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ABSTRACT 

BOning, C.W., 1986. On the influence of frictional parameterization in wind-driven ocean 
circulation models. Dyn. Atmos. Oceans, 10: 63-92. 

In a series of numerical experiments the wind-driven ocean circulation is studied in an 
idealized, rectangular model ocean, which is forced by steady zonal winds and damped by 
lateral and/or  bottom friction. The problem as described by the barotropic vorticity equation 
is characterized by a Rossby number (R) and horizontal and /or  vertical Ekman numbers 
(E L, EB) only. 

With free-slip conditions at the boundaries steady solutions for all chosen values of R arc 
obtained, provided the diffusivity is sufficiently large. For both the forms of frictional 
parameterization a northern boundary current emerges with an eastward penetration scale 
depending on R. The recirculation pattern in the oceanically relevant 'intermediate' range of 
R is strongly affected by the type of friction. If lateral diffusion dominates bottom friction, a 
strong recirculating sub-gyre emerges in the northwestern corner of the basin. Its shape 
resembles the vertically integrated transport fields in recent eddy resolving model (EGCM) 
studies. The maximum transport is increased to values several times larger than the Sverdrup 
transport. The increase in transport is coupled with a development of closed contours of 
potential vorticity, enabling a nearly free inertial flow. 

This behaviour provides a sharp contrast to the bottom friction case (Veronis) where 
inertial recirculation only takes place with values of R so large that the eastward jet reaches 
the eastern boundary. It is shown that the linear friction law puts a strong constraint on the 
flow by preventing an intense recirculation in a small part of the basin. 

A reduction of the diffusivity (EL) in the lateral friction case leads to quasi-steady 
solutions. The interaction with eddies becomes an integral part of the time mean energetics 
but does not influence the recirculation character of the flow. 

The main conclusion of the study is that the horizontal structure of the EGCM-transport 
fields can be explained in terms of a steady barotropic model where lateral friction represents 
the dominant dissipation mechanism. 

* Present affiliation: Geophysical Fluid Dynamics Program, Princeton University, Princeton, 
NJ 08540, U.S.A. 

0377-0265/86/$03.50 © 1986 Elsevier Science Publishers B.V. 
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1. I N T R O D U C T I O N  

There has been a long history of work on the problem of the wind-driven 
ocean circulation. Since the early papers of Stommel (1948) and Munk 
(1950) a particular class of models deals with the question of how the ocean 
circulation equilibrates in a simple, closed and often rectangular basin in 
response to a simple, steady windstress pattern, i.e., which processes are 
responsible for the horizontal structure of the wind-driven gyres. Under the 
heading 'Stommel-type'  we can follow the line from the simple, linear 
one-layer models as cited above, which have shown the central role of the 
planetary vorticity gradient in establishing the westward intensification of 
the wind-gyres, to the increasingly complex models, i.e., two- or more layer 
eddy-resolving general circulation models (EGCMs) which are concerned 
with the role of spontaneously growing transients in the solutions--regarded 
as model analogues of real ocean eddies (e.g., Robinson et al., 1979; Holland 
et al., 1983). 

Despite the relative simplicity of all these 'idealized' models it soon 
becomes a very difficult task to analyse their results and to understand their 
physics, e.g., the effect of the mesoscale variability on the time mean 
circulation in the EGCMs. Recently Harrison and Stalos (1982), Marshall 
(1984) and Kamenkovich et al. (1985) began to reconsider the barotropic 
problem. Because the mean flow upper layer dynamics in adiabatic, 
quasigeostrophic systems is essentially established by the solution of the 
barotropic vorticity equation (Harrison, 1982), the barotropic system may 
serve as a necessary and helpful basis to understand the more complex 
EGCM-flows. 

The most serious deficiency in constructing idealized models is due to the 
fact that valid approximations to the full set of equations are not known. In 
connection with the wind-driven ocean problem this especially holds for the 
proper modelling of the vorticity sink, in other words the form of the 
frictional parameterization, and, if needed, the type of the dynamical 
boundary conditions. A common way to overcome such difficulties is to 
examine the influence of plausibly formulated parameterizations and chosen 
parameter values on the model solutions and to compare the model flow 
with the real ocean flow characteristics to eventually justify the model by a 
posteriori success (rather than by a priori proof). However, this has only 
been done partly so far with regard to the wind-driven ocean circulation. 
Stated in the form of the barotropic vorticity equation, the problem is 
characterized by two external parameters only: a Rossby number (R) and a 
horizontal (EL) or vertical (EB) Ekman number. Although some properties 
of the flow field may be explained in terms of simple-scale arguments (e.g., 
Niiler (1966) and Harrison and Stalos (1982)), the complete nonlinear, 
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diffusive problem can be solved by numerical integration only. Independent  
of the frictional parameterization all the model flows show common features 
for low R: (considering anticyclonic gyres) a northward shift of the gyre 
centres compared to the symmetrical linear flow, coupled with some reduc- 
tion of the maximum transport of the western boundary current below the 
Sverdrup value. 

However, the model results greatly differ when R is increased to values 
where the inertial boundary layer width (8i) becomes comparable to, or even 
larger than, the corresponding frictional scale (8 L, 8~). A model with lateral 
friction and no-slip boundary conditions does not allow steady solutions due 
to shear flow instabilities at the western wall (Bryan, 1963), whereas a 
bot tom friction model (Veronis, 1966b) always reaches a steady state, 
establishing an eastward jet at the northern boundary. With large values of 
R (8~ three or four times 8~) the eastward jet reaches the eastern wall. An 
intense recirculation builds up, which leads to an increase in maximum 
transport due to a southward advection of negative vorticity supporting the 
action of the wind field (Fig. 1). Harrison and Stalos (1982) re-examined the 
bot tom friction model by analysing the equilibrium vorticity balances in 
various regions of the basin and the dependency on both single and double 
gyre wind forcing. The lateral friction/no-slip case was recently reconsidered 
by Kamenkovich et al. (1985) to rationalize the transient solutions. 

