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ABSTRACT
A simple method for initializing coupled general circulation models (CGCMs) using only sea surface temperature (SST)
data is comprehensively tested in an extended set of ensemble hindcasts with the Max-Planck-Institute (MPI) climate
model, MPI-OM/ECHAMS. In the scheme, initial conditions for both atmosphere and ocean are generated by running
the coupled model with SST nudged strongly to observations. Air—sea interaction provides the mechanism through
which SST influences the subsurface. Comparison with observations indicates that the scheme is performing well in the
tropical Pacific.

Results from a 500-yr control run show that the model’s El Nifio Southern Oscillation (ENSO) variability is quite
realistic, in terms of strength, structure and period. The hindcasts performed were six months long, initiated four times
per year, consisted of nine ensemble members, and covered the period 1969-2001. The ensemble was generated by
only varying atmospheric initial conditions, which were sampled from the initialization run to capture intraseasonal
variability. At six-month lead, the model is able to capture all the major ENSO extremes of the period. However,
because of poor sampling of ocean initial conditions and model deficiencies, the ensemble-mean anomaly correlation
skill for Nifio3 SST is only 0.6 at six-month lead. None the less, the results presented here demonstrate the potential of
such a simple scheme, and provide a simple method by which SST information may be better used in more complex

initialization schemes.

1. Introduction

Our understanding of the El Nifio Southern Oscillation phe-
nomenon (ENSO) and our ability to predict it have improved
significantly over the last decade (Latif et al., 1998) due to
better observations (McPhaden et al., 1998) and to modelling
studies (Delecluse et al., 1998). However, our ability to predict
ENSO is still far from perfect (Barnston et al., 1999; Landsea
and Knaff, 2000). Advances in ENSO prediction must come
from both model improvements and better constraining initial
conditions. The latter is particularly important in the ocean, be-
cause the memory for ENSO resides there (Neelin et al., 1998).
Indeed, the importance of ocean subsurface data in making
ENSO predictions has been demonstrated in a number of studies
(e.g. Kleeman et al., 1995; Ji and Leetmaa, 1997; Rosati et al.,
1997).

The focus of this paper is to explore the use of sea surface tem-
perature (SST) data in initializing ENSO forecasts with coupled
general circulation models (CGCMs). Because the relationship

* Corresponding author.
e-mail: nkeenlyside @ifm-geomar.de

340

between ocean heat content and SST is highly non-linear, its
inclusion into ocean data assimilation schemes has been very
limited, and in general its influence has been restricted to the
model’s SST. However, SST is a critical quantity for air—sea in-
teraction, and it is available from satellites with a high degree of
accuracy, with high spatial and temporal resolution, and in near
real time. These data are also relatively cheap in comparison
to ocean-based observing systems. Thus, its use in initializing
scheme needs to be further studied.

The initialization method implemented here is simply to run
the coupled model with the SST strongly nudged to observa-
tions. Through air—sea interaction, the SST is able to initialize
the ocean heat content by forcing the atmospheric winds. Such
methods have been used successfully for initialization ENSO
predictions with intermediate complexity models (ICMs; e.g.
Zhang et al., 2003). The skill of these ICMs is competitive with
the best CGCM results, and thus is a good demonstration of
the high amount of information contained in SST data and the
potential of such a simple scheme.

To our knowledge, there have only been two attempts to
use such an initialization method in a CGCM. The first was
by Rosati et al. (1996), but they had only limited success.
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The second was by Oberhuber et al. (1998) for a retrospective
forecast of the 1997-1998 El Nifio event. The forecast evolu-
tion was highly realistic. In this paper, this coupled scheme is
tested in a state-of-the-art model, MPI-OM/ECHAMS, by per-
forming an extended set of ensemble hindcasts for the period
1969-2001. In contrast to Oberhuber et al. (1998), this model
is not flux-corrected, and we insert SST and not SST anomalies
(SSTa).

The choice to insert SST and not SSTa was made for several
reasons. First, the model’s representation of ENSO and the as-
sociated teleconnections are likely to be better represented when
the model’s mean state is close to the observed. Secondly, the as-
similation of SSTa is not completely consistent, because there are
differences between the spatial structure and amplitude of mod-
elled and observed SSTa. Thirdly, it is our opinion that much
can be gained in terms of model improvements by testing the
model in such a way that model deficiencies are identified, as
has been the case in this work. Finally, we assumed, somewhat
naively, that the model’s skill would not be strongly affected by
systematic errors.

Another recent effort to better include SST data in initializing
ENSO forecasts has been proposed by Tang et al. (2004). In their
scheme, a statistically derived relationship between SST and
subsurface temperature is used in combination with an ocean
data assimilation system. They demonstrate that their scheme
produces good results in ENSO hindcast experiments with a
hybrid coupled model.

The initialization scheme presented here has several advan-
tages: it is simple, it is dynamically consistent (in particular, in
terms of equatorial ocean currents; e.g. Burgers et al., 2002),
it is a consistent method of initializing both atmospheric and
ocean components of a CGCM, and it makes use of good- and
high-quality data. There are also several disadvantages: no use
of subsurface data is made, atmospheric variability unrelated to
SST variability is not captured, there is a heavy reliance on mod-
els (although they are clearly far from perfect), and because the
scheme is simple it is also not optimal.

An outline of the paper is as follows. In Section 2 we describe
the model, initialization scheme, ensemble member generation
method and experiments. In Section 3, we present the results
from a 500-yr climate control run of the model, with a focus
on tropical Pacific variability. Results of the SST-based initial-
ization scheme and of the ensemble member generation method
are given in Sections 4 and 5, respectively. Hindcast results are
presented in Section 6. In the final section, we give a discussion
and conclusions.

The hindcast simulations in this study were performed as
part of European Union (EU) project DEMETER (Palmer et al.,
2004). In this paper only results relevant to the assessment of the
initialization scheme are presented. An independent and compre-
hensive analysis of the hindcast performance of the model (and
all other DEMETER models) is available on the DEMETER web
page (http://www.ecmwf.int/research/demeter/).
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2. Model description and experimental design

The Max-Planck-Institut (MPI) coupled model consists of the
ECHAMS atmospheric GCM and the MPI-OM ocean GCM,
coupled with the OASIS coupler (Valcke et al., 2003). No flux
correction is applied in the model. The coupled model was used,
for instance, by Latif et al. (2004), to study the multidecadal vari-
ability in the North Atlantic. ECHAMS is the latest version of
the ECHAM spectral model; here, it is run at T42 resolution with
19 vertical levels. Model dynamics and physics are described in
detail by Roeckner et al. (2003). MPI-OM is the latest version of
the HOPE model. It is fully described by Marsland et al. (2003).
The model equations are discretized on an orthogonal curvi-
linear C-grid. The grid used here has its poles over Greenland
and Antarctica (Fig. 1). Equatorial horizontal grid refinement in
the tropics gives an average longitude—latitude grid spacing of
2.8° x 0.5° between 10°S and 10°N. There are 23 unevenly
spaced levels in the vertical, with 10 over the upper 300 m. A
sea-ice model, whose dynamics are based on Hibler (1979), is
included in the oceanic component.

