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39Ar dating with small samples provides new key
constraints on ocean ventilation
Sven Ebser 1, Arne Kersting2, Tim Stöven 3, Zhongyi Feng 1, Lisa Ringena1, Maximilian Schmidt 1,2,

Toste Tanhua 3, Werner Aeschbach 2,4 & Markus K. Oberthaler 1

Ocean ventilation is the integrated effect of various processes that exchange surface prop-

erties with the ocean interior and is essential for oxygen supply, storage of anthropogenic

carbon and the heat budget of the ocean, for instance. Current observational methods utilise

transient tracers, e.g. tritium, SF6, CFCs and 14C. However, their dating ranges are not ideal to

resolve the centennial-dynamics of the deep ocean, a gap filled by the noble gas isotope 39Ar

with a half-life of 269 years. Its broad application has been hindered by its very low abun-

dance, requiring 1000 L of water for dating. Here we show successful 39Ar dating with 5 L of

water based on the atom-optical technique Atom Trap Trace Analysis. Our data reveal

previously not quantifiable ventilation patterns in the Tropical Atlantic, where we find that

advection is more important for the ventilation of the intermediate depth range than pre-

viously assumed. Now, the demonstrated analytical capabilities allow for a global collection of
39Ar data, which will have significant impact on our ability to quantify ocean ventilation.
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The well-mixed surface layer of the ocean exchanges prop-
erties with the atmosphere through air–sea gas exchange.
Various processes such as advection and eddy diffusion are

responsible for transporting surface waters with their corre-
sponding properties to the ocean interior. The integrated effect of
such water mass exchange is termed ocean ventilation. Knowl-
edge of its temporal and spatial variations is essential for a reliable
prediction of the Earth system’s response to climate change1,2.
Thus, systematic observation on a global scale is desired. With the
new capabilities reported here, this appears to be feasible now.

Quantifying ventilation includes an estimation of the time
since the water was last in contact with the atmosphere, that is,
the age of the water. It can be accessed by observations of tran-
sient tracers which encode time information via radioactive decay
or a time-dependent input function3. The short atmospheric
histories of well-established transient tracers such as chloro-
fluorocarbons (CFCs) and sulfur hexafluoride (SF6)4 cover only
the past 70 years, preventing the dating of the slowly ventilated
part of the global ocean. There, time-scales of approximately 1000
years are estimated from 14C measurements5. However, these
results are rather uncertain due to the complex carbon dynamics,
long air–sea equilibration time and long half-life compared to
ocean ventilation. The chemically inert noble gas isotope 39Ar
with a half-life of 269 years has long been identified as the ideal
tracer for the time-scales of deep ocean circulation6–10. However,
even though argon is a common gas in the atmosphere, the
desired 39Ar isotope is extremely rare, due to its very low isotopic
abundance of 8 × 10−16. The corresponding low activity neces-
sitates samples of ~1000 L of water for 39Ar detection by low-level
counting (LLC) of the radioactive decays6,10,11. This large sample
size hinders routine measurements of ocean samples. Here we
show that our method for analysing 39Ar, which we call argon
trap trace analysis (ArTTA), reduces the required water volume
to 5 L. This makes large-scale ocean surveys feasible as taking 5 L
of water can be readily integrated into standard water sampling
procedures on research vessels.

Results and Discussion
Argon trap trace analysis. For the detection of long-lived
radioisotopes, it is more efficient to count atoms rather than
radioactive decays12. For example, atom counting by accelerator
mass spectrometry (AMS) dramatically reduced sample-size
requirements for 14C dating. AMS is not easily applicable for
noble gases, yet atom counting and the related substantial
reduction of sample size becomes possible by employing the
modern atom-optical technique known as atom trap trace ana-
lysis (ATTA). It utilises techniques from the field of atomic
physics to detect rare isotopes down to the 10−16 level. It exploits
shifts of the optical resonance frequency due to different isotopic
mass and nuclear spin. The high background of abundant iso-
topes hinders selection by a single resonant excitation, but the
sensitivity is strongly enhanced by many cycles of photon
absorption and subsequent spontaneous emission. Therefore,
ATTA’s outstanding isotopic selectivity is based on millions of
resonant photon scattering events required for cooling, trapping
and detecting single atoms inside a magneto-optical trap (MOT).