It was shown in a series of experiments by Blandford (1971) that the 
difference in model behaviour critically depends on the imposed dynamical 
boundary conditions. In his bottom friction model - -wi th  a small lateral 
friction added- - the  flow changed from Veronis' northern boundary current 
case to an unsteady Bryan case with no eastward jet when changing the 
boundary conditions from free-slip to no-slip. This is supplemented by the 
lateral friction/free-slip model of Briggs (1980) where steady solutions 
emerged for all values of R, approaching a 'wind-modified Fofonoff-mode',  
symmetrical to the mid-basin. However, the oceanic relevance of this model 
is somewhat obscure as Briggs concentrated on the limit of very large values 
of R. 

Marshall (1984) extended the single, steady gyre barotropic calculations to 
include a dynamically active internal jet partitioning counterrotating gyres. 
Using bot tom plus biharmonic friction in connection with (unconventional) 
boundary conditions on the vorticity gradient ensuring no net dissipation of 
vorticity through the walls, a barotropic instability of the jet was maximized 
to transfer all the vorticity required to maintain the time-mean gyres. After 
Marshall and Shutts (1981), the sense of the eddy flux of vorticity was 
rationalized with reference to the eddy enstrophy equation into two contri- 
butions: a non-divergent flux responding to flow advection of eddy en- 
strophy and a divergent flux responding to the dissipation of eddy enstrophy 
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Fig. I. Steady state streamfunction contours from the barotropic, bot tom friction model of 
Veronis (1966). For  the case (a) 61/8 B =1.0, (b) 81/6 B = 2.0, (c) 61/6 B = 4.0. The stream- 
function is normalized with respect to its maximum value. 

in the enstrophy cascade. The latter was shown to point systematically down 
the mean vorticity gradient suggesting a local applicability of a down-gradi- 
ent flux parameterization, i.e., a lateral friction hypothesis. 

Let us compare the prototype barotropic model results (Fig. 1) with a 
typical time mean horizontal transport pattern of an E G C M  calculation 
(Fig. 2). Like the example shown in most EGCM studies free-slip conditions 
are used (to avoid the additional complication of resolving high shear zones 
at the walls) and, therefore, eastward jets are feasible. Compared with the 
barotropic bot tom friction model the essential difference lies in the strong 
recirculation pattern with a subsequent increase in transport which occurs 
even if the penetration scale of the jet is far smal ler  than the basin width. 
Certainly, this seems to be an oceanographically relevant feature when 
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Fig. 2. Mean upper layer streamfunction ~ of Holland's EGCM-experiment 1 (Holland, 
1978). In our notation, 81/6 L =1.1. 

regarding Worthington's (1976) observations of a tight recirculation pattern 
directly south and east of the Gulf Stream. The recirculation strength is of 
the order of 90 Sv or about three times the transport of the Florida Current 
(Schmitz, 1980). Because, theoretically, such a volume of mass flow cannot 
be driven by the North Atlantic wind systems (Leetmaa and Bunker. 1978), 
its dynamical cause is thought to be the eddy field in the Gulf Stream 
system. 

What we will show in this paper is that the same recirculation characteris- 
tics as in the EGCMs can be reproduced in a barotropic model with steady 
solutions. Essential in this sense is the parametrization of the vorticity sink. 
We will concentrate on a lateral friction model with free-slip boundary 
conditions which-- in the oceanically relevant parameter regime of moderate 
non-linearity--has not been considered as yet. 

2. MODEL FORMULATION AND BACKGROUND 

We are concerned with the horizontal transport in a closed square-ocean 
basin of width 7rL and constant depth H on a mid-latitude fi-plane. If lateral 
friction is included by a simple eddy viscosity hypothesis (Munk, 1950) and 
vertical friction by means of Ekman layers at both the top and the bottom, 
the model is stated in terms of the barotropic vorticity equation BVE) 

2~ 1 4~ 2~ + J(~/,, V 2~p) + fi~x = ~ c u r l S +  AV - K v  (2.1) 

governing the stream function ~ for the vertically averaged velocity compo- 
nents u = - Oq,/Oy, v = O4,/Ox. 
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It is convenient to introduce a minimum number of external parameters 
and to study the dependence on these parameters. Discussing the problem in 

i 

the non-dimensional form 

3 ~ V  2~, + RJ(~,V' 2+,) ++x' = curl j +  ELV 4+ ' - EBV2~ ' (2.2) 

these are an external (basin) Rossby number R and horizontal and vertical 
Ekman numbers E L and E B, defined to be 

To A K 
R - HflZL ~ E L -  f lL  3 EB- flL 

if the non-dimensionalization is accomplished by the scaling 

(x, y)= L(x', y') t= ( f iL)- ' r  • = T o T '  = 

In the following we will drop the primes. Generally, we seek solutions of eq. 
2 in the square (rr, ~r)-basin with the boundary conditions 

= 0 and 0 2 ~  __ 0 (2.3) 
On 2 

where n is the local, normal coordinate, subject to a steady, anticyclonic, 
single-gyre forcing pattern 

curl.~-' = - sin y '  

For R, E L, E B << 1 we assume that the Sverdrup-balance will hold in most 
parts of the basin, and we can define the western boundary layer scales 

~I = R1/2 ¢~L = ElL/3 ~B = EB 

supposing the boundary layers are principally controlled by either the 
inertial term or by one of the frictional terms. Let the width of the ocean's 
western boundary currents be 1% of the width of the oceans and assume that 
both frictional and non-linear processes are important  for scales comparable 
to this lateral scale. Then we would expect 

