
 

 

Diversity and taxonomic novelty of 

Actinobacteria isolated from the Atacama 

Desert and their potential to produce 

antibiotics 

 

 

 

 

Dissertation 

 zur Erlangung des Doktorgrades 

 der Mathematisch-Naturwissenschaftlichen Fakultät 

 der Christian-Albrechts-Universität zu Kiel 

 

Vorgelegt von  

Alvaro S. Villalobos 

Kiel 2018 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referent: Prof. Dr. Johannes F. Imhoff 

Korreferent: Prof. Dr. Ute Hentschel Humeida  

Tag der mündlichen Prüfung: 

Zum Druck genehmigt: 03.12.2018 

gez. Prof. Dr. Frank Kempken, Dekan 

 



Table of contents 

Summary .......................................................................................................................................... 1 

Zusammenfassung ............................................................................................................................ 2 

Introduction ...................................................................................................................................... 3 

Geological and climatic background of Atacama Desert ............................................................. 3 
Microbiology of Atacama Desert ................................................................................................. 5 
Natural products from Atacama Desert ........................................................................................ 9 
References .................................................................................................................................. 12 

Aim of the thesis ............................................................................................................................ 16 

Chapter I: Diversity and antibiotic activity of Actinobacteria isolated from the rhizosphere of 
endemic plants near Socaire, Chile ................................................................................................ 17 

Abstract ....................................................................................................................................... 18 
Introduction ................................................................................................................................ 19 
Materials and methods ................................................................................................................ 20 

Samples ................................................................................................................................... 20 
Isolation of Actinobacteria ...................................................................................................... 20 
16S rRNA gene sequencing, identification, and phylogenetic analysis ................................. 21 
Antibiotic activity ................................................................................................................... 21 

Results ........................................................................................................................................ 22 
Discussion ................................................................................................................................... 29 
References .................................................................................................................................. 30 

Chapter II: Phylogenetic diversity and antibiotic activity of Actinobacteria from hypersaline lakes 
in the Atacama Desert, Chile. ......................................................................................................... 33 

Abstract ....................................................................................................................................... 34 
Introduction ................................................................................................................................ 35 
Materials and methods ................................................................................................................ 36 

Sampling ................................................................................................................................. 36 
Isolation of Actinobacteria ...................................................................................................... 36 
Antimicrobial activity test ....................................................................................................... 38 

Results ........................................................................................................................................ 39 
Isolation and identification of Actinobacteria ......................................................................... 39 
Antimicrobial activity ............................................................................................................. 47 

Discussion ................................................................................................................................... 49 
Conclusions ................................................................................................................................ 53 
Acknowledgements .................................................................................................................... 53 
References .................................................................................................................................. 54 

Chapter III: Superstesspora tarapacensis gen. nov., sp. nov., a new member of the 
Micromonosporaceae family from the hypersaline Salar de Llamará, Chile ................................ 61 

Abstract ....................................................................................................................................... 62 
Introduction ................................................................................................................................ 63 
Phenotypic and chemotaxonomic characterisation ..................................................................... 63 

 



Phylogeny ................................................................................................................................... 69 
Proposal of Superstesspora gen. sp. nov. ................................................................................... 71 
Description of Superstesspora gen. nov. .................................................................................... 77 
Description of Superstesspora tarapacensis sp. nov. ................................................................. 77 
Protologue ................................................................................................................................... 78 
Author Statements ...................................................................................................................... 78 
Abbreviations .............................................................................................................................. 78 
References .................................................................................................................................. 79 

Chapter IV: Subtercola vilae sp. nov., a new Actinobacterium from an extremely high-altitude 
cold volcano lake in Chile .............................................................................................................. 83 

Abstract ....................................................................................................................................... 84 
Introduction ................................................................................................................................ 85 
Materials and methods ................................................................................................................ 85 

Isolation and cell morphology ................................................................................................ 85 
Physiological characteristics ................................................................................................... 86 
Chemotaxonomic analyses ...................................................................................................... 86 
DNA base composition ........................................................................................................... 86 
Phylogenetic analyses ............................................................................................................. 87 

Results ........................................................................................................................................ 87 
Chemotaxonomic characteristics ............................................................................................ 90 
16S rRNA gene sequence analyses ......................................................................................... 92 

Discussion ................................................................................................................................... 93 
Description of Subtercola vilae sp. nov. ..................................................................................... 97 
Acknowledgements .................................................................................................................... 98 
References .................................................................................................................................. 99 

Chapter V: Cold-adaptation of Subtercola vilae DB165T an isolate from a high-altitude cold 
volcano lake as revealed by its genome analysis ......................................................................... 102 

Abstract ..................................................................................................................................... 103 
Introduction .............................................................................................................................. 104 
Materials and methods .............................................................................................................. 106 
Results ...................................................................................................................................... 108 

Genome properties ................................................................................................................ 108 
Carbon and energy metabolism ............................................................................................ 111 
Secondary metabolite production ......................................................................................... 112 
Cold stress adaptation of Subtercola vilae DB165T .............................................................. 113 
Membrane fluidity ................................................................................................................ 113 
Cryoprotectants ..................................................................................................................... 114 
Temperature shifts ................................................................................................................ 114 
Oxidative stress ..................................................................................................................... 114 
Ice-binding proteins .............................................................................................................. 115 
Genome comparison of Subtercola vilae DB165T, Subtercola boreus DSM 13056T, Agreia 
bicolorata DSM 14575T, and Agreia pratensis DSM 14246T .............................................. 117 

Conclusions .............................................................................................................................. 121 
Acknowledgments .................................................................................................................... 122 
Conflicts of interest .................................................................................................................. 122 
References ................................................................................................................................ 123 

 



Chapter VI: Genomic potential of natural product biosynthesis by seven Actinobacteria isolated 
zfrom the Atacama Desert ............................................................................................................ 127 

Abstract ..................................................................................................................................... 128 
Introduction .............................................................................................................................. 128 
Materials and methods .............................................................................................................. 131 
Results ...................................................................................................................................... 132 
Conclusions .............................................................................................................................. 140 
References ................................................................................................................................ 141 

General discussion and conclusions ............................................................................................. 145 

Diversity of Actinobacteria isolates from Socaire, Salar de Llamará and Salar de Huasco . 145 
Characterisation of novel of isolates ..................................................................................... 147 
Antibiotic activity of isolates and secondary metabolites biosynthetic gene clusters .......... 149 

Conclusions .............................................................................................................................. 152 
References ................................................................................................................................ 154 

Individual scientific contributions to multiple-author publications ............................................. 158 

Results of this thesis were prepared or submitted for publication: ....................................... 158 
Contribution of the author to the different chapters of this thesis: ....................................... 158 

Acknowledgements ...................................................................................................................... 160 

Erklärung ...................................................................................................................................... 162 

Supplementary material for chapter VI ........................................................................................ 163 

Supplementary Tables 1-7. Predicted biosynthetic gene clusters of all sequenced strains. ..... 163 

 



Summary 

Actinobacteria were isolated from selected environments of the Chilean Altiplano, from the 

rhizosphere of different plants near Socaire, from two hyper-saline lakes of the Atacama Desert, 

and from Llullaillaco Volcano Lake. The phylogenetic diversity and the potential of production 

of antibiotics were studied in a total of 79 isolates. Quite characteristically, each of the studied 

environments contained a different variety of actinobacteria. Actinobacteria isolated from the 

rhizosphere of plants close to Socaire revealed the presence of genera known as habitants in the 

rhizosphere of other plants, promoting its growth both directly and indirectly. Salar de Huasco 

showed a high diversity of Actinobacteria with Nocardiopsis as the most abundant genus, 

together with halophile actinobacteria, which are often found in saline environments. Isolates 

from Salar de Llamará belong exclusively to the Micromonosporaceae family, exhibiting 

similarity with strains obtained from mangroves and marine sediments. Actinobacteria obtained 

from these environments showed a high number of putative novel species.  

One of the strains from Salar de Llamará, strain Llam7T, was characterised as a novel genus and 

species of the Micromonosporaceae family with the name Superstesspora tarapacensis. Another 

isolate originating from Llullaillaco Volcano Lake was described as a novel species with name 

Subtercola vilae and type strain DB165T. The characteristics of S. vilae allowing it to survive the 

cold environmental conditions of Llullaillaco Volcano Lake were identified through functional 

annotation of its genome, revealing an extensive repertoire of genes involved in membrane 

modulation, degradation of reactive oxygen species, and ice-binding proteins. 

More than half of the isolates have the capacity to produce antibiotic substances active against 

Gram-positive and Gram-negative bacteria. The genomic potential of 7 of the strains affiliated 

with Streptomyces, Kribbella and Superstesspora tarapcensis was studied and revealed the 

potential to produce natural products. Most of the biosynthetic gene clusters for natural products 

revealed only low homology in their gene synteny with entries in databases, and hence might be 

coding for novel natural product compounds. It is concluded that the Atacama Desert and its 

actinobacteria constitute a promising source of taxonomic and chemical novelty, providing a 

cornerstone for future taxonomic studies and secondary metabolite analyses.  
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Zusammenfassung 

Aktinobakterien wurden von verschiedenen Stellen des chilenischen Altiplano isoliert: aus der 

Rhizosphäre verschiedener Pflanzen in der Nähe von Socaire, aus zwei hypersalinen Seen der 

Atacama Wüste und aus dem Llullaillaco Vulkansee. Die phylogenetische Vielfalt und das 

Potential zur Antibiotikaproduktion wurden anhand von insgesamt 79 Isolaten untersucht. Für 

jedes der beprobten Habitate war eine bestimmte Vielfalt von Aktinobakterien charakteristisch. 

Aus der Rhizosphäre von Pflanzen in der Nähe von Socaire wurden unter anderem 

Aktinobakterien Gattungen isoliert, die bereits von anderen Pflanzen bekannt sind, und die direkt 

oder indirekt deren Wachstum fördern. Im Salar de Huasco wurde eine hohe Vielfalt an 

Aktinobakterien gefunden, mit halophilen Arten, die häufig in salzhaltigen Umgebungen 

vorkommen und mit Nocardiopsis als häufigster Gattung, zusammen. Die Isolate aus dem Salar 

de Llamará gehören ausschließlich zur Familie der Micromonosporaceae und weisen Ähnlichkeit 

mit Stämmen auf, die von Mangroven und aus Meeressedimenten gewonnen wurden. Unter 

denisolierten Aktinobakterien aus diesen Habitaten sind viele potentielle neue Arten. 

Einer der Stämme aus dem Salar de Llamará, Stamm Llam7T, wurde als neue Gattung und Art 

der Micromonosporaceae Familie mit dem Namen Superstesspora tarapacensis charakterisiert. 

Ein weiteres Isolat, das aus dem Llullaillaco Vulkansee stammt, wurde als die neue Spezies 

Subtercola vilae mit DB165T als Typstamm beschrieben. Die funktionelle Genomannotation von 

S. vilae offenbarte ein umfangreiches Repertoire an Genen für Membranmodulation, den Abbau 

von reaktiven Sauerstoffradikalen und eisbindende Proteine; diese Gene ermöglichen den 

Aktinobakterien die kalten Umweltbedingungen des Llullaillaco Vulkansees zu überleben. 

Mehr als die Hälfte der Isolate ist in der Lage, Antibiotika zu produzieren, die gegen Gram-

positive und Gram-negative Bakterien wirken. Die Genome von 7 Stämmen der Gattungen 

Streptomyces, Kribbella und Superstesspora  wurden näher untersucht und zeigten das Potenzial, 

Naturstoffe herzustellen. Die meisten biosynthetischen Gen-Cluster für Naturstoffe zeigten in 

ihrer Syntenie nur geringe Homologie mit Einträgen in Datenbanken und könnten daher für 

neuartige Naturstoffe kodieren. Zusammenfassend ist die Atacama-Wüste mit ihren 

Aktinobakterien eine vielversprechende Quelle für taxonomische und chemische Neuheit, und 

bildet einen Grundstein für zukünftige taxonomische Studien und sekundäre 

Stoffwechselanalysen. 
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Introduction 

Geological and climatic background of Atacama Desert 

Desert environments are defined as regions that receive extremely low precipitation, far less than 

the amount required to support the growth of most plants. Earth's deserts receive an average 

annual rainfall (AAR) of less than 400 mm per year (Makhalanyane et al. 2015). Deserts such as 

Kalahari and Mojave receive 250 and 330 mm of AAR respectively, while “True Deserts” 

receive less than 250 mm of AAR. Examples of true deserts are the Gobi and Sahara (194 mm 

and 20-100 mm, respectively). However, there is another category called “Hyper-arid” which is 

assigned to those deserts with an aridity index lower than 0.05 (Makhalanyane et al. 2015). This 

means that these environments have low AAR and high annual evapotranspiration. The Atacama 

Desert is included in this latest category. 

The Atacama Desert is located in the north of Chile bordering Perú in the north, extending to the 

Copiapó river in the south. The desert extends 1000 km from north to south, approximately 

between latitudes 19°S and 30°S, and from the Coastal Cordillera in the west to the Andean 

Cordillera in the east. The hyper-arid region of Atacama Desert is in the valley bounded by the 

coastal mountains and the medial Cordillera de Domeyko (Houston 2006). It has been proposed 

that the west slope of the central Andes exhibits a pronounced rain shadow effect, causing this 

core zone of hyper-aridity, which extends from sea level up to 3500 m above sea level. This 

initial onset of hyper-aridity most likely developed progressively, starting with aridity during the 

Jurassic period (150 million years ago), and evolving during the Miocene period (135 million 

years later) into its current state as a hyper-arid desert; this was helped along by the uplifting of 

the Andes, which reached elevations between 1000 and 2000 m above sea level, coupled with the 

intensification of a cold upwelling Peruvian Current circa 10-15 million years ago.  

In addition, palaeomagnetic data (Hartley et al. 2005) showed no significant latitudinal 

movement from the late Jurassic onwards. This, along with Atacama's location within the dry 

subtropic climate belt, and the presence of the cold upwelling current dating from at least the 

early Cenozoic (66 million years ago), resulted in climatic stability in the desert, suggesting 

strongly that the Atacama Desert is the oldest desert on Earth. 
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Figure 1. Map of Chile, with the zoomed region showing the Atacama Desert. The sampling sites of Socaire, Salar 
de Llamará and Salar de Huasco, and the isolation source of the Subtercola vilae DB165T (Llullaillaco volcano) are 
shown in red dots. Map drawn by Dr. Cristina Dorador and Dr. Chris Harrod (Universidad de Antofagasta) and 
reproduced with the permission of the authors. 
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Microbiology of Atacama Desert 

For a long time, the extreme aridity of the Atacama Desert and its apparent lack of flora gave the 

false impression that this environment could not uphold any life forms. Therefore, it became a 

perfect playground for the Jet Propulsion Laboratory and NASA to develop and test life detection 

instruments that would be used in 1975 on the Viking Mission. Cameron et al. (1966) conducted 

the first study of the region in Uribe train station (15 km south-east of Antofagasta), in which 

they characterised the soil and microflora. Aerobic bacteria were isolated using trypticase soy 

agar plates; anaerobic bacteria were isolated using the same medium in CO2 chambers. In 

addition, microbial growth obtained from dilution tubes of thioglycolate medium indicated that a 

gram of soil has 106-107 microorganisms; the microbes identified in this study were affiliated 

with Streptomyces and Mycococcus genera (both Actinobacteria). In a further study, additional 

strains obtained from the first study were classified as Bacillus subtilis, Bacillus brevis, Bacillus 

cereus, and Micrococcus casseolyticus (Bollen et al. 1966). Later, the attention of the Atacama 

Desert research was renewed with a different focus. Studies of microorganisms from hypersaline 

lakes, in particular from Salar de Atacama, showed the diversity of halotolerant bacteria and 

chemotaxonomic analyses of the isolated strains (Prado et al. 1991), as well as the prevalence of 

cyanobacteria (Campos 1997). 

Initial culture-independent studies, using denaturing gradient gel electrophoresis (DGGE), 

showed that the microbial communities of the hyper-arid core of Atacama Desert were dominated 

by Gemmatimonadetes and Planctomycetes phyla, and that Actinobacteria were present (Drees et 

al. 2006). In a different study cloning the 16S rRNA from environmental samples, it was shown 

that soils from Yungay were abundant in Actinobacteria, Proteobacteria, Firmicutes, and TM7 

division bacteria; of these, 94% of the clones were affiliated with the Actinobacteria phylum 

(Connon et al. 2007). Twenty bacterial strains were also obtained from Atacama Desert soils, 

which belonged to the genera Rhodopseudomonas, Sphingomonas, Mesorhizobium, 

Asticcacaulis, Bradyrhizobium, Bacillus, and Burkholderias (Lester et al. 2007). Using next-

generation sequencing technologies (NGS), the microbial diversity from different samples across 

the hyper-arid core of the desert revealed a unique bacterial diversity marked by high abundances 

of novel Actinobacteria and Chloroflexi and low levels of Acidobacteria and Proteobacteria 

(Neilson et al. 2012). These phyla were recurrent and dominant in many of the Atacama Desert 
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biomes analysed. Actinobacteria phylum has been described as being present in all cold and hot 

deserts (Fierer et al. 2012). 

The evidence of the high prevalence of Actinobacteria in the Atacama Desert led to the first 

studies involving the selective isolation of this phylum. The first study showed a high diversity of 

strains affiliated with Streptomyces, Amycolaptopsis, and Lechevalieria, of which a high 

proportion showed taxonomic novelty (Okoro et al. 2009). Recently, NGS-based studies showed 

that the Actinobacteria phylum is even more abundant than previous studies have shown. From 

12 samples, 67 representative families were identified, of which 16% could not be assigned to 

validly published taxa. The diversity observed in all of the samples was similar and dominated by 

members of the families Acidimicrobiaceae, Geodermatophilaceae, Iamiaceae, 

Microbacteriaceae, Micrococcaceae, Micromonosporaceae, Nocardiaceae, and 

Nocardioidaceae, as well as two unidentified taxa, FJ479147_f and HQ910322_f (Idris et al. 

2017a).  

In contrast to the hyper-arid core of the Atacama Desert, the different Salares in Atacama have 

shown astonishing bacterial diversity. For instance, in Salar de Llamará, the composition of 

Cyanobacteria in different microbial mats was studied using microscopy, revealing the presence 

of Cyanothece, Synechococcus, Microcoleus, Oscillatoria, Gloeocapsa, and Gloeobacter genera, 

as well as the anoxygenic phototrophic bacteria affiliated with Chromatium and Thiocapsa 

(Demergasso et al. 2004). The diversity of Cyanobacteria in Salar de Huasco was studied through 

molecular cloning of the 16S rRNA gene, revealing 78 different phylotypes affiliated with 

Oscillatoriales, Pleurocapsales, Chroococcales, and Nostocales orders (Dorador et al. 2008). 

Initially, the diversity of bacteria in Salar de Llamará, Salar de Atacama, and Salar de Ascotán 

indicated that Cytophaga-Flavobacteria-Bacteroidetes, Proteobacteria, and Actinobacteria phyla 

were frequently found in these environments (Demergasso et al. 2004). In particular, the diversity 

of Bacteroidetes communities from Laguna Tebenquiche, Salar de Huasco, and Salar de Ascotán 

revealed a high prevalence at all sites of a phylotype affiliated with Psychroflexus genus, while 

other phylotypes found were affiliated mostly with the Flavobactericeae family (Dorador et al. 

2009). The diversity of microorganisms in unconnected wetlands from the Chilean highlands was 

studied, revealing that these bacterial communities were dominated mostly by Bacteroidetes and 

Proteobacteria (Alpha, Beta, Gamma and Delta groups). Other phyla such as Firmicutes, 

Actinobacteria, Planctomycetes, Verrucomicrobia, Chloroflexi, Cyanobacteria, Acidobacteria, 
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Deinococcus-Thermus, and the Candidate Division WS3 were present in low abundance 

(Dorador et al. 2013). Recently, the microbial diversity of Salar de Huasco was investigated, 

showing large differences between ponds: some were dominated by Proteobacteria and 

Bacteroidetes while others were abundant in Cyanobacteria. The lagoon, meanwhile, showed a 

high abundance of Gammaproteobacteria, suggesting that local environmental factors play an 

important role in microbial diversity within the samples  (Aguilar et al. 2016). Stromatolite 

structures in Salar de Llamará were analysed, showing an overall higher abundance of 

Bacteroidetes, Proteobacteria, and Planctomycetes; these groups were more diverse during winter 

periods. In particular, the air-exposed part of the structures showed a predominance of 

Gammaproteobacteria, Alphaproteobacteria, and Bacteroidetes; in the submerged part, on the 

other hand, Proteobacteria (Alpha and Gamma) and Verrucomicrobia were in greater abundance 

(Rasuk et al. 2014). 

During the last twenty years, the studies of Atacama Desert microbiology have diversified. 

Research with emphasis on describing the microbial diversity has proven several times that the 

Atacama Desert is rich in life that is diverse and unique. Formal taxonomic studies started with 

the description of the archaeon Halorubrum tebenquichense, isolated from Lake Tebenquiche. 

Two other strains from Lake Tebenquiche have been described: the Gammaproteobacteria 

Chromohalobacter nigrandensis, and the archaeon Halomicrobium katesii (Table 1). Another 

gammaproteobacterium of the genus Pseudomonas was isolated from Camarones Valley. This 

strain has the metabolic capacity to oxidise arsenite, a metal present in high concentration in the 

Atacama Desert. To date, three cryptic species of Cyanobacteria associated with a sand-rock 

lifestyle have been described. The phylum for which the most taxonomic strains have been 

described is Actinobacteria. To date, eleven validated type strains have been published. Ten of 

these strains have been isolated from hyper-arid soils (Table 1). In this thesis, two novel strains of 

Actinobacteria isolated from different sources are described. Subtercola vilae was isolated from 

water samples of Lake Llullaillaco at 6703 meters above sea level (Villalobos et al. 2018), while 

Superstesspora tarapacensis was isolated from microbial mat samples of Salar de Llamará.
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Table 1. Valid type strains of Bacteria and Archaea isolated from Atacama Desert. 

Species described  Isolation source Reference 

Actinobacteria   

Streptomyces leeuwenhoekii  Laguna de Chaxa, hyper-arid soil (Busarakam et al. 2014) 

Streptomyces atacamensis Valle de la Luna, arid soil (Santhanam et al. 2012a) 

Streptomyces deserti Salar de Atacama, soil (Santhanam et al. 2012b) 

Streptomyces bullii Laguna de Chaxa, soil (Santhanam et al. 2013) 

Streptomyces asenjonii Laguna de Chaxa, hyper-arid soil (Goodfellow et al. 2017) 

Lechevalieria atacamensis Salar de Atacama, hyper-arid soil (Okoro et al. 2010) 

Lechevalieria deserti Salar de Atacama, hyper-arid soil (Okoro et al. 2010) 

Lechevalieria roselyniae Salar de Atacama, hyper-arid soil (Okoro et al. 2010) 

Modestobacter caceresii Yungay, hyper-arid soil (Busarakam et al. 2016) 

Lentzea chajnantorensis Cerro Chajnantor, gravel soil (Idris et al. 2017b) 

Subtercola vilae Llullaillaco lagooon, water sample 
This thesis, (Villalobos et al. 

2018) 

Superstesspora tarapacensis Salar de Llamará, microbial mat  This thesis 

Gammaproteobacteria   

Pseudomonas arsenicoxydans Camarones Valley, sediment (Campos et al. 2010) 

Chromohalobacter nigrandesensis Tebenquiche lake (Prado et al. 2006) 

Halobacteria (Archaea)   

Halomicrobium katesii Tebenquiche lake, water sample (Kharroub et al. 2008) 

Halorubrum tebenquichense Tebenquiche lake, water sample (Lizama et al. 2002) 
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Natural products from Atacama Desert 

Natural products produced by microorganisms are considered a valuable resource for drug 

discovery due to their diverse chemical scaffolds (structures) that in many cases cannot be 

replicated synthetically, giving them the advantage over synthetic chemistry libraries. Among 

microorganisms, the Actinobacteria phylum, specifically the genus Streptomyces, is the richest 

source of natural products; these include antimicrobials, enzyme inhibitors, and anticancer 

compounds such as β-lactams, tetracyclines, rifamycins, aminoglycosides, macrolides, and 

glycopeptides (Genilloud 2017). The Actinobacteria phylum is the source of about 45% of all 

microbial bioactive secondary metabolites, of which 80% (7600 compounds) are produced by 

Streptomyces strains (Bérdy 2012). Interest in microbial natural products is currently renewed 

due to the whole genome sequencing of several representative strains of the phylum. This 

sequencing has revealed that different strains affiliated with several genera encoded more than 15 

natural product biosynthetic gene clusters (BGCs), in contrast to the limited number of clusters 

found in other phyla (Doroghazi and Metcalf 2013).  

Natural products discovery from Atacama Desert Actinobacteria has been prolific in the last 

years. Specifically, Streptomyces strains have proven that highly exploited genera still hide a high 

potential for novel natural product discovery. Different strategies have been employed to discover 

novel compounds. For instance, the discovery of new types of the aminobenzoquinones 

Abenquines A, B1, B2, C, and D (Schulz et al. 2011) followed a bioassay guide strategy, before 

optimising compound production using amino acids as a medium supplement. The compounds 

showed weak antibacterial and antifungal activity, and a moderate inhibitory effect against type 4 

phosphodiesterase (PDE4b), a target enzyme for inflammatory diseases. Using a similar strategy 

but a different strain, the macrolactones Atacamycin A-C were discovered. These compounds 

also showed an inhibitory effect against PDE4b, while only Atacamycin A exhibited 

antiproliferative effects against adenocarcinoma and breast carcinoma cells (Nachtigall et al. 

2011) (Table 2). Atacamycins are produced by a strain of Streptomyces leeuwenhoekii C34 

isolated from hyper-arid soils of Chaxa lagoon. Different strains affiliated with Streptomyces 

leeuwenhoekii have shown promising chemical diversity. To date, seven compounds have been 

discovered, including the antibacterial compounds Chaxalactins A-C, isolated from S. 

leeuwenhoekii C34, and the lasso peptide Chaxapeptin, obtained from S. leeuwenhoekii C58; the 
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latter compound exhibited inhibitory activity in cell invasion assays with A549 human lung 

cancer cells. Three new β-diketones named asenjonamides A-C were obtained from the strain 

Streptomyces asenjonii KNN 42.f. The compounds showed antibacterial activity against Gram-

positive and Gram-negative bacteria. Recently, six diene glycosides were obtained from a strain 

of Lentzea chajnantorensi. Lentzeosides A–F class of diene compounds had previously only been 

found in plants. This is the first time these compounds were reported from Lentzea genus and 

from a microbial source. The compounds were screened for anti-HIV activity, where lentzeoside 

B showed the best IC50 values. 

To date, a total of nineteen novel metabolites have been described from the Atacama Desert 

Actinobacteria, where thirteen have been obtained from Streptomyces genus. The chemical 

diversity obtained to date is a clear reflection of the rich taxonomic diversity of Actinobacteria. 

Quite interestingly, five of the six producer strains are affiliated with novel species obtained from 

the Atacama Desert. All of these findings demonstrate that the microbes of the Atacama Desert 

are attractive for the bioprospecting of natural products.  
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Table 2. Novel compounds isolated from the Atacama Desert Actinobacteria.  

Producer strain Source of strain Compounds Structure* Bioactivity Reference 

Streptomyces sp. 
strain DB634 

Salar de Tara, arid 
soil Abenquines A-D 

 

Antibacterial, 
antifungal, and 
inhibition of 
phosphodiesterase 4b 

(Schulz et al. 2011) 

Streptomyces 
leeuwenhoekii 
strain C34 

Laguna de Chaxa, 
hyper-arid soil. Chaxalactins A-C 

 

Antibacterial  (Rateb et al. 2011) 

Streptomyces 
leeuwenhoekii 
strain C38 

Laguna de Chaxa, 
hyper-arid soil. Atacamycins A-C 

 

Inhibition of 
phosphodiesterase 
4b, antiproliferative 
affects against breast 
carcinoma and 
adenocarcinoma 

(Nachtigall et al. 
2011) 

Streptomyces 
asenjonii strain 
KNN 42.f  

Laguna de Chaxa, 
hyper-arid soil Asenjonamides A–C 

 
Antibacterial (Abdelkader et al. 

2018) 

Lentzea 
chajnantorensis 
strain H4 

Cerro Chajnantor 
gravel soil Lentzeosides A–F 

 

Anti-HIV 1  (Wichner et al. 2017) 

Streptomyces 
leeuwenhoekii 
strain C58 

Laguna de Chaxa, 
hyper-arid soil. Chaxapeptin  

 

Inhibitory activity in 
cell invasion assay 
with lung cancer cell 
lines 

(Elsayed et al. 2015) 

*Only the compound scaffold is shown, R indicates differences by variation of residues attached. 
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Aim of the thesis 

The aim of this thesis was to characterise the Atacama Desert Actinobacteria and elucidate their 

potential to produce natural products. Therefore, our study focused on four environments that had 

not yet been explored in Actinobacteria research: (a) Salar de Llamará, a hyper-saline basin in the 

Central Depression of the Atacama Desert that represents a relict wetland; (b) Salar de Huasco, a 

hyper-saline lake in the Chilean Altiplano; (c) Rhizosphere of different endemic plants close to 

Socaire; (d) Llullaillaco Volcano Lake, which represents the border of the Atacama Desert where 

the strain Subtercola DB165T was isolated from.  