The general concept of ATTA has first been demonstrated for
the rare isotopes 85Kr (half-life of 10.76 years) and 81Kr (half-life
of 229,000 years)13,14 and is applied for dating groundwater15–17

and ice18. While the first 39Ar detection by this approach was
reported in a proof of concept experiment in 201119, the first
explicit demonstration for dating groundwater samples was
achieved in 201420. The first apparatus used in that study still
required ~1000 L of water. Since then the setup has been
significantly improved by doubling the count rate, ensuring

reliability and employing well-characterised enriched reference
samples. The crucial step for the reduction of the necessary
sample size is the implementation of gas recirculation in an
optimised vacuum system. With this ArTTA system, 39Ar
quantification is now possible with only 2 mL STP (standard
temperature and pressure) of argon, which can be extracted from
5 L of water. Thus, a complete ocean depth profile of 39Ar can be
sampled from one standard hydrographic cast equipped with 10 L
Niskin sampling bottles, fulfilling the requirements for broader
application of 39Ar in oceanography21.

39Ar depth profiles. Here we apply our new analytical capabilities
to explore the ventilation regime in the Eastern Tropical North
Atlantic, in the context of investigations of the Oxygen Minimum
Zone in this region. In 2015, three depth profiles were taken with
one single hydrographic cast per profile during the research cruise
M116 on research vessel Meteor. Two profiles (#44, #55)
originate from the centre of the Oxygen Minimum Zone and one
profile (#82) from the Cape Verde Ocean Observatory (http://
cvoo.geomar.de/) (Fig. 1). The ocean water was sampled by
closing three 10-L Niskin bottles of a 24 bottle rosette per depth
and transferring ~7 L of the content of each Niskin bottle into an
evacuated 27 L commercial propane gas bottle. By combining
three Niskin bottles to one sample of ~20 L, in total 24 sampling
containers from eight different depths at three sampling sites
were taken. Gas extraction and argon separation from these ~20 L
samples resulted in a total argon yield between 5 and 8 mL STP,
consistent with the temperature-dependent solubility22. Each
sample was analysed by at least two independent measurements,
where the analytical uncertainties are dominated by counting
statistics. As seen in Fig. 1, we find a clear decline in 39Ar/Ar ratio
in the upper 1000 m, a minimum at ~3000 m and a slight increase
towards the bottom at 4000 m. For comparison, we also include
the three historic 39Ar samples closest to our sampling positions,
which were taken in 1981 and analysed by LLC11. The observed
differences in 39Ar/Ar ratios are consistent with the known
meridional gradients in tracer concentrations characteristic for
this region. Note that these historic 39Ar data are integrated over
a depth interval of 600 to 800 m as indicated by the vertical error
bars due to the required large sample size of 1000 L. The ArTTA
technique allows for 24 39Ar samples during one single cast (with
a 24 bottle rosette) that takes ~3 h of ship-time, which is about
the same amount of time needed for one large volume sample
required for LLC.

Transit time distribution. In the following we discuss how the
obtained 39Ar/Ar ratios constrain the ventilation in this area.
Since ventilation always implies mixing along a multitude of
advective and diffusive paths, it is necessary to describe a water
sample by a distribution of transit times τ rather than one distinct
age. This age distribution is known as transit time distribution
(TTD)23,24. Given the TTD G(τ, r) for a location r in the ocean
interior and a time-independent flow, the concentration at sam-
pling time ts is described by

c ts; rð Þ ¼
Z 1

0
c0 ts � τð Þ � e�λτ � Gðτ; rÞdτ; ð1Þ

where c0(ts− τ) corresponds to the surface concentration during
source year ts− τ in the dominant surface source region of the
water sample. The exponential term accounts for the decay rate of
radioactive transient tracers. G(τ, r) is the Green’s function of the
flow model for the given location24. One established method to
deconvolute the TTD is to use a maximum entropy approach,
where the value of 39Ar data has been clearly demonstrated9. For
illustration of the utility of 39Ar observations, we use the inverse
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Gaussian function (IG-TTD)25, which is defined by its first two
moments: the mean of the distribution Γ and the width of the
distribution Δ.

GðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ3

4πΔ2τ3

s
exp

�Γ τ � Γð Þ2
4Δ2τ

� �
: ð2Þ

This TTD is the analytical solution for a one-dimensional flow
model with time-invariant advective velocity, diffusivity and one
single source region. These assumptions are reasonable for
atmospheric and ocean transport studies and possible limitations
are discussed in the Methods. The Δ/Γ ratio indicates the eddy-
diffusive compared to the advective transport characteristics of a
water parcel; the lower Δ/Γ, the more dominant the advection. A
Δ/Γ ratio of 0.4–0.8 indicates advectively dominated transport,
whereas a high ratio of 1.2–1.8 indicates transport dominated by
diffusive processes. Several approaches have been proposed for
constraining the parameters of the IG-TTD based on tracer data;
here we use the method outlined and thoroughly discussed by
Stöven and Tanhua26. This approach is based on constraining the

TTD for each sample individually. The two parameters of the IG-
TTD can be constrained using observed concentrations of at least
two transient tracers with sufficiently different time information
covering the expected transit time range of the water parcel3,25.

As the second independent tracer we choose CFC-12, which
was sampled at the same, or nearby, position. In Fig. 2a the
corresponding 39Ar/Ar ratios and CFC-12 concentrations are
depicted and are well above the limit of quantification. The
uncertainties of the 39Ar/Ar ratios are limited by the counting
statistics and for CFC-12 by the system performance of the on-
board measurements and the known systematic uncertainties. In
Fig. 2b we illustrate for three different depths how both measured
tracers constrain possible parameter combinations (Γ, Δ/Γ).
Considering the year of sampling and the input function of the
tracers, a particular tracer concentration can correspond to a
range of combinations of Δ and Γ, which we plot as Δ/Γ vs. Γ26.
For two (or more) independent tracers multiple such curves can
be analysed and the range of possible combinations of Δ and Γ
can be constrained, as indicated by the intersecting areas. The
precision of the results is limited by the combination of the
uncertainty of the input function (including saturation of the
tracer at water mass formation), the analytical and interpolation
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uncertainties, as well as by the assumption of the propagator G
having a simple IG transit time dependence. For our study, we
assume for 39Ar a constant input of 100 pmAr and for CFC-12
reported data for the northern hemisphere27. In Fig. 2c the
corresponding IG-TTDs are depicted.

Implications for ventilation regimes. The water column can be
tied to different ventilation regimes as described by Δ/Γ ratios and
mean ages Γ (Fig. 3a, b) or by the dominant water masses as
illustrated by their salinity and temperature characteristics
(Fig. 3c). The water samples above ~800 m correspond to the
Atlantic Central Waters. Here we find a unity ratio Δ/Γ = 1 and
mean ages consistent with estimates based on the tracer couple
SF6/CFC-12 for this ocean region28. It is important to note that
this regime is only poorly constrained by 39Ar, which does not
resolve small absolute age differences important in the young age
regime due to the larger analytical uncertainty in comparison to
other tracers such as SF6. For deeper and thus older water, the
SF6/CFC-12 tracer couple is not applicable for determining the
age distribution, but 39Ar/CFC-12 gives new insights. For
example, in intermediate depths (1000 m –2000 m), where Ant-
arctic Intermediate Water (AAIW) and Labrador Sea Water
(LSW) dominate, we find Δ/Γ= 0.5−0.6 based on our data. This is
in stark contrast to the Δ/Γ unity ratio, which has been commonly
applied to this depth interval before28–30. Our findings of these
low Δ/Γ ratios reveal that the ventilation there is of a more
advective nature than previously assumed. Additionally, the first
reliable mean ages Γ in this deeper region can be derived due to
the unique half-life of 39Ar and increase with depth from 200 to
400 years (Fig. 3b). The deepest ventilation regime with Δ/Γ∼ 0.9
is found for water mainly composed of North Atlantic Deep
Water (NADW) and Antarctic Bottom Water (AABW). We
identify an increase in mean age up to Γ= 800 years at 3000 m

