Collaborative Software Exploration
with the HTC Vive in ExplorViz

Bachelor’s Thesis

Malte Hansen

September 29, 2018

K1eL UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE
SOFTWARE ENGINEERING GROUP

Advised by: Prof. Dr. Wilhelm Hasselbring
M.Sc. Christian Zirkelbach

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the
declared sources / resources and that I have explicitly marked all material which has been
quoted either literally or by content from the used sources.

Kiel, 29. September 2018

1ii

Abstract

The complexity of software is constantly increasing and therefore understanding software
can be challenging. Especially for projects in which many developers are involved, it is
of great importance to use technologies for the acquisition and transfer of knowledge of
software. Visualizations of software landscapes are one possible approach for this task.
However, with the help of visualization alone, exploring unknown software is still a
potentially challenging and time-consuming task.

In this thesis we present a new approach using virtual reality for exploring software
landscapes collaboratively. We are building on top of the research tool ExplorViz, which
provides technologies to visualize software landscapes. We use technologies like the HTC
Vive to allow the collaborative exploration of software in virtual reality. ExplorViz is a Web-
based application and thus our approach is mostly platform independent. With the use of a
microservice architecture and WebSocket connections to exchange data we strive to achieve
both modular expandability and good performance for the real-time user environment.

As a proof of concept, we conducted a usability evaluation with 22 probands. The results
of this evaluation indicate for a good usability. Additionally, the user feedback gives
indications for further improvements and paves the way for a future study to evaluate our
approach in comparison to other ways of exploring software collaboratively.

Introduction

1.1 Motivation
12 Goals
1.3 Document Structure

Foundations and Technologies

2.1 Virtual Reality

22 HICVive.

23 ExplorViz................

2.4 ExplorViz VR extension

Concept

3.1 Architecture

3.2 Backend extension

3.3 Frontend extension

Implementation

41 Backend Implementation.
411 Connection to Frontend Extension
412 Synchronization.

4.2 Frontend Implementation
421 Connection to Backend Extension
422 MainLoop...........
423 Landscape
424 Applications

425 User Representation

426 Menu..............
427 Textmessages
428 Teleportation & Height Adjustment
429 Spectating

4.2.10 Further Adjustments

Evaluation

51 Goals
5.2 Questionnaire
5.3 Experimental Setup

Contents

11
11
12
13

17
17
17
18
18
18
19
20
22
23
25
26
26
27
28

29
29
30
33

vii

Contents

5.4 Execution of the Experiment
55 Results e
5.6 Discussion e e e e
57 Threatsto Validity o o
58 Summary

6 Related Work

7 Conclusions and Future Work
7.1 ConcluSions e e e
7.2 Future Work e

Bibliography

Appendix A

Appendix B

Appendix C

viii

47

49

57

61

Chapter 1

Introduction

The complexity of software is constantly increasing and therefore understanding software
can be challenging. Especially for projects in which many developers are involved, it is
of great importance to use technologies for the acquisition and transfer of knowledge
about software. Visualizations of software landscapes are one possible approach to this
task. ExplorViz! is a software for exploring and understanding software landscapes which
has been under development since 2012 [Fittkau et al. 2013]. ExplorViz can be helpful
to familiarize oneself with a software and is suitable to understand the architecture and
data streams. Already in its early development, there has been an effort to incorporate
advanced technologies into ExplorViz. The goal is to provide new and diverse opportunities
to experience and explore software.

A promising technology for this is virtual reality (VR). Firstly, VR was introduced to
ExplorViz using the Oculus Rift DK1 [Fittkau et al. 2015b]. Then, among other things, the
HTC Vive?, a head-mounted display (HMD) suitable for the mass market, was launched
2016. Soon after its release, the HTC Vive was supported by ExplorViz [Hasemeyer 2017].
Building on the existing technologies and hardware, our goal is to extend the existing VR
experience of ExplorViz with the ability to to use it with multiple users at the same time.

This thesis is the result of a Bachelor project. Daniel Konig is participating in this project,
too. Konig for his part had the same goal to expand ExplorViz with collaborative VR, but
was working with the Oculus Rift® [Konig 2018].

1.1 Motivation

Even with the help of visualization, exploring unknown software is a potentially challenging
and time-consuming task. In order to train employees or in the hope that groups of two will
achieve better results in the field of software development, pair programming is often used
today. We want to take up the idea of pair programming and use it for exploring software
landscapes in VR with ExplorViz. We further develop the already existing VR extension
of ExplorViz to add the possibility to explore software landscapes with several users at
the same time. Our goal is to provide the users with many natural and intuitive ways to

1https://www.explorviz.net/
thtps://www.vive.com/de/
3https://www.oculus.com/rift/

https://www.explorviz.net/
https://www.vive.com/de/
https://www.oculus.com/rift/

1. Introduction

Figure 1.1. A model of a software (Neo4j) exported from ExplorViz and created in a 3D printer

navigate and explore software with ExplorViz. For this we use the HTC Vive including
controllers as cutting-edge technology.

An analogous concept has already been tested by printing software models from
ExplorViz [Fittkau et al. 2015a], represented in Figure 1.1. Here, users can physically
interact with the model and experience a natural way of viewing software models. Such a
physical model is particularly suitable for the use in small groups. Our implementation in
the VR extension of ExplorViz offers the same advantages, but also adds the possibility to
manipulate the model, e.g. to open or mark closed software packages in an application,
and to view contents in detail.

In addition to exploring software for new employees, this technology also provides the
ability to experienced software developers to visualize data streams and problems in the
software. Such problems could be dead code or a bad ratio between cohesion and coupling.

1.2 Goals

Timm Héasemeyer has done significant work on the current state of ExplorViz’s VR mode,
particularly with regard to the support of HTC Vive [Hasemeyer 2017]. This thesis follows
up on Hasemeyer’s thesis and deals with the extension of ExplorViz. Our main goal is to
allow several users to use VR to explore software landscapes collaboratively in ExplorViz.

1.3. Document Structure

G1: Concept

Before we start with the implementation it is important to know how the VR extension
should technically be realized for multiple users. On the one hand, approaches for the
architecture need to be developed, and on the other hand, a concept about whether and
how users can interact with the software and other users. Additionally we need to develop
a concept for a good usability and come to a decision concerning general design aspects.

G2: Implementation

As soon as we know how the software should be structured conceptually, we have to
find out the necessary changes and additions which need to be done in ExplorViz. The
compulsory part of the implementation is that several users can use ExplorViz in VR mode
at the same time. This means especially that there is a synchronized model, which can be
manipulated by any user.

For this goal we are building on top of an existing frontend extension and develop a
new backend extension.

G3: Evaluation

If the features developed under G1 have been sufficiently implemented, it is important to
evaluate them in order to assess the practical benefits of this approach. A special focus in
the evaluation will be placed on user-friendliness. In addition we are trying to figure out
whether collaborative VR is suitable for working with ExplorViz.

1.3 Document Structure

In Chapter 2 follows an introduction to the relevant foundations and technologies for this
work. In Chapter 3 we present our concept which is then used as a basis for Chapter 4 in
which we explain details of the implementation. In Chapter 5 we explain the results of
a conducted usability experiment. After we take a look at related work in Chapter 6 we
finish this thesis with a conclusion and possible future work in Chapter 7.

Chapter 2

Foundations and Technologies

In the following, the fundamental technologies of this work are introduced.

2.1 Virtual Reality

The use of VR is fundamental to this work. VR tries to let a computer generated world feel
as real as possible for a user [Billinghurst et al. 2001]. Already in 1968 a head-mounted
display (HMD), known as ‘Sword of Damocles’ , was developed [Sutherland 1968]. Based
on this, there have been numerous technical developments in the realm of virtual reality.

The goal of virtual reality is to be as immersive as possible [Robertson et al. 1997].
Virtual reality tries to decouple the user from the real world as much as possible. On the
other hand, it is the goal of augmented reality to complement the real world with virtual
components, which in general are a lower immersion offers.

2.2 HTC Vive

We use the HTC Vive VR system shown in Figure 2.1 as hardware for generating virtual
reality. It consists of a headset called HTC Vive, two controllers and two base stations. The
base stations, which are ideally located in opposite corners of the room, emit laser beams
that are invisible to the human eye. The controllers use those laser beams to determine
their own position. The Vive itself has two screens behind lenses, each with a resolution of
1080 x 1200 pixels. One screen provides the images for one eye and by slight differentiation
in the images of the screens the impression of spatial vision [Ohzawa 1998] arises. The
base stations are emitting infrared light. This is used to determine the position of the
headset which has many built-in tracking sensors. The Vive also has an integrated camera,
microphone and audio connector.

The two controllers of the Vive VR system are identical so that both controllers can
be held with either hand. The position of the controllers in the room is also determined
with the aid of base stations and numerous tracking sensors. For additional interaction
possibilities, the controller has classic keys, a trigger and a pressable trackpad.

1https://www.electronicproducts.com/uploadedImages/Multimedia/Video/HTC-Vive.JPG

https://www.electronicproducts.com/uploadedImages/Multimedia/Video/HTC-Vive.JPG

2. Foundations and Technologies

Figure 2.1. Vive VR system with the Vive(center), the controllers (bottom left/right) and the base
stations (top left/right)!

2.3 ExplorViz

ExplorViz is a software for the visualization and monitoring of software landscapes [Fittkau
et al. 2017] that has been under development since 2012. In 2017 a structural change from
a monolithic architecture to an architecture organized in microservices [Zirkelbach et al.
2018] was realized in ExplorViz. The most important components here are the backend,
which is mainly written in Java? and is classically installed on a server and the frontend,
which uses the Ember.js® web development framework. The Javascript* code of the frontend
is executed by the user’s browser. Through this architecture the development of extensions
(e.g. for VR) is very flexible and through the use of Javascript it is possible that ExplorViz
can be used system-independently with a modern browser.

For visualization, ExplorViz uses two different views [Fittkau et al. 2015c]. In Figure 2.2
the landscape view of an example software is depicted. The landscape view is a two-
dimensional view of a software landscape and is particularly suitable to get an overview of
the software landscape. There are systems (gray), nodes (green) and applications (blue).
The communication between software is represented by orange lines, where the thickness
of the lines correlates with the number of calls it represents. Double-clicking with the left
mouse button on a software leads to the application view.

For this work, the application view shown in Figure 2.3 is of greater interest. The
application view represents a three-dimensional model of the software and offers many

thtps://www.java.com/de/
3https://www.emberjs.com
4https://www.javascript.com/

https://www.java.com/de/
https://www.emberjs.com
https://www.javascript.com/

2.4. ExplorViz VR extension

OCN Editor -

Database @

Frontend @

10.0.1.2
10.0.1.1

Figure 2.2. Opened system of the landscape view in ExplorViz

interaction possibilities. Software packages are shown in green, which in turn can contain
packages or individual classes (blue). The height of the blue blocks indicates the number of
objects belonging to the class. Here, too, the communication between objects is represented
with orange lines. One can highlight individual classes and components in red or call up
additional information for a component or class. This kind of representation is supposed
to be a metaphor for a three-dimensional city [Caserta et al. 2011], where the classes here
represent houses and communication between classes is comparable to streets.

