.318 0.618 

26 0.100 0.021 2.370 0.126 0.218 0.524 

27 0.222 0.038 1.210 0.294 0.165 1.134 

28 0.171 0.027 1.503 0.175 0.145 1.186 

29 0.162 0.013 0.983 0.103 0.270 1.200 

30 0.159 0.038 2.437 0.142 0.325 1.488 

31 0.283 0.021 3.798 0.275 0.141 1.369 

32 0.222 0.017 0.980 0.372 0.162 2.348 

33 0.300 0.016 1.368 0.113 0.115 0.598 
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34 0.167 0.023 1.392 0.167 0.227 0.697 

35 0.202 0.020 2.777 0.197 0.178 1.518 

Ensemble-

mean 
0.199 0.028 1.675 0.186 0.184 1.215 

Intermodel 

STD 
0.457 0.079 2.646 0.302 0.634 3.786 

Fraction of 

mean and 

intermodel 

STD 

43,55 % 35,44 % 63,30 % 61,59 % 29,02 % 32,09 % 

Table A2 Temporal ReOsc parameter variability for each CMIP5 model calculated as the standard 

deviation over a set of parameters estimated from a moving window with 30 years length and 10 year 

interval (row 1 – 35), the ensemble-mean over all 35 rows (row 36), the intermodel parameter spread as 

the standard deviation over all CMIP5 models (entire time period used; row 37) and the fraction of the 

ensemble-mean temporal variability of the intermodel spread for each parameter (row 38). Units are yr
-

1
 for a11 and a22, K m

-1 
yr

-1
 for a12, m K

-1 
yr

-1
 for a21, K yr

-1
 for    and m yr

-1
 for   . 
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 a11  a12 a21 a22       

SODA 0.24 0.026 2.44 0.27 0.15 1.51 

1 0.22 0.024 1.77 0.19 0.10 0.80 

2 0.24 0.026 1.66 0.18 0.10 0.73 

3 0.24 0.044 1.28 0.23 0.13 0.70 

4 0.21 0.046 0.83 0.19 0.17 0.68 

5  0.15 0.026 0.91 0.15 0.16 0.92 

6 0.17 0.027 1.04 0.17 0.12 0.75 

7 0.14 0.021 1.14 0.17 0.11 0.85 

8 0.16 0.025 1.21 0.19 0.10 0.76 

9 0.15 0.024 1.20 0.19 0.10 0.81 

10 0.15 0.023 1.14 0.17 0.13 0.95 

11 0.18 0.027 1.11 0.17 0.16 1.04 

12 0.25 0.037 1.62 0.24 0.11 0.72 

13 0.24 0.033 1.58 0.22 0.16 1.02 

14 0.21 0.029 1.38 0.19 0.12 0.78 

15 0.18 0.022 1.35 0.16 0.10 0.75 

16 0.17 0.025 1.27 0.19 0.12 0.93 

17 0.24 0.036 1.79 0.27 0.12 0.87 

18 0.16 0.020 1.18 0.15 0.16 1.21 

19 0.17 0.020 1.42 0.17 0.09 0.78 

20 0.19 0.023 1.67 0.21 0.08 0.71 

21 0.21 0.029 1.41 0.19 0.08 0.55 

22 0.19 0.027 1.25 0.18 0.08 0.55 

23 0.22 0.033 1.12 0.17 0.14 0.71 

24 0.34 0.048 1.65 0.24 0.19 0.92 

25 0.35 0.056 1.76 0.28 0.19 0.93 

26 0.21 0.037 1.22 0.21 0.11 0.65 

27 0.18 0.032 1.08 0.19 0.10 0.63 

28 0.21 0.032 1.56 0.24 0.10 0.78 

29 0.15 0.019 1.04 0.13 0.14 0.96 

30 0.22 0.031 1.98 0.27 0.13 1.14 

31 0.30 0.036 2.35 0.29 0.14 1.14 

32 0.22 0.026 2.01 0.23 0.13 1.14 

33 0.27 0.039 1.76 0.26 0.12 0.76 

34 0.16 0.020 1.48 0.18 0.11 0.98 

35 0.16 0.018 1.63 0.18 0.10 1.01 

Ensemble- 

mean 

0.21 0.030 1.42 0.20 0.12 0.85 

Table A3 95% confidence interval of all six ReOsc model parameters estimated for SODA, all CMIP5 

