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Neutral helicity  

From page 94 of these lecture notes we know that the normal n  to the neutral 
tangent plane is given by  

   

g−1 N 2 n = − ρ−1∇ρ + κ∇P = − ρ−1 ∇ρ − ∇P / c2( )
= αΘ∇Θ − βΘ∇SA.

 (3.11.1) 

It is natural to think that all these little tangent planes would link up and form a 
well-defined surface, but this is not actually the case in the ocean.  In order to 
understand why the ocean chooses to be so ornery [bad-tempered] we need to 
understand what property the normal n  to a surface must fulfill in order that 
the surface exists.  We will find that this property is that the scalar product of the 
normal of the surface n  and the curl of n  must be zero everywhere on the 
surface; that is  n ⋅∇ × n  must be zero everywhere on the surface.   

 In general, for a surface to exist in 
  

x, y,z( )  space there must be a function 

  
φ x, y,z( )  that is constant on the surface and whose gradient ∇φ  is in the 
direction of the normal to the surface, n .  That is, there must be an integrating 
factor 

  
b x, y,z( )  such that   ∇φ = bn .  Assuming now that the surface does exist, 

consider a line integral of   bn  along a closed curved path in the surface.  Since 
the line element of the integration path is everywhere normal to n , the closed 
line integral is zero, and by Stokes’s theorem, the area integral of   

∇× bn( )  must 
be zero over the area enclosed by the closed curved path.  Since the area element 
of integration   dA  is in the direction n , it is clear that   

∇× bn( ) ⋅dA  is 
proportional to   

∇× bn( ) ⋅n .  The only way that this area integral can be 
guaranteed to be zero for all such closed paths is if the integrand is zero 
everywhere on the surface, that is, if 

   
∇× bn( ) ⋅n = ∇b× n( ) ⋅n + b ∇× n( ) ⋅n = 0 , 

that is, if   n ⋅∇ × n = 0  at all locations on the surface.   

 For the case in hand, the normal to the neutral tangent plane is in the 
direction   α

Θ∇Θ − βΘ∇SA  and we define the neutral helicity nH  as the scalar 

product of ASα βΘ Θ∇Θ − ∇  with its curl,  

( ) ( )n
A AH S Sα β α βΘ Θ Θ Θ≡ ∇Θ − ∇ ⋅∇× ∇Θ − ∇  . (3.13.1) 

Neutral tangent planes (which do exist) do not link up in space to form a well-
defined neutral surface unless the neutral helicity nH  is everywhere zero on the 
surface.   
 Recognizing that both the thermal expansion coefficient and the saline 
contraction coefficient are functions of 

  
SA,Θ, p( ) , neutral helicity nH  may be 

expressed as the following four expressions, all of which are proportional to the 
thermobaric coefficient bT

Θ  of the equation of state,  
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 (3.13.2) 

where zP  is simply the vertical gradient of pressure ( 1Pa m− ) and n∇ Θ  and 

p∇ Θ  are the two-dimensional gradients of Θ  in the neural tangent plane and in 

the horizontal plane (actually the isobaric surface) respectively.  The gradients 

aP∇  and a∇ Θ are taken in an approximately neutral surface.  Neutral helicity 

has units of 3m .−   Recall that the thermobaric coefficient is given by  

  
Tb

Θ = βΘ αΘ βΘ( )
P
= α P

Θ − αΘ βΘ( )βP
Θ . (3.8.2) 
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The geometrical interpretation of neutral helicity  

How can we understand neutral helicity   H n  geometrically?  Recall the 
definition of a neutral tangent plane, Eqn. (3.11.2), namely  

   − ρ
−1∇nρ + κ ∇nP = αΘ∇nΘ − βΘ∇nSA = 0 . (3.11.2) 

This implies that the two lines  ∇P ×∇ρ  and   ∇Θ×∇SA  both lie in the neutral 
tangent plane.  This is because along the line  ∇P ×∇ρ  both pressure and in situ 
density are constant, and along this line the neutral property is satisfied.  
Similarly, along the line   ∇Θ×∇SA  both Conservative Temperature and Absolute 
Salinity are constant, which certainly describes a line in the neutral tangent 
plane.  Hence the picture emerges below of the geometry in 

  
x, y,z( )  space of six 

planes, intersecting in one of the two lines  ∇P ×∇ρ  and   ∇Θ×∇SA .  The neutral 
tangent plane is the only plane that includes both of these desirable lines.   

 Why are these lines “desirable”?  Well  ∇P ×∇ρ  is desirable because it is 
the direction of the “thermal wind”, and   ∇Θ×∇SA  is desirable because adiabatic 
and isohaline motion occurs along this line; a necessary attribute of a well-bred 
“mixing” plane such as the neutral tangent plane.   