2.4 ExplorViz VR extension

In addition to the core software of ExplorViz, we are building on top of the VR extension.
Timm Hasemeyer developed this frontend extension to enable the use of the core features
of ExplorViz with the HTC Vive [Hasemeyer 2017]. For our work we are building on top of
the extension in version 1.1°.

In version 1.1 the user enters a virtual world, which consists of a square floor. On top of
the floor a 3D adaption of the landscape model is placed. Everything apart from the floor
and the landscape is white. Interaction with objects in the world is done by using the HTC
Vive controllers (see Figure 2.4).

Therefore, a 3D model of the controllers with additional rays is shown in the virtual

5https://github.com/ExplorViz/explorviz-frontend-extension-vr/releases/tag/vl.1
6https://docs.unity3d.com/Manual/OpenVRControllers.html

https://github.com/ExplorViz/explorviz-frontend-extension-vr/releases/tag/v1.1
https://docs.unity3d.com/Manual/OpenVRControllers.html

2. Foundations and Technologies

ProductSqiMapDao

--------- Active Instances: 20
Called Operations: 0

Figure 2.3. Application View in ExplorViz

world. The position of the controllers is set relative to position of the HMD and thus
corresponds to the position of the controllers in the real world. Even though the two HTC
Vive controllers are physically identical, the controls differ for the right and left controller.

As part of a developed room concept, a user can move through the virtual world by
moving in the real world. Since the physical space the users are located in is limited, users
can additionally move in the virtual world by teleporting. Therefore a user points his left
controller on the floor and actuates the trigger (see @) of the left controller. As a visual
feedback, a blue circle is shown on the floor at the position where a user can teleport.

Elements of the landscape, such as systems, can be opened or closed by pointing the
right controller on those elements and pressing the trigger on the right controller. If a user
tries to open a non-empty application, a 3D model, which is identical to the 3D model of
the frontend (see Figure 2.3), is shown. An application can be moved in the virtual room
by pointing the right controller on the application and clicking and holding the trackpad
(see @) on the right controller. This will bind the movement of the selected application to
the movement of the right controller.

Components of an application can be opened and closed just like elements of the
landscape. Classes and closed components can be selected by pointing the left controller

2.4. ExplorViz VR extension

Figure 2.4. Elements of HTC Vive controller®

on them and actuating the trigger on the left controller. When pointing the right controller
on a class or component and clicking the trackpad, additional information to that element
is shown as a little note next to the right controller.

Chapter 3

Concept

Our goal is to enable multiple users to work simultaneously in ExplorViz to explore and
experience software using VR software. Therefore, we develop a concept for the overall
architecture and from there on explain necessary changes in the backend and frontend.

3.1 Architecture

ExplorViz uses a microservice architecture [Zirkelbach et al. 2018] and thus is partitioned
in several components. The core components are the backend and frontend (see Figure 3.1).
The frontend receives resources from the backend. Therefor, a REST API with underlying
HTTP is used. To add additional features to ExplorViz extensions can be developed, which
will be covered in the following sections.

<<component>>
Backend

<<component>>
ExplorViz

2]

Q

Core API
|

<<component>>
Backend
Extension

O)

Backend Resources

WebSocket

<<component>>
Frontend

S

Core Services
]

<<component>>
Frontend
Extension

Figure 3.1. Core ExplorViz components and envisioned extensions (blue)

Usually resources are transferred between a backend extension and a frontend extension
with REST, just like between the backend and frontend. However, since only very small

11

3. Concept

amounts of data are likely to be transferred for each time data is sent, we want to use
a protocol with a smaller overhead. Such a protocol would be UDP. However, there are
currently no practical technologies available to use UDP for web applications due to security
reasons. Therefore, we strive to use TCP.

Since we want to use a programming language independent protocol, which allows
bidirectional communication, we are using WebSocket. The WebSocket protocol provides a
full-duplex communication. Still, only a single TCP connection is needed for the connection
between one client and the backend extension. For this reason using WebSocket is a good
choice for real-time web applications [Liu and Sun 2012].

To be able to use ExplorViz with several users at the same time, it is important that
information is available among the participants of a session and can be shared. In particular,
this includes the position data including the orientation of the software models and user
models.

Client Client
WebSocket WebSocket
Client Backend Client
— WebSocket —]
ebwocke Extension WebSocket
WebSocket WebSocket
Client Client

Figure 3.2. Envisioned star topology
The current architecture of ExplorViz [Zirkelbach et al. 2018] suggests a star topology
[Roberts and Wessler 1970] for the required network. Here, the backend extension is the

central node, which provides all necessary position data. If the state of the model changes
due to the interaction of a user, the updated information can be sent to all other users.

3.2 Backend extension

In this section we present our approaches for the development of the backend extension.

12

3.3. Frontend extension

Extension Development

The backend extension can be build with Java and Gradle!. The extension can access the
core functionalities of the backend. Since there does not a exist a backend extension for
VR at this point, we need to develop a new one. For this purpose, an existing dummy
extension with basic functionalities can be used.

Synchronization

The backend extension is the central node of the envisioned star topology. Therefore, its
most important task is to send updates of one connected client to all other connected
clients.

From there on it is important that the backend extension keeps track of the current state
all the time. This information is for example needed when a new user connects. In order
to synchronize the views all relevant information need first to be stored by the backend
extension and then sent to the new user.

3.3 Frontend extension

In this section we present our approaches for the development of the frontend extension.
Since there does already exist a frontend extension with version 1.1 which we will use as a
basis, the following changes will describe an envisioned version 2.0.

Extension Development
The frontend uses Ember.js and npm? as a package manager. The frontend extension can
be developed separately from the frontend. The frontend and the frontend extension are
merged when the software is compiled. Therefore, npm is used to link the frontend and the
respective extension.

We do not need to create a completely new extension, since we will build on top of the
extension in version 1.1, which was developed by Hdsemeyer. The features of this version
are explained in Section 2.4.

General concept
The benefit of collaborative VR in ExplorViz should be granted by the fact that multiple
users instead of only one can interact with and manipulate models of software. In Figure 3.3
it is shown how a collaborative use of ExplorViz can look like. We also consider that users
can spectate, but mostly focus on features for users who want to interact with the models
themselves.

In the context of user-friendliness, we attach great importance to the fact that manipula-
tion of the model by a user will be carried out as quickly as possible. This in return should

1https://gradle.org/
2https://www.npmjs.com/

13

https://gradle.org/
https://www.npmjs.com/

3. Concept

Another user

User with HMD with HMD

VR controller

Controller ray

Application view

VR controller

Controller ray |

floor
Landscape view

Figure 3.3. Possible visual concept for the collaborative use of ExplorViz [Hdsemeyer 2017]

in cooperation with the backend extension lead to an update of the view for all other users.
In particular, when a user for example moves the model, the positional update for other
users should not only take place after the move has been completed, but also during the
move, in order to obtain the cognitive map [Misue et al. 1995] for all users.

In addition to these essential functions, communication options are also desirable. One
such option is to highlight elements of an application for other users. We assume that most
users want to talk to each other while using our technology. However, there already exists
a lot of software for voice communication which can be used in addition to ExplorViz.

In order to facilitate natural communication, we depict users in virtual space using 3D
models. Accordingly, the positions of these models must also be updated as required.

Menu
In addition to the mentioned core functionalities it is important to us to implement
additional functionalities to improve the overall usability. Since the amount of input buttons
is very limited, we plan to add a menu (see Figure 3.4). The menu should be hierarchically
structured. When opened with a menu button, it should first show an overview of all
existing submenus, which provide different functionalities. Navigating through the menu
can be realized by pointing the controller on a textfield and actuating the trigger to select
an entry. In our opinion changing the height of the camera and controllers, moving the
landscape, spectating and changing between working alone or with others are important
functions.

In the camera menu the user should be able to click on buttons to move his camera
including his controllers up or down. In the landscape menu the user should be able to

14

3.3. Frontend extension

Change Camera

Move Landscape

Spectate

Connection

Exit

Figure 3.4. Draft of overview menu

move the landscape along the x-, y- and z-axis and rotate the landscape. The spectate menu
should allow the user to set his own camera position to the camera position of another
user. The connection menu should show the current connection status and allow the user
to switch between working alone and working collaboratively.

Text messages

Version 1.1 of the frontend extension does not include any text messages for the user.
However, these could improve the usability. The web interface of the frontend shows
little boxes with messages for example when an application does not contain any data.
We would like to adopt the already existing messages of the frontend and add our own
messages which are specific for the collaborative environment. The important messages,
which we mostly adopt from the frontend such as missing data for an application, should
be displayed directly in front of a user for a few seconds. This would make sure that
important messages are not missed. Less urgent messages such as the information that a
user disconnected or is spectating should be displayed in the top and thus not influence
the usability.

A visual concept for such messages is shown in Figure 3.5.

15

3. Concept

New connection from user

admin

No data available for application

Figure 3.5. Draft of messages which provide a user with additional information

16

Chapter 4

Implementation

This chapter focuses on the implementation of the backend and frontend extension. In the
following adaptions and additions to the implementations are explained and reasoned.
Where applicable, pictures and small code snippets are provided to help illustrate the
current state of the implementation.

4.1 Backend Implementation

This section describes how the backend implementation is extended. As a starting point a
dummy extension is used, which provides sample code, e.g. for simple resource exchange.
Most of this sample code is removed until only the code for linking with the backend
remains. From there on WebSocket technologies for communication with the frontend
extension are implemented. Then models are implemented to store the current state of
users, landscape and applications. These are then used for example to allow new users to
connect and have the same synchronized environment like all already connected users.

4.1.1 Connection to Frontend Extension

Our main class, which contains the methods for communication with the frontend extension,
extends the class WebSocketServer. This class is provided by a java library and allows us to
use WebSocket functionalities. The WebSocket is started when the backend extension is
loaded. Additionally, a new thread is started. This thread is running until the WebSocket
is closed again and checks constantly if new messages need to be sent to a user. To limit
the amount of traffic, messages are first collected in arrays before they are sent. Then,
maximally 90 messages containing those arrays are sent out per second to a client. Every
message uses the JSON format and contains a key entry called event. This entry specifies
what kind of information a message holds.

Since the same format is used for the received messages from the frontend, a switch
statement is used to handle different types of messages. Most events, like the opening of
an application, are forwarded to all other users. Additionally, the contained information
about model updates are saved and can be used to later on send a new user the current
state of the virtual world.

17

NUT = WP

4. Implementation

4.1.2 Synchronization

As mentioned in the previous section, the important data of incoming messages usually
needs to be stored. When a new user connects, a model is created which contains the name,
connection state, a color, information about the used controllers and highlighted entities.
Lastly a list which maps the users to the corresponding WebSocket connection is updated.

Information about the structure of the landscape or applications can be requested from
the backend. The state of landscape systems and nodes is stored in Hashmaps which map
the corresponding identifier of the system or node to a boolean value, which tells whether
a system or node is opened. Additionally, positions and quaternions of the landscape and
all open applications are stored. For applications the current state is saved analogously.
Since components of classes can be highlighted, the information of which user highlighted
which elements is stored additionally.