A simple analysis scheme was implemented into the model
to generate the initial conditions for the ENSO hindcasts. The
scheme is essentially that described by Oberhuber et al. (1998),
except that here the full SSTs, as opposed to anomalies, were
ingested into the model. Specifically, the coupled model is run
with SSTs strongly nudged to observations: between 30°S and
30°N the damping constant equals 0.25d (3.8 x 10* Wm™' K~');
poleward of these latitudes the damping constant decreases lin-
early to zero at 60°S and 60°N. The National Center for En-
vironmental Prediction (NCEP) reanalysis (Kalnay et al., 1996)
skin temperature (obtained from the Climate Diagnostics Center;
see http://www.cdc.noaa.gov) is used for the observed SST. Post
November 1981, these data correspond to an optimal interpola-
tion analysis of SST linearly interpolated to daily values. Prior
to this, the data are an EOF-based reconstruction of observed
SSTs.

The basis for this scheme is that in the tropical Pacific (and
throughout large regions of the tropics) on ENSO time-scales
air—sea interaction is responsible for a strong relationship among
anomalous SST, convection, surface wind stress and ocean heat
content (e.g. McPhaden et al., 1998). Thus, the observed SSTs,

Fig 1. Ocean model grid.
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through forcing the atmospheric winds, are able to (dynamically)
force ocean heat content. Sensitivity to the nudging strength was
not investigated, because the aim was to force the ocean as close
to the observations as possible. However, this tight constraint
may have some undesired side effects, as discussed below.

The hindcasts were performed in ensemble mode, nine mem-
bers per hindcast. Ensemble forecasting recognizes that the sys-
tem considered is non-linear and, as such, it aims to provide a
probability distribution of possible outcomes based on known
uncertainties. These uncertainties not only include uncertain-
ties in initial conditions but also, for example, the influence of
stochastic processes and of uncertainties in model formulations.
The importance of the latter has been demonstrated by the EU
project DEMETER (Palmer et al., 2004). Here, only uncertain-
ties in initial conditions are considered.

To provide a realistic measure of uncertainties in initial condi-
tions, initial conditions must project on to the maximal growing
modes or singular vectors of the system. However, the calcula-
tion of singular vectors of a CGCM is computationally expensive,
because it involves the calculation of the adjoint of the coupled
system. An alternative method for calculating climatically rele-
vant singular vectors has been proposed by Kleeman et al. (2003).
Here, instead, a more pragmatic approach is taken that attempts
to sample intraseasonal variability on the 30-60 d time-scale.
Observational and modelling studies indicate that intraseasonal
variability may have a significant impact on the evolution and
may even trigger El Nifio events (Latif et al., 1991; McPhaden,
1999; Lengaigne et al., 2004).

The initial conditions for the nine ensemble members only dif-
fer in the atmospheric component; ocean initial conditions are
unchanged. The atmospheric initial conditions are taken from the
coupled initialization run with a 5-d separation, starting 20 d be-
fore the hindcast start date and finishing 20 d after. Because only
atmospheric conditions are varied, an imbalance between ocean
and atmosphere components exists. The shock of this imbalance
has not been investigated explicitly, but appears to be of mi-
nor importance, because no obvious systematic difference exists
between the trajectories of perturbed and unperturbed hindcasts.

In this paper, we present results from a number of different
experiments. The tropical variability of the model is presented
as simulated in a 500-yr control run (Section 3). For this simu-
lation, the ocean initial conditions were taken from an extended
climatologically forced ocean-only simulation (Jungclaus et al.,
private communication). Coupled initialization runs were per-
formed over two periods: January 1967 to December 1986 and
January 1984 to December 2001. The data from these runs were
used to initialize hindcasts over the period 1969-2001. No data
were used from the first two years of the two initialization runs
to allow for model spin up. The only reason the initialization was
split into two periods was that the early set of hindcasts was not
initially planned. The hindcasts were started four times per year
(1 January, 1 May, 1 August and 1 November), were six months
long, and consisted of nine ensemble members.

3. Coupled ENSO variability

The coupled model has been run with no flux correction for
500 yr. After an initial drift, of no longer than 50 yr, the model’s
climate remains stable. For the global mean 10-m ocean temper-
ature, the initial drift is around 0.5°C, and thereafter the mean
remains close to 18.1°C. The global (Atlantic) mean meridional
overturning streamfunction has a maximum of 18 Sv (20 Sv)
at 20°N (30°N). At 20°N, the northward poleward heat trans-
port is 1.8 PW in the global average, well within the range of
observed estimates, and 0.85 PW averaged over the Atlantic,
somewhat weaker than observed estimates. The model also has
a realistic simulation of sea-ice variability and extent. These and
other details of the model’s global climate simulation are further
described by Jungclaus et al. (private communication).
Common to many coupled models (Latif et al., 2001; Davey
etal., 2002), the model exhibits significant mean biases (Fig. 2).
Of most significance to ENSO simulation, the model’s equato-
rial cold tongue in the Pacific is too pronounced and extends
too far westward, with SST in the region more than 4°C colder
than observed. This SST cold bias is almost entirely established
with in the first few years of the integration, and after 30 yr
the bias remains unchanged. Extensive coupled and uncoupled
sensitivity experiments have been performed to determine the
nature of and to reduce the tropical SST cold bias. However,
these tests have remained largely unsuccessful, with the cold
bias a robust feature of the model. Associated with the SST bias,
the zonal winds across the tropics are too strong, and a double in-
tertropical convergence zone (ITCZ) is simulated in the Pacific.
The model’s annual cycle in the tropics (not shown) is also not
well simulated: the SST in the eastern equatorial Pacific has a

50 110w 10°W
LONGITUDE

Fig 2. Mean model SST bias (modelled minus observed). Observed
SST are from Reynolds and Smith (1994). Mean model SST is
calculated from years 31 to 400 of the control run. The contour interval
is 2°C. Negative values are shaded lightly, and positive values greater

than 8°C are shaded the darkest.
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Fig 3. Nifio3 averaged SSTa from the control run.

semi-annual cycle with peaks (troughs) in June (May) and
November (September), in contrast to the observed annual cy-
cle. Related to the poorly simulated annual cycle, variability of
eastern Pacific SSTa is also semi-annual with variability peaking
in boreal winter and summer. This contrasts with the observed
phase locking to the annual cycle, with strongest variability oc-
curring in boreal winter.