The work focused on (a) the characterisation of cultured diversity of Actinobacteria and their 

potential for antibiotic production, (b) the polyphasic identification of novel taxa of 

Actinobacteria, and (c) the metabolic capability to produce natural products, as encoded in the 

genomes of the isolates. 

 

16 
 



 
 

Chapter I: Diversity and antibiotic activity of Actinobacteria isolated 

from the rhizosphere of endemic plants near Socaire, Chile 

Alvaro S. Villalobos, Jutta Wiese, Johannes F. Imhoff * 

GEOMAR Helmholtz Centre for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, 
Germany 

 

 

 

 

 

 

 

* Corresponding author at  

Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker 

Weg 20, 24105 Kiel, Germany 

Tel.:  0049-431-600 4450 

Fax:  0049-431-600 4482 

E-mail addresses: avillalobos@geomar.de (A.S. Villalobos), jwiese@geomar.de (J. Wiese), 

jimhoff@geomar.de (J.F. Imhoff). 

Data in preparation for publication 

17 
 



 
 

Abstract 

The rhizosphere of Atacama Desert plants constitutes an unexplored source of Actinobacteria 

with an unknown potential in the production of natural products. We investigated the diversity of 

Actinobacteria in rhizosphere samples of Stipa sp., Adesmia sp., Cristaria integerrima, Fabiana 

denudata, Nolana sp., and Cumulopuntia boliviana. Forty-seven strains were isolated and, 

according to analyses of the 16S rRNA gene sequence, are affiliated with nine genera of 

Actinobacteria. Streptomyces and Nocardia were the most abundant and diverse genera found in 

most of the samples. According to similarities in their 16S rRNA gene sequence, fourteen isolates 

affiliated with Arthrobacter, Kribbella, Pseudarthrobacter, Rhodococcus, Nocardia, 

Pseudonocardia, Kocuria, and Streptomyces represent putative novel species. 61.7% of the 

strains showed antibiotic activity against Gram-positive bacteria, while the growth inhibition of 

Gram-negative bacteria was only found in 17% of the isolates. 

Key words: Actinobacteria; antibiotics; Atacama Desert; rhizosphere; Streptomyces; Nocardia 
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Introduction 

The Atacama Desert, located in southern Peru and northern Chile, is classified as a hyper-arid 

desert, with areas that receive only 0.6 mm/year-1 of rainfall (Houston 2006). In the north of 

Chile, several priority areas for biodiversity conservation have been identified as "natural 

biodiversity areas" due to the high number of endemic plant species present in each (INIA, 2011). 

Socaire is located between the Salar de Atacama and the Altiplano. This environment is 

characterised by slope vegetation divided in clear altitudinal belts (prepuna, puna and Andean 

steppe) up to the Andean summits, and into islands of wetland habitat in areas with surface or 

near-surface waters (Marquet et al. 1998). This part of the Atacama Desert is considered an area 

of high conservation priority (Cavieres et al. 2002), mainly due to its high level of flora 

endemism, which can reach up to 56% of species (Squeo et al. 1998). 

In general, plants are known to have a selective pressure on soil microbial diversity, including 

species-specific (Marschner et al. 2001; Acosta-Martínez et al. 2008) and cultivar-specific 

(Germida and Siciliano 2001; Manter et al. 2010) bacterial populations. In water and nutrient-

limited environments as deserts, it is suggested that bacterial diversity should be higher in the 

rhizosphere than in the surrounding interplant soil (Herman et al. 1995), due to the accumulation 

of nutrients provided by the plant at the interface of root and soil (Schlesinger et al. 1996) and its 

secondary metabolites (Marilley et al. 1998; Hartmann et al. 2009). On the other hand, 

microorganisms living in the rhizosphere influence the composition and productivity of natural 

plant communities (Van der Heijden et al. 1998; Van Der Heijden et al. 2006; Schnitzer et al. 

2011). 

Actinobacteria comprise one of the most abundant and diverse taxa in the rhizosphere and 

promote plant growth through nitrogen fixation, phosphate, potassium, and zinc solubilisation, 

production of hormones, antibiotics, lytic enzymes, and siderophores (Yadav et al. 2018). In 

desert plants, members of genera such as Acidimicrobium, Rubellimicrobium, and Deinococcus-

Thermus are often found to promote healthy growth in plants (Köberl et al. 2011). 

The presence and prevalence of Actinobacteria associated with the rhizosphere of Atacama 

Desert endemic plants remain unknown, making these a perfect study target for the isolation of 

novel antibiotic-producing strains. In this work, we explore the diversity and antibiotic activity of 
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Actinobacteria in rhizosphere samples obtained from Stipa sp., Adesmia sp., Cristaria 

integerrima, Fabiana denudata, Nolana sp. and Cumulopuntia boliviana. 

Materials and methods 

Samples 

Rhizosphere soil samples were collected from Socaire, Chile during December 2008. Plants were 

identified as Stipa sp., Adesmia sp., Cristaria integerrima, Fabiana denudata, Nolana sp., and 

Cumulopuntia boliviana. All samples were stored at room temperature. 

Isolation of Actinobacteria 

For all samples, 1 g of soil was resuspended in 9 mL of Ringer 1/4 buffer (0.12 g of CaCl2, 0.105 

g of KCl, 0.05 g of NaHCO3, and 2.25 g of NaCl in 1 L of solution) followed by the preparation 

of three serial dilutions (10-1, 10-2 and 10-3). All the dilutions received a heat treatment in a water 

bath at 56°C for 10 minutes, and the 100 μL were spread on starch-casein, Gauze, humic acid 

vitamin and trehalose-proline-histidine agar plates. Starch-casein medium contained 10 g of 

starch, 0.3 g of casein, 2 g of KNO3, 0.05 g of MgSO4·7H20, 2 g of K2HPO2, 2 g of NaCl, 0.2 

CaCO3, 0.01 FeSO4·7H2O; Gauze medium was prepared using 20 g of starch, 1 g of KNO3, 0.5 g 

of K2HPO4, 0.5 g of MgSO4 ·7H2O, 0.5 g of NaCl, 0.01 g of FeSO4·H2O; humic acid vitamin 

composition was 1 g of humic acid, 0.5 g of Na2HPO4, 1.7 g of KCl, 0.05 g of MgSO4·7H2O, 

0.01 g of FeSO4·7H2O, 1 g of CaCl2, B-vitamins solution (0.5 mg each of thiamine-HCl, 

riboflavin, niacin, pyridoxin, Ca-pantothenate, inositol, p-aminobenzoic acid, and 0.25 mg of 

biotin); trehalose-proline-histidine (TPH) medium containing 1 g of trehalose, 0.5 g of proline, 

0.5 of histidine, 0.2 MgCl2, and 0.5 of KNO3. All media were prepared at pH 7.8-8.0 and 

supplemented with 25 μg/mL nalidixic acid, 50 μg/mL cycloheximide, and 18 g of agar in 1 L of 

deionised water. Plates were incubated at 25°C until colonies were observed. The selection of the 

colonies was based on its shape, hardness, aerial mycelium, and presence of pigments. Pure 

strains were obtained and maintained on Starch-glucose-glycerol (SGG) medium which 

contained 10 g of starch, 10 g of glucose, 10 mL of glycerol, 5 g of soy peptone, 2 g of yeast 

extract, 2.5 g corn steep solids, 3 g of CaCO3, 1 g of NaCl, and 18 g of agar in 1 L of deionised 

water. Pure cultures were cryopreserved using the Cryobank System at -20°C (MAST 

DIAGNOSTIC). 
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16S rRNA gene sequencing, identification, and phylogenetic analysis 

Strains were grown in Petri dishes of SGG medium for 5 days, and total genomic DNA was 

extracted using DNaeasy Blood & Tissue Kit (Qiagen) DNA extraction kit, following the 

manufacturer’s protocol and stored at -20 ºC before use. Amplification of the 16S rRNA gene 

was prepared using Dreamtaq using 27f (5’- AGAGTTTGATCMTGGCTCAG-3’) /1492r (5’- 

TACGGYTACCTTGTTACGACTT-3’) set of primers, the reaction mix (25 μL) contained 2 μL 

of genomic DNA, 1 μL (10mM) of each primer, 12.5 μL of master mix and 85 μL of DNAse-free 

water. The PCR reaction started with an initial denaturation at 93ºC for 2 min followed by 30 

cycles of denaturation at 93 ºC for 30 sec, annealing at 55 ºC for 30 sec and extension at 72ºC for 

30 sec, with a final extension at 42ºC for 1 min, and at 72ºC for 5 min. The PCR products were 

sequenced in IKMB sequencing facility (University of Kiel, Germany). The sequences were 

processed using ChromasPro software, then compared against GenBank database using BLAST, 

with and without type strain filter. For the phylogenetic analysis, each strain was analysed using 

EzBioCloud (https://www.ezbiocloud.net/), and their closest validated type strains of each 

phylotype were selected. Using Rubrobacter aplysinae DSM 27440T used as outgroup all 

selected sequences were aligned using SINA Alignment Service (Pruesse et al. 2012), and then 

the phylogenetic analyses were performed using the MEGA6 software (Tamura et al. 2013). Tree 

construction was conducted using a neighbour-joining algorithm (Saitou and Nei 1987) and 

maximum-likelihood, using 1000 bootstrap replications. 

Antibiotic activity 

All strains were screened for antibacterial activity against Staphylococcus lentus DSM 6672T, 

Bacillus subtilis DSM 347T, and Escherichia coli DSM 498T using a double layer assay. The 

isolated strains were grown in 1 mL of SGG medium for 3 days and then 10μL of the cultures 

were inoculated on the centre of SGG agar plates. Plates were incubated at 26 °C for 7 days. The 

strains of S. lentus, B. subtilis, and E. coli were grown overnight in Tryptic soy broth, containing 

17 g of tryptone, 3 g of soytone, 2.5 g of glucose, 5 g of NaCl, 2.5 g of K2HPO4,  at 28°C, 

subsequently 5 mL of the cultures were inoculated on 500 mL of TSA soft agar (7%) and then 

poured over the Petri plates that contained Actinobacteria strains. The plates were incubated at 

26°C for 48 hours, and then the inhibition (clear zones around the actinobacteria colonies) was 

registered. 

21 
 



 
 

Results 

In total, forty-seven Actinobacteria that affiliated with nine genera were obtained from 

rhizosphere samples of Socaire. Most of the strains were affiliated with Streptomyces (22; 46.8%) 

and Nocardia (10; 21.2%); only a few were affiliated with Pseudarthrobacter, Arthrobacter, 

Micromonospora, Kocuria, Rhodococcus, Kribbella, and Pseudonocardia. The majority of the 

strains were obtained from Nolana sp. rhizosphere with 23 strains (48.9%), followed by 

Cumulopuntia boliviana with 13 strains (27.6%) (Table 1). The majority of the strains were 

obtained using TPH medium (32; 68.1%) and followed by HVA medium (10; 21.3%), while 

culture media that contained high concentration of nutrients yielded a lower number of isolates. 

Representatives of the genus Streptomyces were found in most of the samples except those from 

Adesmia sp., from which only Arthrobacter and Pseudarthrobacter were recovered. Nolana sp. 

samples showed the most diverse array of genera, containing Streptomyces, Nocardia, 

Pseudonocardia, Micromonospora, and Rhodococcus strains. Fourteen (29.7%) of the isolates 

affiliated with Arthrobacter (AD2), Kribbella (AD5), Pseudarthrobacter (AD8), Rhodococcus 

(AD9, Soc85), Nocardia (AD18, AD22, AD28), Pseudonocardia (AD30), Kocuria (Soc1), and 

Streptomyces (Soc62, T5, T11) represent putative novel species according to their 16S rRNA 

gene sequence similarities (<98.7%). Even though most of the strains showed a close relationship 

with known species (98.9-100%) (Table 1), phylogenetic analysis suggests that strains affiliated 

with the genus Streptomyces such as T4, T8, and T9 formed distant clusters from the next related 

type strains and might represent putative novel species (Fig 1). Seven strains affiliating to 

Nocardia showed high similarities to Nocardia ignorata NBRC 108230T (98.7-99.2%) and 

formed 4 different phylogenetic clusters (Fig. 2). Strain T6 clustered closer to N. ignorata NBRC 

108230T, while strains AD16, Soc22, Soc26, and Soc28 clustered together as a group with a high 

bootstrap value. Strain Soc46 clustered separate from all other strains and strain AD22 represents 

a putative novel species separated from the N. ignorata NBRC 108230T clade.  
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Table 1. Actinobacteria strains isolated from rhizosphere of Atacama Desert and their antibiotic activity 
Strain Length (nt) Next related type strain Identity (%) Sample Antibiotic activity* 
AD2 1381 Arthrobacter humicola JCM 15921T (AB279890) 98.2 Adesmia sp. - 
AD3 1408 Pseudarthrobacter defluvii 4C1-aT (NR_042573.1) 98.8 Adesmia sp. - 
AD4 1439 Pseudarthrobacter defluvii 4C1-aT (NR_042573.1) 99.4 Adesmia sp. - 
AD5 1436 Kribbella ginsengisoli DSM 17941T (AB245391.1)  98.4 Cristaria integerrima - 
AD7 1435 Streptomyces drozdowiczii NRRL B-24297T (EF654097.1) 99.2 Fabiana denudata  B 
AD8 1443 Pseudarthrobacter defluvii 4C1-aT (NR_042573.1) 98.1 Fabiana denudata  - 
AD9 1436 Rhodococcus marinonascens DSM43752T (X80617.1) 98.5 Fabiana denudata  - 
AD12 1443 Streptomyces drozdowiczii NRRL B-24297T (EF654097.1 99.1 Nolana sp. - 
AD16 1435 Nocardia ignorata IMMIB R-1434T (AJ303008.1) 99.1 Cumulopuntia boliviana B 
AD18 1435 Nocardia lasii 3C-HV12T (KP784803.1)  98.4 Nolana sp. B 
AD22 1411 Nocardia ignorata IMMIB R-1434T (AJ303008.1) 98.7 Nolana sp. - 
AD26 1413 Streptomyces youssoufiensis X4T (NR_116980.1) 99.8 Cumulopuntia boliviana B, S 
AD28 1417 Nocardia anaemiae IFM 0323T (AB162801.1) 98.1 Nolana sp. B, E, S 
AD30 1446 Pseudonocardia sichuanensis KLBMP 1115T (HM153789.1)  96.2 Nolana sp. B, E, S 
Soc1 1468 Kocuria dechangensis NEAU-ST5-33T (JQ762279.3) 98.5 Stipa sp. B 
Soc18 1426 Streptomyces rubiginosus JCM 4416T (LC034307.1) 99.5 Nolana sp. B, E 
Soc22 1442 Nocardia ignorata IMMIB R-1434T (AJ303008.1) 98.9 Nolana sp. E 
Soc26 1434 Nocardia ignorata IMMIB R-1434T (AJ303008.1) 99.2 Cumulopuntia boliviana B 
Soc28 1458 Nocardia ignorata IMMIB R-1434T (AJ303008.1) 99.0 Cumulopuntia boliviana B, S 
Soc36 1333 Micromonospora echinofusca DSM 43913T (LT607733.1) 99.4 Nolana sp. B 
Soc37 1431 Rhodococcus ruber DSM 43338T (NR_026185.1) 99.9 Nolana sp. - 
Soc42 1329 Micromonospora soli NBRC 110009T (AB981051.1) 99.4 Nolana sp. B, S 
Soc46 1460 Nocardia ignorata IMMIB R-1434T (AJ303008.1) 99.0 Nolana sp. E 
Soc48 1340 Kocuria himachalensis JCM 13326T (LC113906.1) 99.4 Stipa sp. - 
Soc57 1440 Streptomyces fulvissimus DSM 40593T (NR_103947.1) 99.7 Cristaria integerrima B, S 
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Table 1 continues. 

Strain Length (nt) Next related type strain 
Identity 
(%) Sample Antibiotic activity* 

Soc57 1440 Streptomyces fulvissimus DSM 40593T (NR_103947.1) 99.7 Cristaria integerrima B, S 
Soc61 1441 Streptomyces fulvissimus DSM 40593T (NR_103947.1) 99.8 Fabiana denudata  B, E, S 
Soc62 1413 Streptomyces galilaeus JCM 4757T (NR_040857.1) 97.9 Nolana sp. B, S 
Soc63 1439 Streptomyces galilaeus JCM 4757T (NR_040857.1) 99.4 Nolana sp. B, S 
Soc66 1418 Streptomyces clavifer NRRL B-2557T (DQ026670.1) 99.5 Nolana sp. - 
Soc70 1441 Streptomyces venezuelae ATCC 10712T (FR845719.1) 99.9 Cumulopuntia boliviana B 
Soc71 1435 Nocardia lasii 3C-HV12T (KP784803.1) 99.1 Cumulopuntia boliviana B 
Soc72 1439 Streptomyces tendae ATCC 19812T (NR_025871.2) 99.2 Nolana sp. B 
Soc75 1435 Streptomyces griseoviridis NBRC 12874T (AB184210.1) 100.0 Cumulopuntia boliviana B, S 
Soc84 1342 Streptomyces cyaneus NRRL B-2296T (AF346475.1) 99.1 Nolana sp. - 
Soc85 1334 Rhodococcus marinonascens DSM43752T (X80617.1)  98.7 Nolana sp. B 
Soc89 1336 Micromonospora soli NBRC 110009T (AB981051.1) 99.5 Nolana sp. E, S 
T1 1494 Streptomyces sudanensis SD504T (EF515876.1)  98.4 Nolana sp. B 
T2 1469 Streptomyces sudanensis SD504T (EF515876.1)  98.8 Nolana sp. - 
T3 1464 Streptomyces chilikensis RC 1830T (JN050256.1) 99.4 Nolana sp. B 
T4 1347 Streptomyces ambofaciens ATCC 23877T (CP012382.1) 99.5 Nolana sp. - 
T5 1444 Streptomyces fragilis NBRC 12862T (AB184200.1) 98.6 Cumulopuntia boliviana B 
T6 1329 Nocardia ignorata IMMIB R-1434T (AJ303008.1) 99.1 Cumulopuntia boliviana E 
T8 1352 Streptomyces tendae ATCC 19812T (NR_025871.2) 99.1 Cumulopuntia boliviana B 
T9 1467 Streptomyces chilikensis RC 1830T (JN050256.1) 99.1 Cumulopuntia boliviana B, S 
T10 1345 Streptomyces tendae ATCC 19812T (NR_025871.2) 99.4 Cumulopuntia boliviana B, S 
T11 1435 Streptomyces tendae ATCC 19812T (NR_025871.2) 98.3 Cumulopuntia boliviana B, S 

* B: Bacillus subtilis DSM 347T; S: Staphylococcus lentus DSM 6672T; E: Escherischia coli DSM 498T 

24 
 



 

Figure 1. Neighbour-joining phylogenetic tree based on the 16S rRNA gene sequences of isolates of the genus 
Streptomyces obtained from rhizosphere samples close to Socaire, Atacama Desert with Catenulispora rubra DSM 
44948T as outgroup. Tree constructed with 1000 bootstrap, bar indicates 1 substitution in 100 pair bases. (Continues 
in the next page).  
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Figure 2. Neighbour-joining phylogenetic tree based on the 16S rRNA gene sequences of isolates from rhizosphere 
samples close to Socaire, Atacama Desert affiliated with Nocardia, Rhodococcus, Pseudonocardia, 
Micromonospora, Kribbella, Kocuria, Arthrobacter, and Pseudarthrobacter and their next related type strains with 
Rubrobacter aplysinae DSM 27440T as outgroup. Tree constructed with 1000 bootstrap, bar indicates 2 substitutions 
in 100 pair bases. (Continues in the next page). 
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Discussion 

Actinobacteria isolated from the rhizosphere of Atacama Desert plants revealed a large number of 

genera first reported in the Atacama Desert such as Arthrobacter, Pseudarthrobacter, 

Pseudonocardia, Nocardia, Kocuria, Kribbella, and Rhodococcus. Streptomyces (Okoro et al. 

2009) and Micromonospora (Carro et al. 2018), however, have been isolated previously from the 

Atacama Desert and most of the strains affiliated with these genera did not show similarity to 

previous isolates. The 16S rRNA gene sequence of strain Soc18 alone was sufficient to allow for 

identification as Streptomyces asenjonii, previously isolated from Laguna de Chaxa (Goodfellow 

et al. 2017). Actinobacteria obtained from rhizosphere samples of the Atacama Desert are more 

likely to grow in culture media with lower amount of nutrients compared with traditional 

Actinobacteria media.  

The prevalence of the genus Streptomyces in most of the samples indicates their importance in 

the plant rhizosphere. Actinobacteria have been found to constitute an essential part of the 

microbial communities in the plant rhizosphere (Yadav et al. 2018). Their ecological function 

might be diverse, including i) protection of the plants' roots against pathogens through the 

production of antibiotic compounds (Adegboye and Babalola 2016); ii) a direct function involved 

in the promotion of plant growth such as nitrogen fixation, which has been reported for 

Arthrobacter (Verma et al. 2014), Pseudonocardia (Mahendra and Alvarez-Cohen 2005), 

Streptomyces, and Micromonospora (Sellstedt and Richau 2013) isolates; iii) solubilisation of 

phosphate, potassium, and zinc reported for Arthrobacter (Singh et al. 2016), Kocuria (Verma et 

al. 2015), and Streptomyces (Anwar et al. 2016). 

Our study has demonstrated for the first time the diversity of Actinobacteria associated with the 

rhizosphere of plants from the Atacama Desert. According to our results, genera such as 

Streptomyces and Nocardia are predominant and diverse in the rhizosphere of Atacama Desert 

plants and according to their antibiotic activities constitute a promising source of novel species 

and antibiotic compounds.  
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Abstract 

Hypersaline lakes in the Atacama Desert are polyextremophile environments dominated by a 

high diversity of microorganisms. In this study, we report the isolation of Actinobacteria from 

Salar de Llamará (980 m asl) and Salar de Huasco (4600 m asl), and their action against Gram-

positive and Gram-negative bacteria. According to phylogenetic analysis, using 16S rRNA gene 

sequences, thirty-two Actinobacteria isolated from the two locations were affiliated with eight 

families, with dominance from Nocardiopsaceae, Micromonosporaceae, and Streptomycetaceae; 

only Micromonosporaceae members were found in both hypersaline lakes. Eighteen strains that 

affiliated with Streptomyces, Nocardiopsis, Blastococcus, Nocardia, Nonomuraea, and 

Micromonospora were identified as potential novel species, while five strains are distantly related 

to Salinispora and Jishengela genera. 

Most of the isolates showed close similarity to other actinobacteria isolated from environments 

that share similar physicochemical conditions, such as marine sediments, hypersaline/alkaline 

lakes, and cold deserts, among others, suggesting specific adaptation to these biomes.  

More than half of the isolates produced antibiotic compounds against Gram-positive and Gram-

negative bacteria. Dereplication analysis of the crude extract revealed a high degree of novelty in 

the compounds produced by the strains, and the incidence of nocapyrone compounds in several of 

the Nocardiopsis isolates. Results from this study demonstrate that hypersaline lakes are a rich 

source of microbial and chemical novelty with a high potential for antibiotic discovery. 

 

Keywords: Salar; Actinobacteria; extreme environment; hypersaline; rare  

34 
 



 

Introduction 

The Actinobacteria class is one of the richest sources of natural products (Newman and Cragg 

2007). Most of the antibiotics available on the market derive from approximately 12000 

described compounds produced by this group of bacteria (Bérdy 2012), including anticancer 

compounds, immunosuppressants, and anti-inflammatories. Most of these compounds are 

encoded by large biosynthetic gene clusters such as non-ribosomal peptides, polyketides, and 

phenazines (Fischbach and Walsh 2006), which are present in high number and diversity within 

actinobacteria genomes (Doroghazi and Metcalf 2013). 

Actinobacteria have been explored in soils for last 60 years from soils, and lately from marine 

environments as well, resulting in the large number of known natural products and in an 

extensive collection of unpublished data of rediscovered compounds. One of the efforts made to 

overcome extensive rediscovery of known compounds was the exploration of actinomycetes from 

under-explored and extreme environments (Bull et al. 2000). Environments like deep-sea 

sediments, desert soils, and hypersaline environments have proven to be a rich source of novel 

diversity of actinobacteria, and are also associated with higher chemical diversity of natural 

products. Novel compounds have been identified from barophiles (Riedlinger et al. 2004; Xie et 

al. 2017), acidophiles (Park et al. 2014), and halophiles (Zhao et al. 2011). 

Comparative studies of diversity and abundance of Actinobacteria in different environments have 

shown that deserts hold the highest abundance and diversity of Actinobacteria (Fierer et al. 

2012), making deserts attractive spots for bioprospecting of Actinobacteria. Samples from the 

arid core of the Atacama Desert showed that Actinobacteria were highly abundant and 

represented up to 90% of the bacterial community (Drees et al. 2006); a diverse array of isolates 

of the genera Streptomyces, Lechevalieria, and Amycolaptopsis (Okoro et al. 2009), and 

Micromonospora (Carro et al. 2018) were obtained from the Atacama Desert.  

The Atacama Desert not only comprises hyper-arid environments, but also contains different 

water bodies, locally called Salares (Risacher et al. 2003). These Salares are subject to extreme 

physicochemical conditions, including high UV radiation (600–1100W/m-2), a wide range of 

daily temperature changes (>10-35°C), negative water balance (precipitation rates of 50 to 300 

mm y–1 versus evaporation rates of 600 to 1200 mm y–1), and variable salt concentrations (sulfate, 

chloride, sodium, and divalent cations) (Risacher et al. 2003). An astonishingly high diversity 
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with a great number of unique bacteria has been found in the microbial communities of some of 

these Salares (Dorador et al. 2008a, 2009, 2013).  

Few Actinobacteria from the Salares have been explored as natural product producers. To date, 

only eleven novel compounds have been described from three Streptomyces isolates from the 

Atacama Desert. Streptomyces sp. strain DB634, an isolate from Salar de Tara, produces 

abenquines A-D (Schulz et al. 2011); Streptomyces sp. C38 produces atacamycin A-C (Nachtigall 

et al. 2011); and Streptomyces leeuwenhoekii C34T, obtained from Laguna Chaxa, produces 

chaxalactins A-C (Rateb et al. 2011) and chaxapeptin (Elsayed et al. 2015). 

In this study, we have explored the diversity of Actinobacteria isolates from the 

polyextremophilic environments of Salar de Llamará and Salar de Huasco, studying their 

antimicrobial activity against Gram-positive and Gram-negative bacteria. Salar de Llamará is the 

only hypersaline basin in the central depression of the Atacama Desert with a salinity range from 

1% to 25% and pH 7,8-8 (Demergasso et al. 2004). Salar de Huasco is located in the Chilean 

Altiplano at 3800 m asl and has a salinity range from fresh water to saturated salt concentrations 

and pH 7,8-8 (Dorador et al. 2008b). 

Materials and methods 

Sampling  

Eight samples from Salar de Huasco (Chile) were collected in June 2015. Sediments 

(20°15'27.1"S 68°52'18.5"W, 20°15'53.5"S 68°52'28.4"W) and salt crust samples (20°16'56.6"S 

68°53'22.8"W) from the border of the lake were taken. Samples from Salar de Llamará were 

obtained in January 2016, where a total of eight samples were taken from sediments and silica 

crystals (S 21° 16.1164’ W 069° 37.101; S 21° 16.084’ W 069° 37.084’), and microbial mats (S 

21° 16.087’ W 069° 37.094’). All samples were stored at 4 °C prior to the isolation of the 

bacteria. 

Isolation of Actinobacteria 

All samples were resuspended in Ringer 1/4 buffer (0.12 g of CaCl, 0.105 g of KCl, 0.05 g of 

NaHCO3, and 2.25 g of NaCl in 1 L of solution) preparing thee dilutions,10-1, 10-2 and 10-3. The 

dilutions were heated in a water bath at 56°C for 10 minutes, and then 100 μL of each dilution 
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was spread on three different culture media. Raffinose-Histidine (RH) medium containing 1 g of 

raffinose and 0,1 g of histidine, Trehalose-Proline-Histidine (TPH) medium containing 1 g of 

trehalose, 0.5 g of proline, 0.5 of histidine, 0.2 MgCl2, and 0.5 of KNO3, and Starch-Yeast-

extract-Peptone (SYP) medium containing 2 g of starch, 1 g of yeast extract, and 0.5 g of soy 

peptone. All media were prepared at pH 7.8-8.0 and supplemented with 25 μg/mL nalidixic acid, 

50 μg/mL cycloheximide, 20 g of Tropic Marine Salt, 12 g of gellan gum, and 2 g of CaCl2 in 1 L 

of deionised water. 