4.2 Frontend Implementation

This section focuses on the main changes which were made to the implementation of the
frontend extension for VR. The implementation is using the version 1.1 as a starting point.

4.2.1 Connection to Backend Extension

As mentioned in the concept we use a WebSocket connection to interchange data between
the frontend extension and the backend extension. Therefore, we use the package ember-
websockets! which allows us to use WebSocket functionalities. Our first approach was to
establish a WebSocket connection the backend extension when a user enters the VR’ tab in
ExplorViz. While there were no technical problems in doing so, we chose to let the user
decide if and when he wants to work together with other users.

Listing 4.1. Preparation of WebSocket connection to backend extension

connect() {
this.set(’'state’, ’'connecting’);
ConnectMenu.setState.call(this, ’connecting’);
this.set('updateQueue’, [1);
this.initSocket(this.get(’'host’), this.get(’port’));

The user can change his connection status via the connection menu where he can also
see his own connection status. When a user actuates the connect button in that menu, the
connect function (see Listing 4.1) is called. Thus the connection state of the user changes

1https://github.com/thoov/ember-websockets

18

https://github.com/thoov/ember-websockets

e
= W NN = O

4.2. Frontend Implementation

and therefore the message in the menu is updated. Lastly, as it can be seen in Listing 4.2,
the WebSocket connection is initialized.

To establish a WebSocket connection to the backend extension, an IP adress including a
port is needed. We chose to outsource this information into a configuration file using JSON
as a format (see line 1-4).

Listing 4.2. WebSocket Initialization

O 0NN Ul WN -

Ember.$.getJSON("config/config_multiuser.json").then(json => {
host = json.host;
port = json.port;

s

initSocket(host, port) {
const socket = this.get(’websockets’).socketFor(‘ws://${host}:${port}/*);
socket.on('open’, this.openHandler, this);
socket.on(’'message’, this.messageHandler, this);
socket.on(’close’, this.closeHandler, this);
this.set('socketRef’, socket);

After the socket is initialized (line 9) the respective handlers are initialized (line 10-12)
to allow for a message exchange with the backend extension. If the WebSocket connection
can be established, messages can be easily sent to the backend extension with help of the
variable named socketRef (see line 13).

4.2.2 Main Loop

With the main loop we refer to a function (see Listing 4.3) which is called every time an
image is rendered. Since the display refresh rate of the HTC Vive is 90 frames per second,
the main loop is called up to 90 times per second. In the main loop everything is contained
that needs to be updated or checked for updates regularly. Here, the function for changing
the camera position to another user’s camera position is called if the user is currently
spectating. Additionally, the updates for the orientation of the displayed usernames are
originating here.

19

4. Implementation

Listing 4.3. Main Loop

1 if(this.get(’userID’) && this.get(’state’) === ’'spectating’) {

2 this.spectateUser(); // follow view of spectated user

3 }

4

5 this.updateControllers();

6

7 if(this.get(’userID’) && this.get(’state’) === ’'connected’ || this.get(’state’
) === 'spectating’) {

8 this.updateUserNameTags();

9 this.update();

10 }

11 this.render2();

12

13

14 //send messages like connecting request, position updates etc.

15 if(this.get(’'state’) !== 'offline’)

16 this.sendUpdates();

17

18 this.set(’lastUpdateTime’, this.get(’'currentTime’));

4.2.3 Landscape

The landscape provides an overview of software landscapes and is a 3D adaption (depth
was added) of the 2D representation, which is used for the ExplorViz frontend. In the
implementation we distinguish between the pure vrLandscape and the corresponding
vrCommunications, so systems and communications are handled separately. Those two
components are added in a group named vrEnvironment. However, in the following we will
refer to the vrEnvironment as landscape, which therefore also includes the communication.

Landscape Movement

In version 1.1 the landscape is only movable by mouse and keyboard. Also, when the
landscape is manipulated, e.g. a system is opened, the landscape is always re-centered
to the middle of the floor. We chose to keep the original position of the landscape as the
default but wanted to incorporate the option to move the landscape via the controllers.
Therefore, the menu shown in Figure 4.1 was added. It is possible to interact with the
yellow menu elements by pointing the right controller at them and clicking the trigger
on the right controller. The yellow arrows on the top left allow changes in height. The
four central yellow arrows allow the movement along the x- and z-axis. With the curved

20

4.2. Frontend Implementation

Figure 4.1. Landscape menu

arrows on the top left it is possible to rotate the landscape towards or away from the user
(provided the user is standing in front of the landscape).

Listing 4.4. Centering of the landscape

vrEnvironment.position.x += centerFloor.x - centerLandscape.x + this.get(’
environmentOffset.x’);

vrEnvironment.position.z += centerFloor.z - centerLandscape.z + this.get(’
environmentOffset.z’);

Since the size and expansion of the landscape can change whenever systems or nodes
are opened or closed, it is necessary to center the landscape around the desired position. In
Listing 4.4 the most important part of recentering is shown. An offset, which is set to 0
when ExplorViz is started, contains information about the desired landscape position in
relation to the center of the floor. The offset is changed whenever the landscape is moved.
To center the landscape around the desired position, we calculate the center of the floor,
the center of the landscape and add the existing offset eventually.

Landscape Interaction

Whenever a user manipulates the landscape, an update message needs to be sent to the
backend extension containing the new state of the landscape model. To achieve this, an
event is triggered when for example a system is clicked and thus its status changed. The
event contains the information whether a system, nodegroup or node was opened or closed.

21

4. Implementation

The event is caught and the important data is put into a JSON message which is then
added to an array. All messages of this array are eventually sent out together to the backend
extension.

4.24 Applications

The applications that are displayed in the application view provide important information
to the user and offer a lot of interaction possibilities in virtual reality. To make good use
of the application view for collaborative VR, we first allow multiple applications to be
opened at the same time and then go over to synchronizing user interactions concerning
applications. Lastly, we synchronize and extend the option to highlight components and
classes of an application.

Multiple Applications

The frontend is designed to allow one open application at a time. This is sufficient for the
existing web interface because a single user can switch between the landscape view and
application view to explore an application in detail. For our collaborative solution it is
important for the productivity to allow multiple users to work with different applications
at the same time.

In version 1.1 the variable application3D among others is used to access the visual
representation of an application. In order to handle more than one open application at a
time we use a Map as a data structure. This variable maps numerical application identifiers
to the corresponding application object.

Every application consists of a gray foundation as a root component. In version 1.1 this
foundation is added and removed by calling existing methods of the frontend.

Listing 4.5. Creation of a foundation

const foundation = this.get(’foundationBuilder’).createFoundation(
application, this.get(’'store’));
this.get(’'foundations’).set(application.id, foundation);

We managed to reuse the foundation-builder of the frontend to create a foundation
for a new application as shown in Listing 4.5, too. However, we need to keep record of all
existing foundations to be able to remove those later on if necessary with help of an own
function. For better reuse of existing code we advise an update of the foundation-builder,
which is part of the frontend, so that it can handle multiple applications at a time.

Application Movement
Closing or opening a component or class of an application is handled very similar to the
described mechanism for landscape interactions.

22

O OO Gl WN -

4.2. Frontend Implementation

However, applications can be moved by moving the controller as opposed to the
movement of the landscape. First, we considered to send the position of a moved application
continuously just like the positions of the controllers are sent. However, this is not necessary
because the position of a moved application is bound to the position of a controller.

As shown in Listing 4.6 the only required information is which application (line 4) is
bound to which controller (line 9) and additionally the initial positions of the application
and controller (lines 5-8). The information which user is moving the application is added
by the backend extension.

Listing 4.6. Sent message when an application is grabbed by a user
8 g 9% g y

let appMsg = {
"event": "receive_app_bound",
"appID": appID,
"appPosition" : appPosition.toArray(),
"appQuaternion" : appQuaternion.toArray(),
"controllerPosition" : controllerPosition.toArray(),
"controllerQuaternion" : controllerQuaternion.toArray(),
"isBoundToControllerl" : isBoundToControllerl

}

Highlighting

We want to keep the functionality to highlight classes and closed components. For the
collaborative use it is important to us that every user can see what other users have
highlighted to simplify communication. In version 1.1 objects are always highlighted in
red. Naturally, we choose to highlight elements in the color which is assigned to a user.

When a user highlights an object, a message containing the identifier for that object is
sent. Nested components in applications have alternating colors which cannot be requested
from the frontend easily. Therefore, we send the color of the unhighlighted component
along with the highlighting message to ensure that the original color can be reassigned
when the component is not highlighted anymore.

4.2.5 User Representation

To allow for natural interaction between users it is crucial to implement a visual repre-
sentation of a user for other users. We chose to only visualize the head respectively the
HMD which another user is wearing and the two controllers for each user. Additionally,
we added usernames on top of other users to allow easy identification for the use with
multiple users.

To keep track of all other users, a user object is created every time a new user connects.
This object contains data including an identifier, name, connection state, color and the 3D

23

4. Implementation

Models for HMD and controllers.

admin

Figure 4.2. Visualization of other user including HMD, controllers and & colored name

HMD & Controllers

In version 1.1 the visualization of the user’s own HTC Vive controllers was already
implemented. This implementation uses OpenVR?, which is part of SteamVR. Thankfully
, OpenVR also contains textures for a generic HMD and the Oculus Rift controllers. On
receiving a message from the backend about a new connected user, an object for the camera
is created and the corresponding texture is applied. The same is done for the controllers
but here it needs to be distinguished between HTC Vive Controllers and the left and right
controllers of the Oculus Rift to use a matching texture.

For all visually identical objects (e.g. HMDs) the same loaded texture is applied in
contrast to loading a new but identical texture for every object. It should be noted that as a
consequence manipulating the mesh of one Object (e.g. changing transparency) leads to a
change of all meshes which use the same texture.

2https://github.com/ValveSoftware/openvr

24

https://github.com/ValveSoftware/openvr

4.2. Frontend Implementation

Usernames

In scenarios where three or more users are working together it is particularly important to
add intuitive mechanisms for users to identify each other. As a first step usernames were
added on top of the virtual HMD of every other user. This username is matching with the
name used for the login into ExplorViz.

To visualize the username a canvas is used which adapts in size with the length of
the username. We chose to make the background of this canvas light gray and mostly
transparent to improve readability on the one hand and on the other hand avoid the visual
blocking of other important models.

It was made an effort to use the canvas as a texture for a sprite to display usernames.
Sprites have the advantage that they always face towards the user’s camera and should
therefore provide constant readability of the usernames. However, this approach was not
satisfying. If the user was rotating his HMD to the side, the sprite would perform the same
rotation. This lead to unreadable usernames or a visual interference of the other user’s
HMD and his sprite containing the username.

Instead the canvas is used as the texture for a plane and eventually added to the scene
on top of the HMD.

We wanted to display the username always on the same position above another user’s
HMD. Furthermore it should only follow the user’s camera by rotating around the y-axis.
To achieve this behavior we call a function of three.js in every iteration of the main loop to
let the other usernames always face towards the user.