Despite the deficiencies in the model’s climatology, the model
realistically simulates ENSO variability. The strength of tropical
Pacific SST variability compares well to observations, as can be
seen from the Nifio3 (150°W-90°W, 5°S-5°N averaged) time
series (Fig. 3). The standard deviation of the modelled Nifio3
SSTa (year 51-500) is 1.1°C, whereas the observed is between
0.8°C and 1°C, depending on the period considered. However,
the model simulates stronger than observed La Nifia events: the
simulated minimum Nifio3 SSTa is close to —4°C, whereas in
observations it is not more than —2°C. The spectrum of the
model’s Nifio3 SST variability has a clear peak at 4 yr, comparing
well with the observed spectrum (Fig. 4).

The structure of the ENSO-related variability can be seen
from the correlation of Nifio3 SSTa with SST and atmospheric
fields (Fig. 5). The pattern of SST variability (Fig. 5a) is in good
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Spectrum of Nino3 SST anomalies
Detrended HADSST (1870-1998) and model (30-400) data
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Fig 4. Modelled and observed Nifio3 SSTa power spectra. Modelled
spectra calculated from years 31 to 400 of the control run. Observations
(1870-1998) are the HADISST data set (Rayner et al., 2003) from the
Hadley Centre, UK Meteorological Office. Data are detrended, and
spectra are calculated using a Bartlett window of 8 yr.

agreement with observations (Slutz et al., 1985), both in structure
and strength. Notable discrepancies are that SST variability in the
Pacific is too equatorially confined and extends across the warm
pool. The latter is consistent with the extension of the model’s
equatorial SST cold bias into the warm pool. The variability in
the Indian and Atlantic oceans is quite realistic, except for the
positive correlations (above 0.25) in equatorial Atlantic region;
a weak negative correlation is seen in observations (Slutz et al.,
1985).

The SLP variability (Fig. 5c) with a dipole structure across
the tropical basins is quite realistic, although the correlation in
the eastern Pacific is stronger than observed (Slutz et al., 1985).
Similar to the SST variability, SLP variability is somewhat equa-
torially confined in the Pacific. Zonal and meridional wind vari-
abilities (Figs. 5d and e) show an in-phase weakening of the
Walker circulation and a strengthening the Hadley circulation,
in general agreement with observations, although correlations
are again stronger than observed and obvious biases exist (e.g.
the zonal wind response is too far east; Slutz et al., 1985). The
precipitation pattern (Fig. 5f) is somewhat unrealistic, with neg-
ative precipitation anomalies in the central eastern Pacific and a
double-banded precipitation structure across the entire Pacific.
The latter is associated with the model’s double ITCZ.

Hovmoeller plots of equatorial zonal wind stress, heat con-
tent and SST show that the relation among these variables is
roughly consistent with observations: wind stress anomalies in
the western and central Pacific force heat content anomalies,
which propagate eastward and influence SST variability in the
eastern Pacific (Fig. 6). However, wind stress anomalies prop-
agate too rapidly and too far eastward, and are weaker than
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Fig 5. Correlation between modelled Nifilo3 SSTa and anomalies of (a)
SST, (b) surface air temperature, (c) sea level pressure, (d) zonal and
(e) meridional wind stress, and (f) precipitation. Model data are from
years 31 to 400 of the control run. The contour interval is 0.25, and
dark (light) shading indicates values larger (less) than 0.25 (—0.25).
There is an extra solid (dashed) contour for 0.125 (—0.125) for Fig. 5a.

observed. Cross-correlation analysis between Niflo3 SSTa and
equatorial heat content (not shown) indicates the buildup of equa-
torial heat content anomalies in the west and their subsequent
eastward propagation prior to an ENSO extreme is realistic, al-
though slightly weaker and faster than observed. The strength of
SST variability in the east is as observed, but there is a too pro-
nounced westward propagating component in the SSTa, which
extend unrealistically across the warm pool.

The model’s comparitively good simulation of ENSO vari-
ability indicates that the model realistically captures air—sea in-
teractions in the tropical Pacific. As is the case in other coupled
models, a realistic simulation of the mean climate and annual
cycle of the tropical Pacific does not appear to be a prerequisite
for a good ENSO simulation (Latif et al., 2001).

4. Assimilation scheme

In this section, results from the analysis period 1984-2001 are
compared with observations. The earlier period is not considered,

because subsurface observations are scarce. The mean zonal and
meridional winds in the tropical Pacific simulated by the analysis
(not shown) were compared with Florida State University (FSU;
Stricherz et al., 1997) and Hellerman and Rosenstein (1983) ob-
servations and to the NCEP reanalysis (Kalnay et al., 1996),
and in terms of structure and strength were within the uncer-
tainties of these wind products. Comparison of simulated and
observed surface zonal wind stress anomalies averaged over the
Nifio4 region, a region of central importance to ENSO, shows
that the atmospheric model realistically captures the observed in-
terannual variability (Fig. 7), with a correlation around 0.8. The
model does not capture the observed higher frequency variabil-
ity. This is consistent with variability associated with weather
and the Madden—Julian Oscillation not being strongly related to
SSTa.

The simulated mean thermocline (20° isotherm) depth, a proxy
for ocean heat content, in the equatorial Pacific is in good
agreement with observations (not shown). Simulated interan-
nual variability (Fig. 8) agrees well with tropical atmosphere
ocean (TAO)/TRITON observations (McPhaden et al., 1998).
The correlation is close to 0.9 in the west and 0.8 in the east
(Fig. 9a). The root-mean-square (RMS) error is around 10 m in
the west and 18 m in the east, which is smaller than the observed
standard deviation of 20° isotherm depth variability for the same
period: around 16 m at 180°E, 0°N and 26 m at 125°W, 0°N
(Fig. 9c). However, the strength of the simulated variability is
10-20% stronger than observed. This is particularly evident dur-
ing the 1997-1998 El Niflo event, with both maximum positive
and negative anomalies 20—40 m larger than observed (Fig. 8).