Plates were incubated at 25 °C until colonies were observed. The selection of the colonies was 

based on its shape, hardness, aerial mycelium and presence of pigments. Pure isolates were 

streaked on SYP medium supplemented with 10 g of Tropic Marine salt to generate pure cultures, 

and then cryopreserved using the Cryobank System at -20 °C (MAST DIAGNOSTIC).  

16S rRNA gene sequencing, identification, and phylogenetic analysis 

Strains were grown in Petri dishes of SYP media for 5 days, and total genomic DNA was 

extracted using DNaeasy Blood & Tissue Kit (Qiagen) DNA extraction kit, following the 

manufacturer’s protocol and stored at -20 ºC before use. Amplification of the 16S rRNA gene 

was prepared using Dreamtaq using 27f (5’- AGAGTTTGATCMTGGCTCAG-3’) /1492r (5’- 

TACGGYTACCTTGTTACGACTT-3’) set of primers, the reaction mix (25 μL) contained 2 μL 

of genomic DNA, 1 μL (10mM) of each primer, 12.5 μL of master mix and 85 μL of milli-Q 

water. The PCR reaction started with an initial denaturation at 93ºC for 2 min followed by 30 

cycles of denaturation at 93 ºC for 30 seconds, annealing at 55 ºC for 30 seconds and extension at 

72ºC for 30 secs, with a final extension at 42ºC for 1 min, and at 72ºC for 5 min. The PCR 

products were sequenced in IKMB sequencing facility (University of Kiel, Germany). The 

sequences were processed using ChromasPro software, then compared against GenBank database 

using BLAST, with and without type strain filter. Type strains present in the List of Prokaryotic 

Names with Standing in Nomenclature (LPSN, http://www.bacterio.net/) were used. 

For the phylogenetic analysis, each strain was analysed using EzBiocloud 

(https://www.ezbiocloud.net/), and their closest validated type strains of each phylotype were 

selected. Using Rubrobacter aplysinae DSM 27440T used as outgroup all selected sequences 

were aligned using SINA Alignment Service (Pruesse et al. 2012), and then the phylogenetic 

analyses were performed using the MEGA6 software (Tamura et al. 2013). Tree construction was 
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conducted using a neighbour-joining algorithm (Saitou and Nei 1987) and maximum-likelihood, 

using 1000 bootstrap replications. The sequences were deposited in the GenBank (accession 

numbers: MK085001-MK085032) 

Antimicrobial activity test 

Antimicrobial activity of the isolated strains was performed using the cross-streak method, using 

as target two Gram-positive bacteria, Staphylococcus lentus DSM 6672T and Bacillus subtilis 

DSM 347T and two Gram-negative bacteria, Escherichia coli DSM 498T, and Pseudomonas 

fluorescens NCIMB 10586T. Fresh culture of the isolates were grown in 1 mL of ½ strength 

Starch-Glucose-Glycerol (SGG)  medium (Goodfellow and Fiedler 2010) (5 g Starch, 5 g 

glucose, 5 mL glycerol, 2.5 g soy peptone, 1 g yeast extract, 1.25 g corn steep solids, 1.5 g 

CaCO3, and 10 g Tropic marine salts) at 26 °C for 5 days, then streaked as a line in the middle on 

agar plates of SGG, SYP (5 g starch, 2 g yeast extract, and 1 g soy peptone), and Starch-Peptone-

Salt (10 g Starch, 5 g soy peptone, and 10 g tropic marine salt) media supplemented with 18 g of 

agar in 1 L of distilled water, and incubated at 26°C for 7 days (14 days for Micromonosporaceae 

family members). The target strains were cross-streaked and incubated for two days and the 

inhibition zones were recorded.  
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Results  

Isolation and identification of Actinobacteria 

A total of thirty-two Actinobacteria from Salar de Llamará and from Salar de Huasco were 

isolated. Actinobacteria obtained from Salar de Llamará (nine strains) were isolated from 

microbial mat samples, while strains isolated from sediment and silica crystals were not affiliated 

with Actinobacteria (data not shown). Actinobacteria isolated from Salar de Huasco (twenty-

three strains) were obtained from sediment and arid soil close to the lake, but not from salt crusts.  

The initial classification using BLAST analyses of the almost complete 16S rRNA gene 

sequences showed that the isolates obtained from Salar de Llamará were affiliated with the 

Micromonosporaceae family. Strains obtained from Salar de Huasco are more diverse and 

representatives of 8 different families: nine are affiliated with Nocardiopsaceae, four with 

Micromonosporaceae and Streptomycetaceae, two with Geodermatophilaceae, and single strains 

with Microbacteriaceae, Micrococcaceae, Streptosporangiaceae, and Nonomuraea. BLAST 

analysis (with and without type strain filter) also showed that most of the strains obtained from 

the Salares are similar to Actinobacteria obtained from biomes with similar physicochemical 

conditions (Table 1) such as marine sediments (12), inland saline/alkaline soils (5), rhizosphere 

and mangrove roots (6), soils (2), halophyte endophytes (1), stones (2), and arid soils (1). 
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Table 1. Actinobacteria isolated from Salar de Llamará and Salar de Huasco. Taxonomic affiliation was obtained using 16S rRNA gene sequences and BLAST. 
Isolates obtained from Salar de Huasco and Salar de Llamará are named with the codes Huas and Llam respectively. The habitat for the first hit in blast (no filter and 
type strain filter) is also indicated. 

 

Strain 

Closest Genbank entry 
(% similarity 16S rRNA 
gene) 

Habitat of the closest 
relative References Closest type strain (% 

similarity 16S rRNA gene) 
Habitat of the type 
strain Reference 

Huas2 
Nocardiopsis sp. TFS73-
15 (HM001280.1) 
(98.6%) 

Marine sediments, 
Caribbean 

(Engelhardt et al. 
2010) 

Nocardiopsis aegyptia DSM 
44442 (98.9%) 

Marine sediments, 
Alexandria, Abu 
Air Bay 

(Sabry et al. 
2004) 

Huas3 
Streptomyces sp. strain 
HS-NF-1046 
(KX118440.1) (99.5%) 

Soil sample, Jilin, 
China (Gao et al. 2016) Streptomyces fulvissimus 

DSM 40593 (99.5%) - (Waksman and 
Henrici 1948) 

Huas5 

 

Streptomyces althioticus 
isolate#C21 
(LN864578.1) (99.8%) 

Arid soil, Argelia GenBank 
information 

Streptomyces ambofaciens 
ATCC 23877 (98.7%) - (Pinnert-Sindico 

1954) 

Huas7 Kocuria sp. S26-8 
(DQ060377.1) (99.7%) 

Marine sediments, 
Arctic Ocean 

GenBank 
information 

Kocuria himachalensis JCM 
13326 (99.5%) 

Cold desert of the 
Himalayas (Mayilraj 2006) 

Huas8 
Microbacterium sp. 
YT0620 (AB376082.1) 
(99.3%) 

Alkaline soil sample (Ueda et al. 2008) Microbacterium lacus DSM 
18910 (99.3%) 

Sediments, Shinji 
Lake, Japan 

(Kageyama et al. 
2007) 

Huas11 
Nocardiopsis flavescens 
JM-T6 (KF876899.1) 
(99.7%) 

Endophyte in 
Halocnemum 
strobilaceum 
(Halophyte) 

GenBank 
information 

Nocardiopsis aegyptia DSM 
44442 (99%) 

Marine sediments, 
Alexandria, Abu 
Air Bay 

(Sabry et al. 
2004) 

Huas12 
Streptomyces sp. strain 
HS-NF-1046 
(KX118440.1) (99.5%) 

Soil sample, Jilin, 
China (Gao et al. 2016) Streptomyces fulvissimus 

DSM 40593 (99.7%) - (Waksman and 
Henrici 1948) 

Huas13 
Nocardiopsis sp. YIM 
80186 (EF371474.1) 
(99.5%) 

Saline/Alkaline 
environment, 
Qinghai Province 
China 

GenBank 
information 

Nocardiopsis ganjiahuensis 
DSM 45031 (99.9%) 

Soil of saline, 
Ganjia Lake of 
Xinjiang Province 

(Zhang et al. 
2008) 

Huas14 Nocardiopsis sp. TFS Shallow water (Bredholdt et al. Nocardiopsis tropica DSM Soil in the (Evtushenko et al. 
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806 (EF216368.1) 
(99.1%) 

sediment, 
Trondheims fjord, 
Norway 

2007) 44381 (99.1%) rhizosphere of 
Casuarina sp., 
Seychelles 

2000) 

Huas15 
Nocardiopsis 
dassonvillei strain 
HZNU (CP022434.1) 
(98.7%) 

Pleural effusion, 
Homo sapiens 

GenBank 
information 

Nocardiopsis dassonvillei 
subsp. dassonvillei DSM 
43111 (98.3%) 

Soil, Japon (Howey et al. 
1990) 

Huas16 
Nocardiopsis sp. YIM 
80186 (EF371474.1) 
(99.5%) 

Saline/Alkaline 
environment, 
Qinghai Province 
China 

GenBank 
information 

Nocardiopsis metallicus DSM 
44598 (99%) 

Alkaline slag dump 
of metallurgical 
processing, 
Germany 

(Schippers et al. 
2002) 

Huas17 
Micromonospora sp. 
TFS84-03 
(HM001288.1) (99.5%) 

Marine sediments, 
Norway 

(Engelhardt et al. 
2010) 

Micromonospora echinofusca 
DSM 43913 (99.1%) 

Excrement of 
chukar, Beijing, 
zoological garden 

(Kroppenstedt et 
al. 2005) 

Huas19 
Blastococcus aggregatus 
DS17 (FR865889.1) 
(99.5%) 

Stone, Italy (Gtari et al. 2012) Blastococcus aggregatus 
DSM 4725 (99.2%) 

Brackish water, 
Baltic Sea 

Ahrens and Moll 
1970 emend. 
(Urzi et al. 2004) 

Huas20 
Blastococcus 
saxobsidens DD2 
(FO117623.1) (98%) 

Sardinian wall 
calcarenite stone 
sample 

(Chouaia et al. 
2012b) 

Blastococcus saxobsidens 
DSM 44509 (97.6%) 

Calcarenite MA12, 
Malta (Urzi et al. 2004) 

Huas21 
Nocardiopsis sp. TFS 
806 (EF216368.1) 
(99.2%) 

Shallow water 
sediment, 
Trondheims fjord, 
Norway 

(Bredholdt et al. 
2007) 

Nocardiopsis tropica DSM 
44381 (99.1%) 

Soil in the 
rhizosphere of 
Casuarina sp., 
Seychelles 

(Evtushenko et al. 
2000) 

Huas22 Nocardia sp. FMN15 
(JN896621.1) (99.1%) 

Zapadnaya 
Southwest Forest 
Park, Russia 

Ozdemir-Kocak et 
al. 2016 

Nocardia rhamnosiphila DSM 
45147 (98.7%) 

Suburban compost 
heap, Cape Town 

(Everest et al. 
2011) 

Huas23 
Nocardiopsis sp. 
SANLU-AU 
(JN038552.1) (98.1%) 

Salt marsh 
rhizosphere from 
Suaeta spp. 

GenBank 
information 

Nocardiopsis sinuspersici 
DSM 45277 (98.1%) 

Sandy rhizospheric 
soil, Sarbandar, 
seashore of Persian 
Gulf 

(Hamedi et al. 
2010) 

Huas24 
Solwaraspora sp. 
UMM479 (AY552773.1) 
(99.4%) 

Marine sediment (Magarvey et al. 
2004) 

Micromonospora nigra DSM 
43818 (99.3%) 

Salt pool in 
Syracuse, NY, 
USA. 

(Kasai et al. 2000) 

Huas25 Micromonospora sp. Marine sediment, (Engelhardt et al. Micromonospora echinofusca Excrement of (Kroppenstedt et 
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TFS84-03 
(HM001288.1) (99.5%) 

Norway 2010) DSM 43913 (99%)  chukar, Beijing, 
zoological garden 

al. 2005) 

Huas26 
Nonomuraea sp. TFS 
1165 (EF216356.1) 
(99.4%) 

Shallow water 
sediment, 
Trondheims fjord, 
Norway 

(Bredholdt et al. 
2007) 

Nonomuraea endophytica 
DSM 45385 (97.7%) 

Surface-sterilised 
sample of 
Artemisia annua 
L., Yunnan 
province 

(Li et al. 2011) 

Huas27 
Micromonospora sp. 
2602SCA9 
(JQ836669.1) (99.2%) 

Mangrove soil GenBank 
information 

Micromonospora oryzae DSM 
102119 (98.9%) 

Root internal 
tissues, Oryza 
sativa, Chumporn 
Thailand 

(Kittiwongwattan
a et al. 2015) 

Huas28 
Streptomyces sp. NPS-
554 (AB515328.1) 
(96.5%) 

Marine sediment, 
Miyazaki, off the 
coast of Nobeoka, 
Japan 

(Iwata et al. 2009) Streptomyces bohaiensis DSM 
42125 (96.8%) 

Young 
Scomberomorus 
niphonius (pelagic 
fish), Eastern 
Liaoning 
Peninsula, China 

(Pan et al. 2015) 

Huas29 
Nocardiopsis sp. YIM 
C560 (EU135693.1) 
(99.7%) 

Haloalkaline soil, 
bank of Qinghai lake, 
China 

GenBank 
information 

Nocardiopsis aegyptia DSM 
44442 (99.4%) 

Marine sediments, 
Alexandria, Abu 
Air Bay 

(Sabry et al. 
2004) 

Llam0 
Micromonospora sp. 
CNJ878 PL04 
(DQ448714.1) (99.7%) 

Marine sediment, 
Palau 

(Gontang et al. 
2007) 

Micromonospora yangpuensis 
DSM 45577 (98.6%) 

Cup-shaped 
sponge, Dachan 
reef, China 

(Zhang et al. 
2012) 

Llam1 
Micromonospora sp. 
CNJ878 PL04 
(DQ448714.1) (99.7%) 

Marine sediment, 
Palau 

(Gontang et al. 
2007) 

Micromonospora 
narathiwatensis strain DSM 
45248 (98.6%) 

Mangrove soil 
samples, Thailand 

(Thawai et al. 
2007) 

Llam2 
Micromonospora sp. 
CNJ878 PL04 
(DQ448714.1) (99.7%) 

Marine sediment, 
Palau 

(Gontang et al. 
2007) 

Micromonospora 
narathiwatensis strain DSM 
45248 (98.5%) 

Mangrove soil 
samples, Thailand 

(Thawai et al. 
2007) 

Llam7 
Micromonospora sp. 
27021/10ATCC9 
(JQ836683.1) (98.4) 

Mangrove soil, China GenBank 
information 

Jishengella endophytica DSM 
45430 (98.4%) 

Surface-sterilised 
roots of Acanthus 
illicifolius, 
mangrove reserve 
zone, China 

(Xie et al. 2011) 

Llam8 Micromonospora sp. 
2701SIM06 Mangrove soil, China GenBank 

information 
Micromonospora 
pattaloongensis DSM 45245 

Thai mangrove 
forest, Thailand 

(Thawai et al. 
2008) 
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(JQ836686.1) (99.7%) (98.5%) 

Llam10 
Micromonospora sp. 
27021/10ATCC9 
(JQ836683.1) (98.8) 

Mangrove soil, China GenBank 
information 

Jishengella endophytica DSM 
45430 (98.8%) 

Surface-sterilised 
roots of Acanthus 
illicifolius, 
mangrove reserve 
zone, China 

(Xie et al. 2011) 

Llam11 
Micromonospora sp. 
27021/10ATCC9 
(JQ836683.1) (98.7) 

Mangrove soil, China GenBank 
information 

Jishengella endophytica DSM 
45430 (98.7%) 

Surface-sterilised 
roots of Acanthus 
illicifolius, 
mangrove reserve 
zone, China 

(Xie et al. 2011) 

Llam13 
Micromonospora sp. 
SB1-25 (FN376883.1) 
(98.4%) 

Root nodules from 
Lupinus 
angustifolius, Spain. 

GenBank 
information 

Jishengella endophytica DSM 
45430 (98.4%) 

Surface-sterilised 
roots of Acanthus 
illicifolius, 
mangrove reserve 
zone, China 

(Xie et al. 2011) 

Llam15 
Micromonospora sp. 
27021/10ATCC9 
(JQ836683.1) (98.8) 

Mangrove soil, China GenBank 
information 

Jishengella endophytica DSM 
45430 (98.8%) 

Surface-sterilised 
roots of Acanthus 
illicifolius, 
mangrove reserve 
zone, China 

(Xie et al. 2011) 
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The strains were assigned to 22 different phylotypes (isolates with 16S rRNA gene sequence 

similarity >99.5% were considered to be a single phylotype) (Table 2). Phylogenetic analyses 

revealed that three phylotypes (Q, T, and U) cluster closely to different genera within the 

Micromonosporaceae family (Figure 1). The strains clustered as phylotype T, using BLAST 

algorithm, showed high similarity to Micromonospora yangpuensis DSM 45577T (98.6%) and 

Micromonospora narathiwatensis strain DSM 45248T (98.6%), but in the phylogenetic tree they 

cluster close to Plantactinospora genus, specifically to Plantactinospora soyae DSM 46832T 

(98.3%). The phylotype T (Huas27) has a high 16S rRNA gene sequence similarity to 

Micromonospora oryzae DSM 102119T (98.9%), but in the tree clusters together with 

Actinoplanes brasiliensis DSM 43805T (98.0%). In the case of phylotype U, the strains form a 

distinct cluster with unclear genus affiliation, related to both genera Jishengella and Salinispora. 

The phylotypes A (Huas2 and Huas11) and S (Huas29) showed a high percentage of identity with 

Nocardiopsis aegyptica strain DSM 44442T (98,4% and 99,8% respectively); however, only 

strain Huas29 (phylotype T) clusters next to it, while the strains Huas2 and Huas11 (phylotype A) 

form a cluster separate from their next related type strain. 

According to 16S rRNA gene identities obtained from BLAST against their closed related type 

strains, fifteen strains can be considered potential novel species (Table 2). However, even though 

six phylotypes (A, D, E, G, J, and S) showed a high percentage of identity in their 16S rRNA 

against the type strain, their position in the phylogenetic tree in comparison with their next 

related type strains suggest that they might be potential candidates for novel species designation 

(Figure 1).  
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Figure 1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequence comparison of the Actinobacteria 
isolates and the next related type strains with Rubrobacter aplysinae DSM 27440T as outgroup. Numbers at the nodes 
represent bootstrap support (%) based on the analysis of 1000 bootstrap replications, asterisks indicate branches of 
the tree that were also recovered using the maximum-likelihood algorithm. Only bootstrap values ≥ 50% are 
indicated. Genbank accession numbers are given in parentheses. Bar indicates 0.02 substitutions per site (Continues 
in the next page). 
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Figure 1. Neighbour-joining phylogenetic tree based on 16S rRNA gene sequence comparison of the Actinobacteria isolates and the next related type strains with 
Rubrobacter aplysinae DSM 27440T as outgroup. Numbers at the nodes represent bootstrap support (%) based on the analysis of 1000 bootstrap replications, 
asterisks indicate branches of the tree that were also recovered using the maximum-likelihood algorithm. Only bootstrap values ≥ 50% are indicated. Genbank 
accession numbers are given in parentheses. Bar indicates 0.02 substitutions per site. 
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Table 2. Phylotype clusters of the isolated Actinobacteria, their genus affiliation according to BLAST and to the 
phylogenetic analyses.  

Phylotype Strains 
Genus affiliation 
BLAST 

Phylogenetic 
analyses 

Novel species 
(>98.7%) 

A Huas2, Huas11 Nocardiopsis Nocardiopsis No 
B Huas3, Huas12 Streptomyces Streptomyces No 
C Huas5 Streptomyces Streptomyces Yes 
D Huas7 Kocuria Kocuria No 
E Huas8 Microbacterium Microbacterium No 
F Huas13 Nocardiopsis Nocardiopsis No 
G Huas14, Huas21 Nocardiopsis  Nocardiopsis  No 
H Huas15 Nocardiopsis Nocardiopsis Yes 
I Huas16 Nocardiopsis Nocardiopsis No 
J Huas17, Huas25 Micromonospora Micromonospora No 
K Huas19 Blastococcus Blastococcus Yes 
L Huas20 Blastococcus Blastococcus No 
M Huas22 Nocardia Nocardia Yes 
N Huas23 Nocardiopsis Nocardiopsis Yes 
O Huas24 Micromonospora  Micromonospora  No 
P Huas26 Nonomuraea Nonomuraea Yes 
Q Huas27 Micromonospora Actinoplanes No 
R Huas28 Streptomyces  Streptomyces  Yes 
S Huas29 Nocardiopsis Nocardiopsis No 
T Llam0, Llam1, Llam2 Micromonospora Plantactinospora Yes 

U 
Llam7, Llam10, Llam13, 
Llam15 Jishengella Unclear Yes 

V Llam8 Micromonospora Micromonospora Yes 

 

Antimicrobial activity 

According to the performed diffusion test, 56% of the isolates showed antibiotic activity, with 

30% active against the tested Gram-negative bacteria and 46% against the Gram-positive bacteria 

(Table 3). Among all the strains studied, 7 strains showed antibiotic activity, against E. coli, 

Nocardiopsis (Huas14 and Huas16), Micromonospora (Llam0 and Llam2), 

Jishengella/Salinispora (Llam7 and Llam11), and Streptomyces (Huas5); antibiotic activity 

against Pseudomonas fluorescens was shown by 6 strains, Micromonospora (Llam0, Llam1, and 
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Llam2), Jishengella/Salinispora (Llam7), and Nocardiopsis (Huas15 and Huas23). Activity 

against Gram-positive bacteria was detected in 12 strains, most of which share antibiotic activity 

against Staphylococcus lentus DSM 6672T and Bacillus subtilis DSM 347T. Streptomyces strains 

Huas23, Huas5, and Huas12 showed activity against both Gram-positive strains, while 

Streptomyces sp. Huas28 showed exclusively activity against Bacillus subtilis DSM 347T. 

Nocardiopsis strains Huas2 and Huas15 showed activity against Staphylococcus lentus DSM 

6672T and Bacillus subtilis DSM 347T, while Nocardiopsis Huas23 showed antibiotic activity 

only against Staphylococcus lentus DSM 6672T. Micromonospora strains Huas24, Huas25, 

Llam0, Llam1, and Llam2 had activity against both Gram-positive strain tested. No correlation 

between phylotype and antibacterial activity was found, suggesting strain-specific genetic 

differences. 

Table 3. Antibiotic activity of strains isolated from hypersaline samples from Salar de Huasco (Huas) and Salar de 
Llamará (Llam). E: Escherichia coli K12 DSM 498T; P: Pseudomonas fluorescens NCIMB 10586T; B: Bacillus 
subtilis DSM 347T; S: Staphylococcus lentus DSM 6672T. -: No antibiotic activity; +/- weak inhibitory activity 
inhibition zone < 5mm); +: inhibition zone between 5 to 10 mm; ++: inhibition zone between 10 to 20 mm; +++: 
inhibition zone > 20 mm. Strains that are not included in this list did not show antibiotic activity under the 
experimental conditions. 

      SGG medium SYP medium SPS medium 
Strain  E  P  B  S  E  P  B  S  E  P  B  S  
Huas2  -  -  -  -  -  -  -  -  -  -  +  +  
Huas3  -  -  -  -  -  -  ++  ++  -  -  -  -  
Huas5  +/-  -  +  +/-  -  -  +/-  -  -  -  +/-  -  
Huas12  -  -  +/-  +  -  -  +/-  +/-  -  -  +  +/-  
Huas14  -  -  -  -  -  -  -  -  ++  -  -  -  
Huas15  -  -  +/-  -  -  ++  ++  +/-  -  -  ++  +  
Huas16  -  -  -  -  -  -  -  -  +/-  -  -  -  
Huas17  -  -  -  +/-  -  -  -  -  -  -  -  +/-  
Huas23 - - - - - + - + - - - - 
Huas24  -  -  ++  ++  -  -  +++  +++  -  -  +++  -  
Huas25 - - - - - - +++ +++ - - +++ - 
Huas28  -  -  -  -  -  -  +/-  -  -  -  -  -  
Llam0  -  ++  +++  +++ -  -  ++++  +++  +/-  +++  +++  ++  
Llam1  -  +  +++  +++ -  -  ++++  +++  -  -  +++  ++  
Llam2  +/-  ++  +++  +++  -  +/-  ++++  +++  +/-  +/-  +++  +++  
Llam7  +/-  +/-  -  -  -  -  -  -  -  -  -  -  
Llam11  +/-  -  -  -  -  -  -  -  -  -  -  -  
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Discussion 

Actinobacteria strains isolated from Salar de Llamará and Salar de Huasco were studied, focusing 

on their phylogenetic affiliation and antimicrobial properties. Salares from the Atacama Desert 

are under-explored habitats; despite the high salt concentration, their microbial communities are 

diverse and show a huge novelty of microbial taxa (Dorador et al. 2013), and play an important 

role in the basal structures of the ecosystem (Dorador et al. 2018). Few studies have focused on 

the cultivation of diverse Actinobacteria, although Okoro et al (2009) did show that soils from 

Salar de Atacama were diverse in Streptomyces, Lechevalieria, and Amycolaptopsis. 

Streptomyces obtained in this study have been described as novel species (Santhanam et al. 

2012a, b, 2013; Busarakam et al. 2014). They are also a good source of new natural products 

(Nachtigall et al. 2011; Rateb et al. 2011; Elsayed et al. 2015). An  independent study of a 

Streptomyces isolated from Salar de Tara showed that even new isolates obtained from Salares 

with high similarity to representative type strains can be a good source for novel compounds 

(Schulz et al. 2011). 

In the present study, the isolates affiliated with twenty-two phylotypes and eleven different 

genera according to phylogenetic analyses. Compared with a previous study on soils from 

Atacama Desert (Okoro et al. 2009) in which only three genera were isolated (Amycolaptopsis, 

Lechevalieria and Streptomyces), the genera diversity of Actinobacteria was higher in Salar de 

Llamará and Salar de Huasco. Nevertheless, Streptomyces isolates obtained from Salar de Huasco 

did not show similarity in their 16S rRNA gene with strains obtained from Salar de Atacama 

(Okoro et al. 2009), or with the Salar de Tara isolate (Schulz et al. 2011). Interestingly, 

representatives of different genera were isolated from the two Salares. This demonstrates unique 

actinobacterial populations in each of the two Salares, whereas Salar de Huasco actinobacterial 

diversity was higher compared to Salar de Llamará. A recent study that focused only on the 

isolation of Micromonospora from different samples of the Atacama Desert showed that 20 

representative strains showed distinct phyletic lines (Carro et al. 2018); however, none of the 

isolates are closely related to the strains obtained from Salar de Llamará and Salar de Huasco 

samples. 

The differences in diversity are considered to be attributes of the nature of the studied samples 

originating from saline-arid soils bordering the Salares, namely from salt crusts, silica crystals, 
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sediment, and microbial mats. Selected culture media and conditions of isolation were identical 

for all samples and can therefore be excluded as responsible factors. We used uncommon carbon 

sources such as raffinose and trehalose, and selected amino acids to avoid the overrepresentation 

of the genus Streptomyces (Vickers et al. 1984). Also, all components of the culture media were 

more highly diluted in comparison with similar culture media, with the aim of mimicking 

environmental conditions and avoiding nutrient saturation that would favour the isolation of 

known microorganisms. 

Due to water availability, hypersaline lakes are one of the most productive environments in the 

Atacama Desert, with a high diversity of microorganisms and high density of biofilms and 

microbial mats (Demergasso et al. 2004; Dorador et al. 2009, 2018). Culture-independent studies 

showed the presence of different families of Actinobacteria in Salar de Llamará and Huasco 

(Aguilar et al. 2016), with members affiliated with the TM146 and OM1 clades, with 

Corynebacteriaceae, Cryptosporangiaceae, Demequinaceae, Mycobacteriaceae, 

Nitriliruptoraceae, Propionibacteriaceae, Micromonosporaceae, and Microbacteriaceae. Strains 

affiliated with the last two families were isolated in our study (Table 1). On the other hand, 

members of the family Microbacteriaceae (Leifsonia) were detected by sequencing DGGE bands 

from Salar de Llamará (Demergasso et al. 2004), and members affiliated with 

Propionibacteriaceae, Microbacteriaceae, Corynebacteriaceae, and Nocardiaceae were detected 

in water samples (Pablo Aran, personal communication).  