3B) -- ~r/lO0 31 - ( 3  c or  

o r  

R -  1 - 1 0  . 3  E L - 3 • 10 .5 E B - 3 • 1 0  . 2  

to be the relevant magnitudes of the model parameters. However, in connec- 
tion with the finite resolution in a numerical model one is generally confined 
to a minimum value of the Ekman number depending on the computer time 
available. 
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3. N U M E R I C A L  M E T H O D  

Equation 2.2 is integrated numerically by using the spectral approxima- 
tion technique. Thus, the spatial dependence of the inhomogeneous term and 
of the dependent variable in the BVE is represented by a truncated series of 
orthogonal functions, and a system of ordinary differential equations for the 
time-dependent expansion coefficients is constructed by the Galerkin ap- 
proximation. We will not discuss details here; comprehensive reviews of the 
spectral method and its general properties may be found in Machenhauer 
(1979) and Gottlieb and Orszag (1977). Recently, several authors have 
adopted various spectral expansion schemes for the numerical modelling of 
oceanic systems, e.g., Haidvogel et al. (1980) for barotropic open ocean 
studies and Krauss and Wi)bber (1982a,b) for linear models of wind-driven 
flows in a stratified ocean. 

To account for the boundary conditions (2.3) we approximate the fields 
by a double Fourier-sine-series 

N N 

c u r l : ( x ,  y ) -  Y'. Y'. T.,,. sin mx sin ny 
r n = l  n = l  

N N 

#,(x, y, t ) -  ~ ~ 4,.,..(t) sin m x  sin ny 
m = l  n = l  

This approach was made in a series of WDOC-studies by Veronis (1963, 
1966c), but was confined to a very limited number of Fourier components 
due to the expensive computations of the convolution sums of the non-linear 
terms. This deficiency can be overcome by means of the so-called pseudo- 
spectral method for the calculation of non-linear terms as originally sug- 
gested by Orszag (1969). Thus, the multiplications involved in the Jacobian 
term are not evaluated in the spectral domain but rather on an equivalent 
grid in the physical domain. 

The truncated spectral equations for the expansion coefficients ~ ..... ( t )  
are advanced in time by using a leapfrog scheme (except for the viscous 
terms) yielding 

. . . .  t~K+ln = ~m,nK-1 + r Tm.-- RJ(~K, ~K) E jam,/j/yK.. 
i =  1 

2 K - 1  K - I  - r { ( r n Z + n  )EL~bm: +EBq~m. . ) fo rm,  n----I,2 . . . .  N 

where 

r =  2 A t / ( m  2 + n 2) a m , j = 4 m / ( ( m Z - j Z ) r r )  
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and the Jacobian term is treated as mentioned above, employing the energy- 
conserving form (Arakawa, 1966) 

More details of the numerical approach are presented in BOning (1985). The 
most serious problem of the expansion in a sum of sine terms is due to the 
/~+x term in the vorticity equation causing a non-uniform convergence of the 
scheme. Preliminary tests were made by varying the number  N of the 
expansion coefficients to determine the necessary values that yield reliable 
results for specific choices of the external parameters EB, E L, R. The 
resulting criterion is equivalent to that of finite-difference models, e.g., 
Veronis (1966b); In general, no alterations of the solutions could be stated, 
provided N is large enough so that there was at least one point of the 
equivalent grid in the boundary  layer, where it was sufficient to resolve the 
largest of 3 B, 3L, 3~. On the other hand a significant reduction of N below 
this threshold value resulted in spatial oscillations in the stream-function and 
especially in the vorticity fields as symptomatic of a Gibb 's  phenomenon.  
For  most of the calculations yielding steady solutions, 31 × 31 wave numbers 
proved to be sufficient, whereas up to 63 × 63 wave numbers were required 
to accomodate for a significant reduction in the friction for quasi-steady 
cases. The programmes were tested by reproducing some of the lateral 
friction/free-slip model results of Briggs (1980); we found a good agreement 
with his results. 

4. CALCULATIONS 

The experiments are arranged in three sequences to represent the model 
behaviour in the ( E  L, E B, R)-parameter  space. Contour  maps show the 
streamfunction q], the relative vorticity ~+ and the potential vorticity q = ~" + f 
in the state of equilibrium. Contour  lines of ~b are drawn with a fixed 
interval in each sequence so that changes in the maximum values a n d - - c o n -  
s e q u e n t l y - i n  the maximum transports are visible from changes in the 
number  of isolines. Additionally, the values of the maximum transport are 
presented in dimensional units. Therefore, we shall use the following basin 
parameters during the whole paper: a basin width +rL = 2 .108  cm, an 
amplitude of the windstress T 0 =  2 cm 2 s z and a planetary vorticity 
gradient/3 = 2 • 10 13 c m - t  s - l .  By means of this forcing the linear, friction- 
less Sverdrup transport in our quadratic basin amounts  to T o +r//~ = 31.4 • 1012 
cm 3 s - t ,  which may serve as a reference to the maximum transports such as 
computed numerically in the advective-diffusive model. (For a quantitative 
comparison with the results of other studies note further that some authors 
used curl + - = - s i n  x sin y instead of curl + - = -  sin y as the forcing 
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function which does not matter for the solution patterns but  is essential for 
their amplitudes.) 

4.1. Lateral friction model 

Our first task is to complete the picture of the lateral fr ict ion/free-sl ip 
model behaviour in the intermediate range between weakly non-linear and 
strongly non-linear flows. Table I presents a sequence of experiments with 
an increasing Rossby number R. A weakly non-linear case is shown in Fig. 
3. Besides the frictional recirculation at the outer edge of the western 
boundary  current (Munk's  return flow), the flow in this parameter  range 
behaves just  the same as in the bo t tom friction model (BFM) (Veronis, 
1966a,b). Owing to the northward advection of negative vorticity in the 
boundary  layer, which counteracts the effect of the windstress in the Sverdrup 
interior, the transport in the non-linear case is slightly reduced. The relative 
vorticity is almost zero in the interior and is concentrated near the western 
wall, but  even there it is not able to distort the dominance of the planetary 
vorticity gradient on the potential vorticity contours. 