For comparison, results are shown from an ocean model run
forced by daily fluxes of momentum, fresh water and heat (as
calculated with standard bulk formulas) from the NCEP reanal-
ysis (Kalnay et al., 1996) from 1948 to 2000, using an identi-
cal set-up of the ocean model as in the coupled and hindcast
simulations. Such a run could have provided an alternative and
more conventional initialization method for the hindcasts per-
formed here. Furthermore, it might be expected that these ini-
tial conditions would be more accurate than those generated by
our method, because the atmospheric forcing contains the ob-
served intraseasonal variability. However, the simulation of 20°
isotherm depth anomalies along the equator is not noticeably
better than those from the initialization run (Figs. 9a and c). In
fact, the RMS error in the western and central Pacific is sig-
nificantly higher, and also in the earlier part of the year. On
the equator, 20° isotherm depth variability of the NCEP forced
run is up to 40% weaker than observed in the western central
Pacific, while in the east it is 10-20% too strong (Fig. 9a).
This result suggests that the too strong variability simulated
in the initialization run is partly atmospheric in origin. Anal-
ysis of the simulated atmospheric winds shows that atmospheric
variability is overly strong in the eastern central Pacific, imply-
ing the atmospheric sensitivity to SSTa is overestimated by the
model.
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Fig 6. Hovmoeller diagrams of 2°S—2°N averaged anomalies of (a) zonal wind stress, (b) 0-300 m heat content and (c) SST. A three-month running
mean has been applied. The contour intervals for (a), (b) and (c) are 2, 1 and 1, respectively.
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Fig 7. Nifio4 averaged wind stress anomalies from the analysis run (thick line), FSU (dotted line) and NCEP reanalysis (thin line). FSU wind
stresses are calculated using a drag coefficient of 0.0013 and an air density of 1.2 kg m—>.
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A certain fraction of the error in the initial conditions may
be attributed directly to the inability of the coupled initialization
scheme to capture intraseasonal variability. To assess this contri-
bution, the standard deviation of the low pass filtered observed
and simulated 20° isotherm depth variability was calculated. The
data were low pass filtered by applying a four-month running
mean and then subtracting the result from the monthly mean
values. The standard deviation of the observations is around 8
m in the east and 5 m in the west — slightly stronger than the
McPhaden (2003) estimate, because of the slightly different fil-
tering applied here — whereas the simulated (initialization and
NCEP runs) is around 9 min the east and 3 m in the west (Fig. 9c).
If intraseasonal variability were the only source of error, then the

150°W
LONGITUDE

one point linear interpolation in longitude.
110°W

Units are meters. The contour interval is 20
m, with positive values shaded.

RMS error would be equal to +/2 times the standard deviation
of the intraseasonal variability, and so would be between 11 and
14 m in the east and between 4 and 7 m in the west. This is
consistent with the RMS difference between the initialization
run and a second run (Fig. 9c), identical to the initializa-
tion run, but numerically perturbed (details below). Thus, the
schemes inability to capture intraseasonal variability accounts
for somewhere between 40-80% of the total error. None the
less, uncertainties due to intraseasonal variability alone cannot
account for all the RMS error. Thus, clearly other processes
(errors in surface forcing and ocean model physics) also con-
tribute strongly to analysis errors. This is supported by the fact
that the RMS errors of the initialization run and the NCEP
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two perturbed initialization runs (dotted line). Standard deviation of intraseasonal variability for observations (dash-dotted line with stars),
initialization run (thick solid line with stars) and NCEP run (dotted line with stars). Mean ensemble spread in first hindcast month (thick solid line
with open circles). (d) Zonally averaged RMS errors and difference as in (c) except as a function of calendar month.

forced run are comparable (Fig. 9¢), even though the latter
forcing should contain the observed atmospheric intraseasonal
variability.

A second coupled initialization run was performed for the
period 1984-2001, to both quantify the impact of intraseasonal
atmospheric variability on ocean initial conditions and to analyse
the nudging term in the SST equation (used to constrain the
SST to observation) and its impact on the hindcasts. The latter
is discussed in Section 6. The run apart from a recompilation
of the same model with heat budget terms output should have
been identical to the initialization run discussed here, and indeed
the results were very similar. The differences between these runs
result from atmospheric variability not forced by SST variability.
Thus, the comparison of these runs provides an estimate of the
upper limit of skill of the coupled initialization scheme. The
correlation of equatorial 20° isotherm depth variability between
the two schemes is close to 1 in the west and 0.9 in the east
(Fig. 9a). The RMS difference is around 6 m in the west and 13 m
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in the east (Fig. 9b), which as discussed above is consistent with
the magnitude of intraseasonal variability. Clearly, unsampled
intraseasonal variability is responsible for significant errors in
ocean initial conditions.

Seasonally, the correlations (RMS difference) between these
two runs are highest (lowest) in boreal spring and summer
(Figs. 9b and d). This may seem counterintuitive, both because
one may have expected that the atmosphere is only sensitive to
larger SSTa, which tend to peak in boreal winter, and because of
the well-known spring predictability barrier. Seasonally, the cor-
relation skill and RMS error of the initialization run remain quite
constant (Figs. 9b and d), indicating that the skill of the scheme
is largely independent of the strength of SSTa. The seasonal skill
of the NCEP forced run is quite similar to the initialization run,
whereas the RMS error is poorer (Figs. 9b and d). Thus, there is
no indication that the skill of our scheme is biased to any par-
ticular phase of the ENSO cycle, or worse than that of a more
standard initialization method.
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Fig 10. Correlation between modelled and observed sea level
anomalies. The observations are from TOPEX/Poseidon obtained from
the International Research Institute for Climate Prediction (IRI) data
library (http://ingrid.ldgo.columbia.edu/); the analysis was for the
period 10/1992 to 12/2001. The contour interval is 0.2.

A spatial assessment of simulated heat content variabil-
ity is given by the comparison of simulated and observed
(TOPEX/Poseidon) sea level height anomalies (Fig. 10). Corre-
lations are high throughout the equatorial Pacific. In particular,
in the eastern and western Pacific correlations exceed 0.8. The
weaker correlations about the dateline mark the nodal point in sea
level variability in the Pacific. High correlations are also found
in the equatorial Indian Ocean. In the tropical Atlantic, the cor-
relations are weak. The differences between the Pacific and the
Atlantic are consistent with sea level variability in the Atlantic on
these time-scales being significantly weaker. Outside the tropics,
correlations are weak as expected: in the extratropics on seasonal
interannual time-scales atmospheric anomalies generally drive
SSTa (e.g. Peiia et al., 2003). In comparison, the NCEP forced
simulation achieves somewhat better skill (not shown): in the
tropical Pacific, the pattern remains similar, but the regions of
skill above 0.8 now extend right along the equator, and further
along the South Pacific convergence zone. In the Atlantic and
Indian oceans, the regions of skill above 0.6 are more extensive.