models and of the CMIP5 ensemble-mean. Units are yr
-1

 for a11 and a22, K m
-1 

yr
-1

 for a12, m K
-1 

yr
-1

 for 

a21, K yr
-1

 for    and m yr
-1

 for   . 
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RMS error  a11 a12 a21 a22       

Single parameter variation 1.72 1.39 1.36 1.36 1.23 1.28 

All parameter variation (EOF-1) 1.65 - 1.51 1.31 1.23 1.27 

 

Table A4 Root-mean-square (RMS) error of ENSO amplitude as obtained from the ReOsc model 

integrations with (first row) single parameter variation and (lower row) with co-varying parameters 

from EOF-1 with respect to the ENSO amplitudes directly derived from the CMIP5 models. No RMS 

error is given for a12 for the co-varying parameters due to infinite ENSO amplitude within the 

ensembles parameter-range (see main text).  
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Figure A1 Same as Figure 1 but for the KCM perturbed physics ensemble. 
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Figure A2 Same as Figure 2 but for the KCM perturbed physics ensemble. Note the different axis 

scales.  
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Figure A3 Same as Figure 3 but for the KCM perturbed physics ensemble. Note the different axis 

scales.  
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KCM 

experi-

ment 

label 

Convective mass-flux 

above level of non-

buoyancy 

Entrainment rate for 

shallow convection  

[10
-4

]   

Convective cloud 

conversion rate from 

cloud water to rain [10
-

4
] 

Amount of atmospheric 

vertical levels 

1 0.15 3 1 19 

2  0.175 3 1 19 

3  0.20 3 1 19 

4  0.225 3 1 19 

5  0.25 3 1 19 

6  0.275 3 1 19 

7  0.30 3 1 19 

8  0.325 3 1 19 

9  0.35 3 1 19 

10  0.2 1 1 19 

11  0.2 2 1 19 

12  0.2 4 1 19 

13   0.2 5 1 19 

14  0.2 6 1 19 

15  0.2 7 1 19 

16  0.2 8 1 19 

17  0.2 9 1 19 

18  0.2 3 2.1 19 

19  0.2 3 2.5 19 

20  0.2 3 3 19 

21  0.2 3 4 19 

22  0.2 5 4 19 

23  0.30 1 4 19 

24  0.13 10 4 19 

25  0.3 1 1.5 19 

26  0.3 10 1.5 19 

27  0.2 1 4 19 

28  0.35 10 1 19 

29  0.3 10 1.5 31 

30   0.35 3 1 31 

31  0.2 3 1 31 

32  0.2 5 1 31 

33   0.2 1 4 31 

34  0.35 10 1 31 

35  0.3 10 1.5 62 

36  0.35 3 1 62 

37  0.2 3 1 62 

38  0.2 5 1 62 

39  0.2 1 4 62 

40  0.35 10 1 62 

Table A5 List of KCM experiments which differ in three atmospheric parameters (column 2-4) and 

vertical atmospheric resolution (column 5). See Wengel et al. [2017] for details. 
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 a11 a12 a21 a22       

 a11  0.41 0.75 -0.88 -0.14 -0.70 

 a12   0.64 -0.34 -0.03 -0.58 

 a21    -0.58 -0.21 -0.76 

 a22     0.32 0.75         -0.70 

 

 
Table A6 Same as Table 1 but for the KCM perturbed physics ensemble. 
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RMS error  a11 a12 a21 a22       