The situation changes when non-linear effects become more prominent 
(Figs. 4 and 5). Indeed, an eastward jet, such as in the BFM, builds up at the 
northern boundary  accompanied by a recirculating flow which passes a 
region of positive vorticity before entering the Sverdrup interior. Simulta- 
neously, closed streamlines appear in the northwestern corner trapping fluid 
particles which never go through the Sverdrup regime. The maximum 
transport shows a significant increase. These features are still more pro- 
nounced in Fig. 6 where the inertial and frictional scales--which,  of course, 
have lost much of their relevance at this s tage- -are  equivalent. 

TABLE I 

External parameters and maximum gyre transports of the experiments with lateral friction 
only 

Experiment E L R 81/8 L Transport 
(1012 cm 3 s -1) 

1 9.1,0 -4 0 0 38.2 
2 9.10 4 3.72.10-4 0.2 38.1 
3 9-10 -4 2.33-10 -3 0.5 34.6 
4 9.10-4 5.96-10- 3 0.8 54.1 
5 9-10 - 4  9.31.10 -3 1.0 89.2 
6 9-10 -4 2.10-10 -2 1.5 425 a 

a The kinetic energy of the flow is still increasing at 200 days of integration. 
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Fig. 3. Contours of ~, ~', q (in that order reading down) for experiment 2, 8 1 / 8  L = 0.2. 
l~max = 3.46, ~'max =140.3; contour intervals A~b = 0.69, Aq = 0.4.10 -5 s -1. The relative 
vorticity is normalized with respect to its maximum value. Regions of positive ~" are shaded. 

The relative vorticity maps reveal a broadening and intensifying region of 
negative vorticity in the north. Its edge divides the trapped flow from the one 
turning southeastward to re-enter the Sverdrup interior. The presence of a 
strong recirculating sub-gyre provides a sharp contrast to BFM-flows. There, 
a closed inertial recirculation only exists when the flow becomes strongly 
non-linear and the eastward jet crosses the whole basin; southward advec- 
tion of negative vorticity, which acts in the same sense as the wind and 
results in an increase in transport, only takes place at the eastern boundary. 

The potential vorticity contours are strongly deformed reflecting the 
intense relative vorticity in the northwestern corner. The isolines of q--called 
geostrophic contours or isostrophes--may serve as an alternative aid to 
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Fig. 4. +, ~, q for exper iment  3, 6 1 / 8 L  = 0.5. ~max = 3.81, I~ma× I = 131.5. C o n t o u r  intervals  
as in Fig. 3. 

discuss the significant changes in transport. Writing the vorticity equation as 

dq 
d~ = forcing f + dissipation d 

it is evident that fluid particles can only cross isostrophes at a rate which the 
external forces f or d can account for. This limits the circulation in the 
interior where the geostrophic contours are blocked by the basin walls. The 
Sverdrup constraint is broken for trajectories involving no changes in q. The 
sub-gyre flow with streamlines almost parallel to the geostrophic contours is 
able to circulate nearly free of any influence by external forces. A more 
thorough discussion of the vorticity balance in the recirculation regime will 
be given in section 5. 

Figure 7 presents a case where the inertial scale is 1.5 times the diffusive 
scale. The flow has become essentially non-linear and tends to be like the 
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Fig. 5. +, ~', q for experiment 4, 81/8 L = 0.8. ~rnax  = 5.34, [~ . . . .  1=130.8.  Contour intervals 
as in Fig. 3. 

symmetric flow-field results of Briggs (1980). Briggs demonstrated that the 
solution in the limit of  high R can be interpreted as an inertial Fofonoff-gyre 
(Fofonoff ,  1954) obeying 

J(~b, V2~b) = 0 

with the additional balance of f and d 

_ EL~7 4qj = curlz, r 

Yet, it must be mentioned that the situation does not change with respect to 
a sinusoidal wind field if a bot tom friction model is considered; in fact, the 
symmetrical flow of Fig. 7 is quite familiar from the BFM studies. A 
different behaviour of the lateral friction model  is apparently confined to the 
intermediate range of R. We will concentrate on the flow in this parameter 
range in the next section where we will consider the transition of the lateral 
friction case to a model dominated by bottom friction. 
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Fig.  6. ~p, ~', q for  e x p e r i m e n t  5, 6 I / S L  = 1.0. ~Pmax = 8.92, I~max [ = 101.3. C o n t o u r  in tervals  
as in Fig. 3. 

T A B L E  II 

E x p e r i m e n t s  wi th  la teral  and  b o t t o m  fr ic t ion 

Expe r imen t  E L E a R ~ I / ~ E  8 L / 8  a T r a n s p o r t  

5 9 -10  - 4  - 9 .31 .10  -3  1.0 - 89.2 

7 9-10  - 4  9 .7 .10  -3  9 .31-10 -3  1.0 10 53.7 
8 9 . 1 0  - 4  2 .4 .10  -2  9 .31 .10  -3  1.0 4 37.8 
9 9 . 1 0  -4  4 .8 .10  -2  9 .31 .10  -3  1.0 2 26.7 

10 0 1 .0 .10 -1  1 .00 .10  -2  1.0 0 22.0 

11 0 1 .0 .10  -1 0 .50 .10  -2  2.0 0 25.7 

8 E is the  larger  of  the  two  viscous scales, 8 E = m a x ( 8  L, 8B }- 
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4. 2. Transition within lateral and bottom friction 