In summary, the analysis in this section indicates that the skill
of our coupled scheme in capturing atmospheric and oceanic ini-
tial conditions in key ENSO regions is reasonably good, and in
particular no worse than those of an NCEP forced ocean model
run. Furthermore, there is no indication of a seasonal skill de-
pendence of our scheme. However, unconstrained intraseasonal
atmospheric variability results in significant RMS errors in ocean
initial conditions.

5. Ensemble member generation

The purpose of ensemble forecasting is to provide a forecast
of the probability density function of possible outcomes, given
uncertainties in initial conditions. As such, the success of the en-
semble generation method can only be assessed in the forecasts

themselves. However, how well any particular ensemble genera-
tion scheme performs is model-dependent. In this section, a first
assessment of the scheme used here is made by comparing en-
semble spread against estimates of observed uncertainties. Here,
ensemble spread refers to the standard deviation of the ensem-
ble, and the mean ensemble spread is the average of ensemble
spread over the period 1986-2001. In this section, we present
the ensemble spread at the initial time and averaged over the
first hindcast month.

Simulated 10-m zonal wind speed variability over the Nifio4
region is in good agreement with estimates of the observed vari-
ability (see Fig. 7 for zonal wind stress). The standard deviation
of Niflo4 averaged 10-m zonal winds from the NCEP reanaly-
sis (Kalnay et al., 1996) is 1.2 m s~!, and that from the model
is 1.4 m s~!. The correlation and RMS difference between the
two are 0.85 and 0.8 m s~!, respectively. The mean ensemble
member spread for the Nifio4 averaged 10-m zonal winds at the
initial start time is 1.0 m s~'. Thus, this scheme is able to gen-
erate variability of appropriate magnitude (i.e. compared to the
RMS error) in this key region.

As a second test, the mean ensemble member spread of 20°
isotherm depth along the equator is compared to the RMS error
of simulated variability and to observed intraseasonal variabil-
ity from the TAO array (Fig. 9c). As ocean conditions are not
perturbed at the initial time, the ensemble member spread is an
average over the first hindcast month. Assuming that subsurface
variability in the first month is mostly due to the perturbed ini-
tial wind field, rather than to coherent air—sea interaction, this
provides an estimate of the uncertainties generated in the ocean
due to the uncertainties in surface forcing. This estimate of un-
certainty is significantly smaller than the magnitude of observed
intraseasonal variability and the estimated RMS errors (Fig. 9c).
The mean ensemble spread is around 30% of the observed in-
traseasonal variability, and between a quarter and a seventh the
size of the RMS error. Thus, the simple scheme here is not able
to adequately represent the uncertainties in the analysis. Nor is
it able to fully represent the uncertainties due to intraseasonal
variability that it was designed to do.

With hindsight, a more effective method to sample initial
conditions would have been better to perform an ensemble of
coupled initialization runs, each slightly perturbed to provide a
different realization of atmospheric variability independent of
the SST.

6. Hindcast results

Results from six-month-long hindcast experiments conducted
for the period 1969-2001 are now presented. The assessment is
restricted to SST variability only and is in terms of traditional
deterministic scores (correlation and RMS error), because the
primary aim of this study is to assess the model’s initialization
scheme. An independent assessment of the model (and of the
other DEMETER models) in terms of both deterministic and
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probabilistic measures is available on the DEMETER web page
(http://www.ecmwf.int/research/demeter/).

The hindcasts are bias-corrected in two stages. First, to correct
for a small drift in the hindcasts, which occurs over the initial-
ization periods and is related to a slow adjustment process in
the ocean analysis, the results are separately detrended over the
two analysis periods. Although the constraining of model SST
to observations effectively provides a flux correction to the cou-
pled system, the subsurface temperatures drift slowly. Secondly,
the mean hindcast drift as a function of lead time and calendar
month is also removed, as is common practice with CGCM sea-
sonal forecasts (Stockdale, 1997). The mean drift, which largely
resembles Fig. 2, is discussed below and can be seen on the
DEMETER web page.

At six-month lead, the model is able to capture all the stronger
events of the period (Fig. 11). The anomaly correlation to obser-
vations is 0.6 (Fig. 12; Table 1). In particular, the model captures
the 1972-1974 and 1987-1988 El Nifio-La Nifa events well.
However, the strength and duration of the 1982-1983 event is
underestimated, and the strength of the 1997 El Nifio event is ini-
tially underestimated (consistent with contemporary forecasts of
this event; Barnston et al., 1999), and then later overestimated.
The model also performs poorly for the weaker events of the
1990s, which is a common problem among ENSO models (e.g.
Kleeman et al., 1996).

A global picture of the skill at six-month lead (Fig. 13) shows
the model has skill over large parts of the tropics. The correlations
are, not surprisingly, higher in the central and eastern Pacific;
however, RMS errors there are larger than the standard deviation
of observed SST variability. Skill is seen in the north tropical At-
lantic Ocean and south-western tropical Indian Ocean. Seasonal
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Fig 11. Nifio3 SSTa for the ensemble mean hindcasts at six-month lead
time (thick line) and observed SST (thin line) (Reynolds and Smith,

1994). Individual ensemble members are indicated by crosses.
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to interannual variability in both these regions is strongly related
to ENSO variability (Enfield and Mayer, 1997; Xie et al., 2002).
The western tropical Atlantic and regions of the extratropical
Pacific also show significant skill. These regions have perhaps
a greater potential for skill increase with model improvements
than the equatorial Pacific itself. In particular, higher model res-
olution may play an important role in capturing teleconnection
patterns (Merkel and Latif, 2002), and ENSO behaviour itself
(Guilyardi et al., 2004) better.

The ensemble mean hindcast skill for Nifio3 averaged SSTa
drops off linearly with lead time to a value of 0.6 at six months
(Fig. 12a; Table 1). After the first month, the model performs
better than persistence. At all lead times, the ensemble mean is
substantially more skilful than the individual ensemble members,
indicating that uncertainties in the initial conditions are being
sampled to a certain degree.