To improve identification of other users even further every user is assigned a color
by the backend. This color is used as a text color for the usernames and for highlighting
objects of an application. To get a quick overview about all connected users and their colors,
an overlay with a userlist can be opened by pressing the grip button on the left controller.

4.2.6 Menu

In addition to a pure implementation of a mode for multiple users it was our goal to enrich
the user experience with intuitive ways of interaction. The limited amount of input buttons
lead to the development of a menu which is attached to the left controller, displayed in
Figure 4.3. This menu can be opened with a click on the left menu button. Initially, an
overview with all available submenus is shown. The menu button can also close the menu
or jump back to the main menu if one of the submenus was selected.

The right controller is used to interact with the menu. The user can point the right
controller and its ray on the menu. When hitting a clickable entry in the menu it is
highlighted and signalizes that it can be selected by clicking the trigger on the right
controller. In its current state the user can adjust his height, move the landscape, spectate
other users or change his connection status. These submenus will be explained in detail on
the following pages together with their corresponding functionality.

25

4. Implementation

Options

Change Camera
Move Landscape
Spectate

Connection

Exit

Figure 4.3. Menu attached to left controller

4.2.7 Text messages

As described in the concept, text message should give a user additional information to
improve usability. Messages about state changes (e.g. disconnect) of other users are shown
at the top edge of the display. We animated the message such that it moves from outside
the users field of view to the top edge of the screen. This minimizes possible disturbances
for the user. The message is shown for a few seconds before it disappears. Even though this
message should usually not block important information, we chose to make this message
30% transparent. With this configuration the text messages still remain readable.

In addition to connection messages we implemented more important messages which
we refer to as hints. Among other things hints can tell a user why he can not open an
application or that he can not move an application due to another user who grabbed the
application first. To be sure a user notices the hints we place them centrally in front of him.
However, we do not want to let hints pop up directly. Therefore, we chose to also animate
hints and make them 30% transparent. Hints start as a small stripe before they widen and
eventually the full text is visible. The hint stays for 2-3 seconds until it disappears.

4.2.8 Teleportation & Height Adjustment

In version 1.1 teleporting through the virtual room is already implemented. This feature is
used by pointing the left controller with its black ray on the floor and pulling the trigger
on the left controller. As a visual feedback for the user a blue circle is shown on the

26

4.2. Frontend Implementation

floor at the position where the controller points whenever teleportation is possible. To
realize the teleportation in version 1.1 the visualized objects including floor, landscape and
applications were shifted relative to the user. Thus, the user never changed his position but
got the impression of being teleported.

Since the position of a user should be exchanged with other users, this approach was
not practical. Keeping this approach would have lead to the use of offsets, which we
wanted to avoid. However, there are restrictions to changing the positions of the camera
and controllers. Changing the position of the respective object will have no effect. As a
solution the objects for the camera and controllers are added to a group named user. This
group, working as a wrapper for the user’s hardware models, can be moved by changing
its position. This positional update will be sent to the backend with the next iteration of
the main loop without the use of any offsets.

Listing 4.7. Implementation of teleportation

1 teleportToPosition(position){

2 const cameraOffset = new THREE.Vector3();

3

4 cameraOffset.copy(this.camera.position);

5 cameraOffset.y = 0;

6 this.user.position.subVectors(new THREE.Vector3(position.x, this.user.position
.y, position.z), cameraOffset);

7|}

The adjustment of the user’s height (including camera and controllers) is realized by
moving the group user, too. The height can either be changed via the left controller menu
or by using the up and down arrow keys on the keyboard. Additionally, the user group can
be moved to the left or to the right with the corresponding arrow keys, which is a useful
feature for developing purposes.

4.2.9 Spectating

We focus on features which allow natural interaction with landscape and applications.
However, we wanted to add additionally a basic feature to allow users spectating each
other. This feature allows a user to select another non-spectating user via the spectating
menu to spectate. Enabling spectating will lead to a small notification for all other users.
The spectating users are no longer visible but are listed in the user list under spectating.

The spectating user’s camera position is continuously set to the camera position of the
spectated user. To allow for a certain degree of free movement, the spectating user can still
look around on his own by rotating his head. We still expect that for some users spectating
could be uncomfortable. We chose to disable the spectating again whenever the user closes
the menu to avoid situations where the user does not know how to quit spectating.

27

4. Implementation

OCNEdior | OCN Database

Spectate

Figure 4.4. View of a spectating user

The spectating user can estimate where the spectated user is looking because the
controllers of the spectated user are visible for him (see fig Figure 4.4). For a spectated user
it is not possible to interact with the landscape or an application. This is done because
a spectating user is not visible and thus allowing interaction could lead to confusion for
other users.

4210 Further Adjustments

The texture for the floor was originally an upscaled picture of a gray floor. As a result the
floor looked pixelated. Therefore, we changed the texture to an also gray but much sharper
and clearer texture. Additionally, we figured out that the floor space was very small for
multiple users. To adapt for this scenario we enlarged the floor area.

28

Chapter 5

Evaluation

In this chapter we describe our procedure for the usability evaluation. We explain our
goals, the used questionnaire, the experimental setup and the execution of the experiment.
After we present the results of the evaluation, we go over in a section for discussion and
point out possible threats to validity.

5.1 Goals

This usability experiment should give some insights on how well ExplorViz can be used
collaboratively with VR. We decided against an experiment which compares our approach
with another one, e.g. working together in front of a monitor because for this it would
be hard to achieve comparable conditions. Additionally, collaborative VR for software
visualization is a new field of research and thus first can be evaluated in isolation to receive
general feedback on this technology.

The conducting probands will execute tasks collaboratively in groups of two. These
tasks are designed to be simple and should predominantly encourage the probands to try
the implemented features and get an impression of how working with collaborative VR
looks like. Probands are then asked to rate certain aspects of their user experience. These
aspects can be classified as follows:

> General Usability
> Interaction
> Visual appearance
> Spectating

In terms of general usability we are interested in whether our implementation for
collaborative VR feels natural to use and if it is suited for team work. Concerning interaction
we are interested if the movement through the virtual room and interactions with objects
are well implemented. Since we added a visual representation for other users, a menu and
text messages we are especially interested if those are perceived as visually pleasing. Lastly,
we want to research if spectating is a well received feature.

29

5. Evaluation

5.2 Questionnaire

The main tool to receive feedback of the probands is a questionnaire. In addition to
questions the paper based questionnaire contains information for the probands and tasks
which are read out loud. The specific texts and tasks are displayed in Appendix 7.2. In the
following we present the main questions and statements of the questionnaire which we use
to analyse the results.

Personal Information

After an introducing text the questionnaire contains a page requesting personal information
of the probands. These information can be used to correlate given feedback with certain
aspects or skills of the probands. The asked questions and statements about personal
information are listed in Table 5.1. In addition to those questions and statements probands
are asked to fill in their age, profession, subject of study and gender. A3 to A9 are statements
or questions which probands can rate subjectively from 0 (not agreeing) over + (slighty
agree) and ++ (agree) to +++ (strongly agree).

Table 5.1. Questions and statements regarding personal information

ID Question / Statement

Al Do you wear glasses?

A21 || Do you have any visual impairment?

A2.2 || If so, which:

A3 Experience with objectoriented programming

A4 Experience with ExplorViz

A5 Experience with VR

A6 Are you claustrophobic?

A7 Are you afraid of heights?

A8 Do you suffer from seasickness?

A9 How well do you know the other proband?

Rating

At the end of the experiment the probands are asked to rate certain aspects of their user
experience. Therefore, they are given two pages of statements for which the probands
can tick checkboxes to express their agreement or disagreement respectively. The possible
checkboxes for a statement are explained in Table 5.2. It can be seen that there is no neutral

30

5.2. Questionnaire

choice for the probands. We choose to exclude a neutral option because we want to request
tendencies for our new approach. Including a neutral option for an experiment with a
small number of probands could lead to inconclusive results. In addition to purely ticking
checkboxes probands were free to write down additional comments on a provided line
under each statement.

Table 5.2. Checkboxes and their respective meaning for rating statements

Statements

Checkbox || Meaning

-- Strongly disagreeing with the statement

- Disagreeing with the statement

+ Agreeing with the statement

++ Strongly agreeing with the statement

In the following we present the statements which probands are asked to rate. We classified
the statements in topics in coordination with our goals. The following tables provide an
identifier (ID) and the respective statement for each topic (see Table 5.3, Table 5.4, Table 5.5,

Table 5.6).

ID

Table 5.3. Statements on interaction

Statement

B1.1

Moving and rotating the landscape is well realized

B1.2

The moving and rotating of the applications is well realized

B1.3

The movement (incl. teleportation) in the virtual space is intuitive

B1.4

Navigation through the menu is intuitive

B1.5

Highlighting objects is a useful feature

31

5. Evaluation

Table 5.4. General statements

ID Statement

B2.1 || I had the impression that I was in the same room with the other user

(positions and state of users, landscape & applications were synchronized)

B2.2 || ExplorViz with VR extension is suitable for team work

B2.3 || During the experiment (except spectator mode) I felt nausea or something alike

B2.4 || I would use ExplorViz with the VR extension again

Table 5.5. Statements on visual appearance

ID Statement

B3.1 || The structure of the menu is intuitive

B3.2 || The visualization of other users is well done

B3.3 || The movements of the other user were displayed to me without delay

B3.4 || The number of text insertions was reasonable

B3.5 || Text overlays were clearly readable

B3.6 || Text overlays were visually appealing (duration, length, position, color, size, animation)

Table 5.6. Statements on spectating

ID Statement

B4.1 || While spectating I felt nausea or something of the like

B4.2 || I would use the spectator mode again

Statements

In addition to the statements probands have the opportunity to write down further remarks
and proposals on the last page of the questionnaire. The respective text fields are listed in
Table 5.7.

32

5.3. Experimental Setup

Table 5.7. Further comments text fields

ID || Text field

C1 || Proposals for future features

C2 || Improvement proposals

C3 || Further remarks

5.3 Experimental Setup

In the following we list the used hardware and software configurations. Since the exper-
iment is conducted in an experimental laboratory, the hardware and software was kept
identical throughout the experiment.

System Configuration We use three different computers. Two computers run the frontend
with installed VR extension. The other one runs the backend with the installed VR extension.
In our opinion this represents a distribution of the software close to a setup which could
be used in practice.

The relevant specifications of the computers are listed in Table 5.8. The hardware is
sufficient to avoid performance issues. In preliminary tests CPU had no performance
problems on either machine and the computers which run a frontend produced steady 90
frames per second. Nevertheless, it should be noted that the computer which is driving the
HTC Vive is attached to two displays, one monitor and one projector. This can potentially
influence frame rates negatively but this setup is providing us with the possibility to
monitor easily what the probands are seeing and doing in the virtual environment.

Table 5.8. Hardware configuration which is used for the experiment

Computer 1 Computer 2 Computer 3
(01 Windows 10 Pro Windows 10 Pro Windows 10 Pro
CPU Intel Core i5-6500 | Intel Core i5-6500 Intel Core i5-6500
RAM 8GB 8GB 8GB
Graphics Card GeForce GTX 1070 | GeForce GTX 1070 | GeForce GTX 950
Used for HTC Vive Oculus Rift Backend
Additional Notes || Mirrored Displays | 3 sensors connected

33

5. Evaluation

Room Setup All probands participate in this evaluation in groups of two to test the
implemented features. All the used hardware is located in one room and therefore the
areas where probands can move are located close to each other but do not overlap.