Table II presents a sequence of experiments with a varying ratio of the 
lateral to the bottom friction scale 8L/8  B. We focus on the parameter range 
of oceanic interest, which yields a well-established NBC which does not pass 
across the whole basin, and take the value 1 for the ratio of the inertial to the 
(dominant) viscous scale 8 E = max( 8 L, 8B}. Figures 6, 8-11 show the transi- 
tion from the lateral friction case to the bottom friction dominated one. The 
striking feature of the sequence is the gradual diminution of the strong 
sub-gyre coupled with a subsequent reduction of the maximum transport. 
Simultaneously, the region of negative vorticity becomes smaller, whereas 
]~'max [ in the northern corner is strong enough in all the flows to offset the 

/ 
/ 

° ,  .~ _ _  
-- .  ..--~ '~  . ~ - -  

Fig. 7. ~b, ~', q for  e x p e r i m e n t  6, t~i/SL=l.5 a f t e r  200 days  of  i n t eg r a t i on ;  ~ m a x  ~ 42.5, 
~min = - 3 . 3 8 ,  Is'max I = 126.2. C o n t o u r  in t e rva l s  have  b e e n  c h a n g e d  to A~b = 2.73, Aq = 0.8.  
1 0 - 5  s - l .  
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F i g .  8. t~, ~', q for experiment 7, 8L/SB=lO; ~max=5.37, Ifmaxl =105.6; A~=0.52, the 
other contour intervals as in Fig. 3. 

planetary vorticity gradient and to strongly deform the geostrophic contours• 
However, closed streamlines in the region of high ~" entirely disappear when 
bot tom friction dominates. 

However, a secondary effect in the sequence is that the penetration scale 
of the eastward jet becomes smaller suggesting that bot tom friction is more 
effective to get rid of the vorticity in the western boundary  layer. Another  
example for the effectiveness of the dissipation mechanism is that the NBC 
reaches the eastern wall in the lateral friction case for 8 ~ / 8  L - 1.5, whereas 
in the bot tom friction model (Fig. 1) the inertial scale must be three or four 
times larger than the viscous scale. Thus the use of the ratio of the inertial 
scale to the larger of the two frictional scales seems inappropriate to examine 
the difference between the lateral friction and bot tom friction case with 
respect to the recirculation behaviour. The contribution of both the dissipa- 
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Fig. 9. ~b, ~, q for exper iment  8, ~ L / ~ B  = 4; IPmax = 3.78, I~ma× I = 97.8. Contour  intervals as 
in Fig. 8. 

tion mechanisms in the experiments of this sequence is shown in Table III. 
The dissipation of energy is evaluated in multiplying the friction terms in the 
vorticity equation by ~p and integrating over the area. Although the bottom 
friction scale in expe~ment 7 is only 1 / 1 0  of the lateral friction scale, nearly 
1 / 3  of the energy dissipation is provided by bottom friction. The frictional 
mechanisms are equally important in experiment 8, where ~ L = 4 6 B- 

A bottom friction case, with a NBC penetrating about half the basin is 
obtained for 6 i / 8  B = 2.0 (experiment 11, Fig. 12). This case is comparable to 
experiment 5 (Fig. 6) and helps to separate the specific effect of bottom 
friction from the effect due to more friction in general. A comparison of the 
flow fields in these two experiments very clearly shows the difference in the 
recirculation characteristics of the lateral and the bottom friction case. 
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Fig. 10. ~p, ~', q for experiment 9, ~$L/SB = 2; qJm., = 2.67, 
as in Fig. 8. 

[ ~ m a x  I : 77.7. Contour intervals 

TABLE III 

Percentage contribution to total, basin integrated dissipation by the two frictional mecha- 
nisms 

Experiment Frictional Bottom friction Lateral friction 
mechanism EBf~,v 2~b dx d y ELf~'~74tp dx d y 

5 - 0 100 
7 10 29.2 70.8 
8 4 47.2 52.8 
9 2 65.0 35.0 

10 0 100 0 
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Fig. 11. ,p, ~', q for experiment 10, 8 L / S n = 0 ,  8 I / 8 B = 1 ;  ~max=2.20,  
Contour  intervals as in Fig. 8. 

I~ .... I = 79.0. 

It has to be noted that all computations in this paper were performed with 
the same (free-slip) boundary conditions to separate the effects of the 
boundary  conditions and the frictional parameterization. In the bot tom 
friction case we have to add an- -arb i t ra r i ly  sma l l - - amount  of lateral 
friction to make the free-slip condition mathematically consistent. This 
implies that the bot tom friction dominated case is not quite the same as 
Veronis' BFM without any dynamical boundary  conditions. However, as 
long as 6 a > 6L, only slight differences have shown up between the BFM 
solutions and the free-slip model due to the different boundary layer 
structures. A similar result has been found by Blandford (1971). We omit a 
presentation of a bot tom friction/free-slip sequence with varying R because 
it gives no essentially new information compared  to the BFM. 
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Fig. 12. g,, ~', q for experiment 11, 6 k / 6  B= 0, 
Contour  intervals as in Fig. 8. 

. L - - J  

6i/8~= 2; ~ m a x  = 2.57, Iff . . . .  I =143.0. 