Actinobacteria are ubiquitous microorganisms; in some cases, strains affiliated with a genus can 

be isolated from various environmental sources. Nevertheless, strains obtained in this study 

showed high similarity with strains obtained from environments with similar physicochemical 

conditions (Table 1). Strains affiliated with Streptomyces, Nonomuraea, and Micromonospora 

have been obtained from different saline environments, including Indian coastal solar salterns 

(Jose and Jebakumar 2013). Nonomuraea strains also have been isolated from marine sediments 

(Bredholdt et al. 2007; Maldonado et al. 2009; Becerril-Espinosa et al. 2013). Strains affiliated 

with genus Streptomyces have been reported in different saline soils (Zvyagintsev et al. 2008; Cai 

et al. 2009; Akhwale et al. 2015). Micromonospora clones have been found in different hot 

spring microbial mats in Tibet (Jiang et al. 2012). Species of the genus Nocardiopsis include 

several halotolerant species that tolerate up to 20% NaCl, and which have been isolated 

frequently from saline environments, including from inland soils (Yang et al. 2008; Lubsanova et 
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al. 2014; He et al. 2015; Li et al. 2017) and marine samples (Sabry et al. 2004; Bredholdt et al. 

2007; Chen et al. 2009),  

Using 16S rRNA gene sequence similarity, eighteen of thirty-two strains showed an identity 

value below the 98.7% threshold (Yarza et al. 2014), suggesting species novelty. However, 16S 

rRNA in Actinobacteria has a high degree of conservation. Examples of novel species 

descriptions with 16S rRNA gene sequence identities higher than 99% (Meier-Kolthoff et al. 

2013) have been reported for strains affiliated with the genera Micromonospora 

(Kittiwongwattana et al. 2015), Streptomyces (Santhanam et al. 2012a), and Nocardiopsis (Zhang 

et al. 2008), even when its DNA:DNA relatedness value is below the recommended 70% (Wayne 

et al. 1987). Evidence in clade formation (Figure 1), 16S rRNA gene similarities between isolates 

from our study, and type strains suggest that six phylotypes might be considered novel species. 

Specifically, the phylotype U position on the phylogenetic tree in between Salinispora and 

Jishengella suggests that the strains might be a novel genus (Figure 1). 

Since the 1970s, the discovery of antibiotics started to fade with the high rate of rediscovery of 

already known compounds (Arias and Murray 2015). Nowadays, due to the huge load of 

information that can be obtained from compounds databases as well as the improvement in the 

annotation of bacterial genomes and their natural products gene clusters (Weber et al. 2015), it is 

easier to make an educated guess  regarding the selection of potential strains that could produce 

novel natural products. Most of the strains isolated in this study belong to genera known as 

natural products producers. 7600 compounds have been described from Streptomyces genera,, 

followed by Micromonospora (442), Nocardia (316), Nocardiopsis (88), Salinispora (56), and 

Nonomuraea (32). Meanwhile for Kocuria and Microbacterium only two compounds have been 

reported for each, and zero for Blastococcus (Dictionary of Natural products 2015). 

(Supplementary Table 1). The availability of complete Actinobacteria genomes and the 

understanding of the biosynthetic gene clusters involved in the production of natural products 

provide valuable information about their potential as natural product producers (Doroghazi and 

Metcalf 2013). The complete genome sequences of type strains of representative species related 

to the isolates from this study showed that genes of biosynthetic pathways for more than 10 

natural products are encoded in Nocardiopsis (Sun et al. 2010), Salinispora (Udwary et al. 2007), 

and Micromonospora (unpublished, Acc. Number: CP002162.1), and more than 25 in 

Streptomyces (Thibessard et al. 2015), Nonomuraea (D’Argenio et al. 2016), and Nocardia 

51 
 



 
 

(Vera-Cabrera et al. 2012). On the other hand, complete genomes of Blastococcus (Chouaia et al. 

2012a), Kocuria (Takarada et al. 2008), and Microbacterium (Unpublished: Acc. Number: 

CP018134) show five or less natural product biosynthetic gene clusters. Strains affiliated with 

genera with a high number of natural product biosynthetic gene clusters but lower number of 

compounds described, such as Nocardiopsis, Nonomuraea, and Micromonosporaceae family 

members (Plantactinospora, Actinoplanes, etc), appear to be excellent targets for the discovery of 

novel compounds.  

Antibiotic production in Actinobacteria has been reported extensively, with evidence in crude 

extracts, compounds described, and genomics endorsing it. Culture composition, culture 

conditions, and taxonomic affiliation of the strains is important to trigger the production of 

antibiotic substances (Goodfellow and Fiedler 2010). It has been reported that using media with a 

high carbon:nitrogen ratio enhances the antibiotic production in Streptomyces, Nocardia, and 

Micromonospora (Goodfellow and Fiedler 2010), but there are no common rules for 

underexploited taxa such as Plantactinospora, Actinoplanes, Nocardiopsis, and Nonomuraea. 

Under the condition given in our study, more than half of the strains revealed antibiotic activity 

(Table 2). Presumably, those strains that did not show antibiotic activities require different 

conditions to trigger and optimize synthesis of bioactive compounds. Also, different bioassays 

may reveal positive results. Antibiotic resistance is a worldwide problem (ECDC 2015); the 

discovery of new antibiotics to fight against Gram-Negative and Gram-Positive bacteria is 

urgently needed. Antibiotics against Gram-negative bacteria are difficult to find, in comparison to 

Gram-positive bacteria (Delcour 2009). In our study, 30% of the isolates showed activity against 

the Gram-negative bacteria tested.  
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Conclusions 

Salares in the Atacama Desert represent a valuable source of novel Actinobacteria and their 

antibiotic compounds. A highly diverse number of Actinobacteria has been isolated from two 

hypersaline lakes, Salar de Llamará and Salar de Huasco by using an array of selected media. The 

isolated strains affiliated with a diverse set of genera, including Streptomyces, Micromonospora, 

Nocardiopsis, Nocardia, Nonomuraea, Actinoplanes, Microbacterium, Kocuria, Blastococcus, 

Plantactinospora, and a potential new genus affiliated with the Micromonosporaceae. Using 16S 

rRNA gene sequences and its phylogenetic tree analyses as criteria, 25 strains might represent 

novel species affiliated with each genus obtained. The ability to produce antibiotic substances is 

found in most of the isolates (56%), with activity against Gram-negative bacteria in 30% of the 

strains, against Gram-positive bacteria in 46% of the strains, and against both in 28% of the 

strains.  
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Abstract 

A new member of the Micromonosporaceae family was isolated from microbial mats of the 

hypersaline Salar de Llamará, Chile. Optimal growth was observed at 30 - 35 °C, pH 7 - 8 and 1 - 

2.5 % sea salt. The 16S rRNA gene sequence revealed 98.2 - 98.9% sequence similarity with 

different genera of the Micromonosporaceae. The new isolate, strain Llam7T, is related to 

Salinispora pacifica DSM 45820T (98.5%) and Jishengella endophytica DSM 45430T (98.6%). 

The cell wall of Llam7T contains meso-diaminopimelic acid andLL-2,6 diaminopimelic acid, 

while major whole-cell sugars are glucose, mannose, xylose, and ribose. The major 

menaquinones are MK-9(H4) and MK-9(H6). As polar lipids phosphatidylglycerol, 

phosphatidylethonolamine, diphosphatidylglycerol and several unidentified lipids: 2 glycolipids, 

1 aminolipid, 3 phospholipids, 1 aminoglycolipid, and 1 phosphoglycolipid were detected. The 

major fatty acids were C17:1ω8c, C15:0iso, C16:0iso, and C17:0anteiso. Based on 

morphological, physiological, molecular and phylogenetic data, strain Llam7T is considered as 

type strain of a new species and a new genus of the family Micromonosporaceae for which the 

name Superstesspora tarapacensisis proposed. The type strain is Llam7T and has a G + C content 

of the DNA of 71 mol%. 

 

62 
 



 
 

Introduction 

The family Micromonosporaceae was initially proposed by by Krasil’nikov [1] with 

Micromonospora as type genus. Based on 16S rRNA gene sequences and its taxon-specific 

signature nucleotides the family was since repeatedly emended by Goodfellow et al.[2], Koch et 

al. [3], Stackebrandt et al. [4] and Zhi et al. [5]. At the time of writing, 31 genera with validly 

published names have been reported within this family. 

In the course our research of Actinobacteria diversity from hypersaline lakes in the Atacama 

Desert, strain Llam7T was isolated from a microbial mat sample collected at Salar de Llamará 

(Atacama Desert, Chile, S 21° 16.087’ W 069° 37.094’). The sample was diluted in Ringer 1/4 

buffer (0.12 g CaCl2 x 2H2O, 0.11 g KCl, 0.05 g NaHCO3, and 2.25 g of NaCl in 1 L aq. dest.) to 

10-1, 10-2 and 10-3, heated in a water bath at 56°C for 10 minutes. Then 100 μL of each dilution 

was spread on starch-yeast-extract-peptone (SYP) medium containing in 1 L aq. dest. 2 g starch, 

1 g yeast extract, and 0.5 g soy peptone supplemented with 25 μg/mL nalidixic acid, 50 μg/mL 

cycloheximide, 20 g Tropic Marine Salt, 12 g gellan gum, and 2 g of CaCl2 x 2H2O in 1 L. For 

genomic DNA preparation, Llam7T cells were grown in 100 mL of SYP medium for 2 weeks at 

26 °C. DNA was extracted using DNeasy®Blood&Tissue Kit (Qiagen). The quantity and quality 

of the extracted DNA was evaluated by 0.8 % (w/v) agarose gel electrophoresis. 

Phenotypic and chemotaxonomic characterisation 

Cells obtained from a liquid culture of Llam7T in SYP under shaking conditions for 5 days at 

26 °C and 120 rpm were used for Gram-stain, applying Color Gram 2 (bioMérieux Deutschland 

GmbH, Nürtingen, Germany) according to the manufacturer. Motility was studied by light 

microscopy. The cell morphology was examined using light and scanning electron microscopy. 

For scanning electron microscopy strain Llam7T was grown for 21 days in SYP agar plates at 

26 °C. Three colonies were cut from the agar plate, dehydrated by an ascending ethanol series 

(50 %, 70 %, 90 % and three times 100 % for 10 min each) [6], and critical-point dried with 

carbon dioxide and sputter-coated with Au/Pb. Finally, the samples were examined with scanning 

electron microscope.  
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Colonies on solid SYP medium grown for 14 d at 28 °C were elevated orange, hard, wrinkled, 

and dry. Old colonies grown for more than 6 weeks could penetrate into the agar, while young 

ones (1-2 week) could be easily removed from the agar surface. The diameter of the colonies was 

2 - 4 mm. Cells obtained from these colonies were Gram-positive filaments ranging from 8 to 25 

µm in length and from 0.2 0.3 µm in diameter. Cells cultured in SYP agar plates as studied with 

SEM were long filaments from 10 to 30 µm in length and 0.2 to 0.3 µm in width. In addition, 

spherical spores were formed with 0.7 to 1.4 µm in diameter (Fig. 1).  

Fig. 1. Scanning electron micrograph of strain Llam7T after cultivation grown for 21 days in SYP agar plates at 
26 °C.  

Growth responses to temperature and pH variation were tested on SYP medium for 30 d. The 

temperature for growth ranges from 15 - 35 °C with an optimum of 30 - 35 °C, similar to 

Salinispora arenicola, S. pacificica and S. tropica, while Jishengella endophytica could grow up 

to 45 °C. The pH range for growth of the strain Llam7T was from pH 6 - pH 12 with an optimum 

at 7-8. Salt-depended growth was investigated after incubation at 26 °C for 30 d on SYP agar 

medium, supplemented with NaCl and Tropic Marine Salt® (Wartenberg, Germany), 

respectively, at concentrations of 0%, 1%, 2.5%, 5%, 7.5%, and 10%. Strain Llam7T grew in a 

range from 0% to 5% of NaCl and Tropic Marine Salt as well with an optimum at 1% NaCl and 

at 1%-2.5% Tropic Marine Salt. While all representants of Salinispora tropica, S. pacifica and S. 
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arenicola did not grow in the absence of NaCl (0%) or Tropic Marine Salt, weak growth of 

Llam7T was observed after long periods of incubation (up to 30 days), a characteristic which is 

shared with the Jishengella endophytica.  

Physiological characteristics of Llam7T including enzymatic activities were tested using API 20E 

(bioMérieux), including the oxidase assay, and API ZYM (bioMérieux) according to the 

manufacturer’s instructions. Carbon source utilisation test were prepared using minimal medium 

supplemented independently with starch, trehalose, mannitol, glucose, and n-acetylglucosamin. 

All tests were run in duplicates. The metabolic characteristics of Llam7T in comparison with S. 

arenicola, S. pacifica, S. tropica and J. endophytica are shown in Table 1. In the present study, 

all strains analysed showed positive activity in the tests for alkaline phosphatase, esterase (C 4), 

esterase lipase (C 8), lipase (C 14), leucine arylamidase, valine arylamidase, acid phosphatase, 

naphthol-AS-Bl-phosphohydrolase, Voges–Proskauer test (production of acetoin), and gelatinase, 

but were negative in activities of α-galactosidase, β-glucoronidase, α-glucosidase, α-fucosidase, 

β-galactosidase, arginine dihydrolase, lysine decarboxylase, ornithine decarboxylase, citrate 

utilisation, sulfide production, tryptophane deaminase, and indole production.  The strain Llam7T 

grew using starch and trehalose. 
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Table 1. Physiological characteristics of strain Llam7T compared to the type strains of the genera Jishengella and 

Salinispora. Strain: 1, Superstesspora tarapacensis gen. nov., sp. nov. Llam7T; 2, Jishengella endophytica DSM 

45430T; 3, Salinispora pacifica DSM 45820T; 4, Salinispora tropica DSM 44818T; 5, Salinispora arenicola DSM 

44819T 

  1 2 3 4 5 

Salinity      

NaCl (range) 0-5% 0-2.5% 2.5% 1-2.5% 2.5-5% 

Tropic Marine Salt (range) 0-5% 0-5% 1-5% 1-5% 1-5% 

pH (range) 6-12 6-13 6-13 4-12 4-13 

Temperature (range) 15-35 °C 15-45 °C 20-35 °C 15-35 °C 20-35 °C 

      

Trypsin + + - - - 

α-chymotrypsin - + - - - 

β-galactosidase - + - - - 

β-glucosidase - + + + + 

n-acetyl-β-glucosaminidase + - + + - 

α-mannosidase + - + - - 

Urease - + - - - 

 

The DNA base composition (G + C content) of strain Llam7T was determined by genome 

sequencing using MiSeq® Reagent Kit v3 (600 cycles). The raw data were filtered using 

Trimmomatic [7] and then assembled using SPAdes [8]. The annotation was prepared using 

Prokka and barnarp [9], to obtain the complete 16S rRNA gene. The profile of the cellular fatty 

acids was studied using GC-analysis according to the Microbial Identification System (MIDI Inc. 

Del., USA) [10]. The determination of the respiratory quinones and polar lipids followed the 

procedure as described by Tindall [11, 12] and Tindall et al. [13], the identification of diamino 

acids was done according to Rhuland et al. [14], The whole-cell sugars were identified according 

to Staneck and Roberts [15], experiments carried out by the German Collection of 

Microorganisms and Cell Cultures (DSMZ GmbH, Braunschweig, Germany).   
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The DNA G + C content of strain Llam7T is 71.0%. The major respiratory quinones were MK-

9(H6) with 52% and MK-9(H4) with 42%. The diamino acids present in the peptidoglycan are m-

DAP and LL-DAP. The whole cells of Llam7T contained glucose, mannose, xylose, and ribose as 

major sugars. As polar lipids diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), 

phosphatidylglycerol (PG), together with unidentified lipids: 1 aminolipid (AL), 2 glycolipids 

(GL), 1 aminoglycolipid (GNL), 1 phosphoglycolipid (PGL) and 3 phospholipids (PL) were 

detected. Components of the fatty acid profile are shown in Table 2. The dominant fatty acids 

present in Llam7T were C17:1ω8c (17.2%), C15:0iso (13.6%), C16:0iso (12.6%), and 

C17:0anteiso (11.5%) which attributed to approximately 59.5% of the total fatty acids. 
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Table 2 Cellular fatty acid contents (%) of strain Llam7T and type strains of Jishengella endophytica DSM 45430T, 
Salinispora pacifica DSM 45820T, Salinispora tropica DSM 44818T, Salinispora arenicola DSM 44819T. Strains: 1, 
Superstesspora tarapacensis gen. nov., sp. nov. Llam7T; 2, Jishengella endophytica DSM 45430T; 3, Salinispora 
pacifica DSM 45820T; 4, Salinispora tropica DSM 44818T; 5, Salinispora arenicola DSM 44819T. -, negative; tr, 
trace, < 0.5 %. 

Fatty acid 1 2 3 4 5 

Saturated fatty acids      

    C13:0 - - 0.6 tr tr 

    C14:0 tr tr 1.3 tr tr 

    C15:0 1.3 5.0 9.8 2.2 2.7 

    C16:0 2.2 3.0 3.6 0.8 0.6 

    C16:0 10-methyl - 1.3 - - - 

    C17:0 6.6 7.5 9.6 2.7 1.6 

    C17:0 10-methyl 1.1 9.0 2.4 11.2 10.1 

    C18:0 2.1 1.0 1.3 1.5 0.8 

    C19:0 10-methyl - - - tr - 

    C19:0 tr tr 0.5 tr - 

Branched-chain fatty acids      

    C14:0iso 0.5 1.2 1.0 1.74 1.4 

    C15:1iso G 1.5 - - - - 

    C15:1anteiso A tr - - - - 

    C15:0iso 13.6 12.4 9.6 3.1 3.7 

    C15:0anteiso 7.8 1.9 3.1 1.3 1.5 

    C16:1iso H - tr 0.6 6.5 3.0 

    C16:1iso G 1.9 - - - - 

    C16:0iso 12.6 21.4 13.6 47.5 51.1 

    C17:1anteiso A 2.5 - - - - 

    C17:0iso 4.6 0.9 1.9 1.0 1.3 

    C17:0anteiso 11.5 1.5 2.6 1.4 2.1 

    C18:1iso H - - - - tr 

    C18:1iso II - - - tr - 

    C18:0iso tr 1.0 - tr tr 
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Monounsaturated fatty acids      

    C15:1ω8c - tr - - - 

    C15:1ω6c tr tr tr 0.5 0.5 

    C17:1isoω9c 2.6 - 1.7 1.9 2.6 

    C17:1anteisoω9c - - - tr tr 

    C17:1ω8c 18.2 25.8 25.5 9.5 8.9 

    C17:1ω5c tr - - - - 

    C18:1ω9c 6.1 3.5 7.5 2.4 3.8 

    C18:1ω7c - - - tr tr 

Others      

    Summed feature 3* 2.5 1.4 0.8 tr tr 

    Summed Feature 6† tr 0.7 1.9 0.9 1.4 

    TBSA 10MeC18:0 tr 1 0.6 1.9 1.1 

*,† Summed features represent two or three fatty acids that cannot be separated by the Microbial Identification 
System. Summed feature 3 consisted of C15:iso 2-OH and/or C16:1ω7c, while summed feature 6 consisted of 
C19:1ω9c and/or C19:1ω11c 

 

Phylogeny 

The 16S rRNA gene sequence similarities between strain Llam7T and related type strains were 

obtained from EzBiocloud e-server (www.ezbiocloud.net; [16]). The closest relatives (31 strains) 

and one representative of each of the genera from the Micromonosporaceae family, with 

Streptomyces albus subsp. albus DSM 40313T as outgroup were aligned using SINA aligner 

(v1.2.11) [17]. Phylogenetic trees were constructed using neighbour-joining [18] and maximum-

likelihood methods [19], bootstrap method with 1000 repeats with MEGA software version 6.0 

[20]. NJplot was used to draw the phylogenetic trees expressed in the Newick phylogenetic tree 

format [21]. 

The complete 16S rRNA gene sequence (1517 bp) of strain Llam7T has high similarity values 

with four genera of the Micromonosporaceae family (98.2 - 98.9%), showing the highest 16S 

rRNA gene sequence similarity with Jishengella endophytica DSM 45430T (98.9%), 

Micromonospora olivasterospora DSM 43868T (98.8%), Xiangella phaseoli DSM 45730T 

(98.54%), Salinispora pacifica DSM 45820T (98.5%), and Verrucosispora sonchi DSM 101530T 
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(98.2%). However, a neighbour-joining and maximum-likelihood phylogenetic tree, indicated 

that strain Llam7T formed a distinct phylogenetic line, next to Salinispora species, but not to J. 

endophytica DSM 45430T. This relationship was supported by a bootstrap value of 50% in both 

trees (Fig. 2). 

 

Fig. 2. Neighbour-joining tree of the Micromonosporaceae family based on 16S rRNA gene sequences showing the 
relationship of strain Llam7T to the type species of the genera of the family. Streptomyces albus subsp. albus DSM 
40313T was used as outgroup. Bootstrap values (expressed as percentages of 1,000 replications) are given at the 
branches. Bar indicates evolutionary distance of 0.01. 
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Proposal of Superstesspora gen. sp. nov.  

Within the family Micromonosporaceae, Llam7T can be clearly distinguished from all members 

by contains m-DAP and LL-DAP as diamino acids in the peptidoglycan. In addition, Llam7T 

differentiates from its closest Salinispora and Jishengella relatives by the presence of MK-9(H4.6) 

and its whole sugar content of glucose, mannose, xylose and ribose. Furthermore, Llam7T 

showed the presence of a number of unidentified polar lipids not reported in members of the 

genera Jishengella and Salinispora, i.e. 1 aminolipid (AL), 2 glycolipid (GL), 1 aminoglycolipid 

(GNL), 1 phosphoglycolipid (PGL) and 3 phospholipid (PL). Even though the fatty acid 

composition of Llam7T, J. endophytica, S. arenicola, S. pacifica and S. tropica is similar, specific 

for strain Llam7T is the higher content of C17:0anteiso and the presence of C16:iso G and 

C17:1anteiso A (Table 1). Morphologically, Llam7T can be distinguished by its cell diameter 

(0.2-0.3 µm) from Jishengella endophytica (0.6 µm). Physiological characteristics of Llam7T 

regarding the salinity requirements for growing make it different to Salinispora members, which 

require it for growth. 

According to the morphological, physiological (Table 1), phylogenetic (Fig. 2) and 

chemotaxonomic properties (Table 3), strain Llam7T can be distinguished from all other species 

of Micromonosporaceae and is considered as a new species and a new genus for which the name 

Superstesspora tarapacensis sp. nov. and gen. nov. is proposed. 
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Table 3. Morphological features and chemotaxonomic characteristics of strain Llam7T (Salarispora gen. nov) and 

validated genera of the Micromonosporaceae family. 

Genera: 1, Superstesspora (This study);2, Salinispora [22]; 3, Jishengella [23]; 4, Verrucosispora [24]; 5, 

Micromonospora; 6, Xiangella [25]; 7, Actinocatenispora [26]; 8, Actinoplanes [27]; 9, Actinorhabdospora [28]; 10, 

Allocatelliglobosispora [29]; 11, Asanoa [30]; 12, Catellatospora [31]; 13, Catelliglobosispora [31]; 14, 

Catenuloplanes [32]; 15, Couchioplanes [33]; 16, Dactylosporangium [34]; 17, Hamadaea [35]; 18, Krasilnikovia 

[36]; 19, Longispora [37]; 20, Luedemannella [38]; 21, Mangrovihabitans [39]; 22, Phytohabitans [40]; 23, 

Phytomonospora [41]; 24, Pilimelia [42]; 25, Planosporangium [43]; 26, Plantactinospora [44]; 27, 

Polymorphospora [45]; 28, Pseudosporangium [46]; 29, Rhizocola [47]; 30, Rugosimonospora [48]; 31, 

Spirilliplanes [49]; 32, Virgisporangium [50]. 

 

Genus Single 
spore 

Sporangia Spore 
motility 

Diamino 
acid(s) 

Whole-
cell 

sugars 

Fatty-
acid 
type 

Major 
MK(s) 

Phospho-

lipid type 

1 + ‒ ‒ m-DAP and 
LL-DAP 

Glu, 
Man, 
Xyl, 
Rib 

3a 9(H4,6) 
II 

2 + ‒ ‒ m-DAP 
Ara, 
Gal, 
Xyl 

3a 9(H4) 
II 

3 + ‒ ‒ m-DAP 

Xyl, 
Man, 
Ara, 
Rib, 
Glc 

3a 9(H4,6,8) 
II 

4 + ‒ ‒ m-DAP 
Man, 
Xyl, 
Rib 

2d 9(H4) 
II 
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5 + ‒ ‒ m-DAP Ara, 
Xyl 3b 10(H4,6), 

9(H4,6) 
II 

6 ‒ ‒ ‒ m-DAP 
Man, 
Glc, 
Gal 

3a 9(H4,6) 
III 

7 ‒ ‒ ‒ m-DAP 

Gal, 
Glc, 
Man, 
Ara, 
Xyl, 
Rib 

3b 9(H4,6) 
II 

8 ‒ + + m-DAP Ara, 
Xyl 2d 9(H4), 

10(H4) 
II 

9 ‒ ‒ ‒ m-DAP 

Gal, 
Glu, 
Man, 
Rib 

3b 10(H4,6) 
II 

10 ‒ ‒ ‒ 3-OH-DAP 

Glc, 
Rha, 
Rib, 
Xyl, 
Ara, 
Gal, 
Man 

3b 10(H4,6), 
9(H4) 

II 

11 ‒ ‒ ‒ m-DAP 

Ara, 
Rha, 
Rib, 
Xyl, 
Gal, 
Man, 
Glc 

2d 10(H6,8) 
II 
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12 ‒ ‒ ‒ m- and 3-OH-
DAP 

Ara, 
Xyl, 
Gal 

3b 9(H4,6), 
10(H4) 

II 

13 ‒ ‒ ‒ m-DAP 

Rha, 
Rib, 
Gal, 
Xyl, 
Man, 
Glc 

3b 10(H4) 
II 

14 ‒ ‒ + l-Lys Xyl 2c 9(H8), 
10(H8) 

III 

15 ‒ Pseudo-
sporangia + l-Lys 

Ara, 
Gal, 
Xyl 

2c 9(H4) 
II 

16 ‒ + + m-DAP Ara, 
Xyl 3b 9(H4,6,8) 

II 

17 ‒ ‒ ‒ m- and 3-OH-
DAP 

Xyl, 
Gal, 
Man, 
Rib, 
Ara, 
Rha 

3b 9(H6) 
II 

18 ‒ Pseudo-
sporangia ‒ m-DAP 

Gal, 
Glc, 
Man, 
Ara, 
Xyl, 
Rib 

2d 9(H6,4,8) 
II 
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19 ‒ ‒ ‒ m-DAP 
Ara, 
Gal, 
Xyl 

2d 10(H4,6) 
II 

20 ‒ + ‒ m-DAP 

Gal, 
Glc, 
Man, 
Rha, 
Rib, 
Xyl, 
Ara 

2d 9(H6,4) 
II 

21 + ‒ ‒ m-DAP 

Gal, 
Glc, 
Man, 
Ara, 
Xyl, 
Rib 

2d 9(H6,8) 
II 

22 ‒ ‒ ‒ m-DAP, l-Lys 

Gal, 
Glc, 
Man, 
Rib, 
Xyl 

2d 9(H6), 
10(H4,6) 

II 

23 + ‒ ‒ m-DAP 

Gal, 
Glc, 
Rib, 
Man 

2d 
8(H2), 
9(H2), 

10(H2,4,6) 

III 

24 ‒ + + m-DAP Ara, 
Xyl 2d 9(H2,4) 

II 

25 ‒ + + m-DAP Ara, 
Xyl 3b 9(H4), 

10(H4) 
II 
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26 + ‒ − m-DAP 

Ara, 
Xyl, 
Gal, 
Glc 

2d 10(H6,8,4) 
II 

27 ‒ ‒ ‒ m-DAP Xyl 2a 9(H4,6), 
10(H4,6) 

II 

28 ‒ Pseudo-
sporangia ‒ m- and 3-OH-

DAP 

Ara, 
Gal, 
Glc, 
Man, 
Xyl, 
Rib 

2d 9(H6) 
II 

29 ‒ ‒ ‒ 3,4-OH-DAP 

Gal, 
Xyl, 
Man, 
Rib 

2d 9(H4,6) 
II 

30 + ‒ ‒ 3-OH-DAP 
Ara, 
Gal, 
Xyl 

2c 9(H8,6) 
II 

31 ‒ ‒ + m-DAP 

Man, 
Glc, 
Xyl, 
Gal 

2d 10(H4) 
II 

32 ‒ + + 3-OH-DAP 

Gal, 
Glc, 
Man, 
Rha, 
Xyl 

2d 10(H4,6,8) 
II 
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Description of Superstesspora gen. nov. 

Superstesspora [Su.per´stes L. noun Superstes, survivor; spo´ra a seed, in bacteriology a spore; 

Su.per´stes.spo´ra N. L. fem. n. a spore-forming bacterium surviving harsh conditions].  

Bacteria of this genus are aerobic, Gram-positive, cells forming long filaments, and produce 

single non-motile spherical spores. The peptidoglycan contains meso-diaminopimelic acid and 

LL-2,6 diaminopimelic acid. Glucose, mannose, xylose, and ribose are major whole-cell sugars. 