The proband who uses the HTC Vive has an area to move freely of 3.90m x 3.70m due to
space limitations. This area can also hardly be increased because the HTC Vive is connected
with a cable to the computer which is positioned in one corner. The base stations are wall
mounted in opposing corners of the area for moving at a height of 2.30m above the floor.

The proband who uses the Oculus Rift has an area to move freely of 2.10m x 2m. In
comparison to the setup for the HTC Vive this is significantly smaller but again room
limitations and short cables for the sensors do not allow for a bigger area. The Oculus Rift
is usually shipped with two sensors. However, two sensors are not sufficient for 360 degree
tracking. To avoid tracking issues when a proband turns around we use a third sensor.
The three sensors are placed on tables in a height of 72cm in the shape of an right-angled
triangle around the area for moving.

5.4 Execution of the Experiment

In this section we explain the execution of the experiment. First, probands are introduced
to the study and then asked to fill out the page with personal information. Then probands
are provided with an introduction to ExplorViz and learn the controls for virtual reality
in a training phase. Following, the probands are asked to fulfil some tasks collaboratively.
Lastly, the probands rate their user experience.

Introduction One of the probands uses the HTC Vive and the other one the Oculus Rift.
The probands can choose on their own who of them uses which device. Firstly, the probands
are greeted and asked to sit down and read an introducing text on the first page of the
questionnaire. Here, it is explained that the participation in the study is voluntary. When
both probands are finished, they are asked to fill out a page with personal information.
After both probands are finished, they are asked to turn to the next page. This page contains
an introduction to ExplorViz. This section can be skipped if the proband is already familiar
with ExplorViz. If the probands speak German and wish so, the text can be read out loud
and translated to German. When the the text is read completely, the introduction is finished
and the training phase starts.

Training phase

In preparation for the tasks that probands should work on collaboratively it is important
to give an introduction to the HTC Vive (or Oculus Rift) and ExplorViz with the installed
extensions. Therefore, we configure the backend with a software landscape which consists
of one system and one application. This landscape is used to explain the controls. Therefore,
a page with the assignment of keys and respective functions of the controllers is prepared

34

5.4. Execution of the Experiment

(see Appendix 7.2). However, we do not let the probands read this page on their own. In
our opinion the best way to learn the controls is by practically showing them the features
when they already wear the HMD and use controllers. Therefore, two tutors explain each
proband the controls individually. This happens in parallel and in the same room but we
suspect that the two tutors and probands do not disturb each other.

We give all probands a practical introduction to the following topics:

> Moving & Teleporting

> Menu interaction

> Moving the landscape

> Changing the camera height

> Changing the connection status

> Open and close elements of the landscape / application
> Move an application

> Show additional information about packages / classes
> Highlight closed components / classes

> Displaying the user list

We mention the spectating feature but do not show it because every proband should
complete the training phase without any virtual interaction with the other proband. At the
end of the training phase we check with our page which contains the controls to make sure
that every feature is explained to every proband. When the explanation is finished for both
probands we go over to the next phase.

Collaborative tasks

When both probands are familiar with the controls we restart the backend and configure it
to show a larger software landscape with 6 systems. The probands are in the meantime
allowed to keep on the HMDs. We explain them that they are about to fulfill tasks (see
Appendix 7.2) to get familiar with the software. Most of the tasks are designed to be solved
collaboratively. We point out that they are allowed and encouraged to talk to each other.
Additionally, we explain that the assignment of keys is quite similar between the Oculus
Rift and the HTC Vive.

Since the probands wear HMDs they are not able to read the tasks on their own. Thus,
we read the tasks out loud and repeat the task if requested. Whenever controls are unclear
we encourage them to speak to each other first but we explain controls again if necessary.
When the probands fulfill the last task they are informed that they can lay the controllers
on the table and remove their HMDs again.

35

5. Evaluation

Rating

Subsequent to the solving of tasks the probands are asked to sit down and fill out the
rating pages including the text fields for further proposals and remarks. We shortly explain
the structure of those pages and take a few steps back to let the probands fill out the pages
without interruptions or stress. Probands are allowed to ask questions if any occur and we
answer those briefly without coming closer or looking at their pages. When both probands
signalize that they are finished we inform them that the experiment is thereby finished. We
collect their pages and store them safely in a locked cabinet until we evaluate the results.

5.5 Results

In this section we present the results of the conducted usability experiment. First we present
the accumulated personal data and then go over to the results for the statements which the
probands rated. Since it is inappropriate to present each written statement of the probands
here, the statements and all raw data of the evaluation can be found in Appendix 7.2.

Accumulation of data

In order to accumulate the collected data we assign integer values to the given answer in
order to measure how much probands were agreeing with a statement. A positive value
tells that a proband checked the box with the respective amount of pluses and therefore
agrees with a statement. Accordingly, a negative value tells that, ignoring the algebraic
sign, a proband checked the box with the respective amount of minuses and thus disagress
with a statement. Therefore, the results for the personal questions can range from 0 to 3.
The results for the other questions can range from -2 to 2. -2 would mean that a proband
did not agree at all with a statement and 2 that a proband fully agrees with a statement.

Personal Information

22 probands participated in our experiment. Thereof, 11 bachelor computer science (CS)
students, 1 master CS student, 2 bachelor business informatics students, 3 students with
another subject of study, 4 CS researchers and 1 proband with another profession. 19
probands were female and 3 male. In average the probands were 25.9 years old. 8 probands
were wearing glasses. The remaining results of the personal questionnaire are listed below
in Table 5.9.

36

5.5. Results

Table 5.9. Results of the personal questions

ID | Mean | SD

A3] 20 0.9258
A4 | 0.3636 | 0.9021
A5 | 0.7273 | 1.0320
A6 | 0.0455 | 0.2132
A7 | 09091 | 1.0193
A8 | 0.4545 | 0.7385
A9 | 1.9091 | 0.8679

Interaction

We developed or altered features to move in the virtual world or interact with the software
models and a menu. Therefore, we asked the probands to rate certain general aspects. The
results for this are shown in Table 5.10.

Table 5.10. Results of the interaction statements

ID Mean | SD

B1.1 | 1.136 | 1.246
B1.2 | 1.773 | 0.429
B1.3 | 1.727 | 0.703
B1.4 | 1.455 | 0.596
B1.5 | 1.591 | 0.908

General Usability

To gain information if the developed VR features are in general suitable to work collabora-
tively with in VR, we asked the probands to rate how much they agree to a statement. The
results are listed in Table 5.11.

37

5. Evaluation

Table 5.11. Results of the general statements

ID Mean | SD

B2.1 | 1.909 | 0.294
B2.2 | 1.545 | 0.739
B2.3 | -1.773 | 0.685
B2.4 | 1.364 | 1.093

Visual Appearance

As most of our work is concentrated in the frontend extension, we asked the users to rate
certain aspects of the visual appearance. The results for this category are displayed in

Table 5.12.
Table 5.12. Results of the visual appearance statements
ID Mean | SD
B3.1 | 1.545 0.510
B3.2 | 1.136 | 0.990
B3.3 | 1.682 | 0.477
B3.4 | 1.727 | 0.703
B3.5 | 1.045 0.950
B3.6 | 1.045 1.133
Spectating

We are also interested in how well our approach for spectating other users is suitable for
working collaboratively in VR. The corresponding results are listed in Table 5.13.

Table 5.13. Results of the spectating statements

ID Mean | SD
B4.1 | -0.773 | 1.412
B4.2 | 0.682 | 1.460

38

5.6. Discussion

5.6 Discussion

In this section we discuss the presented results. Therefore, we correlate the results with
statements of the probands or our observations.

Personal Information

Most probands stated to have good or very good knowledge of objectoriented programming.
This is not surprising because 18 of 22 probands had a background in computer science
and therefore objectoriented programming is likely to be taught or even self taught.

Only the participating researchers and none of the other probands had experience
with ExplorViz. This possibly indicates that software visualization is not yet a much
requested technology for computer science students. More than half of the probands have
no experience with virtual reality and the experiences among the other participants are
varying a lot. We suspect more people will have experience with virtual reality when the
purchasing costs are further reducing in the future.

Only one proband stated to be slightly claustrophobic, hence we avoid correlating this
data with other results. Being afraid heights was much more common among the probands
than being affected by seasickness. Regarding this it could be that some probands do not
yet know that they are in fact suffering from seasickness.

Every proband stated to know the other proband. Thus, we can not make any statements
on the collaborative use for our technology for strangers. However, we assume that for
most use cases of our technology the users are colleagues at work.

General Usability

All probands had the impression to be in the same room with the other user in virtual
reality. Only 2 probands rated this statement with + instead of ++. We therefore conclude
that the synchronization of the views works well. The majority of probands thought that
the VR extension for ExplorViz is suitable for team work. Only one proband rated this
statement with a minus. In our opinion the ability to see what other users are looking and
the ability to point at objects with the controllers greatly helps for team work.

The feel of nausea or alike was rated with -1.773 during the experiment (except spectat-
ing) which means almost no nausea occurred. In our experience nausea during VR can
occur whenever the movement in virtual reality does not match the movement in the real
world. This only happens with our approach when a user teleports and therefore only for
a fraction of a second the movement is decoupled from the real world. Overall most users
would use ExplorViz with VR again. Thus, we conclude that the general usability is good.

Interaction

Moving and rotating the landscape received the most critical feedback in the topic of
interaction. One reason is that the landscape can only be moved and rotated with many
single clicks. This is not very comfortable when the position of the landscape should be

39

5. Evaluation

altered a lot. Another reason is that moving the landscape and moving an application is
implemented very differently. The movement of the application was rated as very intuitive.
Therefore, it occurred that probands tried to grab the landscape just like they could grab
an application.

One obvious solution would be to allow the landscape to be moved just like applications
can be moved. We consider to try this approach but in our opinion this could lead to
conflicts when many people are interacting with the landscape. Certainly, the usability can
be improved by enabling to move the landscape via the trackpad or with virtual analog
sticks. This would allow for a smooth movement instead of many single clicks that move
the landscape step-wise. In addition to altering the movement options for the landscape
we have got the impression it would be reasonable to add a button to the landscape menu
to restore the initial position of the landscape easily.

The movement through the virtual space was rated as intuitive. The same is true for the
navigation through the menu. However, we would consider to implement the additional
option to move with help of the trackpad on the left controller through menu. This would
allow a one-handed use of the menu instead of using both controllers.

Lastly most probands agree that highlighting highlighting objects is a useful feature.
One proband mentioned that pointing with the ray of the controller on an object is more
intuitive. Another proband would have liked the option to highlight multiple objects. In
our opinion highlighting multiple objects could lead to confusion, especially if many users
are using this feature.

We noticed that some probands were confused that closed components can not be
highlighted. To provide a better usability we plan on enabling this functionality.