depth, followed by a decrease towards the ocean floor due to the
better ventilated AABW. Although the presence of AABW in this
region is well known, the faster ventilation of the AABW in
comparison to the NADW has previously not been described and
is now verified by the 39Ar data from this region. In these areas,
the TTD can only be poorly constrained due to low CFC-12
signals, resulting in large uncertainty of the inferred mean age
Γ ¼ 810þ1200

�320 years for our oldest sample at 3000 m depth.
Alternatively, using the extracted mean Δ/Γ∼0.9 for the third
ventilation regime we find Γ ¼ 754þ138

�115 years based on our 39Ar
data. Thus, 39Ar provides essential information on ventilation
ages for old waters. Results from transient tracer observations in
the same region using the maximum entropy method31 indicate
slightly lower mean ages than reported here, although within the
uncertainties of the two methods.

Broader implications and prospects. Once the TTD of a water
body is known, one can derive concentrations of substances
which have not been or which cannot be measured directly, such
as anthropogenic carbon (Cant), as long as their input functions
are known. We estimate Cant by applying Eq. (1) to the TTD as
deduced from transient tracers, using the well-known input
function of Cant. In the studied area, we find the Cant con-
centration within the AAIW/LSW range for profile #44/#55 at
1000 m to be ~40% higher using the assumption of an IG-TTD
with Δ/Γ deduced from our 39Ar data (i.e. 0.5–0.6), than obtained
using the commonly assumed Δ/Γ unity ratio (Fig. 4). For the
water column between 1000 m and 2000m in ventilation regime
II, this difference adds up to 2–3 mol m−2 which should be
compared to the total column inventory of ~25 mol m−2 30.

The presented work is an example how applied quantum
technology developed in the context of fundamental research in
atomic physics contributes to the advance of other fields, such as
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comparison we added in the middle panel the distribution obtained using only CFC-12 data with the commonly assumed Δ/Γ unity ratio
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oceanography. The demonstrated ArTTA method for small
sample sizes makes the unique time-scale of 39Ar accessible for
large-scale ocean surveys. This can increase our knowledge of
ocean dynamics significantly and, with that, support ocean and
climate modelling. There are many other areas in environmental
sciences, such as glaciology, limnology and groundwater research,
where the novel analytical capabilities and much smaller sample
sizes will enable new applications and lead to new insights.

Methods
ATTA for argon with small sample sizes. The basic concept of our atomic beam
apparatus for argon follows the established route14,19,20 with some modifications as
mentioned below. It consists of a radio frequency discharge source, which prepares
the atoms in the metastable state necessary for laser cooling. The source is cooled
with liquid nitrogen to reduce the initial velocity spread of the atomic beam. The
divergent atomic beam, with a longitudinal mean velocity of 270 m s−1, is colli-
mated with transverse laser cooling in a tilted mirror setup and focused by a
magneto-optical lens. Subsequently, the atoms with a maximum velocity of
600 m s−1 are longitudinally slowed down in a 1.8 m long increasing field Zeeman
slower. The final velocity of the atoms leaving the Zeeman slower is around
70 m s−1 and is chosen above the capture velocity of the MOT. Thus, the atomic
beam is prevented to diverge rapidly at the end of the Zeeman slower. An addi-
tional laser frequency builds a second longitudinal slowing stage together with the
rising slope of the magnetic field of the MOT. There the atoms are refocused by the
MOT and losses due to the divergence of the atomic beam are reduced sig-
nificantly. Finally, the atoms are trapped inside the MOT and detected by their
fluorescence with an avalanche photodiode with a high time resolution of 1 ms
binning and spatially resolved on a charge-coupled device camera. The detection
threshold is set so that the rate of falsely counted atoms due to background noise is
kept below 1 atom in 100 h. The corresponding detection efficiency is 94% of all
trapped 39Ar atoms. The loss of 6% results mainly from atoms which are trapped
shorter than 40 ms and thus are difficult to be detected unambiguously.