For the first five months, the RMS error for Nifio3 aver-
aged SSTa grows rapidly and is larger than that of persistence
(Fig. 12¢; Table 1). The model error then levels off, so that at six
monthsitis 1.1°C, just dropping below persistence. The standard
deviation of the observed SSTa for the same period is 1°C. Thus,
after five months the hindcast error is greater than the observed
variability. The large RMS error is a signature of the model’s
over-reactive behaviour, as seen in the six-month lead Nifio3
time series (Fig. 11). For example, the behaviour in both 1989
and 1998 shows severely overestimated SSTa. Possible reasons
for this behaviour are discussed below.

The ratio of the standard deviation of the Nifio3 SSTa model
against observations shows that hindcast SST variability at all
lead times is strongly overestimated (Table 1). The largest dis-
crepancy occurs at four-month lead, with the model’s variability
1.6 times larger than observed, and 1.5 times larger than that
of the coupled control simulation (1.1°C). The mean ensemble
spread, as measured by the standard deviation of the ensemble,
increases rapidly with lead time, reaching a value of 0.8°C at
six-month lead. Thus, the individual ensemble members have
significantly higher variability than the ensemble mean, and cor-
respondingly lower correlation skill and higher RMS error. The
ensemble spread rapid growth is consistent with both a stochastic
(atmospheric transient) mechanism for error growth within the
CGCM and the fact that the model has significantly higher SST
variability than observed when the ocean mean state is close to
observed (see discussion below).

Although the model is able to capture all the major ENSO
events of the period, the overall skill in forecasting SSTa is
disappointing, especially when compared to more conventional
initialization methods (i.e. with oceanic and atmospheric ini-
tial conditions generated separately by uncoupled data assim-
ilation processes). Reasons for the model’s poor skill can be
grouped into three categories: (1) errors in initial conditions, in-
cluding poor sampling of their uncertainties; (2) errors in model
physics, such as biases or incorrectly represented modes of vari-
ability; (3) errors due to inconsistencies between model and
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Fig 12. (a) Correlation skill for Nifio3 averaged SSTa as a function of lead time for the ensemble mean (black solid line), individual ensemble
members (black dotted line), and for persistence (red dashed line). (b) As in (a) except as for different start months as indicated by the colours. Solid
(dashed) lines indicate the ensemble-mean (persistence) skill. (c) As in (a) except for RMS error. In addition, the RMS error after correcting for the
models too strong variability is shown (blue). (d) As in (b) but for RMS error. Values are calculated for the period 1969-2001.

Table 1. Nifio3 SST statistics for the ensemble mean forecast

Lead time (months) 0 1 2 3 4 5 6

Correlation 099 094 085 080 0.74 0.68 0.60
RMS error 0.12 047 0.74 094 110 1.10 1.10
Std. dev. model/obs.  1.00 1.29 142 155 1.63 153 1.35
Ens. member spread -  0.15 034 055 072 0.78 0.80
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ocean initial conditions, otherwise known as coupling shock. To
gain some insight into the relative size of the various contribu-
tions to the model’s poor skill, results are presented from the
analysis of the SST budget of the initialization run, the analysis
of a flux-corrected coupled simulation and the analysis of a pair
of ensemble hindcast with two different ocean initial conditions.
In addition, the initial conditions and hindcasts from another of
the DEMETER models (here referred to as DEMETER-X) with
significantly better skill than ours were also analysed.
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In prelude to the analyses it is instructive to revisit the concept
of bias correction. A hindcast may be considered as consisting of
three components: a signal, which we wish to forecast, a system-
atic error and a non-systematic error (i.e. hindcast = signal +
systematic error + error). It is common in seasonal forecasting to
apply a seasonal mean bias correction, as was applied here. This
is calculated by averaging over a large ensemble of hindcasts
(started from the same calendar month) so that the signal and
error average to zero. This definition assumes that the system-
atic error is independent of the signal or initial state. When this
does not hold completely, then a mean bias correction may not
be effective. In situations where the systematic error and signal
are of comparable size, then separating systematic error, signal
and non-systematic error is likely non-trivial, especially when
they interact non-linearly.

Now, let us reconsider the quality of the ocean initial con-
ditions. The analysis of ocean initial conditions indicated that,
although uncertainties due to intraseasonal variability were not
well sampled, there was little reason to believe the scheme itself
was at fault, because the quality of the initial conditions was
equivalent to that of a forced ocean run (Section 4). The anal-
ysis of the ocean initial conditions from DEMETER-X showed
that the initial conditions from both schemes were also roughly
equivalent. The sea level variability in the central Pacific and in
off-equatorial regions of the western Pacific was better corre-
lated with observations (by ~0.1) than those of our scheme, but
otherwise skill levels were similar; in the case of 20° isotherm
depth variability along the equator, this model’s skill was poorer
in the western Pacific (by about 0.1) than ours, while in the east
they were roughly equal. So from the analysis of ocean initial
conditions, our initialization scheme seems not to be the main
problem.

However, subtle differences in the initial conditions not cap-
tured by correlation and RMS measures may exist. In particular,
as discussed earlier, the scheme, because it relies on coupled
interactions, may be only able to forecast ENSO extremes that
are already well developed, and so suffers from a strong spring
predictability barrier. The skill of the model as a function of
start month (Figs. 12b and d) is very seasonally dependent, and
a spring predictability barrier is clearly present in the model,
with skill dropping significantly across boreal spring. However,
in comparison to DEMETER-X, the drop in skill across spring is
not particularly strong. The difference between the two models
is primarily that DEMETER-X is able to better maintain skill in
other months. This is particularly obvious for hindcasts begin-
ning in August and November, where our model has trouble to
maintain skill above persistence. The system should in principle
be highly predictable from these months. This model deficiency
may be partly related to the model’s poor simulation of the annual
cycle of SST and SST variability, and to the mean drift, which,
associated with the poorly simulated annual cycle, is strongest
for August and November start dates (see below).
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The model’s too strong variability alone does not affect the
linear correlation skill. The skill is degraded by a non-uniform in-
crease in variability across the spectrum. Visual inspection of the
Nifio3 time series at six months shows that the model hindcasts
have strong variability at frequencies higher than the ENSO time-
scale (Fig. 11). This high frequency variability may be partly in-
troduced by intraseasonal atmospheric variability. Thus, another
reason for the model’s poor skill may be no sampling of ocean
initial conditions. Analysis of the initialization run (Section 4)
indicates that intraseasonal variability can lead to RMS errors in
20° isotherm depth of up to 12 m in the eastern Pacific. From
the regression relationship derived from the flux-corrected cou-
pled simulation described below, this would be equivalent to an
SST error of 1.5°C. It would be surprising if anomalies of such
strength did not impact the hindcast trajectory. To test this idea,
a separate nine-member ensemble hindcast, starting in Novem-
ber 1987, using initial conditions from the earlier initialization
period, was performed. The evolution of this ensemble and that
started from the second initialization period were quite differ-
ent, and by six months Nifio3 SSTa differed by more than 2°C
(Fig. 14). Because the most significant difference between these
two ensembles was variations in ocean initial conditions, it can
be concluded that their poor sampling contributes strongly to our
model’s poor skill.