 
 

Prolonged gazing at the above figure while examining the definition of 
neutral helicity,   H n , Eqn. (3.13.2), shows that neutral helicity vanishes when the 
two vectors  ∇P ×∇ρ  and   ∇Θ×∇SA  coincide, and that this occurs when the two-

dimensional gradients  ∇nΘ  are  ∇nP  parallel.   

Neutral helicity is proportional to the component of the vertical shear of the 
geostrophic velocity ( ,zv  the “thermal wind”) in the direction of the 
temperature gradient along the neutral tangent plane ,n∇ Θ  since, from Eqn. 
(3.12.3) and the third line of (3.13.2) we find that  

   H
n = ρTb

Θ fv z ⋅∇nΘ .  (3.13.3) 

Interestingly, for given magnitudes of the epineutral gradients of pressure 
and Conservative Temperature, neutral helicity is maximized when these 
gradients are perpendicular since neutral helicity is proportional to 

( )b n nT PΘ ∇ ×∇ Θ ⋅k  (see Eqn. (3.13.2)), while the dianeutral advection of 

thermobaricity, Tb 2
b n ne gN KT P− Θ= − ∇ Θ⋅∇ , is maximized when n∇ Θ and nP∇  

are parallel (see Eqn. (A.22.4)).   

Because of the non-zero neutral helicity, nH , in the ocean, lateral motion 
following neutral tangent planes has the character of helical motion.  That is, if 
we ignore the effects of diapycnal mixing processes (as well as ignoring 
cabbeling and thermobaricity), the mean flow around ocean gyres still passes 
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through any well-defined “density” surface because of the helical nature of 
neutral trajectories, caused in turn by the non-zero neutral helicity.  We will 
return to this mean vertical motion caused by the ill-defined nature of “neutral 
surfaces” in a few pages.   

 
 

 
 
 

The skinny nature of the ocean; why is the ocean 95% empty?  

 
The above diagram contains all of the ocean hydrography below 200 dbar from 
both the North and South Atlantic ocean.  The colour represents the latitude, 
with blue in the south, red in the north and green in the equatorial region.  It is 
seen that the data fill the area on this   SA −Θ  diagram, leaving no holes.   

 When considering the plotting of this same data on a three-dimensional 

  SA −Θ− p  “plot”, one could be forgiven for thinking that the data would fill in a 
solid shape in these three dimensions.  But this is not observed.  Rather than the 

  SA −Θ− p  data occupying the volume inside, say, a packet of Toblerone 
chocolate, instead, the data resides on the cardboard of the Toblerone packet and 
the chocolate is missing.   
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The skinny nature of the ocean; implication for neutral helicity  

If all the 
  

SA,Θ, p( )  data from the whole global ocean were to lie exactly on a 
single surface in 

  
SA,Θ, p( )  space, we will prove that this requires 

  ∇SA ×∇Θ⋅∇P = 0  everywhere in physical 
  

x, y, z( )  space.  That is, we will prove 
that the skinniness of the ocean hydrography in 

  
SA,Θ, p( )  space is a direct 

indication of the smallness of neutral helicity   H n .   

 Since, under our assumption, all the 
  

SA,Θ, p( )  data from the whole global 
ocean lies on the single surface in 

  
SA,Θ, p( )  space we have  

  
f SA,Θ, p( ) = 0  (Twiggy_01) 

for every 
  

SA,Θ, p( )  observation drawn for the whole global ocean in physical 

  
x, y, z( )  space.  Taking the spatial gradient of this equation in physical 

  
x, y, z( )  

space we have   ∇f = 0  since  f  is zero at every point in physical 
  

x, y, z( )  space.  
Expanding  ∇f  in terms of the spatial gradients   ∇SA , ∇Θ , and  ∇P , and taking 
the scalar product with   ∇SA ×∇Θ  we find that  

  

∂ f
∂P SA ,Θ

∇P ⋅∇SA ×∇Θ = 0 . (Twiggy_02) 

In the general case of   fP ≠ 0 , the result   ∇P ⋅∇SA ×∇Θ = 0  is proven.  In the 
special case   fP = 0 ,  f  is independent of  P  so that we have a simpler equation 
for the surface  f , being  

  
f SA,Θ( ) = 0 , (Twiggy_03) 

which is the equation for a single line on the 
  

SA,Θ( )  diagram; a single “water-
mass” for the whole world ocean.  In this case, changes in   SA  are locally 
proportional to those of Θ  so that    ∇SA ×∇Θ = 0  which also guarantees our 
required relation   ∇P ⋅∇SA ×∇Θ = 0 .  