An additional 802 nm laser de-excites isotope selectively 99% of all metastable
40Ar atoms to the ground state, which are responsible for half of the background
light on the single atom detection. The photons (843 nm) emitted by the de-
exciting 40Ar atoms are detected by a photodiode which allows the monitoring of
the atomic beam flux. Three differential pumping tubes together with seven turbo
molecular pumps build up a pressure gradient from 4.8 × 10−6 mbar in the source
chamber down to 1.4 × 10−7 mbar inside the MOT, which results in a mean
lifetime of single 39Ar atoms of 290 ms. Thereby, the argon throughput of the
source is ~50 mL STP h−1.

By closing the vacuum completely (i.e. the argon sample recirculates in the
system and no roughing pump removes gas from the system) the required sample
size can be reduced by more than two orders of magnitudes. In this so-called
recycling or closed mode, the sample circulates permanently inside the system.
Outgassing reactive gases, such as nitrogen and water, are removed by a getter
pump, which does not affect noble gases. The argon sample will remain in the
vacuum chamber and stays clean during the measurement process. A stable
operation over the required measurement time is possible with samples sizes >1 mL
STP of argon.

For further optimisation, the pressure inside the differential pumping tubes was
simulated by a Monte Carlo simulation. By doubling the total pumping speed, we
achieve an atmospheric count rate of up to 7.0 atoms h−1, which is an
improvement by a factor of 2 compared to the count rate reported previously20.

Extraction and separation of argon. The propane gas bottles containing the
collected water samples were shipped to the laboratory in Heidelberg where each
sample was degassed and purified. The dissolved gas was extracted by shaking the
sample container and trapping the gas on a liquid nitrogen-cooled activated
charcoal trap. After 15 min more than 95% of the gas is stored on the trap. In a
second step, all reactive gases are removed on a 900 °C titanium sponge getter,
while the released hydrogen is trapped on a second titanium getter at room tem-
perature. The final gas fraction only consists of noble gases, thus of >98% argon.
With a getter capacity of about 8 L for the relevant reactive gases, more than
10 samples of ~50 L of water can be purified before having to replace the getter
material.

Purifications of blank samples and helium leak tests are performed regularly
and showing that cross-sample contamination and leakage into the vacuum
chamber is negligible.

Two ocean samples were purified per day yielding between 5 and 8 mL STP of
argon per sample with a purity and extraction efficiency of >98%.

39Ar analysis. The purified argon samples were analysed with the atom-optical
detection technique ArTTA optimised for 39Ar and small sample sizes as described
above. Our 24 h measurement cycle consists of 20 h of measuring an ocean
sample, followed by 2 h of referencing with an enriched sample of a well-known
39Ar/Ar ratio of 9:60þ0:33

�0:31 times the atmospheric one. Finally, the system is flushed
for 1 h by running the discharge source with krypton to avoid any significant cross-

sample contamination between the reference and the next environmental sample.
After 24 h the next sample is analysed. The currently achieved atmospheric 39Ar
count rate of up to 7.0 atoms h−1 enables—depending on the sample concentration
—up to 150 counts for both the ocean sample and the reference within one day,
leading to 10% uncertainty. For analysing the data, both reference measurements
before and after counting the ocean sample are taken into account, resulting in an
uncertainty of about 7% for the reference. Due to previous optimisation and
characterisation of the apparatus with one million times enriched 39Ar samples
more than 5 years ago, there is still a low but detectable contamination present.
This contamination together with a potential cross-sample contamination was
quantified with 39Ar-free underground samples originating from CO2 production
wells32. The measured count rates were corrected for this effect corresponding to
about 10 atoms during a 20 h measurement.

We apply a Bayesian approach for the analysis of the 39Ar measurements. The
reported 39Ar/Ar ratios are the most probable values and the bounds of the one
sigma intervals contain most likely 68.3% of the values. The additional
uncertainties due to the contamination effect are included in our analysis, but
become only dominant for 39Ar/Ar ratios below 10 pmAr.