The mean systematic error of the hindcasts or mean
hindcast drift was analysed in detail; plots are not pre-
sented here, but are available from the DEMETER web page
(http://www.ecmwf.int/research/demeter/). In the tropical Pa-
cific, the mean hindcast drift is similar in structure to the mean
coupled model bias (Section 3; Fig. 2). It is characterized by a
too strong equatorial cold tongue, too strong trade winds, and by
a double ITCZ. The bias patterns over the tropics are similar for
all start months. In contrast to the coupled model’s mean bias,
which is most pronounced in the western equatorial Pacific, the
hindcast drift is strongest in the eastern Pacific. The mean SST
drift varies strongly with season. It is strongest for hindcasts
beginning in August and November, and weakest for hindcasts
starting in May. For August and November starts, the SST bias is
already well developed in the first month, and by six months ex-
ceeds 6°C in the equatorial cold tongue. The seasonal variations
in drift reflect errors in the model’s annual cycle (see Section 3).

Coupled model biases and mean hindcast drift are long-
standing problems (e.g. Davey et al., 2002). They result from
the amplification, by coupled feedbacks, of errors in the indi-
vidual model components. In our hindcasts, the drift evolution
is similar for all start months. The drift begins with an initial
cooling of the ocean surface in the eastern Pacific that is driven
by a mismatch between ocean and atmospheric heat flux bud-
gets: the ocean needs more heat than the atmosphere can provide.
This initial cooling leads to a strengthening of the easterly trade
winds and a weakening of the meridional Hadley circulation.
The stronger trade winds result in stronger equatorial upwelling,
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Fig 14. Nifio3 SSTa for two ensembles of hindcasts started from
November 1987 using ocean initial conditions from the earlier
initialization period (dashed lines) and later initialization period (dotted
lines with open circles). The ensemble means are shown as thick solid
lines, and the observations as a thick dashed line.

and a shallowing and broadening of the eastern Pacific thermo-
cline, which in turn leads to colder SST in the east. The feedback
process continues until the ocean—atmosphere heat flux reaches
equilibrium. Associated with the strengthening of the equatorial
cold tongue and its extension into the western Pacific, a double
ITCZ and a dry precipitation bias along the equator form. The
colder SST in the eastern Pacific also allow stratus clouds to
form over the equator. In summary, we find that although the
initial cooling is not driven by ENSO physics, the feedbacks
that amplify the initial error clearly are. Thus, it is clearly pos-
sible that signal and systematic errors will interact and degrade
model skill. The situation is likely exasperated when the drift is
as strong as the signal, as it is in our case.

Systematic error may not only consist of a mean drift. To in-
vestigate this possibility further, the nudging term from a second
coupled initialization run for the period 1984-2001 (see Sec-
tion 4) was also analysed. The nudging term by definition is the
corrective heat flux required for a perfect hindcast. However, be-
cause the run discussed here is not numerically identical to the
run used to initialize the hindcasts, this is not exactly true. The
mean nudging term is largest in the eastern equatorial Pacific
on the equator, where it has a strength of 0.6°C d~!. The area
coincides well with the maximum mean hindcast SST drift. In
the Nifio3 region, the nudging term is close to zero in boreal
spring and maximum in boreal summer. This is consistent with
the seasonality of the mean SST drift.

The nudging term has strong interannual variability. The anal-
ysis of the model’s SSTa budget averaged over the Nifio3 region
shows that the nudging term is the dominant term (Table 2) driv-
ing SST variability. The next strongest term is vertical advection.
Although it is weakly anticorrelated with the SST tendency term,
it is strongly anticorrelated (r = —0.87) with the nudging term.
In combination the two terms mainly determine the SST evolu-
tion (Table 2). The other advection terms are also driving terms,
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Table 2.
tendency terms and the rate of SST change. The standard deviations of
the SST tendency are also given. Data are from the anomaly SST budget
for the initialization period 1986-2001 averaged over the Nifio3 region

Correlation and regression values between the listed SST

Correlation Regression o
9 SST/ot 1.0 1.0 0.012
Nudging 0.2 1.3 0.074
u(d SST/dx) 0.1 0.04 0.010
v(d SST/ady) 0.1 0.24 0.027
w(d SST/dz) —0.001 —0.004 0.040
Mixing terms -0.3 —0.60 0.023
Net surface heat flux —0.1 —0.06 0.023
Nudging + w(d SST/dz) 0.4 1.3 0.044

but of lesser importance. The mixing terms and net surface heat
flux are damping terms, as expected. Two important points can
be inferred. First, because the nudging term is the strongest term
in the SST budget, the action of setting it to zero when making
a hindcast will produce a strong coupling shock. Further, given
that the nudging term has strong interannual variability it seems
that the coupling shock may be quite unpredictable. Secondly,
because vertical advection is generally accepted to be a leading
term in the eastern Pacific SST budget, the anticorrelation be-
tween it and the nudging term implies that part of the action of
the nudging term is to counteract the growth of SSTa — in other
words, to constrain the model’s variability. This is an error that
is likely more predictable.

Consistent with the idea that the nudging term acts to con-
strain SST variability, the nudging term is itself anticorrelated
with SST variability (r = —0.4). The reason for the anticor-
relation becomes obvious when a flux-corrected simulation of
the coupled model is performed: the simulated SST variabil-
ity of the model is now twice as strong as before. Analysis
of the relevant ENSO feedbacks shows that the enhanced vari-
ability is primarily the result of a sharper and more realistic
thermocline in the flux-corrected simulation. In particular, the
regression relationship between Nifio3 averaged anomalies of
20° isotherm depth and SST, with SST leading by two months,
strengthens from 14 to 8 m °C~!. The observed value is estimated
to be around 14 m °C~! (as calculated from the BMRC ocean
analysis; Smith, 1995). The reasons for this may lie in the oceanic
or atmospheric (through insufficient damping) components and
are being investigated. Thus, in the initialization phase, when the
model has a mean state close to observed the nudging term acts
to constrain the SST variability, which would otherwise be too
strong.