The major menaquinones are MK-9(H4) and MK-9(H6). Polar lipids present are 

diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethonolamine as well as a number of 

unidentified Lipids (2 glycolipids, 3 phospholipids and 1 aminolipid, 1 aminoglycolipid, and 1 

phosphoglycolipid). The major fatty acids are C17:1 ω8c, C15:0 iso, C16:0 iso, and C17:0 

anteiso. The DNA G+C content is 71.0 mol%. The type species of the genus is Superstesspora 

tarapacensis. 

Description of Superstesspora tarapacensis sp. nov. 

Superstesspora tarapacensis [ta.ra.pa.cenˈsis. N.L. fem. adj. pertaining to Tarapacá, a region in 

Chile where Salar de Llamará is located]. 

Cells grown in liquid medium were long filaments from 10 to 30 µm in length and 0.2 to 0.3 µm 

in width. Single non-motile spherical spores with a diameter between 0.7 to 1.4 µm were formed. 

Growth optima are at 30 - 35 °C and at pH 7-8. Growth range is from 15 - 35 °C and from pH 6 - 

pH 12 and from 0 to 5% of NaCl and Tropic Marine Salt with growth optima at 1% and 1 to 

2.5% respectively. 

Cells grow aerobically, using starch and trehalose, and produce trypsin, n-acetyl-β-

glucosaminidase, α-mannosidase, alkaline phosphatase, esterase (C 4), esterase lipase (C 8), 

lipase (C 14), leucine arylamidase, valine arylamidase, acid phosphatase, naphthol-AS-Bl-

phosphohydrolase, gelatinase, and acetoin. The peptidoglycan contains meso-diaminopimelic 

acid and LL-2,6 diaminopimelic acid, while the whole-cell sugar present are glucose, mannose, 

xylose, and ribose. The polar lipids are phosphatidylglycerol, phosphatidylethonolamine, 

diphosphatidylglycerol and unidentified glycolipids (2), aminolipid (1), phospholipids (2), 
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aminoglycolipid (1), and phosphoglycolipid (1). The predominant menaquinone is MK-9(H4,6). 

Major cellular fatty acids are C17:1 w8c, C15:0 iso, C16:0 iso, and C17:0 anteiso respectively. 

The type strain Llam7T was isolated from the hypersaline Salar de Llamará, Chile. The G + C 

content of the DNA of the type strain is 71.0 mol%. 

Protologue 

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of the type 

strain Llam7T is MK088238. 
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Abstract 

A new Actinobacterium, strain DB165T, was isolated from cold waters of Llullaillaco Volcano 

Lake (6170 m asl) in Chile. Phylogenetic analysis based on 16S rRNA gene identifies strain 

DB165T as belonging to the genus Subtercola in the family Microbacteriaceae, sharing 97.4% of 

sequence similarity with Subtercola frigoramans DSM 13057T, 96.7% with Subtercola lobariae 

DSM 103962T, and 96.1% with Subtercola boreus DSM 13056T. The cells were observed to be 

Gram-positive, form rods with irregular morphology, and grow best at 10-15 °C, pH 7 and in the 

absence of NaCl. The cross-linkage between the amino acids in its peptidoglycan is type B2γ, 

2,4-diaminobutyric acid is the diagnostic diamino acid, the major respiratory quinones are MK-9 

and MK-10, the polar lipids consist of phosphatidylglycerol, diphosphatidylglycerol, 5 

glycolipids, 2 phospholipids, and 5 additional polar lipids. The fatty acid composition of DB165T 

(5%>) contains i-14:0, i-16:0, a-15:0, a-17:0, and the dimethylacetal i-16:0 DMA. The genomic 

DNA G+C content of the strain DB165T is 65 mol%. Based on the phylogenetic, phenotypic, and 

chemotaxonomic analyses presented in this study, the strain DB165T (= DSM 105013T = JCM 

32044T) represents a new species in the genus Subtercola, for which the name Subtercola vilae 

sp. nov. is proposed.  

Keywords: Cold environments; Llullaillaco volcano; Microbacteriaceae; New species; 

Subtercola vilae 
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Introduction 

Members of the family Microbacteriaceae are widely distributed in terrestrial and aquatic 

environments or associated with macroorganisms (Evtushenko 2012). Some representatives, 

including species of the genus Subtercola were found in cold environments such as glacial ice 

(Christner et al. 2007), boreal groundwater (Männistö et al. 2000), and Antarctic sediments (Li et 

al. 2010). At present the genus Subtercola comprised three validly described species, Subtercola 

boreus, Subtercola frigoramans, and Subtercola lobariae, the first two were isolated from 

Finnish groundwater (Männistö et al. 2000) and the third one from the lichen Lobaria retigera (Si 

et al. 2017). Based on the high similarity of 16S rRNA gene sequences (>96%) other isolates 

from cold habitats, such as Antarctic and Artic waters as well as glaciers were found to be 

affiliated with Subtercola (Singh et al. 2014; Zhang et al. 2013; Peeters et al. 2011).  

In this study, we characterise strain DB165T, isolated from a water sample of Llullaillaco 

Volcano Lake (6170 m) in Chile, one of the highest-elevation lakes on Earth. According to its 

distinct properties, strain DB165T is proposed as the type strain of the new species Subtercola 

vilae. 

Materials and methods 

Isolation and cell morphology 

Strain DB165T was obtained from a water sample collected at the Llullaillaco Volcano Lake 

(S24º 42.878’, W68º33.310’) on 18 January 2013, using R2A medium (DIFCO) supplemented 

with 18 g agar l-1. Pure cultures were obtained after three successive transfers of single colonies 

to R2A medium plates. Stock cultures were maintained in SGG medium containing 10 g starch, 

10 g glucose, 10 ml glycerol (99.7% v/v), 5 g soy peptone, 2.5 g corn steep solids, 2 g yeast 

extract, 3 g CaCO3, 1 g NaCl, and 18 g agar in 1 l deionised water (Goodfellow and Fiedler 

2010). DB165T was cryopreserved using CRYOBANK (Mast Diagnostica GmbH, Germany) for 

long term storage at -80 ºC. 

Gram-staining was prepared using the Color Gram 2 kit (BioMérieux, France), following the 

manufacturer’s protocol. Endospore staining was performed using the green malaquite method 

and light microscopy (Schaeffer and Fulton, 1933). Cell morphology, shape and size were 
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determined using scanning electron microscopy (SEM) according to Gärtner et al. (2008), after 

cultivation of trypticase soy medium (Trypticase Soy Broth (Becton, Dickinson and company, 

France) supplemented with 18 g agar l-1. 

Physiological characteristics 

Enzyme activities and utilisation of carbon sources for strain DB165T, S. boreus DSM 13057T, 

and S. frigoramans DSM 13057T were examined using API ZYM, API 20E, and API 50CH 

(BioMérieux, France), following manufacturer’s recommendations. The effect of sodium chloride 

(0, 0.1, 0.3, 0.6, 0.9, 1, 2.5, 5, 7.5, and 10% w/v) and pH (2, 3, 4, 5, 6, 7, 8, 9, and 10) on the 

growth was tested according to Kutzner (1981), using the ISP2 medium containing 4 g yeast 

extract, 10 g malt extract, 4 g dextrose, and 18 g agar in 1 L of distilled water. The optimal range 

of temperature was tested at 5 °C, 10 °C, 15 °C, 20 °C, 28 °C, and 30 °C using SGG medium.  

Chemotaxonomic analyses 

Polar lipids were extracted according to a modified protocol of Bligh and Dyer (1959), and the 

total lipid material was detected using molybdatophosphoric acid and specific functional groups 

were detected using spray reagents specific for defined functional groups (Tindal et al. 2007). 

The lipoquinones were extracted and identified using the two-stage method described by Tindall 

(1990a, b). After cultivation at 25 °C, fatty acid methyl esters were obtained by saponification, 

methylation and extraction using minor modifications of the method of Miller (1982) and 

Kuykendall et al. (1988) The fatty acid methyl esters mixtures were separated using Sherlock 

Microbial Identification System (MIS) (MIDI, Microbial ID, Newark, DE 19711 U.S.A.)  

The peptidoglycan was obtained from 4 g wet weight pellet according to the method of Schleifer 

(1985). The peptidoglycan analyses were performed according to Schumann (2011). 

Analyses of polar lipids, respiratory quinones, whole-cell fatty acids, and peptidoglycan analyses 

were carried out by the Identification Service of the DSMZ – Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany). 

DNA base composition 

DNA was extracted using DNeasy Blood & Tissue kit (QIAGEN). The G+C content was 

calculated from the genome sequence, which was determined with Nextseq 500 (Illumina). The 
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quality of the sequences was checked and filtrated using Trimmomatic (adapters, >Q30,>1000 

bp) (Bolger et al. 2014). The genome was assembled using SPAdes (Kmer=121) (Bankevich et 

al. 2012). 

Phylogenetic analyses 

DNA was extracted using DNeasy Blood & Tissue kit (QIAGEN) with modifications. The 16S 

rRNA gene sequence was amplified by PCR using PureTaq Ready-To-Go PCR beads (GE 

Healthcare) and sequencing according to Gärtner et al. (2008). 

The 16S rRNA gene sequence of strain DB165T was aligned with sequences of 22 selected type 

strains of the family Microbacteriaceae, including species of Subtercola, Frondihabitans, and 

Agreia, and in addition Cellulomonas carbonis KCTC 19824T as outgroup using SINA (Pruesse 

et al. 2012). Phylogenetic trees were constructed using the neighbour-joining (Saitou and Nei 

1987) and maximum-likelihood algorithms using MEGA version 6.0 (Tamura et al. 2013). The 

tree topologies were evaluated with bootstrap analyses based on 1000 replicates. 

Results 

Morphological and physiological characteristics 

Colonies of strain DB165T are sticky, golden yellow after growth at the optimal growth 

temperature of 10 °C to 15 ºC for 6-7 days (also after 7-10 days at 28 ºC), but are pale yellow 

after growth at 5 ºC for 2-3 weeks. Optimum growth is at 10-15 °C (range from 5-28 °C). No 

growth occurs at 30 °C.  Strain DB165T tolerates only low concentrations (up to 0.9%) of NaCl 

and grows best in the absence of NaCl. The pH-range is from 5 to 8 with an optimum at pH 7. 

Cells show no motility and form no spores, they are irregular short rods of 0.5 µm width and 1.0-

1.2 µm length, Gram-positive and have an irregular shape as seen under SEM. Some of the cells 

are thicker at the ends. Occasionally, coccoid cells were observed (Fig. 1). Variable cell shapes 

were also reported for S. boreus and S. frigoramans (Männistö et al. 2000).  
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Figure 1. Scanning electron micrograph of Subtercola vilae DB165T grown on trypticase soy medium for 7 d at 28 

ºC. Scale bar indicates 2 µm. 

The metabolic properties of strain DB165T, in comparison with the type strains of S. boreus and 

S. frigoramans are shown in Table 1. Strain DB165T metabolised inositol, D-sorbitol, D-sucrose, 

D-melibiose, glycerol, L-arabinose, D-xylose, methyl-βD-xylopyranoside, D-galactose, D-glucose, 

D-fructose, D-mannose, L-rhamnose, D-mannitol, amygdalin, arbutin, esculin, salicin, D-cellobiose, 

D-maltose, D-trehalose, D-melezitose, gentiobiose, and D-turanose.  
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Table 1. Physiological characteristics of Subtercola vilae DB165T compared to the type strains of Subtercola 
frigoramans and Subtercola boreus. In the present study, all Subtercola strains showed positive activity in the test for 
esterase lipase (C8), leucine arylamidase, acid phosphatase, Naphthol-AS-Bl-phosphohydrolase, α-glucosidase, β-
glucosidase, β-galactosidase (weak in API ZYM test), D-glucose, D-mannitol, inositol, D-sorbitol, L-rhamnose, D-
sucrose, D-melibiose, amygdalin, L-arabinose, glycerol, D-xylose, D-galactose, D-fructose, esculin, D-cellobiose, D-
maltose, D-trehalose, and D-turanose.; and negative activity for lipase (C14), α-chymotrypsin, α-fucosidase, lysine 
decarboxylase, ornithine decarboxylase, sulfide production, urease, gelatinase, erythritol, L-xylose, L-sorbose, 
dulcitol, methyl-αD-mannopyranoside, methyl-αD-glucopyranoside, n-acetylglucosamine, inulin, D-raffinose, starch, 
glycogen, xylitol, D-lyxose, D-tagatose, D-fucose, D-arabitol, L-arabitol, potassium gluconate, potassium 2-
ketogluconate, and potassium 5-ketogluconate. 

 S. vilae 

DB165T 

S. frigoramans 

DSM 13057T 

S. boreus DSM 

13056T 

APIZYM    

Alkaline phosphatase - (+) + 

Esterase (C 4) + (+) + 

Valine arylamidase (+) (+) + 

Cysteine arylamidase (+) - + 

Trypsin (+) - - 

α-galactosidase (+) - - 

β-glucoronidase - - + 

n-acetyl-β-glucosaminidase - (+) - 

α-mannosidase - (+) (+) 

     

API20E    

Arginine dihydrolase - (+) - 

Citrate as unique carbon source - (+) (+) 

Tryptophane deaminase + - - 

Tryptophanase + - - 

Voges-Proskauer test 

         

+ - - 
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API 50CH    

D-arabinose - - + 

D-ribose - - + 

methyl-βD-xylopyranoside + - - 

D-mannose + - + 

arbutin + - - 

salicin + - - 

D-lactose (bovine origin) - - + 

D-melezitose + - - 

gentiobiose + - - 

+, positive activity; (+), weak activity; -, no activity. 

 

Chemotaxonomic characteristics 

The polar lipids of the strain DB165T consisted of phosphatidylglycerol, diphosphatidylglycerol, 

5 unidentified glycolipids, 2 unidentified phospholipids, and unidentified 5 lipids. The diamino 

acid in the peptidoglycan was identified as DAB (2,4-diaminobutyric acid). The molar ratio of 

alanine:glycine:glutamic acid:DAB was 1.1:1.0:0.04:1.7. Instead of glutamic acid high amounts 

of 3-hydroxyl-glutamic acid were found. Assuming that much of the glutamic acid is replaced by 

3-hydroxyl-glutamic acid and despite of this replacement, the amino acid composition is 

consistent with peptidoglycan type B2γ. The major isoprenoid quinones of strain DB165T were 

MK-9 (47%) and MK-10 (39%). Minor amounts of MK-11 (6%) and MK-8 (4%) were also 

present. The G+C content of the genomic DNA of the strain DB165T was 65.0 mol%. 

Major fatty acids of the strain DB165T were iso- and anteiso-saturated C-15 and C16 fatty acids 

with a-15:0 (50%), i-16:0 (17 %), and i-16:0 DMA (17%) as major components (Table 2). 
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Table 2. Fatty acid profiles of Subtercola vilae DB165T, Subtercola frigoramans DSM 13057T, Subtercola boreus 
DSM 13056T, and Subtercola lobariae DSM 103962T. Percent of total peak area of ion chromatograms is indicated. 
* 

  

S. vilae S. frigoramans  S. boreus  S. lobariae 

DB165T DSM 13057T DSM 13056T DSM 103962T 

14:00 tr - - - 

14:0 2-OH - - - 10.3 

16:00 tr - - tr 

i-14:0 5.5 6.7 tr 2.3 

i-15:0 tr tr 4.3 1.4 

i-16:0 17.2 10.2 4.2 6.7 

i-17:0 - - - - 

a-15:0 50.0 46.1 51.6 68.8 

a-17:0 6.7 6.8 3.5 4.2 

a-15:1 - - tr - 

16:0 DMA tr - tr - 

i-15:0 

 

tr - 1.7 1.5 

i-16:0 

 

17.0 13.3 11.9 6.9 

a-15:0 

 

3.2 10.3 11.0 9.7 

a-17:0 

 

1.9 2.9 4.0 2.6 

References This study Männistö et al. 

 

Männistö et al. 

 

Si et al. 2017 

tr, traces (< 1%); -, not detected; a-, anteiso-branched fatty acid; i-, iso-branched fatty acid; DMA, 1,2 dimethyl 

acetals. 

*Cells for fatty acid and dimethyl acetals were grown at 25 °C, except for S. lobariae where DMAs were obtained 

from cells cultivated at 20 °C. 
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16S rRNA gene sequence analyses  

The 16S rRNA gene sequence (1432 bp) of the strain DB165T (deposited under the accession 

number MF276890) matches to different Subtercola species in a range of 96.1% to 97.4% of 

similarity, S. frigoramans DSM 13057T (97.4% similarity), S. lobariae DSM 103962T (96.7% 

similarity), and S. boreus DSM 13056T (96.1% similarity). However, it also showed high 

similarity to to Frondihabitans species, Frondihabitans peucedani DSM 22180T (96.8% 

similarity) and Frondihabitans australicus DSM 17894T (96.6% similarity) The phylogenetic 

analysis (Fig. 2) based on the consensus 16S rRNA gene sequences (1416 bp) showed that strain 

DB165T forms a cluster with Subtercola species and Agreia with a strong bootstrap support, 

while Frondihabitans species cluster together, but the separation with the Subtercola/Agreia 

cluster is not well supported by bootstraps. In the Subtercola clade, strain DB165T is found in a 

distinct cluster with S. frigoramans DSM 13057T with strong bootstrap support. 
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Figure 2. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequence comparison of strain DB165T 
and species of the family Microbacteriaceae with Cellulomonas carbonis KCTC 19824T as outgroup. Numbers at the 
nodes represent bootstrap support (%) based on the analysis of 1000 bootstrap replications, asterisks indicate 
branches of the tree that were also recovered using neighbour-joining algorithm. Only bootstrap values ≥ 50% are 
indicated. Genbank accession numbers are given in parentheses. Bar indicates 0.01 substitutions per site. 

 

Discussion 

Subtercola species are characterised by a peptidoglycan type B2γ with DAB as diamino acid, 

MK-9 and MK-10 as major respiratory quinones, and a similar polar lipids profile (Table 3). 

Their relative content of fatty acids is quite similar, whereby the compositions of S. vilae is most 

similar to that of S. frigoramans (Table 2). 

Subtercola vilae strain DB165T has a peptidoglycan type B2γ in which the glutamic acid is 

almost completely replaced by 3-hydroxyl-glutamic acid, as is found in all other Subtercola 

species (Männistö et al., 2000, Si et al., 2017). The metabolic characteristics that differentiate 

strain DB165T from S. boreus and S. frigoramans are utilisation of methyl-βD-xylopyranoside, 
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arbutin salicin, D-melezitose and gentobiose as carbon sources and the enzymatic activities of 

trypsin, α-galactosidase, tryptophanase deaminase, and tryptophanase as well as the production of 

acetoin. In contrast to DB165T, S. frigoramans exhibited as unique features arginine dihydrolase 

and n-acetyl-β-glucosaminidase. S. frigoramans and S. boreus can use citrate as unique carbon 

source and showed the enzymatic activities of alkaline phosphatase and α-mannosidase. S. boreus 

showed β-glucoronidase enzymatic activity and can use D-arabinose, D-ribose, and D-lactose, 

carbon sources that strain DB165T and S. frigoramans cannot use. The fatty acid profile of strain 

DB165T is similar to the type strains of other Subtercola species. Major differences are in the 

content of i-16:0, with 17% in strain DB165T compared to 4.2-10.2% in the other Subtercola 

species and a low content of 3% a-15:0 DMA compared to 9.7-11.0% in the other Subtercola 

species (Table 2).  

The phylogenetic analysis of the 16S rDNA gene sequences clearly shows the close relationship 

of strain DB165T to Subtercola species rather than to Agreia and Frondihabitans species. The 

genus Agreia forms a sub-cluster within S. boreus and different chemotaxonomic traits have been 

proposed to distinguish the two genera (Schumann et al. 2003). Though both genera have a cross-

linkage between the amino acids in the peptidoglycan of type B2γ, in the case of Subtercola 

species, the cross-linkages have DAB, while Agreia species have L-DAB connected to D-Orn. 

Frondihabitans species can be clearly by the peptidoglycan, which is of the B2β type (Zhang et 

al., 2007). Fatty acids play an important role in the differentiation of the genera. While the 

presence 1,2 dimethyl acetals i-16:0 DMA and a-17:0 DMA is observed in all Subtercola species, 

while Agreia only contains i-15:0 DMA in low proportions (>4.2%) (Schumann et al. 2003; 

Behrendt et al. 2002). Frondihabitans species have a fatty acid profile totally different from 

Subtercola and Agreia species, having 18:1 and 14:0 2-OH as major fatty acids but lacking1,2 

dimethyl acetals. The major menaquinones of Subtercola species, including the strain DB165T, 

comprise MK-9 and MK-10, while in A. bicolorata DSM 14575T MK-10 and in A. pratensis 

DSM 4246T MK-10 and MK-11 are dominant, and in Frondihabitans MK-8 and MK-7. The 

presence of MK-9 as major component can be used as a marker to differentiate these three genera 

(Table 2). It should be mentioned that A. pratensis which was originally classified as S. pratensis 

contains as major menaquinones MK-10 (51%) and MK-11 (21%), but in addition 13% of MK-9 

(Behrendt et al., 2002, Evtushenko et al., 2001). Irrespective of the problematic taxonomic 

position of Agreia species and the similarity of 16S rRNA gene sequences with Frondihabitans, 
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the phylogenetic relationship (Fig. 2) and chemotaxonomic criteria clearly support the 

classification of strain DB165T as species of the genus Subtercola (Table 3). Based on the 

phenotypic and genetic analyses presented in this work, strain DB165T is considered to represent 

a new species of the genus Subtercola, for which the name Subtercola vilae sp. nov. is proposed. 
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Table 3. Diagnostic key characteristics of the genera Subtercola, Agreia, and Frondihabitans in comparison to 
Subtercola vilae DB165T 

  
Subtercola vilae 

Subtercolaa Agreiab Frondihabitansc 

DB165T 

Peptidoglycan 

type 
B2γ B2γ B2γ B2β 

Cell wall 

diamino acid 
DAB DAB 

L-DAB D-Orn 

D-Orn  

Respiratory 

quinones 
MK-9, MK-10 MK-9, MK-10 

MK-10 

MK-11 
MK-7, MK-8, MK-9 

Polar lipids 
PG, DPG, GL, 

PL, L 
PG, DPG, GL, PL PG, DPG 

PG, DPG,  

GL, AL, PL 

Major Cellular 

Fatty acids 

(>10%) 

a-15:0, i-16:0 a-15:0, i-16:0 
a-15:0, i:16:0,  

a-17:0 

18:1, 14:0 2-OH, a-

15:0 

Major 1,1-

dimethyl 

acetals (>5%) 

 i-16:0 DMA 
 i-16:0 DMA,  

a-15:0 DMA 
ND ND 

G+C content 

[mol %] 
65 64-68 65-67 65-71 

Isolation 

source 

Volcano lake at 

6170 m asl 

Boreal 

groundwater, lichen 

Leaf gall, 

phyllosphere of 

grasses 

Associated to plants 

and lichen 

References This work 
Männistö et al. 

2000, Si et al. 2017 

Evtushenko et al 

2001, Behrendt et al. 

2002 

Kim et al. 2014 

PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; GL, glycolipids; PL, phospholipids; AL, aminolipid; L, 
lipids; ND, not detected. 
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Description of Subtercola vilae sp. nov. 

Subtercola vilae (vi’lae, of Vila, named in honour to Irma Vila, a Chilean limnologist with 

outstanding contributions to the microbiology and ecology of lakes in the Chilean Altiplano and 

Atacama Desert). 

Cells are short, irregular rods 0.5 µm wide and 1.0-1.2 µm long. Colonies are golden yellow, 

circular convex. Growth occurrs chemoheterotrophically under oxic conditions. Optimum growth 

is at 10-15 °C (range from 5-28 °C), at pH 7 (range from pH 5-8) and in the absence of NaCl. 

Cells produce esterase C4, esterase lipase C8, leucine arylamidase, acid phosphatase, naphthol-

AS-BI-phosphohydrolase, α- and β-glucosidase, tryptophane deaminase, and tryptophanase and 

acetoin. Weak activity is observed for valine arylamidase, cysteine arylamidase, trypsin, and α- 

and β-galactosidase. Carbon sources used under oxic conditions are, inositol, D-sorbitol, D-

sucrose, D-melibiose, glycerol, L-arabinose, D-xylose, methyl-βD-xylopyranoside, D-galactose, D-

glucose, D-fructose, D-mannose, L-rhamnose, D-mannitol, amygdalin, arbutin, esculin, salicin, D-

cellobiose, D-maltose, D-sucrose, D-trehalose, D-melezitose, gentiobiose, and D-turanose. The cell-

wall peptidoglycan is a B2γ type with DAB as the diagnostic amino acid and 3-hydroxyl-

glutamic acid instead of glutamic acid. 

Major menaquinones are MK-9 and MK-10. Polar lipids comprise phosphatidylglycerol, 

diphosphatidylglycerol, 5 unidentified glycolipids, 2 unidentified phospholipids, and 5 

unidentified lipids. The major cellular fatty acids are a-15:0, i-16:0, a-17:0, and i-14:0, while 14:0 

and 16:0 are found only in traces. Major dimethylacetals are i-16:0 DMA, a-15:0 DMA and a-

17:0 DMA, while 16:0 DMA and i-15:0 DMA are present in trace amounts. The G+C content of 

the DNA of the type strain is 65.0 mol%. 

The type strain DB165T (= DSM 105013T = JCM 32044T) was isolated from Llullaillaco Volcano 

Lake in Chile.  
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Abstract 

Subtercola vilae DB165T was isolated from Llullaillaco Volcano Lake in Chile (6170 m above 

sea level), which is characterised as an oligotrophic cold environment and covered by an ice 

layer. In order to gain insight into its ability to adapt to life in this extreme environment, we 

analysed the genome with a particular focus on properties related to possible adaptation to cold 

environments. General properties of the genome are presented, including carbon and energy 

metabolism as well as secondary metabolite production. The genome properties of Subtercola 

vilae DB165T and the related species Subtercola boreus DSM 13056T, Agreia bicolorata DSM 

14575T, and Agreia pratensis DSM 14246T are compared. The repertoire of genes in the genome 

of S. vilae DB165T that are linked to adaptation to the harsh conditions found in Llullaillaco 

Volcano Lake include several mechanisms to transcribe proteins at low temperatures, such as a 

high number of tRNAs and cold shock proteins. In addition, S. vilae DB165T is capable of 

producing a number of proteins to cope with oxidative stress, which is of particular relevance in 

low temperature environments in which reactive oxygen species are more abundant. Furthermore, 

it gains the capacity to produce cryo-protectants and to control membrane fluidity at low 

temperatures. To combat against ice crystal formation, two new ice-binding proteins were 

identified which are unique to S. vilae DB165T. These results indicate that Subtercola vilae can 

employ different strategies to survive the extreme and cold conditions prevalent in Llullaillaco 

Volcano Lake. 

Keywords: Cold adaptation; Subtercola vilae; genome analysis; systematic affiliation; 

Llullaillaco Volcano 
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Introduction 

The genus Subtercola was initially described with two species isolated from boreal water in 

Finland, Subtercola frigoramans and Subtercola boreus [1]. Now two more species have been 

described: Subtercola lobariae, which was isolated from the lichen Lobaria retigera in China [2], 

and Subtercola vilae, isolated from Llullaillaco volcano in Chile [3]. 16S rRNA gene sequences 

of different isolates assigned to Subtercola genus have been found only in cold environments 

such as glaciers, cryoconite holes, permafrost soil, digestive tracts of Antarctic krill, cloudy water 

samples [4], Arctic lichens, and Antarctic soils [5] (Figure 1), suggesting that these species are 

well adapted to cold environments.  

Subtercola vilae DB165T was isolated from Llullaillaco Volcano Lake at 6170 m above sea level 

(Llullaillaco volcano, Chile) [3]. The environment has been characterised as a cold oligotrophic 

environment. During different expeditions in summer time, the lake was covered by an ice layer, 

with the temperature of lower water masses was at 3-4 °C (6.8 m depth). The temperature at the 

soil surface on a summer day may vary from -10 °C to > 50 °C due to the high radiation present 

[6,7]. A recent study demonstrated that the microbial communities of Llullaillaco soils are 

dominated by Actinobacteria, with more than 90% represented by members of the genus 

Pseudonocardia [7]. Bacteria affiliated with the class Actinobacteria are not only abundant in 

Llullaillaco soils, but also along the Andean mountains [7,8]. 
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Figure 1. Phylogenetic tree based on the 16S rRNA gene sequences highlighting the position of Subtercola vilae 
DB165T and other sequences annotated as Subtercola strains deposited in NCBI, relative to phylogenetically closely 
related type strain within the family Microbacteriaceae. The sequences were aligned on the SINA online service. 

 

Taking into consideration the environmental distribution of the genus Subtercola in cold 

environments, along with the relevance of Actinobacteria in Llullaillaco volcano, the genome of 

Subtercola vilae DB165T was sequenced as the first genome of a Subtercola species and from a 

cultured species of Actinobacteria obtained from Llullaillaco volcano. 