TABLE IV 

Experiments with decreasing viscous scale. Transport values are given for the anticyclonic 
gyre in these double-gyre forced experiments 

Experi- E L R 61/8 k Transport Solution 
ment (1012 cm 3 s 1) behaviour 

12 2.4.10 -3 1.1.10 -2 0.8 44.2 steady 
13 6.0-10 -4 4 .6 .10-  3 0.8 65.0 steady 
14 1.0.10 -4  1.4.10 3 0.8 87.4 quasi-steady 
15 4.2-10 5 7 .8 .10-4  0.8 92.3 quasi-steady 
16 5.0.10 5 1.1.10 3 0.9 105.8 quasi-steady 

The solutions are antisymmetric with respect to mid-latitude and the total transport of the 
eastward jet  is twice this value. 
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4. 3. The range of  steady solutions 

As dictated by the finite resolution, the diffusivities used in the calcula- 
tions are still somewhat higher than the values to be expected upon consider- 
ation of the oceanic scales in section 2. We are left with the question whether 
the character of the solutions would remain the same if the imposed 
boundary  layer scales were allowed to be smaller and, thus, more closely 
related to oceanic values. 

Table IV lists a sequence of lateral friction experiments with decreasing 
values of E L and R. The ratio 31/3 L is held constant at the value 0.8 in the 
experiments 12-15, and is 0.9 in experiment 16. These calculations were 
made by means of double-gyre wind forcing (curl/r  = - s i n  2y).  They are 
part of an on-going study on mesoscale resolution (eddy resolving) baro- 
tropic circulation models. For the purposes of the present paper, however, 
the particular forcing is not relevant and we may focus attention on the 
transport features of the anticyclonic gyre only. 

Approaches to equilibrium for some experiments are shown in  Fig. 13 
where the kinetic energy is plotted against time. In the sequence a steady 
state is reached for the experiments with E L >1 6 . 1 0  - 4  (equivalent to an 
eddy coefficient AH = 3.1 • 1 0  7 c m  2 s - 1  in the 2000 km basin). Decreasing of 
the viscous scale results in a much larger spin-up time: it grows from 150 
days for E L = 2 .4 .10  - 3  ( A  H = 1.2-108 cm 2 s -1) to around 400 days for 
E L = 6 -10  - 4 .  This may be explained by the relation ft = ELV2~ " which 
implies that the decay times for initial oscillations become longer as the 
diffusivity becomes smaller. 

The situation changes fundamental ly with respect to E L = 1 • 1 0  - 4  ( A  H = 

5.2. 10  6) where a steady solution is no longer obtained. After an initial 
spin-up time of 600 or 700 days fluctuations arise, settling down in a 
statistically steady state with regular oscillations. Figure 14 gives the time 

z 

t t l  

E x p 1 3  

I [ I I 
200 d 400  0 

I I I I I I 
4 0 0  800  d t 2 0 0  

Fig. 13. Basin in tegrated kinetic energy (in arbi t rary  units)  against  t ime for exper iments  12, 13 
and  14. 
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~ q.10 61/6L =0"8 

626 o.17 - ~.ss 

~o9, ~o17 
HA H/f r~ 74~dxdy HA H / J ' ~ d x  dy 

~ 0.97 

8.80 

~ O.Tt, 

0,23 

6]/6L=0.9 

1.96 

~0.23 

Fig. 14. Energy box diagrams showing the kinetic energy of the mean field (K) ,  the mean 
kinetic energy of the fluctuations (K ' )  (in 106 erg cm 2) and the energy transfer rates (in erg 
cm 2 s -1) for experiments 14 and 16. 

mean energetics in the quasisteady states of experiments 14 and 16. The 
friction acting on the mean state is not able to dissipate the total wind input 
of energy. The mean states are balanced by a transfer of energy to the 
fluctuating part of the solutions by Reynolds stress interaction work. The 
values indicate that the significance of the eddies in the solutions increases 
with increasing non-linearity: for ~I/(~L ~--- 0.8,  15% of the wind energy goes 
into the eddy field, whereas for 61/6L = 0.9 it is 23%. 

We will not go into details of the quasi-steady solutions here. The 
properties of the fluctuating component in these experiments and the dy- 
namical interactions between the mean flow and the eddy field shall be 
discussed in a separate paper. In the present study our attention is restricted 
to a particular aspect of the time mean part of the flow: namely, the 
recirculation character of  the steady lateral friction model is not qualitatively" 
altered when the range of the steady solutions is left and interaction with 
eddies becomes an integral part of the flow. 

Figure 15 and 16 display the equilibrium streamfunction contours of the 
experiments 12 and 13, Figs. 17 and 18 show the time mean parts of the 
quasi-steady solutions of experiments 14 and 15. The sequence, based on a 
fixed 6 i / 6  L = 0.8, shows qualitative similar flow patterns and, thus, confirms 
the relevance of the 6]/6L-ratio as a suitable measure of non-linearity. When 
decreasing the scales 81, 6L, the NBC becomes narrower and the basin- 
integrated transport stronger, It is important to note that this enhancement 
of the sub-gyre circulation takes place even in the range of the steady 
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Fig. 15. Streamfunction + in the steady state of experiment 12; ~max = 4.42, A¢ = 0.89. 

solutions. It is not obvious whether the eddy field additionally contributes to 
the recirculation strength in any way, because the two effects, i.e., the 
reduction of E L and the existence of fluctuations, cannot be separated as 
one moves into the quasi-steady regime. The similarity of the recirculation 
region in both the steady and the quasi-steady solutions, however, indicates a 
minor influence of the eddies on the mean transport field. 

Another feature of the sequence--similar to EGCM stream-function 
fields--is the eastward bending of the streamlines outside the recirculation 
region in Figs. 17 and 18. A secondary eastward current emerges south of the 
sub-gyre when the range of steady solutions is left. The question whether this 
feature is caused by the dynamical influence of the eddy field will be dealt 
with in detail in the forthcoming paper. 

\ 

Fig. 16. Streamfunction + in the steady state of experiment 13; @max = 6.50, A+ = 0.89. 
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Fig. 17. Mean streamfunction ~ in the quasi-steady state of experiment 14; ~ ..... = 8.74, 
A 4 ,  = 0.60. 