Visual Appearance

The structure of the menu, movement of other users and number of text insertions was
rated very positively. The visualization of other players was mostly positive but some
probands would have preferred a complete (upper) body instead of only the HMD and
controllers as visualization. We are concerned that especially with many users a more
complete representation could lead to users each others sights. To avoid this problem an
option could be added that users can choose locally via the menu how other users should
be represented for them.

One proband mentioned that text overlays should contain larger text and another one
that the text was not readable at the edges of the display. In general most users had little
problem reading the hints. However, small text labels for classes or components were
mentioned to be barely readily by many probands. One issue is the display resolution of
the HMDs. Still, many text labels are very small and thus a feature to enlarge text when a
controller points at it would be desirable.

Spectating
The statements about the spectating features received the most mixed feedback. Most

40

5.7. Threats to Validity

people did not feel any nausea but 7 probands either rated '+" or ++” here. It is striking
that all of those 7 probands also stated to be afraid of heights. The other way around only 5
of the remaining 15 probands were afraid of heights, too. Additionally, the 7 probands who
felt nausea or alike were more afraid of heights than the 5 remaining people who also were
afraid of heights. As the sample size is still quite small we do not want to emphasize this
correlation too much. However, the lose of control during the spectating could be especially
uncomfortable for people who are afraid of heights. This possible connection should be
further researched in future studies.

Unsurprisingly, people who felt nausea or alike stated that they would not use the
spectating feature again. An additional factor for the feedback on statement B4.2 is that the
use cases for the spectate feature were not well motivated by the executed tasks during the
experiment. The probands were standing and had enough area to move around when they
used the spectating feature. In our opinion spectating could potentially be used by people
who sit and do not have much space to move around.

5.7 Threats to Validity

All statement which the probands should rate were phrased positively. Thus it could be that
the probands were more driven to agree with the positively phrased statements. Then again
the probands very clearly disagreed with statement B2.3. Additionally, it is our primary
goal to report tendencies in this evaluation of usability.

Our probands were mostly students, the remaining probands were researchers or people
without a background in computer science. Therefore, the evaluation might give insights
in how well our technology can be used by people who mostly have not much prior
knowledge of software visualization. However, the evaluation is missing probands with a
professional industry background like software architects. As a result this evaluation can
not clearly answer the question how well professional users would rate the current state of
development. This is an important question because professionals are the target audience
for a software like ExplorViz.

The evaluation was conducted under mostly ideal conditions. The computers had no
performance issues and were connected via a fast and reliable LAN network. The probands
also had enough space to walk and it was achieved 360 degree tracking of the HMDs and
controllers without any sensor objects that could possibly block the sensors. It should be
noted that at least the network connection speed and delay do not reflect the typical use
case scenario we designed the software for.

5.8 Summary

Summarized, the probands gave very positive feedback. 22 probands conducted our
experiment in groups of two. The movement options were perceived as intuitive and the

41

5. Evaluation

developed extensions were rated as suitable for teamwork. Only the readability of small
text labels and the spectating feature received a mixed feedback. The raw data of our
evaluation can found in Appendix 7.2. Even though it was our goal to request tendencies,
we conclude due to the evaluation that our approach for collaborative software exploration
in VR is promising and should be followed up on.

42

Chapter 6

Related Work

In this chapter we present related work and compare other approaches to the one we
chose. However, for all we know there are no scientific publications which cover the use
of collaborative VR for software which is similar to ExplorViz. Instead, we take a look at
collaborative approaches for software monitoring and approaches for the use of VR for
software exploration.

[Fittkau et al. 2015a] research the practical use of physical 3D models. Fittkau et al. use
ExplorViz to export models and print those with help of a 3D-printer. In order to print a
larger software model, twelve smaller parts are printed and then glued together. Since a
monochromatic printer is used, the models need to be painted in a time-consuming effort.
More modern but also more expensive hardware would simplify these steps.

Fittkau et al. conducted an experiment using pairs of probands who should solve given
tasks, too. However, Fittkau et. al also try to compare the use of physical models with
collaborative work in front of a monitor. Even though 112 probands participated, the results
are diverging due to the assigned tasks which can hardly be compared between those
approaches. Still, it is assumed that the ability to point at certain parts of software is an
advantage in terms of usability and efficiency.

Concluding, using 3D-printed models is the closest approach to ours in terms of a
collaborative use of ExplorViz.

[Misiak et al. 2018] developed a technology called IslandViz to explore modular software
systems in virtual reality. IslandViz can be used with the HTC Vive, too. As opposed to
the city metaphor which ExplorViz employs, IslandViz uses an island metaphor. Therefore,
bundles are represented as island, packages as regions on those islands and individual
classes are represented as buildings on those islands. To visualize dependencies, islands
can be connected via ports and employed arrows connecting those ports.

Also, in IslandViz a user can move through a virtual room. However, the software
models cannot be moved freely throughout the room. In the middle of the room a virtual
table is placed on which a virtual map is shown. This map represents a three-dimensional
hologram. The map allows for interaction methods like zooming and translation with help
of the controllers. Through this, [Misiak et al. 2018] want to combine different abstraction

43

6. Related Work

layers in one model and allow users to switch abstraction levels by zooming in or out.
ExplorViz employs different abstraction layers by using two different views and nesting
components on a visual level.

Since IslandViz currently can not be used collaboratively, there are no mechanism
implemented which allow the use with multiple users. Concluding, IslandViz uses a
different metaphor to visualize objects and software models are contained in a virtual map.
Other than that, IslandViz is using a similar approach to allow users exploring software
landscapes in virtual reality.

44

Chapter 7

Conclusions and Future Work

In this chapter we, conclude our thesis and describe potential future work.

7.1 Conclusions

In this thesis we presented an approach to use the software visualization tool ExplorViz
collaboratively in virtual reality. We used the HTC Vive as a fundamental hardware and
developed a concept to extend ExplorViz. To do so we designed a new extension for the
backend and built on top of an existing frontend extension. Proceeding from the concept we
presented details of the implementation. In addition to synchronized models we introduced
additional interaction tools for the user. Among other features a menu, text messages and
a representation for other users were introduced.

To validate the usability of our approach we conducted a usablity experiment with 22
probands. The results indicate an overall good usability. The movement through the virtual
room and interaction with models were rated positively. The newly developed menu was
intuitive to use and the current state of development is suitable to be used for team work. It
is important to note that the use of virtual reality had no negative effect like nausea to the
probands. Only the feature which allows to spectate other users received mixed feedback.
Concluding, collaborative virtual reality is a promising technology for exploring software
landscapes.

7.2 Future Work

We have shown that the collaborative use of virtual reality is a promising addition to
ExplorViz. As a next step an evaluation with more probands could lead to further insights
into the practical use of collaborative VR. For that evaluation it would be desirable to have
at least 50 participants or respectively 25 participating groups of two to gain more reliable
information.

Since some participants of the evaluation had problems reading smaller text labels it
would be interesting to research whether improved hardware would lead to an overall
better readability of text and thus improve usability. The displays of the HTC Vive Pro!, a

1https ://www.vive.com/de/product/vive-pro/

45

https://www.vive.com/de/product/vive-pro/

7. Conclusions and Future Work

successor of the HTC Vive, have 78% more pixels than those of the HTC Vive. Furthermore,
there is a wireless adapter for the HTC Vive Pro available which allows the use of VR
without interfering cables. The HTC Vive Pro is already available for purchase and should
work with the existing software without any bigger issues. Thus, we recommend a hardware
upgrade to research potential usability improvements.

In the current state it is not possible to add users dynamically, change passwords or
have any personal data like an email address associated with an account. For this reason
we suggest to include a user management system in the backend and add a new tab to
the web interface to edit the own and in case of an administrator also other user’s account
information.

The long-term goal should be to add support for augmented reality technologies in
ExplorViz. Augmented reality incorporates virtual graphics into the real world. ExplorViz
would make good use of this technology because ExplorViz only contains models which
intuitively could be placed on floors, tables or at walls to work with them. One prominent
hardware device for augmented reality is the Microsoft HoloLens?. One drawback of the
HoloLens is that only a limited part of the user’s field of view can be enriched with
augmented reality. Future hardware could have a bigger field of view and thus be a well
suited addition to virtual reality in ExplorViz.

2https://www.microsoft.com/de-de/hololens

46

https://www.microsoft.com/de-de/hololens

Bibliography

[Billinghurst et al. 2001] M. Billinghurst, H. Kato, and I. Poupyrev. The MagicBook - moving
seamlessly between reality and virtuality. IEEE Computer Graphics and Applications 21.3
(May 2001), pages 6-8. (Cited on page 5)

[Caserta et al. 2011] P. Caserta, O. Zendra, and D. Bodénes. 3D Hierarchical Edge Bundles
to Visualize Relations in a Software City Metaphor. In: 6th IEEE International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT 2011). Williamsburg,
United States, Sept. 2011. (Cited on page 7)

[Fittkau et al. 2015a] F. Fittkau, E. Koppenhagen, and W. Hasselbring. Research Perspective
on Supporting Software Engineering via Physical 3D Models. In: IEEE 3rd Working
Conference on Software Visualization (VISSOFT 2015). 1EEE, Sept. 2015, pages 125-129.
(Cited on pages 2, 43)

[Fittkau et al. 2015b] E. Fittkau, A. Krause, and W. Hasselbring. Exploring Software Cities

in Virtual Reality. In: IEEE 3rd Working Conference on Software Visualization (VISSOFT
2015). IEEE, Sept. 2015, pages 130-134. (Cited on page 1)

[Fittkau et al. 2017] F. Fittkau, A. Krause, and W. Hasselbring. Software landscape and
application visualization for system comprehension with explorviz. Information and
Software Technology 87 (2017), pages 259-277. (Cited on page 6)

[Fittkau et al. 2015c] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz: Visual Runtime
Behavior Analysis of Enterprise Application Landscapes. In: 23rd European Conference
on Information Systems (ECIS 2015). Mai 2015. (Cited on page 6)

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. Live Trace Visual-
ization for Comprehending Large Software Landscapes: The ExplorViz Approach. In:
1st IEEE International Working Conference on Software Visualization (VISSOFT 2013). Sept.
2013, pages 1-4. (Cited on page 1)

[Hasemeyer 2017] T. Hasemeyer. Kollaboratives Erkunden von Software mithilfe virtueller
Realitat in ExplorViz. Bachelorarbeit. Kiel University, Sept. 2017. (Cited on pages 1, 2,
7, 14)

[Konig 2018] D. Konig. Collaborative Software Exploration with the Oculus Rift in
ExplorViz. Bachelorarbeit. Kiel University, Sept. 2018. (Cited on page 1)

[Liu and Sun 2012] Q. Liu and X. Sun. Research of web real-time communication based on
web socket. International Journal of Communications 5.12 (2012), pages 797-801. (Cited on

page 12)

47

Bibliography

[Misiak et al. 2018] M. Misiak, A. Schreiber, A. Fuhrmann, S. Zur, D. Seider, and L. Nafeie.
IslandViz: A Tool for Visualizing Modular Software Systems in Virtual Reality. In:
6th IEEE International Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT 2018). Koln, Germany, 2018. (Cited on page 43)