In order to gain insight into its ability to live in this extreme environment, we here present a 

classification alongside chemotaxonomic characteristics of Subtercola vilae DB165T, in addition 

to the genome sequence, assembly, annotation, and in particular properties related to the possible 

adaptations to cold environments. 
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Materials and methods  

S. vilae DB165T (DSM 105013T = JCM 32044T) cells were grown in SGG medium containing 10 

g starch, 10 g glucose x H2O, 10 ml glycerol (99.7% v/v), 5 g soy peptone, 2.5 g corn steep 

solids, 2 g yeast extract, 3 g CaCO3, 1 g NaCl, and 18 g agar in 1 L deionised water [9] for 5 

days at 23 °C. DNA was extracted using DNeasy®Blood&Tissue Kit (Qiagen). The quality and 

quantity of the extracted DNA was evaluated by 0.8 % (w/v) agarose gel electrophoresis. The 

genomic DNA library was generated using Nextera XT (Illumina Inc.) according to the 

manufacturer’s instructions. After fragmentation, size-selection was performed using NucleoMag 

NGS Clean-up and Size Select (Macherey-Nagel) to obtain a library with median insert-size 

around 400 bp. After PCR enrichment, the library was validated with a high-sensitivity DNA 

chip and Bioanalyzer 2100 (both Agilent Technologies, Inc.) and additionally quantified using 

the Qubit dsDNA HS assay (Life Technologies). Four sequencing runs were performed on a 

NextSeq device using v2 2 × 150 bp chemistry, and the genome was multiplexed together with 

thirteen other bacterial genomes from other sources. In total, 1,304,036,262 bp raw paired-end 

sequences were subjected to the Trimmomatic software for adapter and quality trimming (mean 

Phred quality score ≥ 30) [10] filtering of sequences containing ambiguous bases and a minimum 

length of 200 bp. The remaining 1,206,508,976 bp were assembled with SPAdes assembler using 

enabled error pre-correction and k-mer sizes ranging from 15 to 127 (step size of 10) [11]. The 

assemblies obtained were analysed using QUAST [12], whereas 127-kmers showed the bests 

quality. 

Open reading frames were identified using Prodigal in Prokka and barrnap for rRNA genes [13] 

An additional gene prediction and functional annotation was performed with the Rapid 

Annotation using Subsystem Technology webserver [14,15], and for natural product biosynthetic 

gene clusters antiSMASH 3.0 was used [16]. The genome completeness was analysed with 

CheckM [17]. A maximum likelihood phylogenetic tree was calculated using 107 essential 

single-copy genes on bcgTree [18] with 1000 bootstrap. For the genome comparison between 

Subtercola vilae DB165T, Subtercola boreus DSM 13056T (NZ_NBWZ01000001.1), Agreia 

bicolorata DSM 14575T [19], and Agreia pratensis DSM 14246T [20], the genomes of Agreia 

type strains were obtained from Genbank and annotated using the same Prokka pipeline used for 

S. vilae DB165T. Comparison analysed were performed in Anvi’o 5 [21] using Prokka 
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annotation, Clusters of Orthologous Groups (COGs) functional annotation, Average Nucleotide 

Identity (ANI) by PyANI [22], and Anvi’o pangenome pipeline using DIAMOND [23]. 

Putative ice-binding motif in S. vilae DB165T open reading frames were identified using blastp 

against an in-house Actinobacteria anti-freeze protein database, which comprise amino acid 

sequences of Anti-freeze protein obtained from UniProt [24]. The hits were further analysed by 

protein homology modeling using Phyre2 server [25] and corroborated according the position of 

functional threonine residues on the surface of the proteins using Visual Molecular Dynamic 

(VMD 1.9.3) software [26]. 

The sequencing project was completed in January 2017 and sequence data were deposited as a 

Whole Genome Shotgun (WGS) project in Genbank under the Bioproject PRJNA491396 and the 

accession number QYRT00000000 consisting of 103 contigs ≥1000 bp. The version described on 

this paper is QYRT00000000. The annotated genome is available in RAST under the ID number 

2056433.4.  
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Results 

Genome properties 

The draft genome sequence of S. vilae DB165T was assembled into 103 contigs (≥ 1000 bp) 

containing a total of 4,043,135 bp with an average G+C content of 65.1% (Table 1). From a total 

of 3879 predicted genes, 3797 (97.8 %) codify for proteins and 2434 (62.7%) were annotated 

with a putative function. Genes not linked to a function were annotated as hypothetical or 

unknown function. We annotated a total of eighty-two rRNA genes (2.11%) divided into five 

rRNA genes (three 5S rRNA, one 16S rRNA, and one 23S rRNA) and fifty-nine tRNA genes. 

Furthermore, a total of 1416 (36.5%) of the coding sequences were assigned using COGs to 

twenty-four different classes. Distribution of these genes and their percentage representation are 

listed in Table 2. Annotation obtained via RAST assigned a total 2089 sequences to twenty-seven 

subsystem categories. The highest ranking among the subsystem categories are those concerned 

with metabolism of carbohydrates (20.1 %), amino acids and derivatives (15.4 %), cofactors, 

vitamins, prosthetic groups, pigments (10.7 %), proteins (9.5 %), as well as fatty acids, lipids, and 

isoprenoids (5.1 %) (Figure 2). Completeness of the genome was calculated by CheckM, using 

the lineage marker set for Actinomycetales (UID1593), from which 99.5% of the proteins were 

present in S. vilae DB165T draft genome. 
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Table 1. Genome statistics according to Prokka annotation 

 

Attribute Value % of total 

Genomes Size (bp) 4043135 100 

Contigs 103  

DNA G+C content 65.1  

Total of genes 3879 100 

Coding sequences 3797 97.8 

Genes with function prediction 2434 62.7 

Genes assigned to COGs 1416 36.5 

RNA genes 82 2.11 

rRNA genes 5 0.1 

Pseudo genes 0 0 

5S rRNA 3 0.07 

16S rRNA 1 0.02 

23S rRNA 1 0.02 

tRNA 59 1.5 

Other RNA 18 0.46 
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Table 2. Number of protein coding genes of S. vilae DB165T associated with the general COG functional categories 

 
Code Value %age Description 
J 163 5.92 Translation, ribosomal structure and biogenesis 
A 1 0.04 RNA processing and modification 
K 263 9.55 Transcription 
L 115 4.18 Replication, recombination and repair 
B 0 0 Chromatin structure and dynamics 
D 31 1.13 Cell cycle control, Cell division, chromosome partitioning 
V 60 2.18 Defence mechanisms 
T 94 3.41 Signal transduction mechanisms 
M 125 4.54 Cell wall/membrane biogenesis 
N 12 0.44 Cell motility 
U 17 0.65 Intracellular trafficking and secretion 
O 95 3.45 Posttranslational modification, protein turnover, chaperones 
C 152 5.52 Energy production and conversion 
G 342 12.42 Carbohydrate transport and metabolism 
E 242 8.79 Amino acid transport and metabolism 
F 91 3.3 Nucleotide transport and metabolism 
H 182 6.61 Coenzyme transport and metabolism 
I 118 4.28 Lipid transport and metabolism 
P 165 5.99 Inorganic ion transport and metabolism 
Q 66 2.4 Secondary metabolites biosynthesis, transport and catabolism 
R 295 10.71 General function prediction only 
S 99 3.59 Function unknown 
- 1467 37.52 Not in COGs 
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Figure 2. Metabolic subsystems of Subtercola vilae DB165T annotated through the RAST webserver. 

 

Carbon and energy metabolism 

The genome of S. vilae DB165T reveals its potential to metabolise a wide range of sugars, 

ranging from monosaccharides such as mannose, D-ribose, xylose, D-gluconate ketogluconates, 

L-arabinose, D-galacturonate, and D-glucoronate; di- and oligosaccharides such as trehalose, 

sucrose, fructooligosaccharides (FOS), raffinose, maltose, maltodextrin, lactose, and galactose; 

the polysaccharides glycogen; sugar alcohols such as glycerol, glycerol-3-phosphate, mannitol, 

and inositol. S. vilae DB165T has the potential to utilise the amino sugar chitin and its monomers 

to convert them to fructose-6-phospate for the glycolysis pathway. 
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S. vilae DB165T has encoded in its genome the enzymes 3-hydroxybutyryl-CoA dehydrogenase 

(hbd), 3-hydroxybutyryl-CoA epimerase (hbe), 3-ketoacyl-CoA thiolase (atoB), and enoyl-CoA 

hydratase (eh). These are needed for the production of poly-hydroxy-butyrates (PHB), which 

serve as an intracellular carbon and energy reserve [27], helpful against desiccation and osmotic 

stress, and increases UV resistance [28]. The genome of S. vilae DB165T also codifies for 

polyphosphate (PolyP) formation (exopolyphosphatase, polyphosphate kinase and polyphosphate 

glucokinase) molecules that serve in phosphate storage and protect against desiccation, UV 

radiation and temperature stress [29]. 

Three different rhodopsin genes are encoded in S. vilae DB165T. Two of them 

(fig|2056433.4.peg.750; fig|2056433.4.peg.1678) showed high identity with genes annotated as 

rhodopsin in Subtercola boreus (WP_116415267.1; WP_116281575.1), while the third one 

resembles a xanthorhodopsin [30] from Clavibacter michiganensis (WP_079533889.1). The 

presence of rhodopsin in S. vilae DB165T suggests that it might be able to transform energy from 

sunlight [31]. 

Secondary metabolite production 

The antiSMASH analysis revealed the presence of three different secondary metabolite gene 

clusters for the biosynthesis of a type 3 polyketide, a terpene, and a cluster that contained core 

biosynthetic genes for the non-ribosomal peptide synthesis pathway but was not categorised in 

this compound family. 

The detected polyketide type 3 synthetase cluster has a total of 36 genes, where 3 genes showed 

high identity and were in the same order as the alkylresorcinol synthetic cluster of Agreia species, 

while other annotated genes affiliated with aminotransferase class V amidase, short chain 

dehydroganases/reductase, aldo/ketoreductase family oxidoreductase, pullulanase type I, and 

alpha-glucosidase, suggesting modifications in the alkylresorcinol scaffold. The genes found in 

this cluster showed a 63% resemblance to a polyketide type-3 cluster found in Agreia sp. Leaf335 

and 55% of genes showed similarity with A. bicolorata VKM Ac-1804T. Alkylresorcinol 

compounds can be easily incorporated into cell membranes, causing considerable changes to their 

structure and properties [32]. Some also show antibiotic activity [33].  

The terpene biosynthetic cluster consists of twenty-four genes with high homology to carotenoid 

biosynthetic clusters. Genes annotated as core biosynthetic genes had high identity with phytoene 
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synthase, lycopene beta elongase BC, while additional biosynthetic genes include polyprenyl 

synthetase, dehydrogenase, and a short-chain dehydrogenase/reductase. The carotenoids in S. 

vilae DB165T might play an important role as membrane modulators at low temperatures [34], 

and also as antioxidants [35].  

The third uncategorised gene cluster has a total of thirteen genes, in which the core biosynthetic 

genes are an amino acid adenylation protein similar to the one found in the saframycin A 

biosynthetic gene cluster, and a zinc metalloprotease. An additional biosynthetic gene 4-

aminobutyrate aminotransferase that show identity with the present in saframycin A biosynthetic 

gene cluster. The gene structure of the cluster seems to be conserved in Microbacteriaceae 

species of the genera Agreia, Clavibacter, and Cellulomonas. 

Cold stress adaptation of Subtercola vilae DB165T 

In order to identify adaptation to the harsh conditions of Llullaillaco volcano environment, 

annotated genes sorted in the subsystem categories of RAST and an ice-binding motif in-house 

database were used. 

Comparative analysis of tRNA species, predicted using barrnap, revealed that Subtercola strains 

isolated from cold waters show a higher number of tRNA genes: S. vilae DB165T encodes fifty-

nine and S. boreus DSM 13056T fifty-three, in contrast to Agreia species found in nematodes and 

plants (fifty-one in A. bicolorata DSM 14575T and fifty in A. pratensis DSM 14246T). A higher 

number and diversity of tRNAs might help to counteract their slow mobilisation to the translation 

sites [36,37]. 

Membrane fluidity  

An important challenge to life at cold temperatures is the ability to maintain the cell membrane in 

a liquid-crystalline state. One of the strategies suitable for this purpose involves the production of 

unsaturated fatty acids. The S. vilae DB165T genome encodes thirty-two proteins involved in the 

production of fatty acids. We found a total of fourteen copies of FabG gene that codify for 3-

oxoacyl-[acyl-carrier-protein] reductase, the enzyme that catalyses the onset of reduction and 

condensation of fatty acids, as well as the synthesis of branched fatty acids [38,39]. The coding 

sequence of 3-oxoacyl-acyl-carrier-protein synthase II (FabF/KAS-II) is involved in the 

elongation of fatty acids and has been reported in the productions of antesio-15:0 in Listeria 
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monocytogenes, helping in its membrane fluidity and survival at low temperatures [40]. Anteiso-

15:0 was found as a major fatty acid in S. vilae DB165T [3] as well as in other Subtercola species, 

S. frigoramans, S. boreus, and S. lobariae [1,2]. The genome also encodes acyl-CoA thioesterase 

II (TesB), an enzyme that has been proposed as catalysing short to medium length 3-hydroxy acyl 

chains and PlsC gene for 1-acyl-sn-glycerol-3-phosphate acyltransferase, which catalyses the 

conversion of intermediates in phospholipid synthesis and 3-ketoacyl-(acyl-carrier-protein) 

reductases, enhancing the production of polyunsaturated lipids [38,39]. 

Cryoprotectants  

Genes involved in the production and uptake of choline, glycine, and betaine were found in S. 

vilae DB165T genome. These compounds maintain the membrane fluidity at low temperature and 

also prevent cold-induced aggregation of cellular proteins [41]. Intracellular proteins can also be 

protected by the production of the sugar trehalose [42]. S. vilae encodes the complete pathway for 

the biosynthesis of trehalose and utilisation of trehalose. In addition, S. vilae DB165T contains 

eleven copies of a trehalose permease transport system (SugB). 

Temperature shifts  

The fast production of cold-inducible proteins is an important adaptation to low temperatures 

[43]. In S. vilae DB165T we found three different cold-shock (Csp) proteins with high identity to 

CspA and CspC. These proteins act as RNA chaperones, destabilising mRNA secondary 

structures formed at low temperatures, and enhancing translation efficiency [44]. On the other 

hand, we found eleven heat shock proteins that prevent denaturation of cellular proteins at high 

and low temperatures [45]. 

Oxidative stress  

Metabolic reactive oxygen species (ROS) generate intracellular damage in proteins, membranes, 

and DNA. More dissolved oxygen can be found in the water at low temperatures and may 

increase the potential of possible damage [46]. Psychrophilic microorganisms are adapted to this 

harsh condition; one of their adaptations against damage caused by ROS is the production of 

different enzymes involved in detoxification of the superoxide radical (O2-). S. vilae DB165T 

encodes several enzymes to fight against the ROS stress. The enzymes found are 

deferrochelatase/peroxidase (EfeN), thioredoxin/glutathione peroxidase (BtuE), 
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deferrochelatase/peroxidase (EfeB), putative heme-dependent peroxidase, catalase-peroxidase 

(katG: one copy), putative non-heme bromoperoxidase (BpoC), catalases (katA), and superoxide 

dismutases [Mn;Fe; Cu-Zn] (sodABC). 

Ice-binding proteins 

In order to understand possible mechanisms to cope with ice crystal formation inside the cell, we 

screened the amino acid sequences of all S. vilae DB165T genes against an in-house ice-binding 

motif database. We obtained two hits of hypothetical proteins with an ice-binding motif in the S. 

vilae DB165T genome: Svil_00062, which consists of 389 amino acids, and Svil_00202, with 380 

amino acids. Comparison of both proteins with the Genbank database using blastp showed that 

the proteins share only 50-52% of the amino acid sequence with proteins annotated as 

hypothetical and DUF3494 domain-containing, a domain related to ice-binding properties (Table 

3a). This suggests that the conserved domain may have the function of binding with ice, whereas 

the other part of the proteins is not similar to anything yet reported in the database. As the ice-

binding domain revealed a low identity with DUF3494 domain-containing proteins (40-45%) in 

the database, the sequences of both proteins were modelled by Phyre2 server. The result showed 

that the proteins were structurally similar to the antifreeze protein observed in Colwellia 

psychrerythraea 34H, which was used as backbone. The pattern in the β-strands and α-helices of 

the protein, as well as in the threonine residues, are displayed in parallel and face out the β-

strands (Figure 3). As the placement of these residues is considered essential for the ice binding 

function, it can be concluded that both proteins may have the predicted function [47]. As the 

other part of the proteins did not show hits with high coverage and identity (Table 3b), the two 

proteins quite likely represent a new type of ice-binding protein. Interestingly, we could not find 

either of the two proteins in the genome of the S. boreus DSM 13056T, A. bicolorata DSM 

14575T, and A. pratensis DSM 14246T.  
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Table 3. Identification of CDS that contain ice-binding motifs in S. vilae DB165T genome. a) BLAST results of 
predicted and best-scored proteins with ice-binding motifs in S. vilae DB165T genome of Genbank. b) BLAST 
of the two different regions of S. vilae DB165T predicted ice-binding proteins, in which is indicated the low 
coverage and identity of the first segment of the protein and the last segment of the protein which has the ice-
binding motif. 

a) Locus tag Blast hit Query 
coverage Identity Accession 

number 

Svilae_00062 DUF3494 domain-containing protein 
[Streptomyces fradiae] 50% 40% WP_050363635.1 

1 to 389 aa DUF3494 domain-containing protein 
[Arthrobacter alpinus]  50% 45% WP_074712914.1 

Svilae_00202 
hypothetical protein 
UT69_C0002G0034 [Candidatus 
Yanofskybacteria bacterium] 

52% 43% KKR37772.1 

1 to 380 aa 
hypothetical protein A2207_02115 
[Candidatus Yanofskybacteria 
bacterium] 

52% 43% OGN35513.1 

b) Locus tag Blast hit Query 
coverage Identity Accession 

number 

Svilae_00062     

1 to 186 aa Alpha-tubulin suppressor 
[Microbacterium sp. ru370.1] 39% 39% SDO93348.1 

Svilae_00062     

187 to 389 aa DUF3494 domain-containing protein 
[Streptomyces xinghaiensis ] 97% 41% WP_039820269.1 

Svilae_00202     

1 to 179 aa hypothetical protein [Rhodococcus 
sp. 06-1477-1B] 39% 45% WP_094735903.1 

Svilae_00202     

180 to 380 aa 
hypothetical protein 
UT69_C0002G0034 [Candidatus 
Yanofskybacteria bacterium] 

99% 43% KKR37772.1 
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Figure 3. Cartoon representations of ice binding motif models of Svilae_00062 (blue) and Svilae_00202 (red). 
The putative ice-binding surface with ordered threonine residues (yellow) is shown. Arrows and ribbons 
represent β-strands and α-helices, respectively. 

 

Genome comparison of Subtercola vilae DB165T, Subtercola boreus DSM 13056T, Agreia 

bicolorata DSM 14575T, and Agreia pratensis DSM 14246T  

The differences between Subtercola and Agreia are small, causing problems in initial species 

description followed by species emendation [48]. 16S rRNA gene comparison between S. vilae 

DB165T and Agreia type strains showed similarities of around 96% and a branch separation in 

their phylogenetic tree [3]. Chemotaxonomic markers such as cell wall diamino acid and 1,1-

dimethyl acetals are essential to differentiate strains affiliated with either Subtercola or Agreia 

[3,48]. However, genomic evidence of chemotaxonomic markers used for taxa description are 

scarce [49]. In order to use genomic data to see differences between Subtercola and Agreia 

strains, we prepared a maximum-likelihood phylogenetic tree of essential single-copy genes, 

using different type strains of Microbacteriaceae and a pangenome approach to see differences in 

detail between S. vilae DB165T, S. boreus DSM 13056T, A. bicolorata DSM 14575T, and A. 

pratensis DSM 14246T. The maximum-likelihood tree generated supports the separation of 
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Subtercola and Agreia species, with a high bootstrap value in each separation node and with a 

separation distance comparable to type species of other genera (e.g: Herbiconiux/ Cnuibacter) 

(Figure 4). 

Figure 4. Maximum-likelihood tree based on 107 essential single-copy genes (amino acids) of Subtercola vilae 
DB165T and Microbacteriaceae type strains and two Kocuria type strains as outgroup. Project accession is 
indicated in brackets. Bootstrap values >50% are indicated. Bars indicates 0.05 amino acids substitutions per 
site. 

A detailed analysis using the pangenome approach showed that the average nucleotide identity 

(ANI) of S. vilae DB165T is 78% against S. boreus DSM 13056T, and 75% against A. bicolorata 

DSM 14575T and A. pratensis DSM 14246T, while in between the two Agreia species it is 87% 

(Figure 5). A total of 121 of 14781 genes were shared between S. vilae DB165T, S. boreus DSM 

13056T, A. bicolorata DSM 14575T, and A. pratensis DSM 14246T. A total of 2568 genes present 
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in S. vilae DB165T are unique, and 2770 are only present in S. boreus DSM 13056T; meanwhile, 

748 genes are shared between the two strains. S. vilae DB165T shares 141 genes with A. 

bicolorata DSM 14575T and 363 with A. pratensis DSM 14246T. On the other hand, 1801 genes 

were shared between both Agreia species, a higher number than in the Subtercola species (Figure 

5). In terms of functional annotation, 87.6% of the genes shared between the four strains were 

annotated in COG. Interestingly, the percentage of genes annotated in COG is lower in the unique 

genes of each strain, 22% for S. vilae DB165T, 30% for S. boreus DSM 13056T, 31% for A. 

bicolorata DSM 14575T, and 23% for A. pratensis DSM 14246T. Genes only present in S. vilae 

DB165T are involved in the flux of different ions like Na, Cl, Mg, Cu, Fe, and Pb, in sugar 

transport like ABC transport permeases, bacteriorhodopsins, peptidoglycan/xylase/chitin 

deacetylase, and trehalose synthetase, among others. Most of the functions possibly involved in 

the survival at low temperature are shared between S. vilae DB165T and S. boreus DSM 13056T. 

These include peroxiredoxin, peroxidases, ferrodoxin, 2 cold shock proteins (cspA), and 

ferrodoxins. In terms of transport proteins, two genes of divalent metal cation transporters for Fe, 

Co, Zn, and Cd are present in both Subtercola type strains and high-affinity Fe+2/Pb+2 permeases, 

transporters that might help the cells in the detoxification of free radicals caused by the metals. 

On the other hand, three different cold shock proteins were found in Subtercola/Agreia shared 

genes, three catalases and three copies of the fatty acid desaturase (desA). These findings suggest 

that most of the cold adaptation mechanisms described might yet play an important role in the 

analysed strains, which are encoded deeply in the Subtercola/Agreia cluster.  
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Figure 5. Pangenome analysis of Subtercola vilae DB165T and their next relative strains Subtercola boreus 
DSM 13056T, Agreia bicolorata DSM 14575T, and Agreia pratensis DSM 14246T. ANI analysis is indicated in 
red boxes, a 100% of similarity is shown in a total red box. Genes annotated with a COG function are annotated 
with green colour, whereas red indicated unknown function. In the outside layer of it is indicated the proportion 
of genes present in Agreia spp. and Subtercola spp. strains, genes present only in each strain, shared between 
Subtercola spp. strains, shared between Agreia spp. strains, and genes present in between specific strains of the 
genera Subtercola and Agreia. 
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Conclusions 

S. vilae DB165T is the first available genome reported from the genus Subtercola, which was 

isolated from a poly-extremophilic environment of the Llullaillaco Volcano Lake. The genome of 

S. vilae DB165T encodes a repertoire of genes linked to the harsh condition of Llullaillaco 

(Figure 6). These features include several mechanisms for transcribing proteins at low 

temperatures, such as a high number of tRNAs, and cold shock proteins. S. vilae DB165T is 

capable of producing several proteins to deal with oxidative stress, which is of higher relevance 

in low temperature environments, in which reactive oxygen species are more abundant. We 

propose that these two new ice-binding proteins, which are present uniquely in S. vilae DB165T, 

combat ice crystal formation. Genome comparison of S. vilae DB165T against closely related 

type strains of the species S. boreus, A. bicolorata, and A. pratensis showed distinct differences 

between these species. While all of them exhibited a large part of strain-specific genes in their 

genomes, several genes involved in cold adaptation were shared between the strains, suggesting 

that the features might be more common among the Microbacteriaceae family. However, among 

all strains analysed, only S. vilae DB165T showed the presence of genes that might interact with 

ice crystals. The data presented in this work showed that S. vilae DB165T can employ different 

strategies to live at cold temperatures such as those prevalent in Llullaillaco Volcano Lake. 
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Figure 6. Traits annotated in Subtercola vilae DB165T genome considered to be involved in its 

adaptation to Llullaillaco Volcano Lake. 
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Abstract 

Actinobacteria strains obtained from the Atacama Desert show taxonomic novelty and a high 

potential in the production of antibiotics. We evaluated the genomic potential for natural products 

production of seven actinobacteria, Streptomyces sp. AD26, Streptomyces sp. Huas28, Kocuria 

sp. Huas7, Nocardiopsis sp. Huas15, Kribbella sp AD5, Superstesspora tarapancensis Llam7T 

and Subtercola vilae DB165T. antiSMASH 3.0 predicted that strains affiliating to Streptomyces 

and Superstesspora had the higher abundance and diversity of natural product biosynthetic gene 

clusters among the isolates. Moreover, the strains Kribbella sp AD5, Superstesspora tarapacensis 

Llam7T, and Streptomyces sp. AD26 and Huas28 contain natural product biosynthetic gene 

clusters with no synteny homology with the database, highlighting their potential in the 

production of novel compounds. 

Keyword: Natural product biosynthetic gene clusters; PKS; NRPS; Actinobacteria; Genomics 

Introduction 

The phylum Actinobacteria is one of the largest taxonomic units among the major lineages within 

the Bacteria domain (Ludwig et al. 2012). Actinobacteria are Gram-positive filamentous bacteria 

with a high guanine-plus-cytosine (G+C) content in their genomes. Actinobacteria are of great 

importance in the field of biotechnology as producers of a vast variety of bioactive secondary 

metabolites with extensive industrial, medical, and agricultural applications. Within members of 

the class Actinobacteria, the genus Streptomyces represents the richest source of natural products. 

The first antibiotics discovered in Actinobacteria were actinomycin from a culture of 

Streptomyces antibioticus in 1940 (Waksman and Woodruff 1940), streptothricin from 

Streptomyces lavendulae in 1942 (Wakman and Woodruff 1942), and streptomycin from 

Streptomyces griseus in 1944 (Schatz and Waksman 1944). Actinobacteria strains in general are 

the source of approx. 45% of all microbial bioactive secondary metabolites. Specifically, strains 

affiliated with the Streptomyces genus have been the major source of clinical antibiotics and are 

responsible for more than 80% of all antibiotics of actinobacterial origin (Bérdy 2005).  

Most of the classes of clinical antibiotics were discovered and produced by Actinobacteria, such 

as aminoglycosides (Busscher et al. 2005), angucyclines (Kharel et al. 2012), ansamycins (Kang 

et al. 2012), anthracyclines (Minotti 2004), β-lactams (Liras 1999), clavulanic acid (Jensen and 
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Paradkar 1999), chloramphenicol (Vining and Stuttard 1995), glutarimides (K’ominek 1975), 

glycopeptides (Van Bambeke 2006), lipopeptides (Baltz 2010), lantibiotics (Willey and van der 

Donk 2007), macrolides (Gaynor and Mankin 2003), oxazolidinones (Mulinos 1955), 

streptogramins (Johnston et al. 2002), and tetracyclines (Okami and Hotta 1988). 

However, the discovery of novel compounds has been limited due the culture conditions 

employed in the screening of strains. From all Streptomyces isolated randomly from soil, approx. 

1% are able to produce streptomycin and 0.1% actinomycin, while erythromycin and vancomycin 

are produced in around one out of 107 and daptomycin in one out of around 109 soil isolates, and 

(Baltz 2007). Despite this limitation in the screening process, the natural product production 

capacity of an individual actinobacterial strain varies enormously. In some cases, actinobacterial 

strains are able to produce a single compound, while others produce a range of different 

metabolites and even compound classes. Even though, a huge number of compounds have been 

discovered from Actinobacteria, it is predicted that only around the 10% of the natural products 

that can be synthesised by these bacterial class have been discovered (Watve et al. 2001). 

Recently, due the application of genomic sequencing technologies and new tools for the 

annotation of natural product biosynthetic gene clusters (Weber et al. 2015)the interest of 

Actinobacteria as a source of natural products has bloomed once again. Whole genomes of 

representative strains of Actinobacteria such as Rhodococcus sp. RHA1 (McLeod et al. 2006), 

Saccharopolyspora erythraea NRRL 23338 (Oliynyk et al. 2007), Salinispora tropica CNB-440 

(Udwary et al. 2007), and Streptomyces coelicolor A(3)2 (Bentley et al. 2002) showed that each 

genome contained around 20 or more natural product biosynthetic gene clusters for the 

production of known or predicted secondary metabolites. In the specific case of Streptomyces 

coelicolor A(3)2, which is a model system for studying antibiotic production and known for the 

production of actinorhodin (Rudd and Hopwood 1979), undecylprodigiosin (Feitelson et al. 