We may summarize this section as follows: contrary to the bottom friction 
model, in the lateral friction/free-slip model a strong recirculating sub-gyre 
emerges which increases the basin transport several times. This feature is 
part of both the steady and quasi-steady solutions which are obtained by 
decreasing the model diffusivity. 

In the next section we will discuss the dynamics in the recirculation 
region. 

i 

,~ -. - - -,, ), l j j ,,' J 

' ~ - - - " J q -  - ~  J I / " 

- -  _ t j  . J  
k ~ / - - - - - - -  J ] 

Fig. 18. Mean streamfunction ~ in the quasi-steady state of  experiment 15; ~ ..... ~ 9.23. 
A4, = 0.40. 
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5. DISCUSSION OF THE VORTICITY DYNAMICS 

5.1. The integral vorticity constraint 

We want to understand the different structures of the steady solutions 
with bot tom and lateral friction. The type of friction influences the solution 
of the BVE most strongly in the parameter  range of ' intermediate '  non-lin- 
earity. Let us compare, for example, the results of experiment 5 (Fig. 6) and 
experiment 11 (Fig. 12) which exhibit almost the same NBC penetration 
scale. In the case of lateral diffusion there are closed streamlines within the 
region of negative vorticity, i.e., in the region of closed or almost closed 
isostrophes. In the bottom friction case the region of negative vorticity is 
limited to the boundary  layer and, thus, all streamlines close in a region 
where If] is small. Accordingly, we get a strong, tight recirculation pattern 
in the first, and a smooth return flow in the latter case. 

We base our arguments for the different recirculation intensities in the 
near field on the integral balance of vorticity for a column in one complete 
circuit. Taking the closed line integral of the BVE (2.2) along any streamline 

= constant, the vorticity transport terms drop out and 

¢,r. ds = EB¢U. ds - ELCV~". dn (5.1) 

remains in the steady state, or equivalently 

ffACUrl:, dx dy  = EBffAf dx d y -  ELffA~72f dx  dy  (5.2) 

The circuit is taken counterclockwise; n is the outer normal to s. In 
equilibrium the vorticity input from the wind (W) into any domain A, 
enclosed by a streamline, must be balanced by the model dissipation process. 
This relation holds whatever the local vorticity balances, i.e., whatever the 
local dynamics, along the circuit may be. 

Let us consider the model with bot tom friction alone. With Z as the mean 
magnitude of ~" in A, we get W -  EBZ. For a given windstress and frictional 
parameter, the amount  of vorticity enclosed by a streamline solely depends 
on the area the streamline encompasses: for a small area the wind input of 
vorticity W is small. Consider a closed circuit confined to the northwestern 
area corresponding to, say, W =  0.5 in the model with E B = 5 • 10  - 2 .  There- 
fore, Z - W / E B =  0(10). As the vorticity in the boundary layer, in a 
non-linear case like experiment 11, is an order of magnitude larger, the 
column must pass a more quiet region somewhere on its way to keep the 
average vorticity small. 

We see that the linear friction law prevents the flow from a recirculation 
in a small region of large l f I, because the wind-input of vorticity cannot 
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Fig. 19. Contour  map of V 2~, normalized with respect to its maximum value, for experiment 
5. Regions of negative diffusion are shaded. The isolines shown are +0.05, _+0.1, 
+0.3 . . . . .  0.9 ] V 2~max ]. 

account for the large vorticity loss which would occur along such a trajec- 
tory. Thus, this particular form of model friction puts a strong constraint on 
the possible type of recirculation, especially in the non-linear cases with 
strong inertial boundary layers. 

On the other hand, if such large values of R are considered which yield an 
inertial recirculation--the modified Fofonoff-type of circulation (see, for 
example, Veronis, 1966b)--the flow must lose its boundary layer character, 
i.e., the vorticity will spread out more uniformly over the basin. With U and 

as the average current speed and length scale, we may assume Z -  U/?~. 
Increasing the speed of a particle on its circuit demands ?~ cc U; this is the 
same relation which Harrison and Stalos (1982) found by their scale analysis 
for the NBC in the bot tom friction experiment. 

In the intermediate range of R the situation changes if the vorticity loss is 
modelled by a higher order friction law. Clearly, a strong recirculation with 
large [~'] can occur, provided V 2~ remains small. This is what happens in 
the experiments. Figure 19 shows the distribution of V 2~ for experiment 5. 
Dissipation, i.e., diffusion of negative vorticity out of the area bounded by a 
streamline, occurs all along the boundary jets in the west and north but is 
small in the tight recirculation zone. Outside the sub-gyre area the term takes 
the opposite sign. Negative vorticity is diffused inwards here and accelerates 
the circulation. 

5.2. Regional vorticity balances 

An integral vorticity balance along a complete circuit gives no insight into 
the physical processes acting on a fluid column. Locally the vorticity 
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transport terms, i.e., advection of relative and planetary vorticity, may be the 
important terms and dominate the vorticity balances. We concentrate on the 
dynamics of the sub-gyre in the lateral diffusion model (experiments 4 and 
5). Denote the terms in the vorticity eq. 2.2 by 

N = R ( u . V ~ )  B = v  W=cur l z r  F = - E L Y T 2 ~  

thus 
N + B +  W + F = 0  
The strong recirculation takes place almost entirely in the region of f < 0 or, 
equivalently, in the region of the closed geostrophic contours. Thus, a 
column in the sub-gyre will not change its potential vorticity very much. 
Suppose, in a first approximation, d q / d t  ~ 0; from this we expect local 
balances between advection N and beta B and, simultaneously, between 
wind W and friction F: N -  B, W -  F. In a regional vorticity budget this 
will hold provided there is no cancellation of the locally dominant  terms. We 
consider the eastern part of the sub-gyre with southward flow to compare the 
budgets of the steady lateral friction model with the depth integrated 
vorticity budget of the EGCM--sub-gyre  analysed by Harrison and Holland 
(1981). This is their region ' RECIRC'.  