[Misue et al. 1995] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages & Computing 6.2 (1995), pages 183-210. (Cited
on page 14)

[Ohzawa 1998] 1. Ohzawa. Mechanisms of stereoscopic vision: the disparity energy model.
Current Opinion in Neurobiology 8.4 (1998), pages 509-515. (Cited on page 5)

[Roberts and Wessler 1970] L. G. Roberts and B. D. Wessler. Computer Network De-
velopment to Achieve Resource Sharing. In: Proceedings of the May 5-7, 1970, Spring
Joint Computer Conference. AFIPS "70 (Spring). Atlantic City, New Jersey: ACM, 1970,
pages 543-549. (Cited on page 12)

[Robertson et al. 1997] G. Robertson, M. Czerwinski, and M. van Dantzich. Immersion
in Desktop Virtual Reality. In: Proceedings of the 10th Annual ACM Symposium on User
Interface Software and Technology. UIST '97. Banff, Alberta, Canada: ACM, 1997, pages 11-
19. (Cited on page 5)

[Sutherland 1968] I. E. Sutherland. A Head-mounted Three Dimensional Display. In:

Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part 1. AFIPS ’68
(Fall, part I). San Francisco, California: ACM, 1968, pages 757-764. (Cited on page 5)

[Zirkelbach et al. 2018] C. Zirkelbach, A. Krause, and W. Hasselbring. On the Modern-
ization of ExplorViz towards a Microservice Architecture. In: Combined Proceedings of
the Workshops of the German Software Engineering Conference 2018. Volume Online Pro-
ceedings for Scientific Conferences and Workshops. Ulm, Germany: CEUR Workshop
Proceedings, Feb. 2018. (Cited on pages 6, 11, 12)

48

Appendix A

49

Dear participant,

we thank you very much for your participation in this experiment. You and
another participant are about to test and evaluate a collaborative virtual reali-
ty (VR) extension to ExplorViz. You are free to quit the evaluation whenever
you are not feeling comfortable anymore. First of all, we would like you to answer
some general questions about you on the next page. This will allow us to add
some context to the results later on. Your answers and test results are anony-
mous. Then we are proceeding by introducing you to ExplorViz and the input
devices for VR. When you have learned the basics about ExplorViz and the
controls you will be asked to solve some exercises together with your partner.
Lastly, you will be asked to rate certain aspects about the user experience. This
will help us improve the extension and tell us how well ExplorViz can be used

with multiple users in virtual reality.

1 General Personal Data

ID:. .o Vive Rift O
Age:
Profession: student [0 researcher other [
Subject of study:l bachelor master [
Gender: male O female diverse [
Do you wear glasses? yes no O
Do you have any visual impairment? yes no O
If so, which: L.

++

0+ ++

+
Experience with objectoriented programming O O O O
Experience with ExplorViz (I U O O
Experience with VR O (| (| (|
Are you claustrophobic? O O O O
Are you afraid of heights? O O O O
Do you suffer from seasickness? O O O O
How well do you know the other proband? (I ([O O

2 Introduction

ExplorViz is a monitoring and visualization software for large software
landscapes. ExplorViz uses two different views for the visualization which are
shown simultaneously with the VR extension. The landscape view is a view of
a software landscape and is particularly suitable to get an overview of
landscapes. Here you can see systems (grey), servers (green) and the software
running on the servers (blue). The communication between software is
represented by orange lines, where the thickness of the lines correlates with the
the number of calls it represents.

The application view represents a three-dimensional model of the software. On
top of a grey foundation software packages (components) are shown in green,
which in turn can contain components or individual classes (blue). The height
of the blue blocks indicates the number of objects belonging to the class. Here,
too, the communication between objects is visualized with orange lines. You
can select individual classes or call up additional information for a class.

This type of representation is intended to be a metaphor for a
three-dimensional city, with the classes here representing (high-)buildings and
communication between classes are streets.

Now that you are familiar with the concepts we would like you to get familiar
with the controls. On the next page there is an overview of the functionalities
of all buttons on the controllers you are about to use. Please use the HTC
Vive or Oculus Rift respectively now while we guide you through all control
options. Feel free to ask questions throughout the experiment of something is

unclear to you.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

3 Tasks

. Connect via the menu.

. Change your height as you like.

Open the user list.

Move and rotate the landscape as you like.

Find the node ’10.0.2.2’.

Find the application "Wiki’ and try to open it.

With how many applications does "Webshop"communicate?

Open the application "Webshop’.

Move and rotate the application "Webshop’ as you like.

Mark the class 'ItemHelper’ which is part oft the application "Webshop’.

How many active instances has the class 'ImplementationHandler’

(located in component org/webshop/kernel /impl)?

Open a second application.

Use the spectate feature (only as long as you are comfortable using it).
The spectated proaband may mark the component labeling in Webshop.
Quit spectating and spectate each other with reversed roles.

Mark component connector in DatabaseConnector.

Quit spectating.

Close all open system and components.

Disconnect via the menu.

4 Rating

++

Moving and rotating the landscape is well realized

I had the impression that I was in the same room with the other user (po-

sitions and state of users, landscape & applications were synchronized)

++

Text overlays were clearly readable

Text overlays were visually appealing (duration, length, position, color, size,

animation)

alike

Proposals for future features

Improvement proposals

Further remarks

Appendix B

57

Controls

’Vive Controllers:

You can target many objects in the virtual environment with the ray of the controller and interact
with them through corresponding buttons. The ray of the left controller is colored black and that of
the right one is colored green.

@: (Left Controller):

Press this button to open the options menu. If in a menu, pressing the button can be used to
navigate back through previous menus.

@®: (Left Controller):

Hold this button down to display a list of users connected to the server. Release the button to close
the list.

@®: (Right Controller):

Target a 3D application with the ray of the controller and keep this button pressed to bind the 3D
application to the controller. The application now follows all movements of the controller. Release
the button to stop this behavior.

©: (Left Controller):

Target the ground with the ray of the left controller and press this button to teleport yourself to the
displayed circle on the ground. Target the red "X" above a 3D application with the ray of the
controller and press this button to delete the 3D application. This button can also be used to select
targeted clazzes and closed packages of a 3D application. Consequently the selected entity is
colored red and the associated communication lines are highlighted. If nothing is targeted press
this button again to unselect the entity and restore its color and the commuincation lines.

©: (Right Controller):

Press this button to open/close targeted systems, nodegroups, packages and create 3D
applications out of targeted 2D applications. Target the red "X" above a 3D application with the ray
of the controller and press this button to delete the 3D application. This button can also the used
to navigate through menus.

O: (Right Controller):

Press this button to display information about the targeted entity.

>Keyboard:

o : Move the camera upwards

o : Move the camera downwards

o : Move the camera leftwards

o : Move the camera rightwards

e -+ Move camera forwards (Zoom in)

e - :Move camera backward (Zoom out)

e

e g : Rotate the environment forwards

e u : Rotate the environment backwards

Appendix C

61

61980 G8€L°0 €6L0°L ¢€Lc’0 0ce0’}l 12060 8G¢6°0 8196°. as

1606} SYSY0 16060 GSPO'0 €422°0 9€9¢°0 0000 806°'5Z IOVHIAY
Z 0 € 0 0 0 0 ou ou elew vyg Aydosojyd/ Aioysiy Juspnis 9z Wy L
Z Z Z 0 0 0 Z uoIsIA 21d02s08.8]s %06 sak soh olew Jaylo 0 OAIA LL
‘hoys
€ 0 I 0 € 0 4 ou ou oew VIN SO spnis zz Wy oL
€ L 0 0 L 0 € ou ou slew ve SO Juspnis zg OANIA Ol
L 0 0 0 0 0 4 ou ou sew ve SO Juspnis zz W 6
4 0 I L 0 0 4 ou ou sew vea SO spnis zz ONIA 6
€ 0 0 0 0 0 4 Buo soAf soh olewsy ve SO juspnis 61 Wy 8
€ 0 € 0 Z 0 Z Moys sohk sok slew vd SO juspnis zz OAIA 8
L L I 0 € 0 € ou ou oew vea SO uspnis |z Wy L
L 0 0 0 0 0 € ou ou sew vdg SO ssauisnq juspnis gz ONA L
} L 0 0 0 0 z ou ou sew vd SO ssauisnq Juspnis zzg W 9
L 0 L 0 0 0 € Hoys s seh oW vea SO Juspnis zzg SNIA 9
L 0 z 0 L 0 4 ou ou sew ve SO juspnys We g
L 0 0 0 0 0 € ou ou slew vd SO Juepnis zzg BAIN G
L 0 I 0 0 0 4 Hoys SEI sok slew vd SO Juspnis g Wy v
L 0 0 0 0 0 z usaib/pas Jybils saAh ou oew vea SO spnis 0z ONA ¥
Z 0 l 0 0 | [Hoys soh sak alew SO J8ydiessal gg Y €
Z 0 0 0 1 1 Z ou ou alew SO JI8ydlessal G OAIA €
I Z Z 0 Z e Z uaaib/pal sah soh olew gD Jayolessal gz Wy 2z
Z Z Z 0 Z € Z Joys sah soA olew SO Jayolessal zg AAIN 2
€ L 0 0 l 0 0 yoys SN sok olewsy ABojoig Juspnis ¢z Wy
I 0 0 0 0 0 0 ou Oou 9jewsy Jayoea) Juapnis juapnis g OAIN L

MoOUY |I9M Ssauydiseag sjyblaH odisne|) dA zZIAd0|dXT 00 JUSIYM Juawitedw [ensIA ¢ SISSe|D J19pudn) j03lqng uoissajoid aby HIN/OAIA al

L09Y'L 6LLY'L 62€L°L L0S6'0 G20L°0 L9.¥°0 ¢066°0 960S°0 LEGO'L €989°0 G8EL'0 ¢¥6C°0 L8060 89650 G20L°0 682Y'0 8SvC L A3as