1985), a calcium-dependent antibiotic (Hopwood and Wright 1983), and methylenomycin (Rudd 

and Hopwood 1979). Nevertheless, the genome sequence of S. coelicolor A(3)2 showed that the 

potential as a producer of natural products was underestimated, revealing over 20 biosynthetic 

gene clusters for natural products (Challis and Hopwood 2003), including the genes involved in 

the production of a cryptic polyketide (Pawlik et al. 2007). 

To date, the majority of the 20263 genome sequences of Actinobacteria comprise the orders 

Corynebacteriales (14450), Micrococcales (1690), Streptomycetales (1392), Propionibacteriales 
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(528), Pseudonocardiales (260) and Micromonosporales (248) (https://www.patricbrc.org/), 

showing that the capacity to harbour a large number of biosynthetic clusters is a regular property 

of most strains affiliated with the Actinobacteria class (Doroghazi and Metcalf 2013). 

During the last three years, we isolated several Actinobacteria affiliated with different genera 

with high potential in the production of novel natural products, putative novel species, and 

remarkable characteristics to survive to extreme environments. We selected two strains isolated 

from rhizosphere samples: the strain AD5 isolated from Cristaria integerrima represent a 

putative novel species of Kribbella, genus from which only 3 natural products compounds have 

been described, and genome analyses of representatives of this genus showed more than 10 

natural product biosynthetic gene clusters (Pukall et al. 2010); we also selected Streptomyces sp. 

AD26 isolated from Cumulupuntia boliviana which showed promising antibiotic activity against 

Bacillus subtilis and Stapylococcus lentus. From the hypersaline lake Salar de Huasco, we 

selected three strains. The strain Huas7 affiliated with Kocuria genus has the capacity to utilise 

complex carbon sources such as cellulose, chitin, starch, and it has the potential to produce 

different nanoparticles with unknown composition; the strain Huas15 represent a putative novel 

species of Nocardiopsis, showed antibiotic activity against Bacillus subtilis, Staphylococcus 

lentus and Pseudomonas fluorescens, it can grow in 150 g/L of NaCl and 250 g/L of Tropic 

marine salt, genome analyses of Nocardiopsis strains showed a high number of natural product 

biosynthetic gene clusters (Sun et al. 2010; Horn et al. 2015); the strain Huas28 is a putative 

novel species of Streptomyces genus, showed antibiotic activity against Bacillus subtilis, and it 

can grow till 100 g/L of NaCl and 200 g/L of Tropic marine salt, salt tolerance that is not shared 

among all Streptomyces representatives. We also analysed the genomic potential in the 

production of natural products of the two strains described as novel species (Chapter III and IV). 

The strain Superstesspora tarapacensis is a novel genus obtained from Salar de Llamará, it 

showed antibiotic activity against Pseudomonas fluorescens and Escherischia coli, it belongs to 

Micromonosporaceae family which contain several genera well known in the production of 

natural products, such as Micromonospora, Salinispora, Verrucosispora, and Actinoplanes; the 

strain Subtercola vilae obtained from Llullaillaco Volcano Lake genome was analysed (Chapter 

V) showing the presence of natural product biosynthetic gene clusters. 
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Materials and methods  

The strains Kocuria sp. Huas7, Nocardiopsis sp. Huas15, Streptomyces sp. Huas28, and 

Superstesspora tarapacensis Llam7T were isolated according to Villalobos et al. 2018 (see 

Chapter II). Streptomyces sp. AD26 and Kribbella sp. AD5 were obtained using the methodology 

presented in Chapter I and Subtercola vilae DB165T was isolated according to Villalobos et al. 

2018 (see Chapter IV). 

DNA was extracted using DNeasy®Blood&Tissue Kit (Qiagen). The quality and quantity of the 

extracted DNA was evaluated by 0.8 % (w/v) agarose gel electrophoresis. The genomic DNA 

library was generated using Nextera XT (Illumina Inc.) according to the manufacturer’s 

instructions. After fragmentation, size-selection was performed using NucleoMag NGS Clean-up 

and Size Select (Macherey-Nagel) to obtain a library with median insert-size around 400 bp. 

After PCR enrichment, the library was validated with a high-sensitivity DNA chip and 

Bioanalyzer 2100 (both Agilent Technologies, Inc.) and additionally quantified using the Qubit 

dsDNA HS assay (Life Technologies). Four sequencing runs were performed on a NextSeq 

device using v2 2 × 250 bp chemistry. 

The raw paired-end sequences data were subjected to the Trimmomatic software for adapter and 

quality trimming (mean Phred quality score ≥ 30) (Bolger et al. 2014), filtering of sequences 

containing ambiguous bases and a minimum length of 200 bp. The filtered data were assembled 

with SPAdes assembler using enabled precorrection and k-mer sizes ranging from 15 to 127 (step 

size of 10) (Bankevich et al. 2012). The assemblies obtained were analysed using QUAST 

(Gurevich et al. 2013), whereas 127-kmers showed the bests quality. 

Open reading frames were identified using Prodigal in Prokka and barrnap for rRNA genes 

(Seemann 2014). In addition, gene prediction and functional annotation was performed with the 

Integrated Microbial-Genomes Expert Review and the Rapid Annotation using Subsystem 

Technology webserver (Aziz et al. 2008; Overbeek et al. 2014). The genome completeness was 

analysed with CheckM (Parks et al. 2015). Natural product biosynthetic gene clusters (BGC) 

were identified by antiSMASH 3.0 (Weber et al. 2015) using ClusterFinder algorithm for BGC 

border prediction, minimum cluster size in CDS of 5, minimum number of biosynthesis-related 

PFAM domain of 5, and a minimum ClusterFinder probability of 60%. 
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Phylogenetic relationship of the seven strains was prepared using the complete 16S rRNA gene 

sequences derived from the respective genomes. Similarities between the strains and related type 

strains were obtained from EzTaxon e-server (Kim et al. 2012). The closest relatives of the 

strains and Rubrobacter aplysinae DSM 27440T as outgroup were aligned using SINA aligner 

(v1.2.11) (Pruesse et al. 2012). Phylogenetic trees were constructed using neighbor-joining 

(Saitou and Nei 1987) and maximum-likelihood methods (Felsenstein 1981) applying bootstrap 

method with 1000 repeats with MEGA software version 6.0 (Tamura et al. 2013). NJplot was 

used to draw the phylogenetic trees expressed in the Newick phylogenetic tree format (Perrière 

and Gouy 1996). 

For scanning electron microscopy all the strains were grown for 21 days at 26 °C. The strains 

Kocuria sp. Huas7, Nocardiopsis sp. Huas15, Streptomyces sp. Huas28, and Superstesspora 

tarapacensis Llam7T were cultivated in SYP agar plates (Villalobos et al. 2018; Chapter II), 

while Streptomyces sp. AD26 and Kribbella sp. AD5 were grown for in SGG agar plates 

(Chapter I). Three colonies were cut from the agar plate, dehydrated by an ascending ethanol 

series (50 %, 70 %, 90 % and three times 100 % for 10 min each) (Boyde and Wood 1969), 

critical-point dried with carbon dioxide, and sputter-coated with Au/Pb. Finally, the samples were 

examined with scanning electron microscope. 

Results 

Among the genomes of all strains, the isolates Streptomyces sp. AD26, Kribbella sp. AD5, and 

Superstesspora tarapacensis Llam7T have the largest genome, respectively (Table 1). 

Interestingly, the genome size in Streptomyces strains sequenced in this work (AD26 and 

Huas28) varies, showing a difference of about 2.7 Mb. In terms of gene number, Kribbella sp. 

AD5 contains 7980 genes from which 7878 are coding sequences, while Streptomyces AD26 has 

the highest number of tRNAs (86). 

The strains affiliated with six actinobacterial families, Micrococcaceae (Huas7), 

Microbactericeae (DB165T), Micromonosporaceae (Llam7T), Nocardiopsaceae (Huas15), 

Nocardioidaceae (AD5), and Streptomycetaceae (AD26 and Huas28). According to preliminary 

phylogenetic data based in the 16S rRNA gene sequence, Kribbella sp. AD5, Nocardiopsis sp. 

Huas15, and Streptomyces sp. Huas28 clustered separately from their next related type strains 
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(Figure 1). Subtercola vilae DB165T represents a new species and Superstesspora tarapacensis 

Llam7T a new species and genus (this thesis Chapter III and IV). 

While the cell shape of Streptomyces sp. strains AD26 and Huas28, Superstesspora tarapacensis 

Llam7T, Kribbella sp. AD5, and Nocardiopsis sp. Huas15 consisted in long filaments (Figure 2), 

cells of Kocuria sp. Huas7 were short cocci that do not form cell aggregations and of Subtercola 

vilae DB165T short rods (Figure 2). 
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Table 1. Genome statistics of sequenced strains. 

Attribute Kocuria sp. 
Huas7 

 Nocardiopsis 
sp. Huas15  

Streptomyces 
sp. Huas28  

Kribbella sp. 
AD5  

Streptomyces 
sp. AD26  

Superstesspora 
tarapacensis 
Llam7T  

Subtercola 
vilae DB165T 

Genome size (bp) 5043546 5211693 5721425 8399753 8488708 6694035 4043135 
Contigs 1176 1318 659 268 668 1013 103 
G+C content (%) 70.37 69.25 68.66 68.01 68.46 69.51 65.1 
Genes 4873 4885 5234 7980 7142 6507 3879 
CDS 4750 4790 5104 7878 6965 6366 3797 
rRNA 6 3 7 3 8 3 5 
tRNA 78 62 70 65 86 74 59 
Misc RNA 38 29 52 33 82 63 17 
tmRNA 1 1 1 1 1 1 1 
Completeness (%) 96.55 93.51 94.87 100 99.21 97.98 99.5 
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Figure 1. Neighbour-joining phylogenetic tree based on the complete 16S rRNA gene of the selected strains, their 
next related type strains, and Rubrobacter aplysinae DSM 2744T as outgroup. Numbers in the nodes represent 
bootstrap support (%) based in the analysis of 1000 bootstrap replications.  Only bootstrap values ≥ 50% are 
indicated. Genebank accession numbers of the sequences are given in parentheses. Bar indicates 0.02 substitutions 
per site. 
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Figure 2. Scanning electron micrograph of the actinobacterial strains from this study. a) Kocuria sp. Huas7. b) Nocardiopsis sp. Huas15. c) Streptomyces sp. Huas28. 
d) Kribbella sp. AD5. e) Streptomyces sp. AD26. f) Superstesspora tarapacensis Llam7T. g) Subtercola vilae DB165T. Scale bar in e and g indicate 2 µm. 
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The natural product biosynthetic gene clusters (BGCs) analysis of the sequenced draft genomes 

revealed that the strains affiliating to the genus Streptomyces displayed the most abundant and 

diverse repertoire (Table 2). Specifically, Streptomyces sp. AD26 contained 46 natural product 

biosynthetic gene clusters sorted in 16 BGCs types, from which 11 represent type 1 polyketide 

synthases, followed by 7 non-ribosomal peptide synthetases and 7 terpene biosynthetic clusters. 

Superstesspora tarapacensis Llam7T follows as third with abundant BGCs types and ranks as 

second (together with Streptomyces sp. Huas28) in diversity with 12 different BGCs types. 

Natural product biosynthetic gene clusters exhibiting 100% of homology in its synteny with the 

database were uncommon in the analysed draft genomes. From a total of 162 BGCs identified in 

all the strains, only 6 gene clusters have 100% of synteny homology, from which 2 of them are 

ectoine biosynthetic gene clusters. In Kribbella sp. AD5 we detected the biosynthetic gene cluster 

to produce geosmin (Supplementary Table 4), while in Superstesspora tarapacensis Llam7T the 

gene cluster to produce sioxanthin was detected (Supplementary Table 6). The gene cluster of the 

type 3 polyketide alkylresorcinol was found in Kribbella sp. AD5 and Subtercola vilae DB165T 

(Supplementary Table 4 and 7), however in both strains the gene clusters contain several 

additional biosynthetic genes suggesting that the alkylresorcinol core structure might suffer 

further modifications. 
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Table 2. Number of predicted natural product gene clusters sorted in different classes in the draft genome of the sequenced strains. 

Gene cluster class Kocuria sp. 
Huas7 

Nocardiopsis 
sp. Huas15 

Streptomyces 
sp. Huas28 

Kribbella sp. 
AD5 

Streptomyces 
sp. AD26 

Superstespora 
tarapacensis 
Llam7T 

Subtercola 
vilae DB165T 

Amglyccycl - - 1 - - - - 
Amglyccycl-Nrps - - 2 - - - - 
Arylpolyene - - - 1 1 - - 
Bacteriocin - - 1 - 2 2 - 
Butyrolactone - - - 1 1 - - 
Ectoine 1 2 1 - 1 - - 
Indole-Nrps - - 1 - - - - 
Ladderane - - - - 1 1 - 
Lantipeptide 1 1 4 4 - - - 
Lantipeptide-Nrps - - - - - 1 - 
Nrps 1 1 13 - 7 14 - 
Other 3 1 2 1 4 1 1 
Otherks 1 1 - - 1 - - 
Siderophore 1 1 3 2 3 2 - 
T1pks 1 2 7 - 11 4 - 
T1pks-Nrps - - - 1 1 1 - 
T2pks - - 1 1 - 1 - 
T3pks 1 - 2 1 2 1 1 
T3pks-T1pks - - - - - 1 - 
Terpene 1 1 5 1 7 5 1 
Terpene-T1pks - - - - 1 - - 
Thiopeptide - - - 1 - 1 - 
Transatpks - - - - 2 - - 
Transatpks-T1pks - - - - 1 - - 
Total 11 10 43 14 46 35 3 
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A total of 11 complete BGCs showed no synteny homology with any biosynthetic gene cluster in 

the antiSMASH database, suggesting the production of natural products with novel structure. 

Among these BGCs, Streptomyces sp. Huas28 encodes a cryptic lantipeptide cluster of 30.7 kb 

(Cluster 2), a bacteriocin that comprise 11.4 kb (Cluster 11), and a terpene cluster of 10.9 kb 

(Cluster 15) (Supplementary Table 3). On the other hand, Kribbella sp. AD5 codifies a 

thiopeptide gene cluster of 22.2 kb (Cluster 3), a lantipeptide gene cluster of 22.7 kb (Cluster 5), 

and a siderophore gene cluster of 15.2 kb (Cluster 10) (Supplementary Table 4). The 

Streptomyces sp. AD26 encodes a NRPS gene cluster of 58.7 kb (Cluster 9), a terpene 

biosynthetic cluster of 21.1 kb (Cluster 15), a siderophore gene cluster that comprises 7.6 kb 

(Cluster 16), and a butyrolactone gene cluster 8.2 kb (Cluster 23) (Supplementary Table 5). Two 

gene clusters encoded by Superstesspora tarapacensis Llam7T have no homology with clusters of 

the database, the first one is a NRPS gene cluster with a size of 30.6 kb (Cluster 4) and the 

second is a siderophore (Cluster 22) (Supplementary Table 6). 

According to the high level of synteny homology of the clusters with the database of antiSMASH 

(≥55%), Streptomyces sp. Huas28 might be able to produce compounds with scaffolds similar to 

7-prenylisatin, jinggangmycin, and vicenistatin (Supplementary Table 3); while Streptomyces sp. 

AD26 could produce isorenieratene, piericidin A1, hopene, paenibactin, and flaviolin like 

compounds (Supplementary Table 5). Superstesspora tarapacensis Llam7T has the potential to 

produce compounds with similar structure as kendomycin, sioxanthin, and desferrioxamine B 

(Supplementary Table 6). 
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Conclusions 

The potential to produce a huge variety of natural products of 7 Actinobacteria isolated from 

extreme environments of the Atacama Desert was presented. Streptomyces spp. AD26 and 

Huas28 as well as Superstesspora tarapacensis Llam7T showed a promising potential due to the 

high diversity and abundance of different BGCs types. In addition, both Streptomyces strains 

(AD26 and Huas28), Kribbella sp. AD5, and Superstesspora tarapacensis Llam7T encode 

biosynthetic gene clusters that showed no synteny homology with natural product biosynthetic 

gene clusters of the database, suggesting that these strains might be able to produce compounds 

with a novel structure. The phylogenetic affiliation of the strains is an important for the selection 

of strains in genome mining of natural products gene clusters. Strains belonging to the genus 

Streptomyces and strains affiliating to Micromonosporaceae family are the actinobacteria with 

more compounds described till the date, which can be attributed to their large number of natural 

product biosynthetic gene clusters, and their cosmopolitan distribution. Furthermore, the genome 

sequences of the seven isolates provide a large pool of diverse and in part novel biosynthetic gene 

clusters of natural products and give new insights into the genomics of Actinobacteria. 

 

140 
 



 
 

References 

Aziz RK, Bartels D, Best A, et al (2008) The RAST Server: Rapid annotations using subsystems 
technology. BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75 

Baltz RH (2010) Genomics and the ancient origins of the daptomycin biosynthetic gene cluster. J 
Antibiot (Tokyo) 63:506–511. doi: 10.1038/ja.2010.82 

Banerjee SK, Shanker R (2002) Comments on the pyridine catalysed reaction of alcohols with 
lead tetraacetate in benzene containing 1% acetic acid (v/v). Asian J Chem 14:512–514. doi: 
10.2174/1389450023347678 

Bankevich A, Nurk S, Antipov D, et al (2012) SPAdes: A new genome assembly algorithm and 
its applications to single-cell Sequencing. J Comput Biol 19:455–477. doi: 
10.1089/cmb.2012.0021 

Bérdy J (2005) Bioactive microbial metabolites: A personal view. J. Antibiot. (Tokyo). 58:1–26. 
doi:10.1038/ja.2005.1 

Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence 
data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 

Boyde A, Wood C (1969) Preparation of animal tissues for surface-scanning electron 
microscopy. J Microsc 90:221–249. doi: 10.1111/j.1365-2818.1969.tb00709.x 

Busscher GF, Rutjes FPJT, van Delft FL (2005) 2-Deoxystreptamine: Central scaffold of 
aminoglycoside antibiotics. Chem. Rev. 105:775–791. 

Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of 
multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci 
100:14555–14561. doi: 10.1073/pnas.1934677100 

Doroghazi JR, Metcalf WW (2013) Comparative genomics of actinomycetes with a focus on 
natural product biosynthetic genes. BMC Genomics 14:611. doi: 10.1186/1471-2164-14-611 

Feitelson JS, Malpartida F, Hopwood DA (1985) Genetic and Biochemical Characterization of 
the red Gene Cluster of Streptomyces coelicolor A3(2). Microbiology 131:2431–2441. doi: 
10.1099/00221287-131-9-2431 

Felsenstein J (1981) Evolutionary trees from DNA sequences: A maximum likelihood approach. 
J Mol Evol 17:368–376. doi: 10.1007/BF01734359 

Gaynor M, Mankin A (2003) Macrolide Antibiotics: binding site, mechanism of action, 
resistance. Curr Top Med Chem 3:949–960. doi: 10.2174/1568026033452159 

Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: Quality assessment tool for 
genome assemblies. Bioinformatics 29:1072–1075. doi: 10.1093/bioinformatics/btt086 

141 
 



 
 

Hopwood DA, Wright HM (1983) CDA is a new chromosomally-determined antibiotic from 
Streptomyces coelicolor A3(2). Microbiology 129:3575–3579. doi: 10.1099/00221287-129-
12-3575 

Horn H, Cheng C, Edrada-Ebel R, et al (2015) Draft genome sequences of three chemically rich 
actinomycetes isolated from Mediterranean sponges. Mar Genomics 24:285–287. doi: 
10.1016/J.MARGEN.2015.10.003 

K’ominek LA (1975) Cycloheximide production by Streptomyces griseus: control mechanisms of 
cycloheximide biosynthesis. Antimicrob Agents Chemother 7:856–6. doi: 
10.1128/AAC.7.6.856 

Kang Q, Shen Y, Bai L (2012) Biosynthesis of 3,5-AHBA-derived natural products. Nat. Prod. 
Rep. 29:243–263. doi:10.1039/c2np00019a 

Kharel MK, Pahari P, Shepherd MD, et al (2012) Angucyclines: Biosynthesis, mode-of-action, 
new natural products, and synthesis. Nat. Prod. Rep. 29:264–325. doi:10.1039/c1np00068c 

Kim OS, Cho YJ, Lee K, et al (2012) Introducing EzTaxon-e: A prokaryotic 16s rRNA gene 
sequence database with phylotypes that represent uncultured species. Int J Syst Evol 
Microbiol 62:716–721. doi: 10.1099/ijs.0.038075-0 

Lin Y, Song M, Stone CA, Shaw SJ (2013) A comprehensive study on the curing kinetics and 
network formation of cyanate ester resin/clay nanocomposites. Thermochim Acta 552:77–
86. doi: 10.1016/j.tca.2012.11.009 

Liras P (1999) Biosynthesis and molecular genetics of cephamycins. Antonie van Leeuwenhoek, 
Int J Gen Mol Microbiol 75:109–124. doi: 10.1023/A:1001804925843 

Ludwig W, Euzéby J, Schumann P, et al (2012) Road map of the phylum Actinobacteria. In: 
Bergey’s Manual of Systematic Bacteriology. pp 1–28 Eds: Goodfellow M. et al. 

McLeod MP, Warren RL, Hsiao WWL, et al (2006) The complete genome of Rhodococcus sp. 
RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci 103:15582–15587. 
doi: 10.1073/pnas.0607048103 

Minotti G (2004) Anthracyclines: Molecular Advances and Pharmacologic Developments in 
Antitumor Activity and Cardiotoxicity. Pharmacol Rev 56:185–229. doi: 10.1124/pr.56.2.6 

Mulinos MG (1955) Cycloserine:  an antibiotic paradox. Antibiot Annu 3:131–5. 

Okami Y, Hotta K (1988) Search and Discovery of New Antibiotics. In: Actinobacteria in 
Biotechnology. Elsevier, pp 33–67 

Oliynyk M, Samborskyy M, Lester JB, et al (2007) Complete genome sequence of the 
erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat 
Biotechnol 25:447–453. doi: 10.1038/nbt1297 

142 
 



 
 

Overbeek R, Olson R, Pusch GD, et al (2014) The SEED and the Rapid Annotation of microbial 
genomes using Subsystems Technology (RAST). Nucleic Acids Res 42: D206–D214 doi: 
10.1093/nar/gkt1226 

Parks DH, Imelfort M, Skennerton CT, et al (2015) CheckM: Assessing the quality of microbial 
genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–
1055. doi: 10.1101/gr.186072.114 

Pawlik K, Kotowska M, Chater KF, et al (2007) A cryptic type I polyketide synthase (cpk) gene 
cluster in Streptomyces coelicolor A3(2). Arch Microbiol 187:87–99. doi: 10.1007/s00203-
006-0176-7 

Perrière G, Gouy M (1996) WWW-Query: An on-line retrieval system for biological sequence 
banks. Biochimie 78:364–369. doi: 10.1016/0300-9084(96)84768-7 

Prates RO (2013) Relato de Experiência de Ensino de IHC. CEUR Workshop Proc 1042:37–40. 
doi: 10.1038/417141a 

Pruesse E, Peplies J, Glöckner FO (2012) SINA: Accurate high-throughput multiple sequence 
alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. doi: 
10.1093/bioinformatics/bts252 

Pukall R, Lapidus A, Glavina Del Rio T, et al (2010) Complete genome sequence of Kribbella 
flavida type strain (IFO 14399). Stand Genomic Sci 2:186–193. doi: 10.4056/sigs.731321 

Rudd BA, Hopwood DA (1979) Genetics of actinorhodin biosynthesis by Streptomyces 
coelicolor A3(2). J Gen Microbiol 114:35–43. doi: 10.1099/00221287-114-1-35 

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing 
phylogenetic trees. Mol Biol Evol 4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454 

Schatz A, Waksman SA (1944) Effect of Streptomycin and other antibiotic substances upon 
Mycobacterium tuberculosis and related organisms. Exp Biol Med 57:244–248. doi: 
10.3181/00379727-57-14769 

Schulz PC, Morini MA (1997) Styrene solubilization in micelles of dodecyltrimethylammonium 
hydroxide. Colloid Polym Sci 275:604–607. doi: 10.1007/s003960050125 

Seemann T (2014) Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. 
doi: 10.1093/bioinformatics/btu153 

Sun H, Lapidus A, Nolan M, et al (2010) Complete genome sequence of Nocardiopsis 
dassonvillei type strain (IMRU 509). Stand Genomic Sci 3:325–336. doi: 
10.4056/sigs.1363462 

Tamura K, Stecher G, Peterson D, et al (2013) MEGA6: Molecular evolutionary genetics 
analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 

143 
 



 
 

Udwary DW, Zeigler L, Asolkar RN, et al (2007) Genome sequencing reveals complex 
secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci 
104:10376–10381. doi: 10.1073/pnas.0700962104 

Vining LC, Stuttard C (1995) Chloramphenicol. Genet Biochem Antibiot Prod 505–530. doi: 
10.1016/B978-0-7506-9095-9.50028-9 

Wakman SA, Woodruff HB (1942) Selective antibiotic action of various substances of microbial 
origin. J Bacteriol. 44:373–384. 

Waksman SA, Woodruff HB (1940) Bacteriostatic and Bactericidal Substances Produced by a 
Soil Actinomyces. Exp Biol Med 45:609–614. doi: 10.3181/00379727-45-11768 

Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the 
genus Streptomyces? Arch. Microbiol. 176:386–390. 

Weber T, Blin K, Duddela S, et al (2015) AntiSMASH 3.0-A comprehensive resource for the 
genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. doi: 
10.1093/nar/gkv437 

Willey JM, van der Donk WA (2007) Lantibiotics: peptides of diverse structure and function. 
Annu Rev Microbiol 61:477–501. doi: 10.1146/annurev.micro.61.080706.093501 

144 
 



 

General discussion and conclusions 

The aim of the present study was the characterisation of Actinobacteria from four different 

environments in the Atacama Desert (Salar de Llamará, Salar de Huasco, rhizosphere from 

Socaire, and Llullaillaco Volcano Lake) regarding their taxonomic novelty, antibacterial activity, 

genomic adaptations for surviving in extreme environments, and the synthesis of natural 

products. The Actinobacteria strains were obtained using different culture media, in the attempt 

to mimic the physicochemical conditions of each environment. The selection of strictly 

Actinobacteria isolates resulted in more than the half of the isolates showing antibacterial activity 

(against Gram-positive and Gram-negative bacteria). The taxonomic novelty of the strains is 

initially suggested by the low similarity of the 16S rRNA gene as compared with the next related 

type strains (Chapters I and II), and for two strains (isolated from Salar de Llamará and 

Llullaillaco Volcano Lake) this novelty was validated through the polyphasic characterisation 

ending up with a novel genus Superstesspora tarapacensis and the novel species Subtercola vilae 

(Villalobos et al. 2018) (Chapters III and IV). Moreover, the adaptations of Subtercola vilae 

involved in its survival in cold environments were identified by combining different approaches 

of functional annotation, protein modelling, and pangenomics, leading to the identification of 

different proteins involved in the degradation of different reactive oxygen species (ROS), two 

putative novel ice-binding proteins, and to the characterisation of genomic differences and 

similarities of S. vilae and next related strains. On the other hand, the genomic characterisation of 

seven Actinobacteria isolates allows to identify 162 biosynthetic gene clusters involved in the 

production of natural products, including known compounds such as geosmin, ectoine, and 

clusters whose gene synteny show no homology with the databases. 

Diversity of Actinobacteria isolates from Socaire, Salar de Llamará and Salar de Huasco 

After only a few studies on Actinobacteria in the Atacama Desert (Okoro et al. 2009; Carro et al. 

2018) this is the first comprehensive and in-depth study on Actinobacteria diversity.  

In this thesis, Actinobacteria diversity was studied in three different locations of the Atacama 

Desert: i) the rhizosphere of different plants closed to Socaire, ii) two hypersaline lakes of Salar 

de Llamará, which is in the central depression of the Atacama Desert, and iii) Salar de Huasco, 

located in the Altiplano.  
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A much higher diversity than in previous studies was found with seventy-nine isolates affiliating 

to sixteen genera (Okoro et al. 2009; Carro et al. 2018). Strains were identified as members of the 

genera Nocardia, Kribbella, Pseudonocardia, Arthrobacter Pseudarthrobacter, Rhodococcus, 

Kocuria, Nocardiopsis, Plantactinospora, Actinoplanes, Nonomuraea, Blastococcus, 

Microbacterium and Superstesspora.   

Of all the isolates obtained in this study, only one (Soc15) showed similarity to an isolate 

previously obtained from Atacama Desert (Goodfellow et al. 2017) (Chapter I). Isolates from the 

different locations in this study revealed no identity between the sites. Essentially, this 

demonstrates the high diversity of Actinobacteria in the Atacama Desert and the specific 

compositions of its different environments.  