Single parameter variation 1.35 1.15 1.17 1.49 1.06 1.46 

All parameter variation (EOF-1) 1.15 1.12 1.16 1.29 - 1.31 

 
Table A7 Same as Table A4 but for the KCM perturbed physics ensemble.  
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Figure A4 Same as Figure 1 but for the CMIP5 model selection of Kim et al. [2014]. 
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Figure A5 Same as Figure 2 but for the CMIP5 model selection of Kim et al. [2014]. 
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Figure A6 Same as Figure 3 but for the CMIP5 model selection of Kim et al. [2014]. 
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Label number Model 

1 ACCESA1-0  

2 ACCESA1-3 

3 CCSM4 

4 CNRM-CM5 

5 CSIRO-Mk3-6-0 

6 FGOALS-g2 

7 GFDL-ESM2G 

8 GFDL-ESM2M 

9 GISS-E2-H 

10 GISS-E2-R 

11 HadCM3 

12 HadGEM2-CC 

13 HadGEM2-ES 

14 IPSL-CM5A-LR 

15 IPSL-CM5A-MR 

16 MIROC5 

17 MPI-ESM-LR 

18 MRI-CGCM3 

19 NorESM1-M 

 
Table A8 List of the CMIP5 models from the selection of Kim et al. [2014]. 
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 a11 a12 a21 a22       

 a11  -0.22 -0.11 -0.59 -0.73 -0.42 

 a12   0.08 0.12 -0.02 -0.17 

 a21    0.13 0.42 -0.02 

 a22     0.51 0.54         0.59 

 

 
Table A9 Same as Table 1 but for the CMIP5 model selection of Kim et al. [2014]. 
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RMS error  a11 a12 a21 a22       

Single parameter variation 1.40 1.01 0.96 0.90 0.92 0.83 

All parameter variation (EOF-1) 1.07 - - 0.85 0.89 0.80 

 
Table A10 Same as Table A4 but for the CMIP5 model selection of Kim et al. [2014]. 
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Figure A7 Same as Figure 1 but for the CMIP3 models. Note the different axis scales. 
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Figure A8 Same as Figure 2 but for the CMIP3 models. Note the very different axis scales. 
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Figure A9 Same as Figure 3 but for the CMIP3 models. 
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Label number Model 

1 bccr_bcm2_0 

2 cccma_cgcm3_1 

3 cccma_cgcm3_1_t63 

4 cnrm_cm3 

5 csiro_mk3_0 

6 csiro_mk3_5 

7 gfdl_cm2_0 

8 gfdl_cm2_1 

9 giss_aom 

10 giss_model_e_h 

11 giss_model_e_r 

12 iap_fgoalA1_0_g 

13 ingv_echam4 

14 ipsl_cm4 

15 miroc3_2_hires 

16 miroc3_2_medres 

17 mpi_echam5 

18 mri_cgcm2_3_2a 

19 ncar_ccsm3_0 

20 ncar_pcm1 

 

Table A11 List of the CMIP3 models. 
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 a11 a12 a21 a22       

 a11  0.01 -0.09 -0.60 -0.10 0.25 

 a12    -0.03 0.72 0.16 

 a21    -0.06 0.31 -0.08 

 a22     0.33 0.33         0.60 

 
Table A12 Same as Table 1 but for the CMIP3 models. 
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RMS error  a11 a12 a21 a22       

Single parameter variation 1.48 1.96 2.04 2.08 1.83 1.83 

All parameter variation (EOF-1) - 1.96 - - 1.78 1.77 

 
Table A13 Same as Table A4 but for the CMIP3 model. 
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5 Summary and Outlook 

5.1 Summary 

This thesis investigated the simulation of equatorial Pacific variability in coupled general 

circulation models with a focus on the eastern equatorial Pacific (EEP) sea surface temperature 

(SST) annual cycle (AC) and on the interannual El Niño/Southern Oscillation (ENSO). 