A relationship between the nudging term and the ensemble
mean hindcast SST error should exist during the early stages of
the hindcast, when linear assumptions still hold. Indeed, we find
that, averaged over the first month of the hindcasts, the ensemble
mean SST error is strongly anticorrelated with the nudging term:
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the correlation equals —0.75 when computed for the Nifio3 re-
gion. If the nudging term had been from the initialization run used
to initialize the hindcasts (as opposed to a perturded initialization
run), then the strength of the correlation would likely have been
higher. The relationship strongly weakens when averaged over
the six months of the hindcasts. The anticorrelation is consistent
with the nudging term acting as a forcing term. As may be an-
ticipated, the ensemble hindcast SST error is strongly correlated
with the ensemble mean SST: for the Nifio3 region, correlations
calculated for the whole hindcast period vary with lead month
between 0.7 and 0.8. Based on the regression relationship cal-
culated between hindcast SSTa and error, the hindcasts were
corrected. The RMS error is significantly improved (Fig. 12c).
However, because this correction is equal to a rescaling of the
original signal, correlation skill is not affected.

In summary, the model achieves useful skill in predicting trop-
ical Pacific SSTa up to six months in advance. However, the level
of skill is lower than that of more conventional methods. Addi-
tional analyses of the hindcasts, initialization simulation and a
flux-corrected run indicate two main sources of error. The first
is that the model, when close to the observed mean state as it is
at the start of the hindcasts, simulates too strong SST variability.
This explains the difference between the strength of the Nifio3
variability in the coupled control run and hindcasts. The sec-
ond is inadequate sampling of oceanic intraseasonal variability.
The initialization scheme does not constrain the atmosphere, and
hence the ocean, on intraseasonal time-scales. This can lead to
significant errors in subsurface initial condition and later in SST.
In addition, the model’s strong mean hindcast drift is driven by
processes similar to the ENSO. It is thus likely that because the
drift and the signal to be predicted are of similar magnitude, the
two will interact and also lead to a degradation of skill. However,
itis hard to assess the size of this contribution to the model’s poor
skill.

7. Discussion and conclusions

A simple scheme for initializing CGCMs for seasonal predic-
tions is implemented into the MPI climate model. The model’s
simulation of the ENSO is relatively good, in terms of amplitude,
structure and period. This is accomplished despite an overly pro-
nounced cold tongue, which results in a strong equatorial cold
bias, and a poor simulation of the annual cycle in the tropical
Pacific.

The initialization scheme is simply to run the coupled model
with SST strongly nudged to observations up and until the hind-
cast start time. Ocean—atmosphere coupling provides the mech-
anism for subsurface initialization. Comparisons with observa-
tions — the tropical ocean—global atmosphere (TOGA)/TAO pro-
gramme and TOPEX/Poseidon — show that the scheme can skil-
fully generate subsurface conditions.

Six-month-long hindcasts are conducted with the model for
the period 1969-2001. There are four hindcasts per year, once

per season, each consisting of nine ensemble members. The ad-
ditional ensemble members are generated by a lead-lag initial-
ization method in which atmospheric conditions are chosen to
sample intraseasonal atmospheric variability. Ocean conditions
are not varied, and thus subsurface uncertainties are not sampled.
The initial spread in atmospheric initial conditions over the cen-
tral Pacific is consistent with uncertainties in our atmospheric
analysis. This initialization method is able to generate large en-
semble spread, in contrast to that of other models (e.g. Vialard
et al., 2003). However, this is no doubt partly due to the model’s
unrealistically strong variability.

Hindcast skill has been assessed only in terms of determin-
istic scores, and only using SST. At six-month lead, the model
captures all the major ENSO extremes of the period. The linear
correlation over the central and eastern Pacific is around 0.6, and
RMS errors are of the order 1.5°C at six-month lead. However, in
comparison to other GCMs, this level of skill is somewhat disap-
pointing. For example, in the same region, the other DEMETER
models have a level of skill around 0.8 at six-month lead time,
and RMS error around 0.6-0.7°C.

There are three main reasons for poor model skill: (1) poor
initial conditions, including sampling of their uncertainties; (2)
poor model physics, such as biases and incorrectly simulated
modes of variability; (3) coupling shock, i.e. the interaction be-
tween model and initial conditions, due to inconsistencies be-
tween them. Analysis of the hindcasts, initial conditions and an
additional flux-corrected coupled simulation showed that the two
main sources of error in our model were the models too strong
variability and inadequate sampling of intraseasonal variabil-
ity. The impact of the coupled model’s strong biases also likely
contributes to the model’s poorer skill, particularly because the
evolution of the ENSO and hindcast drift are driven by similar
physics, and the drift and signal are of similar strength. However,
it is hard to assess the real impact of hindcast drift on skill.

In the model, the relationship between eastern Pacific SST
and thermocline variability is too strong when the mean state is
realistic. The reasons for this are not clear and are being inves-
tigated. As the hindcasts are started from a realistic ocean state,
they simulate too strong variability. Furthermore, the nudging
term used to generate ocean initial conditions is large, because
it not only pushes the model towards the correct trajectory, but
also constrains the variability. Thus, the too strong variability
results in a large coupling shock. A possible solution to these
problems would have been to generate ocean initial conditions
by inserting only SSTa and not the full SST as was done here.

The initialization scheme is not able to constrain intrasea-
sonal atmospheric, and hence oceanic variability, because in-
traseasonal variability is not strongly related to SST variability.
These intraseasonal uncertainties were demonstrated to be able
to result in sizeable SST errors in the initial stages of the fore-
cast, and to result in large forecast differences. With hindsight,
it thus would have been sensible to have sampled uncertainties
in ocean initial conditions. An easy way to do this would have
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been to perform an ensemble of coupled initialization runs, gen-
erated for example by a slight perturbation of the atmosphere
at the start of the initialization period. None the less, it remains
an interesting result that intraseasonal variability can apparently
have such a large impact on forecast skill.

In conclusion, we have tested a simple scheme for initializ-
ing CGCMs based only on SST data. It has been demonstrated
that the scheme, although relatively simple, can produce realistic
subsurface ocean initial conditions, which in turn can produce
skilful ENSO hindcasts. However, the model’s skill was com-
paratively poor, but causes of the poor skill were identified and
methods to mitigate the causes were proposed. These will be in-
vestigated in future work. Finally, we hope that this work spurs
further work in this area.
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