81890 £2.2°0- GS¥0'L GSY0'L €12.°L 8L89°'L ¥OCL'L GGvG'L 9€9€’) LZl/L'L- GG¥GL L606'L 606G} G¥Sv'L €L¢L°)V LZlL'L ¥OEL’| JOVYHIAVY
¢818°0 0000°L- 0000} 8I8L'} GSPG'L €L¢L°)V [clZ'L SSvS'L €/¢/L°) 0000°¢C- €421 0000°C €4¢L°) v9€9°L €12l €.¢/.°'L 6060} SAIN
GG¥G'0 GG¥S°0- 6060°L L6060 L606°L ¥9€9°L 0000°L GS¥S'L 0000°L GSvS'L- 9€9€°L ¢8L8'L S¥S¥'L Lclc'L €1¢.°L 2818l 818L°L B
- [4 2 3 14 4 4 14 14 A [4 2 14 b [4 4 b- o L
b A 4 14 14 4 [4 14 14 A [4 14 14 14 [4 4 b= SAIN L
4 A 4 3 4 4 4 14 - A I 14 4 b - I 14 W 0l
4 A I 3 4 (4 4 14 14 A [4 14 14 4 4 4 3 SAIA 0l
14 - 4 14 14 4 I 3 0 A I 14 14 0 [4 4 14 Bo 6
14 A 4 14 14 4 I 14 14 A [4 4 14 14 [4 4 14 9NN 6
b A 4 b- 4 I 4 14 4 A 4 I 14 4 4 4 4 B 8
A I b- b- - I L- 14 4 A 4 14 14 4 4 4 b- 9NN 8
A I b- 14 14 14 I 14 14 b [4 14 14 4 [4 4 A B £
b - b- 3 b 4 I 3 3 A I 4 14 b [4 2 3 ONIN L
b b- 2 3 14 I I 3 14 b- [4 14 14 b [4 4 3 Bd 9
b I 4 3 14 14 I 14 4 A I 14 3 b I 4 14 9NN 9
b I 4 3 14 14 I 14 14 A [4 14 3 14 [4 4 3 Bd g
A - 2 14 3 4 4 3 3 A I 14 3 4 I 2 14 9NN G
A A 2 3 3 I b- 3 - A I 4 A b [4 4 14 e v
b A 4 3 4 I 4 3 b A 4 14 4 b I 4 3 9NN ¥
b A L- 14 4 4 b- 3 4 - 4 14 14 b 4 I 14 B €
14 A 4 14 14 4 I 3 14 A [4 14 3 14 4 4 14 9NN €
b I 4 b- 14 [4 4 14 - A - 14 14 14 [4 4 14 B ¢
b I I 3 14 I I 14 14 A [4 4 14 14 4 I 3 9NN ¢
14 - I 3 4 I I 3 4 A I 14 3 b 4 4 4 Wy L
4 A 0 3 14 4 [4 3 14 A 4 14 14 b 4 4 14 SAIN L
¢va L'vad 9'¢gd g¢d vea ¢€¢€d <¢ead L'ea vea ¢€¢a ¢ca Led Sl9d via €iga <¢ig 1’9 SAIAMY ai
9l Gl b ol 6 PA 9 14 Ll 14 €l 8 ¢l S € 4 3 :aded UO#

Jassaq yoou uaybiybly yoepysiy :g'Lg

UasSE[Y aulay Inj UsYUYOS 819%0Ib -
. 1dw, JYoIu ‘uagialyossne UssSely - iz
uuey usblaz ‘mja 0S yone yois uew uusm ‘Bissnjagn isi snpow Joyejoads | vg
usuuQy Uagal|yos Uew a)j|0s nuaw Jojejoads :|°eq

enby \ Jassep) Bungabuwin
puens
(uaznauy wiaqg yosnesabuamyosiase Jiw) Jase] Jayolp
sonsAor Jw uayaiq
SYUI| UBQO Yoeu uopng uagyallyos Lo
S e Jaye 11pg
Apog e wayy 8AI9 1z'eq
S| e Joye ¢zg
a|doad # ‘e2 01 dn :z'zg
dAI}INU| di0W SIaSE| YyIm Buimouys :G'Lg

Buneyoads sjiym ajqesolo nuaw ayejoads
uoneoldde ayy a1 adeospue| aaow
Jajjews agAew pue uoneoldde ay} 0} Joso|o uoneoldde a8sojo 0} X pad :LD

37avAv3Id SAVMTVY LON SINVN NOILYOITddY :G'€4d

JDIN 39 ATNOM SHVLVAY Z'€d

snpoj\ uoneolddy @ adeospue] Wi UagalyosIaA Saydl|palyosIaun €D

1peIS Jop ,ulepuemyoing, :zd

uaba||oy] Iny JejeAy 1D

N6 a1em usyouuBWYOINS :Z'€q

éeym uoj njasn ig'Lg

J197 uassimab Jaule Yyoeu :g'Lg

"1oubleab zjesuig usjyoe usp Jny JYdoIU YoIINWIBA Jaqy “AlNjul Jwesabsul pun Bissny) Jyss €D
uayoew Jeqsa)| Jassaq "0}a uauoleyi|ddy UoA sjageT :zd

YOS||0U0D WP W uoneddy Jop uonejoy Lo

uoneylddy Jap 189 ,ejep ou, ‘g’z ‘uasa| JoMYDSs aIS Y2l SJUU0y BP pun puey We Jyas ualem ayduel :G'cg
£S18SN 18YJ0 JO p|al} 1X8) Moys :z'sg

uazjnu uonejoyY Jn} S|jejuaga ¥onS-||j0uo) auiab apinm i1 L g

‘auop ||om ‘Buijes) woos swes ayy ul 1ay3aboy Bupiom ,|eal, e sapirold UuoISusIxa-yA ayl €D
panoidwi pjnod suoneoldde jo Buonejol +
(nuaw eln) Ayjigeded jasal JusWBAOW +
(sweysAs ‘sasse|o ‘sjusuodwod) sjaqey Jo Ajjiqipeal + :zd
(anBojelp djay)
(ueledsueui-jey) buiddew Jajj01u00 Buimoys :uondo nusw : 1D
(P®102UU09 "SA NUBW) SBWIBWOS Jualayip Joyoue ABlaAO :9'cqg

puniBisjulH JaIsuQyos ‘uagle 818ssaq :gD

uayopoysewuswlld "9z |yep yoeu anbi4 auls Japo os dyeebun -> Buimelp uosiad yous, Bun@isieq alessaq 1D

puniBisjuiy Jasspuayoaidsue gD
syleway

SN
uy

SN

B

BAIN

B

SN

B

AN

uy
QAN
SNAMNY

9
S

S

jlyoewab geds jeH €0

Bunbamag 19q uapuimyosian sybiiybiH :zo

"0}8 uagJenualy ‘spunibisjuiy ‘p Buniaisijeuosiad 1D
Hysj uoheloy :L°1g SANIA LL

PHIMaQ uojing Jap sem uabes aip (M/\ Ul) SUO}NGJS||0JjU0D USp Ue s|age| suldy :gzd
uoipuniyongs aulg
uayaib Bunuiapug Jap sne apdlqo

Bunbamag ayoiuaINuURUOY (LD

SO\ :Z'vg

ON:L'¥9

uasem Bue| nz als uuam uapIuyosabge uapinm |age ayouely :9'eq

ula]y Sem}a uaiem ayouep :g'eq

ON :€'Z9

uoyos jey ajelan) alp pun zje|d Usp uew UUBpA :2'29g

SYOI|Y dUIdZUIB BSIA UBYDSSI] UId Jyoneld Uely L9

BunBamag ayollIaINUIUOY BUIBY ‘UByalpisq|es auldY €19

uauuQy nz uayaib Bunulapul Joap sne ap_lqO yolauyly aiem s3 :2° L9 wy ol

aseydsow)es)agly a)du Jyss €D
16197 jnesp uew uuam ‘uiagolblian 1xa| BejyosIon :9'€g
(a)11g Jap ue yone jyaIa||alA 16al|) uId NZ Japo HEeyosun asiam|is} :G'eq aANIA 0L
snNoQ Jap ,wney-sbunuyol, Wi spueH alp "g'z aim ‘ug||gisiep Jadigy sie Jauped-dood uaq :zd
Jynjue wyasusabueun sem}d YoIs S8 ep ‘punlis) wap Jw Jnu yoopar :Z'v9
WIWIYos SI9puosaq 1yolu Jage ‘|lynyas) sajuyomabun :1°yg

BusImyos Jage }sI uoeyiunwwoy| ‘e uspal yne usbloz nz semis wn :Z'zg wy 6

ulayolape Nz Jey|iqoy wn usblazue Jayndj Usisey| usne|g :zod AN 6

Y 8

anipjadsiad Jausbie sne Jojyom 0S8IMOS oIS Jynj pun 1agep uoyos ul/ieyoeqoag sie YA Jep ul uew jsi dizuld Wy ‘s jwesabsul 8poj-10}e}0ads Jap [[OAUUIS BIM ‘YOI FIoM Yo :Z've aNIA 8

uabamaq Uiy Josn WNZ SEM}S J8}SUS4-0jU] puNn NUSIN UOA BunBiap :zD
Bunjje)sieq Jajeuoisuawip-z 1abizjal nz zyesuabas) wy ‘usyoew nz Jeqyyols Jassaq uabunpuiqiap wn ‘udbny sje bun@isieq 1D
uonyund aydl|zynu Yoipiim suisy jeH 2'y9
ua||ejebine yoIpuIm IYOIN 19°eq
[lgeisul ajelawiel aIp 19s S|e ‘0s apjIm s3 €29
uIas J18ssaq UanaT Jysw 1ag ayuuy ‘usybiiybiH aip ‘Jeneyosnz pun ‘uuey uagalyoslaA Jap ‘e)e uig iz'zg
JaAlIiniul [8IA 3sI usBamaq usuoneyiddy am neuss) :1° L g uy /2
uapJam 1BsSSagJaA 9)(|0S uajuauodwoy| UOA Uagalyos 1aq ulaxoeyy, waiyosyos|ig / 6et:zo
(1s918b yoipuabie Jage podaja] yoinp yoljuiayosiyem)
‘usyaiznzuel SeM}a Jil WN ‘Usly Usp JIiW [SIA Jyas Yol Japni uejuswow
‘usuuUEy Nz uayas J1assaq ‘Msn uojljeyidde Jauls 18} wn }no/ul WoozZ ;1D OANIN L
yoljpueiswin Ja||0Jjuo) Ue uasse[y Nz soju| ayoljziesnz :9'cqg
peyosun Bluam uie Jem a||ug g'€g
Jayoeyuls jsi yonsAor yw uonebireN L9 o 9

(punoJb ay) ybnouyy ob 0} 8|ge aq },up|noys noA Jo) punoib ayy ybnouyy pagqelb aq o} a|qe aq p|noys suolesldde
‘panow s| uoneoldde ay} JI swes ayy Aejs pinoys Bunybiybiy :apow Jojeyoads :zH
abesn Jo oiyel) 8z||oquAS 0} SUOI}OBUUOD pajewiue ;LD
uresys 9ke 1" yg o Ll

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Document Structure

	2 Foundations and Technologies
	2.1 Virtual Reality
	2.2 HTC Vive
	2.3 ExplorViz
	2.4 ExplorViz VR extension

	3 Concept
	3.1 Architecture
	3.2 Backend extension
	3.3 Frontend extension

	4 Implementation
	4.1 Backend Implementation
	4.1.1 Connection to Frontend Extension
	4.1.2 Synchronization

	4.2 Frontend Implementation
	4.2.1 Connection to Backend Extension
	4.2.2 Main Loop
	4.2.3 Landscape
	4.2.4 Applications
	4.2.5 User Representation
	4.2.6 Menu
	4.2.7 Text messages
	4.2.8 Teleportation & Height Adjustment
	4.2.9 Spectating
	4.2.10 Further Adjustments

	5 Evaluation
	5.1 Goals
	5.2 Questionnaire
	5.3 Experimental Setup
	5.4 Execution of the Experiment
	5.5 Results
	5.6 Discussion
	5.7 Threats to Validity
	5.8 Summary

	6 Related Work
	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	Appendix A
	Appendix B
	Appendix C