In chapter 2, the simulation of the EEP SST AC was investigated in an ensemble of Kiel Climate 

Model (KCM) integrations at different atmospheric resolutions and the results were compared to a 

subset of models from the Coupled Model Intercomparison Project (CMIP) phase 5. The KCM 

configuration at coarse atmospheric resolution features similar biases as those found in the CMIP5 

models. These biases are reflected in a wrong timing of the equatorial cold tongues' onset and 

termination of up to 3 months. Further, the magnitude of the seasonal warming in boreal spring is 

underestimated compared to observations. The mechanisms in driving the SST biases in the KCM 

are largely consistent with those found in CMIP5. An incorrect simulation of equatorial zonal winds 

in boreal spring and fall was identified as a major cause of the SST biases. The origin of the zonal 

wind biases is linked to a wrong representation of precipitation patterns. Another driving 

mechanism of the SST biases, especially in boreal summer, originates in a wrong representation of 

cloud cover which induces shortwave radiation biases at the surface. A large part of the zonal wind 

and cloud cover biases are inherent to the atmospheric model components as shown by means of 

uncoupled atmosphere model integrations forced by observed SSTs. Furthermore, it was shown that 

enhancing atmospheric resolution in the KCM leads to a significant improvement of the simulation 

of the EEP SST AC by alleviating zonal wind and cloud cover biases. This is linked to a reduction 

of precipitation biases as a result of improved meridional and vertical momentum transport. Further 

contribution to an improved simulation of surface winds comes from an enhanced representation of 

orography at higher atmospheric resolution. 

In chapter 3, the simulation of seasonal ENSO phase locking was investigated in a perturbed 

atmospheric physics ensemble of KCM integrations and compared to a set of CMIP5 models. 

Despite a large spread of the individual KCM integrations, the KCM ensemble-mean features a 

realistic timing of the seasonal ENSO phase locking but underestimates the strength of the seasonal 

variation by 50% compared to observations, which is linked to an excessive simulation of the 

equatorial cold tongue. A similar relationship is found for the CMIP5 models. The effect of the 

equatorial cold bias is to reduce the magnitude of coupled feedbacks that produce ENSO variability, 

in particular the Ekman feedback, thermocline feedback and thermodynamic damping as shown by 
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employing a Bjerknes Stability (BJ) index analysis. To a limited extent, the equatorial cold SST 

bias and the seasonal phase locking in the KCM can be controlled by perturbing atmospheric 

physics via local changes in boundary layer cloud cover. 

In chapter 4, the model diversity of ENSO amplitudes in CMIP5 was investigated in the framework 

of the linear recharge oscillator model (ReOsc model). The ENSO amplitudes in the CMIP5 models 

and as determined from reanalysis data are well represented by the ReOsc model. It was shown that 

a large fraction of ENSO-amplitude diversity in CMIP5 originates from stochastic forcing (34%) 

and second largest contribution from the growth rates of the ReOsc model. The stochastic forcing 

and the growth rates together explain more than 80% of the variance. Another important source of 

ENSO-amplitude diversity was identified to originate from competing effects in the dynamics. The 

effect of changes in the growth rate of SST anomalies (SSTa) on ENSO amplitude is largely offset 

by that of the growth rate of equatorial heat content anomalies and by the stochastic forcing of 

SSTa. The results provide an explanation why the growth rate of SSTa must not necessarily 

correlate with ENSO amplitude in a multi-model ensemble.  

This thesis stresses the importance of the atmospheric model component in driving equatorial 

Pacific coupled model biases. Results from the KCM imply that coupled model biases can be 

significantly alleviated by only applying changes in the atmospheric component while keeping the 

ocean model configuration fixed. In particular, it was shown that simulation benefits can be 

achieved by enhancing atmospheric resolution, horizontally and vertically, and by varying selected 

coefficients in atmospheric cloud parameterizations. This is in agreement with other studies 

pointing out the importance of atmospheric processes in determining equatorial Pacific variability 

(Frauen and Dommenget 2010; Bayr et al. 2017; Dommenget and Yu. 2017; Ferrett et al. 2017) and 

in acting as a major source for ENSO simulation diversity (Schneider 2002; Guilyardi et al. 2004; 

Kim et al. 2008; Sun et al. 2009; Lloyd et al. 2011). 

The results from chapter 3 show that a climate model can be highly sensitive to choices of 

coefficients in selected atmospheric parameterizations. This has large potential to introduce 

uncertainties in climate model simulations of any kind. These results emphasize the importance of 

an extensive testing of climate models to sensitivities in this regard prior to an application. 