CFC measurements. Two purge-and-trap gas chromatographic systems were used
for the measurements of the transient tracer CFC-12 during the cruise, slightly
modified from33. The traps for both systems consisted of 100 cm 1/16 in. tubing
packed with 70 cm Heysep D kept at temperatures between −60 and −68 °C
during trapping. The gas was desorbed by heating the trap to 130 °C and was
passed onto the pre-column consisting of 20 cm Porasil C followed by 20 cm
Molsieve 5 A in a 1/8 in. stainless-steel column. A 1/8 in. packed main column
consisting of 180 cm Carbograph 1AC (60–80 mesh) and a 50 cm Molsieve 5 A
post-column provided chromatographic separation. All columns were kept at 50 °C
and detection was performed on an Electron Capture Detector.

The water samples for the determination of CFC-12 were collected in 250 mL
ground glass syringes, of which an aliquot of about 200 mL was injected to the
purge-and-trap system. Standardisation was performed by injecting small volumes
of gaseous standard with the CFC-12 calibrated to the SIO98 scale. The precision
was determined to 8 fmol kg−1 and the limit of detection to 0.06 fmol kg−1.

Since we did not take samples for CFCs on the CTD casts where we collected
samples for 39Ar measurements, we use nearby profiles that are comparable. Profile
#54 (N 11.00°, W 22.00°) was used to compare the CFC-12 values to the 39Ar
profiles #44 (N 11.55°, W 23.00°) and #55 (N 11.25°, W 22.00°). For profile #82
(N 17.58°, W 24.30°), we used a CTD taken immediately prior on the same
position. Since the sampling for 39Ar and CFC-12 took place on different CTD
casts, we interpolated the CFC-12 data vs. density to match the 39Ar samples.

Assumptions and limitations of the IG-TTD approach. Caveats to the TTD
method, as described by Eq. (1), include the assumptions of a steady ocean
transport and one effective single dominant source region. The real propagator G(τ,
r) of the ocean might depend on both the transit time τ and the source time ts− τ
and in reality the sample might be a mixture of water ventilated in different
regions, which may have slightly different source concentration histories, especially
between the northern and southern hemisphere. Additionally the IG-TTD is a
unimodal distribution and thus limited to describe only a single dominant
advective-diffusive transport pathway. In our study region, we see a mix of water
masses from the North and South Atlantic, so that different forms, at least bimodal
shapes, of the TTD are conceivable. Here we use the basic IG-TTD approach for
illustration of the utility of 39Ar observations, keeping potential bias of the inferred
mean ages Γ and widths Δ in mind. A more complete, but more complicated
method to deconvolute the TTD, which has been shown to benefit from 39Ar data9,
is the maximum entropy approach.

The precision of the estimation of IG-TTD parameters based on tracers is also
limited by the uncertainties about their input function and boundary condition at
the ocean surface. The tracer 39Ar is based on the 39Ar/Ar ratio and thus
independent of the solubility of argon in sea water as well as possible Ar saturation
anomalies. In contrast, for chemical tracers such as CFC-12 their solubility
equilibrium at the ocean surface during water mass formation needs to be
calculated from salinity and potential temperature, which are treated as
conservative properties. More importantly, both CFC-12 and 39Ar/Ar require an
estimation of the deviation from full equilibration with the atmosphere at the ocean
surface during water mass formation. In areas of deep water formation, deviations
from 100% equilibration have been noted, but are neglected in our analysis for
simplicity.

Data availability
The complete data set from the Meteor 116 cruise including the 39Ar data can be
found at PANGAEA: https://doi.org/10.1594/PANGAEA.894708 and https://doi.
pangaea.de/10.1594/PANGAEA.886191. The 39Ar and CFC-12 data of the three
profiles analysed in this study can also be found in Supplementary Table 1 and the
obtained Δ/Γ ratios, mean ages Γ and Cant concentration in Supplementary Table 2.
Figure 1 contains the raw 39Ar data.
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