Table V shows the general tendency of the budgets in the steady lateral 
friction model and in the EGCM towards the expected behaviour of a free 
inertial recirculation. In the EGCM the advection term contains both the 
advection of vorticity by the mean flow (MAD = 166) and the mean advec- 
tion by the eddies (EAD = -7 ) .  Although this is a case with strong eddy 
activity, the basic balance in the sub-gyre recirculation is between mean 
advection and beta; the (lateral) eddy flux-divergence is rather unimportant  
compared with the mean advection. 

5.3. Dynamical regimes in the lateral friction model 

The aim of a vorticity analysis is to identify the dominant  physical 
processes in the various parts of the gyre. Here we follow the approach of 

TABLE V 

Vorticity budgets in the recirculation region (RECIRC) 

B N W F 

Experiment 4 - 85 94 ] 1 - 21 
Experiment  5 - 195 199 39 - 45 
EGCM - 166 159 22 - 16 

The EGCM values are basin depth integrals ( x  106 cm 3 S -2)  from Harrison and Holland 
(1981); the values of the experiments 4 and 5 are in dimensionless units. (The values are only 
internally consistent for each experiment and cannot  directly be compared.)  
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Fig. 20. Dynamic regimes of the flow (experiment 5). See text. In the transition regions the 
types of balance are: 
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Veronis (1966b) to define characteristic regimes of the flow, each repre- 
senting a region of a specific, dynamical balance of forces. We consider the 
percentage contribution of each term in the vorticity equation at every grid 
point. Let us denote these contributions, again, as N, B, W, F. Because of 
the variety of types of balance between the four terms in the basin, it seem 
most appropriate to firstly seek those regions where the dynamics are 
dominated by two terms only. 

Figure 20 shows the regimes of experiment 5, which are characterized by 
balances between two terms which together contribute more than about 80% 
to the balance in the equation N + B + W + F = 0. Thus, these terms are of 
opposite sign and nearly balance each other. The terms on the left hand side 
of the relations are of the same sign as the wind-stress curl. 

The Sverdrup regime ( W -  B) is seen to fill the entire southeast half of the 
basin. Columns entering the western boundary layer first pass a regime 
where the inertial terms dominate. Friction is significant along the western 
and northern boundary. Near the western boundary a Munk-layer balance 
holds, whereas the eastward flowing jet is of advective, diffusive character. 
The recirculation region is characterized by free advective dynamics. 

6. CONCLUSIONS 

The wind-driven ocean circulation problem is studied by numerical in- 
tegrations of the barotropic vorticity equation (BVE), subject to steady zonal 
wind forcing. Parameterizing the vorticity sink by lateral diffusion of vortic- 
ity in connection with free-slip conditions at the boundaries leads to a new 
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kind of solution of the BVE in the geophysically meaningful range of 
parameters (that is, of moderate non-linearity): 

steady as well as quasi-steady solutions are possible, depending on the 
(prescribed) diffusivity of the flow; 

in contrast to the bottom friction case (Veronis, 1966b; Harrison and 
Stales, 1982) a strong recirculating sub-gyre emerges in the northwestern 
corner of the basin increasing the maximum transport of the northern 
boundary current several times above the Sverdrup transport. The shape as 
well as the vorticity dynamics of the recirculation seem to be very similar to 
the mean transport fields of recently investigated quasi-steady EGCMs; and 

this intense sub-gyre is a feature of both the quasi-steady and the steady 
solutions of the BVE. 

Altogether, the essential features of the EGCM-transport fields appear to 
be explainable in terms of a simple barotropic system where lateral friction 
represents the dominant dissipation mechanism. The possibility of reproduc- 
ing these features in steady solutions lends strong support to Marshall's 
(1984) suggestion of the applicability of a down-gradient parameterization of 
the divergent eddy vorticity fluxes. His rationalization of the flux in two 
dynamically distinct contributions might explain Harrison's (1978) relative 
lack of success in establishing a local flux-gradient relationship for EGCM- 
fields, an otherwise paradoxical result regarding the present study. 

It is interesting to note that the steady lateral friction/free-slip solutions 
as described here are qualitatively very similar to the mean fields of the 
unstable no-slip solutions of Kamenkovich et al. (1985) with eddies gener- 
ated in the western boundary layer. Different dynamical boundary condi- 
tions strongly determine the behaviour of the boundary currents, i.e., lead to 
instabilities in the western boundary layer (no-slip), avoid these instabilities 
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Fig. 21. Isolines of maximum transport (dashed lines) as a function of the model parameters, 
4'max(8~, 8L), for the barotropic model with lateral friction/free-slip. 
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and allow eastward jets (free-slip), or concentrate  q contours at the eastward 
jet  causing vigorous instabilities (Marshall); but  it seems they do not  
influence the recirculation behaviour  of the interior flow. 

The results of all the calculations made are summarized in Fig. 21 which 
displays the dependence of the maximum transport  on the external parame- 
ters 8~ and 6 L. Parameter  combinations between the lines 6x = 0.8 6 L and 
8~ = 1.0 6 L result in flow cases most like the ocean, in the sense that they 
exhibit a Sverdrup regime in the larger part  of the basin, a western and 
northern boundary  current with a t ransport  increasing downstream and a 
penetrat ion scale of one-third or one-half  of the basin width, coupled with a 
tight recirculation regime. Approaching the small 'oceanic '  boundary  layer 
scales (6~, 8 L ~ 1/100  basin width) along these lines we observe an increase 
of the maximum transport  to values of about  100 Sv or more than three 
times the Sverdrup transport.  
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