 Hence we have proven that the skinniness of the ocean hydrography in 

  
SA,Θ, p( )  space is a direct indication of the smallness of neutral helicity 

  H
n = βΘ Tb

Θ ∇P ⋅∇SA ×∇Θ .   
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The skinny nature of the ocean; demonstrated from data at constant 
pressure  

The diagram below is a cut at constant pressure through the above three-
dimensional   SA −Θ− p  data.  The cut is at a pressure of 500  dbar .  This diagram 
illustrates the smallness of neutral helicity from the perspective of the equation 

   
H n = Pz β

Θ Tb
Θ ∇ pSA ×∇ pΘ( ) ⋅k .   
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The skinny nature of the ocean; demonstrated from data on Neutral 
Density surfaces  

Here the “skinny” nature of the ocean will be demonstrated by looking at data on 
approximately neutral surfaces; Neutral Density  γ

n  surfaces.  The following lines 
of the equation for neutral helicity  

   

H n = g−1 N 2Tb
Θ ∇nP ×∇nΘ( ) ⋅k

≈ g−1 N 2Tb
Θ ∇aP ×∇aΘ( ) ⋅k

 (3.13.2) 

show that neutral helicity   H n  will be small if the contours of  P  and of Θ  on a  γ
n  

surface are lined up; that is if  ∇aP  and  ∇aΘ  are parallel.   
 The ocean seems desperate to minimize   H n ; either  ∇a P  and  ∇aΘ  are 
parallel or where they are not parallel, one of  ∇aP  or  ∇aΘ  is tiny.   
 

 

 
Notice the rather large range of potential density of  0.28kgm−3  on this Neutral 
Density surface.  Also, the value of potential density at the northern hemisphere 
outcrop is larger than that at the southern hemisphere outcrop by about  0.1 kgm−3 .   
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The above plots confirm that the ocean is rather “skinny” in 

  
SA,Θ, p( )  space and 

hence that neutral helicity   H n  is small in some sense (small compared to what?).   

 Note that while for some purposes a zero-neutral-helicity ocean,  

  
f SA,Θ, p( ) = 0  (Twiggy_01) 

might be a reasonable approximation, this 
  
f SA,Θ, p( ) = 0  surface is multi-

valued along any particular axis.  We saw this on the rotating view of the data in 
three 

  
SA,Θ, p( )  dimensions.  This multi-valued nature is also apparent on the 

last figure which is of only one approximately neutral surface.  A slightly denser 
surface would have the same 

  
SA,Θ( )  values in the Southern Atlantic as the 

above plot has in the North Atlantic.   

 Note also in the above figures that where a particular Neutral Density 
surface comes to the surface (outcrops) in the North Atlantic, it has a greater 
potential density than in the Southern Ocean by between  0.07 kg m−3  and 

 0.14 kg m−3 .  This is a general feature of the ocean; approximately neutral 
surfaces have different potential densities even at the reference pressure of that 
potential density.  The northern hemisphere and southern hemisphere parts of a 
single ocean are separate branches in these multi-valued spaces.    
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Consequences of non-zero neutral helicity 

This diagram below is a simple example of the ill-defined nature of a “neutral 
surface” and the implication for mean dianeutral motion.  The lateral mixing 
which causes the changes of   SA  and Θ  along this path occur at very different 
pressures.  It is the rotation of the isopycnals on the   SA −Θ   diagram (because of 
the different pressures) that causes the ill-defined nature of “neutral surfaces”, 
that is, the helical nature of neutral trajectories.  In this example  ∇a P  and  ∇aΘ   
are at right angles, that is,   ∇aP ⋅∇aΘ = 0 .   

 

 

 

The cork-screwing motion as fluid flows along a helical neutral trajectory causes 
vertical dia-surface flow through any well-defined density surface.  This mean 
diapycnal flow occurs in the absence of any vertical mixing process.  That is, this 
mean vertical advection occurs in the absence of the dissipation of turbulent 
kinetic energy, and is additional to the other dianeutral advection processes, 
thermobaricity and cabbeling.   
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The figure above shows the vertical velocity through an approximately neutral 
surface caused by neutral helicity.  That is, this is the actual vertical flow caused 
by the helical nature of neutral trajectories.  The magnitude in the Southern 
Ocean is at leading order of  10−7 m s−1 , this being the canonical diapycnal 
velocity, dating back to Munk (1966).     
 
The figure below is the total dianeutral velocity for all non-linear equation-of-
state processes, namely thermobaricity, cabbeling and the helical nature of 
neutral trajectories.   
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When globally integrated over complete density surfaces, the total transport due 
to these non-linear processes can be calculated.  In green is the mean dianeutral 
transport from the ill-defined nature of “neutral surfaces”, blue is the dianeutral 
transport due to cabbeling, red due to thermobaricity, and black is the total 
global dianeutral transport due to the sum of these three non-linear processes.   
 
We conclude from this that while the mean dianeutral transport from the ill-
defined nature of “neutral surfaces” is of leading order locally, it spatially 
averages to a very small transport over a complete density surface.  By contrast, 
cabbeling and thermobaricity are predominantly downwards advection 
everywhere, so there is little such cancellation on area integration with these 
processes.   
 
 
 