A cautionary note must be made in terms of the limited availability of observed ocean data. In this 

thesis, the analysis was largely restricted to reanalysis data, which potentially exhibits similar 

characteristics as the climate models. However, the data reliability for the equatorial Pacific is 

continuously improving due to measurement efforts such as the TAO/TRITON, ship campaigns and 

satellite observations. 
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5.2 Outlook 

The results in chapter 2 of this thesis have shown that enhancing atmospheric resolution reduces 

eastern equatorial Pacific model biases in the KCM. Further investigation is required to assess 

whether similar improvements can be achieved for the simulation of ENSO variability. 

Furthermore, in chapter 3 it was shown that improvements in the simulation of seasonal ENSO 

phase locking and the mean state can be achieved by changes in coefficients in atmospheric 

parameterizations in the KCM. Additional work is required to investigate whether this approach can 

have a beneficial effect on the simulation of the EEP SST AC. 

In chapter 3 it was mentioned that the sensitive effects to perturbed atmospheric physics in the 

KCM can be highly model-dependent. Therefore, additional investigation to further test this 

sensitivity in other climate models would be of benefit. 

Yet limited is the understanding of the origin of the equatorial cold SST bias, which commonly is 

present across many climate models and is known to degrade the skill in simulating ENSO (Latif et 

al. 2001; AchutaRao and Sperber 2006; Guilyardi 2006; Wittenberg et al. 2006; Misra et al. 2008; 

Ham and Kug 2012). It is argued that the equatorial cold SST bias originates from the coupling of 

ocean atmosphere (Li and Xie 2014), however further investigation is needed to better assess the 

role of the atmospheric or the oceanic model component. The results presented in chapter 3 of this 

thesis highlight the role of atmospheric heat fluxes in influencing equatorial SST. 

The work provided in this thesis motivates to perform additional research on the role of the oceanic 

model components’ configuration in influencing equatorial Pacific variability. The sensitivity to 

changes in oceanic resolution and in coefficients in oceanic parameterizations is of interest. Sasaki 

et al. (2013) investigate the relationship of parameterized ocean mixing induced by small vertical 

scales on the mean state in an ocean general circulation model, finding that it can significantly 

affect the simulation of equatorial SST. This motivates to conduct a similar approach with the KCM 

and the Flexible Ocean and Climate Infrastructure (under development at GEOMAR). 

Not entirely understood are the processes governing the stochastic forcing that was highlighted in 

chapter 4. It is suggested that the stochastic forcing is largely determined by atmospheric noise. The 

importance of stochastic forcing for ENSO simulations in climate models, as shown in chapter 4, 

motivates for additional investigation. 

Also unknown is the origin of the cross-relations of the ReOsc model parameters that were found to 

be present among climate models as shown in chapter 4. These cross-relations present an important 

source for ENSO-amplitude diversity in climate models and are potentially related to the identified 

compensations between ENSO atmospheric feedbacks (Lloyd et al. 2009; Bellenger et al. 2014; 
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Bayr et al. 2017). This potential connection requires further investigation to provide additional 

insight on the origin of the cross-relations and the associated competing processes. 

The results on the controls of ENSO-amplitude diversity in climate models that were presented in 

chapter 4 motivate for additional investigation on the diversity of other ENSO characteristics. For 

example, ENSO skewness also exhibits large spread among climate models. The potential 

importance of stochastic forcing in this regard can be assessed.  

Another interesting aspect for future research is to better understand the impact of equatorial Pacific 

mean-state and variability biases in climate models on a realistic simulation of equatorial Pacific 

teleconnections and on climate predictability. An example is a realistic simulation of the Indian 

summer monsoon under the exposure of an incorrect simulation of seasonal ENSO phase locking. 

The set of KCM perturbed physics experiments, introduced in chapter 3, provides a basis for 

investigation due to its large variety in the simulation of equatorial Pacific mean-state and 

variability.
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