The culture medium composition plays an important role in the selective isolation of specific taxa 

such as Actinobacteria. Highly diverse Actinobacteria (different genera and species) were 

isolated by the utilisation of a variety of culture media with different carbon and nitrogen sources. 

In particular, the medium containing trehalose, proline and histidine yielded a high degree of 

genus diversity and taxonomic novelty. Traditional culture media used for the isolation of 

Actinobacteria include high concentration of complex carbon sources such as starch or chitin, 

resulting in the high diversity of known species of Actinobacteria (Vickers et al. 1984). For 

example, media recommended for the isolation of Streptomyces, such as starch-casein agar 

(SCA), contains 20 g of starch, which is far from mimicking the oligotrophic conditions of 

Atacama Desert. However, the use of this and similar media has led to the stunning diversity of 

known Streptomyces species, which exceeds 846 type strains (www.bacterio.net). In this study, 

the use of SCA medium yielded a lower number of isolates in comparison to the trehalose-

proline-histidine medium, which contained only a quarter of the nutrient concentrations (Chapter 

I). Using this latter medium, we also obtained a wider array of different genera (Chapters I and 

II).  

The physicochemical characteristics of the environment play an important role in the microbial 

community composition (Fierer et al. 2012). Hence, contrasting characteristics of the 

environments studied thus far in the Atacama Desert might be reflected in actinobacterial 

diversity. Actinobacteria are well known for having a cosmopolitan distribution (Ludwig et al. 

2012); however, this wide distribution can only be applied to lower taxonomic levels (e.g. genus) 

(DeLong et al. 2001). In this respect, the 16S rRNA gene sequences can help indicate the degree 
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of similarity of the new isolates with those obtained earlier from similar environments. The 

majority of samples used previously for the isolation of Actinobacteria from the Atacama Desert 

were described as hyper-arid soils (Okoro et al. 2009; Santhanam et al. 2012; Idris et al. 2017; 

Goodfellow et al. 2017; Carro et al. 2018), while in the present study Actinobacteria from 

different sources were studied. Salar de Llamará strains were obtained only from microbial mats 

samples, which are characterised by their high amount of nutrients (carbon, nitrogen, phosphate, 

etc.), contrasting with previous studies that focused only on hyper-arid soils. These isolates 

showed high similarity with Actinobacteria obtained from environments with similar 

physicochemical characteristics, such as mangroves (Thawai et al. 2007, 2008; Xie et al. 2011) 

and marine sediments (Maldonado et al. 2005). Regarding rhizosphere samples from Socaire, due 

to nutrients provided by the plants, the Actinobacteria diversity showed identity with plant-

associated Actinobacteria characterised in direct and indirect growth promotion (Verma et al. 

2015; Singh et al. 2016; Yadav et al. 2018). Salar de Huasco is described as a cold environment 

in which the water and sediments contain high concentrations of salt; isolates obtained from these 

samples showed high similarity with strains obtained from cold deserts (Mayilraj 2006), saline 

in-land sediments (Yang et al. 2008; Gao et al. 2016), marine sediments (Bredholdt et al. 2007; 

Engelhardt et al. 2010), and alkaline soils (Schippers et al. 2002; Ueda et al. 2008), among others. 

Even though their 16S rRNA gene showed similarity with Actinobacteria strains obtained from 

these environments, most of the strains obtained in our study show a 16S rRNA gene similarity 

level below the threshold of putative novel species (Yarza et al. 2014). 

Characterisation of novel of isolates 

In accordance with 16S rRNA gene sequence similarities of >98.7%, thirty-nine (49.3%) of the 

strains obtained in this thesis represent novel species. The percentage of novel species obtained 

from the hypersaline lakes was higher (15; 47%) compared to the rhizosphere samples (13; 28%) 

(Chapters I and II). Under-explored environments such as the Salares in Atacama Desert 

represent a good source of novel species, which is demonstrated by the results from Laguna de 

Chaxa of Salar de Atacama (Santhanam et al. 2012, 2013; Busarakam et al. 2014). Furthermore, 

we identified one of the strains (Llam7) obtained from Salar de Llamará as a new taxon, 

confirming that Salares are environments that contain unique biodiversity. Using BLAST 

analysis of the 16S rRNA gene sequence of this strain, it could not be identified as belonging to 

one of the known genera of the Micromonosporaceae family (96 – 98%). Its placement on the 
147 

 



 

phylogenetic trees demonstrated that the strain represented a novel genus (Chapter II). 

Chemotaxonomic evidence of different diagnostic characteristics indicated differences with all 

members of the Micromonosporaceae family. Clearly, characteristics such as diamino acids in its 

peptidoglycan, hydrogenated menaquinone length, whole-sugar content, polar lipids, and fatty 

acid composition, as well as its physiological characteristics, differentiates Llam7T from 

Salinispora, Jishengella, Micromonospora and Verrucosispora genera. Superstesspora 

tarapacensis was proposed as the name for this bacterium (Chapter III).  

Another isolate obtained during this study (strain DB165T), representing a novel species of the 

genus Subtercola, was characterised. It was isolated from Llullaillaco Volcano Lake (6710 

meters above sea level), located in the Andes Mountains at the border of the Atacama Desert. 

Llullaillaco Volcano Lake has been characterised as a cold oligotrophic environment with high 

incidence of UV radiation; analyses of microbial communities in Llullaillaco soil have shown 

that more than the 90% of the population is comprised of Pseudonocardia bacteria 

(Actinobacteria) (Lynch et al. 2012, 2014). Llullaillaco Volcano Lake has not been studied, 

making the characterisation of the new Actinobacterium interesting as a model microorganism. 

The new isolate showed high similarity not only to Subtercola species, but also to type strains of 

Agreia and Frondihabitans (96 – 97%). Therefore, the identification only by 16S rRNA gene 

sequence analysis is problematic. Chemotaxonomic analyses reveal differences in the 

composition of dimethyl acetals and diamino acids present in the peptidoglycan (Schumann et al. 

2003), differentiating strain DB165T from Agreia and Frondihabitans. In addition, characteristics 

such as fatty acid profile, polar lipids, and enzymatic activity showed clear differences between 

the strain DB165T and the type strains of Subtercola genus. Hence strain DB165T was described 

as a new species named Subtercola vilae (Villalobos et al. 2018)(Chapter IV).  

The metabolic properties and mechanisms involved in the survival of Subtercola vilae were 

studied by analysing its genome sequence (Chapter V). The mechanisms that S. vilae might use to 

cope with the cold environment of Llullaillaco Volcano Lake were described. The genes involved 

in low temperature adaptation are similar to other cold-adapted microorganisms, and apparently 

are well conserved in closely related strains (Methe et al. 2005; Math et al. 2012). Most 

significantly, we identified two proteins that contain a functional ice-binding motif (Leinala et al. 

2002). This suggests that S. vilae produces proteins to interact with the ice. Despite the presence 
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of the ice-binding motif, half of the protein showed no similarity with the database. Thus, we 

propose that S. vilae contains novel ice-binding proteins which function in cold adaptation.  

Antibiotic activity of isolates and secondary metabolites biosynthetic gene clusters 

As Actinobacteria are well known to produce a large variety of antibiotics, and the need for new 

antibiotics is well documented, one of the goals of this thesis was the study of antibiotic 

production in the new isolates obtained. This was considered a promising approach, because 

under-explored environments and novel species are expected to represent valuable sources for 

new antibiotic compounds. 

In this study, more than the half (46 of 79) of the strains showed antibiotic activity against Gram-

positive and Gram-negative bacteria (Chapters I and II). The isolation of strains is an essential 

step in analysing their metabolic capacity to synthesise natural products. Metabolic characteristic 

can be explored using different approaches; for large culture collections, the selection of culture 

media proven to yield a high amount and chemical diversity of compounds can be used (e.g: 

oatmeal and starch glucose glycine medium for Streptomyces) (Goodfellow and Fiedler 2010), 

while for small culture collections a more intensive program such as OSMAC (one strain many 

compounds) can be used (Bode et al. 2002). This consists utilising several culture media for each 

strain to improve the production of secondary metabolites. Nowadays, due to the accessibility of 

genome sequence technologies, the mining of natural product biosynthetic gene clusters from the 

strain can reveal its genomic potential through the production of secondary metabolites 

(Doroghazi and Metcalf 2013). Compared with metagenomic approaches, the availability of an 

actinobacterial culture ensures the production of sufficient genomic DNA for cloning and 

expression of selected gene clusters. 

Nevertheless, the research involved in the screening and purification of potentially novel 

compounds is an extensive and expensive process. For that reason, the selection of few 

candidates for an in-depth analysis is crucial. Different databases provide valuable information 

needed to select good candidates for genome sequencing. Dictionary of Natural Products, for 

instance, is one of the most extensive databases that describes natural products produced by 

microorganisms; the List of Prokaryotic Names with Standing Nomenclature (LPNS; 

www.Bacterio.net), meanwhile, is a curated database of bacterial type strains. Using this 

information, a rational selection of strains can be made.  
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In this thesis, a total of sixteen actinobacteria genera were isolated. According to the Dictionary 

of Natural Products (CRC press, 2015) the genera Streptomyces, Micromonospora, and Nocardia 

stand out as proven producers with a high number of natural products described (Table 1). 

However, this might be attributed to their cosmopolitan distribution and the extensive knowledge 

regarding their selective isolation, as is indicated by the high number of type strains described for 

each of these genera. Interestingly, the genus Arthrobacter produced a lower number of 

compounds in comparison to Micromonospora. This can be attributed to their genomic potential 

for production of natural products, reflected in the number of biosynthetic gene clusters present in 

each genus. In Micromonospora the number of these clusters is evidently higher than 

Arthrobacter. A clear example of this potential is the genus Salinispora, which only contains 

three type species, but during intensive studies of their representatives, fifty-six natural product 

compounds have been described. Accordingly, strains affiliating to genera such Nonomuraea, 

Nocardiopsis, Kribbella, among others with a similar number of biosynthetic gene clusters such 

as Streptomyces, Nocardia, and Micromonospora represent an under-explored source of novel 

natural products. 
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Table 1. Potential of natural products discovered in Actinobacteria.  

*Closest next related strain to Superstesspora tarapacensis strain 
a Type validated strains according to the List of prokaryotic names and standing nomenclature 
(http://www.bacterio.net/) 
b Compounds associated to each genus in the Dictionary of Natural Products 2015 
c Natural products clusters detected in complete genomes (d) using AntiSMASH 3.0 (Weber et al. 2015)   
 

In our effort to explore the genomic potential in the production of natural products of strains 

isolated during this study, the genomes of 7 strains were sequenced (Chapter VI). The selection 

of the strains followed the criteria mentioned previously. According to their proven potential in 

the production of natural products, we selected two Streptomyces strains and Superstesspora 

tarapacensis strains (strain described as a novel genus in Chapter III), which are closely related 

to Salinispora and Micromonospora. Strains affiliated with Nocardiopsis, Kribbella, and Kocuria 

genera represent a good target for natural product discovery due to the high number of 

biosynthetic gene clusters encoded in their genomes, low number of species described, and few 

compounds described. In addition, the genome of S. vilae was also analysed (Chapter V). 

We annotated a total of 162 natural product biosynthetic gene clusters from all the isolates. 

Streptomyces strains AD26 and Huas28 showed the highest number of clusters (46, 43 

respectively) among all strains, approximately twice the number of clusters codified in 

Genus Strains isolated in 
this study 

Type strains described 
for each genusa 

Compounds described 
according to DNPb 

Number of NP 
gene clusters c 

Streptomyces 26 846 7389 25 
Micromonospora 7 72 422 17 
Salinispora 5* 3 56 16 
Plantactinospora 3 6 0 15 
Actinoplanes 1 48 133 18 
Nocardia 11 110 316 44 
Nocardiopsis 9 50 88 13 
Rhodococcus 3 65 28 25 
Nonomuraea 1 42 32 33 
Kribbella 1 27 3 12 
Pseudonocardia 1 59 30 12 
Arthrobacter 1 95 61 8 
Pseudarthrobacter 3 10 0 5 
Blastococcus 2 4 0 5 
Kocuria 2 23 2 5 
Microbacterium 1 97 5 3 
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Streptomyces coelicolor and Streptomyces ambofaciens genomes (Bentley et al. 2002; Thibessard 

et al. 2015). From all the clusters annotated in the seven actinobacterial genomes, only six 

showed 100% of synteny homology with known compounds. Some of the natural product 

biosynthetic gene clusters show a lower percentage of synteny homology (>50%), which 

indicates that the metabolites synthesised by these clusters might present a similar chemical 

scaffold with their similar hits from the database. We obtained novel natural product biosynthetic 

gene clusters that show a new arrangement of their gene synteny, showing low synteny homology 

with known natural product biosynthetic gene clusters. These clusters were found in two under-

explored genera, Kribbella sp. AD5 and Superstesspora tarapacensis Llam7, and in the two 

sequenced Streptomyces (AD26 and Huas28), suggesting that even when a high number of 

natural products have been discovered from this genus, the potential for the production of novel 

natural products is present in isolates from Atacama Desert environments. These biosynthetic 

gene clusters encode for lantipeptide, bacteriocin, and terpene compounds in Streptomyces sp. 

Huas28; thiopeptide and siderophore in Kribbella sp. AD5; non-ribosomal peptide, terpene, 

siderophore, and butyrolactone in Streptomyces sp. AD26; and non-ribosomal peptide and 

siderophore in Superstesspora tarapacensis Llam7. The results obtained from the genome 

analyses suggest a high degree of novelty in the biosynthetic gene clusters of the sequenced 

strains, though it is important to consider that only a small fraction of known compounds have 

their biosynthetic gene pathways resolved.  

Conclusions 

Atacama Desert environments exhibit a wide diversity of Actinobacteria, and are apparently 

unique for each biome studied so far. Actinobacteria isolates from the rhizosphere of plants are 

affiliated with groups commonly found to promote plant growth, while the ones found in the 

Salares de Llamará and Huasco showed high 16S rRNA gene similarity with Actinobacteria 

found in biomes with similar physicochemical conditions. More than half of the isolates are 

putative novel species, from which we described the novel genus and species Superstesspora 

tarapacensis from microbial mats of the hypersaline Salar de Llamará and the new species 

Subtercola vilae from Llullaillaco Volcano Lake. The majority of the Actinobacteria isolated 

from Atacama Desert were active in the production of antibiotics. Those studied by genome 

analysis showed a rich diversity of natural product biosynthetic gene clusters, most of which had 
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low similarity with clusters available in the databases. The mechanisms of Subtercola vilae to 

survive the cold conditions at Llullaillaco Volcano were deduced from the genome, and revealed 

a high number of genes involved in the degradation of reactive oxygen species, in membrane 

modulation, and in gene regulation at lower temperatures, as well as the presence of two novel 

ice-binding proteins.  

Future studies shall focus on the structure elucidation of compounds produced by the isolated 

strains and heterologous expression of biosynthetic gene clusters which are necessary to 

transform the potential of the Actinobacteria into biotechnological products. 
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Supplementary material for chapter VI 

Supplementary Tables 1-7. Predicted biosynthetic gene clusters of all sequenced strains.  

 

Supplementary Table 1. Predicted biosynthetic gene clusters of Kocuria sp. Huas7. 

Cluster Gene cluster type Size (kb) Compound with gene cluster of highest homology MIBiG BGC-ID 
Cluster 1* Siderophore 12.0 Desferrioxamine B biosynthetic gene cluster (60% of genes show similarity) BGC0000941 c1 
Cluster 2 Terpene 15.6 Carotenoid_biosynthetic_gene_cluster (50% of genes show similarity) BGC0000644_c1 
Cluster 3 Other 12.2 Neocarzilin_biosynthetic_gene_cluster (14% of genes show similarity) BGC0000111_c1 
Cluster 4 Other 11.6 - - 
Cluster 5 Other 8.2 - - 
Cluster 6 T3pks 4.7 - - 
Cluster 7 Nrps 4.5 - - 
Cluster 8 T1pks 4.2 Chlorothricin_biosynthetic_gene_cluster (13% of genes show similarity) BGC0000036_c1 
Cluster 9 Otherks 2.0 - - 
Cluster 10 Lantipeptide 1.2 - - 
Cluster 11 Ectoine 1.0 - - 

*Indicates that the biosynthetic gene cluster is complete, therefore it is not split into different contigs. 
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Supplementary Table 2. Predicted biosynthetic gene clusters of Nocardiopsis sp. Huas15. 

Cluster Gene cluster type Size (kb) Compound with gene cluster of highest homology MIBiG BGC-ID 
Cluster 1 ectoine 5.4 - - 
Cluster 2 t1pks 5.7 ECO-02301_biosynthetic_gene_cluster (32% of genes show similarity) BGC0000052_c1 
Cluster 3 lantipeptide 4.3 - - 
Cluster 4 t1pks 4.1 - - 
Cluster 5 nrps 3.2 - - 
Cluster 6 Other ks 2.7 - - 
Cluster 7 ectoine 2.1 - - 
Cluster 8 nrps 2.0 - - 
Cluster 9 other 1.5 - - 
Cluster 10 siderophore 1.1 - - 
Cluster 11 terpene 1.0 - - 

*Indicates that the biosynthetic gene cluster is complete, therefore it is not split into different contigs. 
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Supplementary Table 3. Predicted biosynthetic gene clusters of Streptomyces sp. Huas28. 

Cluster Gene cluster type Size (kb) Compound with gene cluster of highest homology MIBiG BGC-ID 
Cluster 1 amglyccycl-nrps 45.6 Incednine biosynthetic gene cluster (8% of genes show similarity) BGC0000078 c1 
Cluster 2* lantipeptide 30.7 - - 
Cluster 3* terpene 17.6 Xiamycin_biosynthetic_gene_cluster (13% of genes show similarity) BGC0000665_c1 
Cluster 4 t1pks 26.8 SWA-2138_biosynthetic_gene_cluster (28% of genes show similarity) BGC0000597_c1 
Cluster 5 nrps 24.4 Telomycin_biosynthetic_gene_cluster (5% of genes show similarity) BGC0001406_c1 
Cluster 6 indole-nrps 21.3 7-prenylisatin_biosynthetic_gene_cluster (40% of genes show similarity) BGC0001294_c1 
Cluster 7 nrps 20.4 Kirromycin_biosynthetic_gene_cluster (1% of genes show similarity) BGC0001070_c1 
Cluster 8 amglyccycl 13.5 Jinggangmycin_biosynthetic_gene_cluster (100% of genes show similarity) BGC0000701_c1 
Cluster 9 nrps 18.1 - - 
Cluster 10 t1pks 16.9 Vicenistatin_biosynthetic_gene_cluster (60% of genes show similarity) BGC0000167_c1 
Cluster 11* bacteriocin 11.4 - - 
Cluster 12* ectoine 10.2 Ectoine_biosynthetic_gene_cluster (100% of genes show similarity) BGC0000853_c1 
Cluster 13 nrps 14.2 - - 
Cluster 14 lantipeptide 13.5 - - 
Cluster 15* terpene 10.9 - - 
Cluster 16 lantipeptide 11.9 - - 
Cluster 17 other 11.2 - - 
Cluster 18 t1pks 10.8 - - 
Cluster 19 t3pks 10.8 Herboxidiene_biosynthetic_gene_cluster (2% of genes show similarity) BGC0001065_c1 
Cluster 20 nrps 9.5 - - 
Cluster 21 t1pks 9.3 Elaiophylin_biosynthetic_gene_cluster (20% of genes show similarity) BGC0000053_c1 
Cluster 22 lantipeptide 9.0 SapB_biosynthetic_gene_cluster (75% of genes show similarity) BGC0000551_c1 
Cluster 23 nrps 9.0 Kedarcidin_biosynthetic_gene_cluster (2% of genes show similarity) BGC0000081_c1 
Cluster 24 t2pks 8.9 Rabelomycin_biosynthetic_gene_cluster (16% of genes show similarity) BGC0000262_c1 
Cluster 25 siderophore 8.7 Desferrioxamine_B_biosynthetic_gene_cluster (50% of genes show similarity) BGC0000940_c1 
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Cluster 26 t1pks 6.8 - - 
Cluster 27 nrps 6.5 - - 
Cluster 28 other 6.3 Diazepinomicin_biosynthetic_gene_cluster (12% of genes show similarity) BGC0000679_c1 
Cluster 29 terpene 5.7 Hopene_biosynthetic_gene_cluster (23% of genes show similarity) BGC0000663_c1 
Cluster 30 nrps 5.6 - - 
Cluster 31 siderophore 5.5 - - 
Cluster 32 nrps 5.4 - - 
Cluster 33 nrps 4.8 Skyllamycin_biosynthetic_gene_cluster (6% of genes show similarity) BGC0000429_c1 
Cluster 34 nrps 3.9 - - 
Cluster 35 t3pks 3.8 Alkyl-O-Dihydrogeranyl-Methoxyhydroquinones_biosynthetic_gene (57% of genes 

  
BGC0001077_c1 

Cluster 36 t1pks 3.5 Halstoctacosanolide_biosynthetic_gene_cluster (77% of genes show similarity) BGC0000073_c1 
Cluster 37 t1pks 3.5 Apoptolidin_biosynthetic_gene_cluster (17% of genes show similarity) BGC0000021_c1 
Cluster 38 siderophore 3.1 - - 
Cluster 39 terpene 2.0 - - 
Cluster 40 terpene 1.9 Carotenoid_biosynthetic_gene_cluster (18% of genes show similarity) BGC0000633_c1 
Cluster 41 nrps 1.1 - - 
Cluster 42 nrps 1.0 - - 

*Indicates that the biosynthetic gene cluster is complete, therefore it is not split into different contigs. 
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Supplementary Table 4. Predicted biosynthetic gene clusters of Kribbella sp. AD5. 

Cluster Gene cluster 
 

Size (kb) Compound with gene cluster of highest homology MIBiG BGC-ID 
Cluster 1 lantipeptide 49.4 Catenulipeptin biosynthetic gene cluster (60% of genes show similarity) BGC0000501 c1 
Cluster 2* terpene 22.2 Geosmin_biosynthetic_gene_cluster (100% of genes show similarity) BGC0000661_c1 
Cluster 3* thiopeptide 22.2 - - 
Cluster 4* butyrolactone 10.9 Glycopeptidolipid_biosynthetic_gene_cluster (7% of genes show similarity) BGC0000769_c1 
Cluster 5* lantipeptide 22.7 - - 
Cluster 6* lantipeptide 22.5 Catenulipeptin_biosynthetic_gene_cluster (60% of genes show similarity) BGC0000501_c1 
Cluster 7* siderophore 11.9 Desferrioxamine_B_biosynthetic_gene_cluster (40% of genes show similarity) BGC0000941_c1 
Cluster 8 other 28.6 - - 
Cluster 9 t3pks 30.1 Alkylresorcinol_biosynthetic_gene_cluster (100% of genes show similarity) BGC0000282_c1 
Cluster 10* siderophore 15.2 - - 
Cluster 11 t1pks-nrps 40.8 Actagardine_biosynthetic_gene_cluster (6% of genes show similarity) BGC0000495_c1 
Cluster 12* lantipeptide 17.1 Catenulipeptin_biosynthetic_gene_cluster (60% of genes show similarity) BGC0000501_c1 
Cluster 13* t2pks 35.4 Dactylocycline_biosynthetic_gene_cluster (18% of genes show similarity) BGC0000216_c1 
Cluster 14* arylpolyene 22.1 Avilamycin_A_biosynthetic_gene_cluster (5% of genes show similarity) BGC0000026_c1 

*Indicates that the biosynthetic gene cluster is complete, therefore it is not split into different contigs. 
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Supplementary Table 5. Predicted biosynthetic gene clusters of Streptomyces sp. AD26. 

Cluster Gene cluster 
 

Size (kb) Compound with gene cluster of highest homology MIBiG BGC-ID 
Cluster 1* t1pks 46.3 Tetronasin biosynthetic gene cluster (9% of genes show similarity) BGC0000163 c1 
Cluster 2 terpene-t1pks 55.4 Isorenieratene_biosynthetic_gene_cluster (85% of genes show similarity) BGC0000664_c1 
Cluster 3 t1pks-nrps 92.5 ECO-02301_biosynthetic_gene_cluster (42% of genes show similarity) BGC0000052_c1 
Cluster 4 transatpks-t1pks 45.1 Difficidin_biosynthetic_gene_cluster (13% of genes show similarity) BGC0000176_c1 
Cluster 5* t1pks 34.2 Piericidin_A1_biosynthetic_gene_cluster (91% of genes show similarity) BGC0000124_c1 
Cluster 6* terpene 26.7 Hopene_biosynthetic_gene_cluster (61% of genes show similarity) BGC0000663_c1 
Cluster 7 nrps 40.3 Stenothricin_biosynthetic_gene_cluster (13% of genes show similarity) BGC0000431_c1 
Cluster 8 t1pks 60.4 Fostriecin_biosynthetic_gene_cluster (28% of genes show similarity) BGC0000060_c1 
Cluster 9* nrps 58.7 - - 
Cluster 10* terpene 18.8 Merochlorin_biosynthetic_gene_cluster (7% of genes show similarity) BGC0001083_c1 
Cluster 11 t1pks 37.2 Candicidin_biosynthetic_gene_cluster (23% of genes show similarity) BGC0000034_c1 
Cluster 12* otherks 24.1 - - 
Cluster 13* other 30.1 Echosides_biosynthetic_gene_cluster (76% of genes show similarity) BGC0000340_c1 
Cluster 14 nrps 40.4 GE81112_biosynthetic_gene_cluster (14% of genes show similarity) BGC0000360_c1 
Cluster 15* terpene 21.1 - - 
Cluster 16* siderophore 7.6 - - 
Cluster 17 arylpolyene 35.7 Kedarcidin_biosynthetic_gene_cluster (6% of genes show similarity) BGC0000081_c1 
Cluster 18* t3pks 28.5 Azinomycin_B_biosynthetic_gene_cluster (6% of genes show similarity) BGC0000960_c1 
Cluster 19 nrps 28.3 Paenibactin_biosynthetic_gene_cluster (66% of genes show similarity) BGC0000401_c1 
Cluster 20 terpene 21.8 - - 
Cluster 21* t3pks 26.7 Flaviolin_biosynthetic_gene_cluster (75% of genes show similarity) BGC0000902_c1 
Cluster 22 t1pks 23.3 Aculeximycin_biosynthetic_gene_cluster (26% of genes show similarity) BGC0000002_c1 
Cluster 23* butyrolactone 8.2 - - 
Cluster 24 other 21.8 A-503083_biosynthetic_gene_cluster (3% of genes show similarity) BGC0000288_c1 
Cluster 25 nrps 21.5 Arylomycin_biosynthetic_gene_cluster (33% of genes show similarity) BGC0000306_c1 
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Cluster 26 t1pks 21.1 Nigericin_biosynthetic_gene_cluster (77% of genes show similarity) BGC0000114_c1 
Cluster 27 nrps 18.5 Myxochelin_biosynthetic_gene_cluster (16% of genes show similarity) BGC0001345_c1 
Cluster 28* terpene 14.2 - - 
Cluster 29 other 17.5 - - 
Cluster 30 terpene 12.8 Xiamycin_biosynthetic_gene_cluster (13% of genes show similarity) BGC0000666_c1 
Cluster 31 t1pks 14.5 Pimaricin_biosynthetic_gene_cluster (29% of genes show similarity) BGC0000125_c1 
Cluster 32* ectoine 10.4 Ectoine_biosynthetic_gene_cluster (100% of genes show similarity) BGC0000853_c1 
Cluster 33 t1pks 11.8 Nigericin_biosynthetic_gene_cluster (61% of genes show similarity) BGC0000114_c1 
Cluster 34 other 11.5 - - 
Cluster 35 terpene 10.1 Isorenieratene_biosynthetic_gene_cluster (18% of genes show similarity) BGC0001227_c1 
Cluster 36 nrps 9.5 - - 
Cluster 37 transatpks 8.9 - - 
Cluster 38 t1pks 8.7 Lasalocid_biosynthetic_gene_cluster (13% of genes show similarity) BGC0000087_c1 
Cluster 39 ladderane 8.6 - - 
Cluster 40 transatpks 8.2 Bryostatin_biosynthetic_gene_cluster (60% of genes show similarity) BGC0000174_c1 
Cluster 41* siderophore 7.4 - - 
Cluster 42 t1pks 6.6 - - 
Cluster 43 siderophore 5.6 - - 
Cluster 44 t1pks 4.5 - - 
Cluster 45 bacteriocin 2.5 - - 
Cluster 46 bacteriocin 1.6 - - 

*Indicates that the biosynthetic gene cluster is complete, therefore it is not split into different contigs. 
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Supplementary Table 6. Predicted biosynthetic gene clusters of Superstesspora tarapacensis Llam7T. 

Cluster Gene cluster 
 

Size (kb) Compound with gene cluster of highest homology MIBiG BGC-ID 
Cluster 1* t3pks-t1pks 58.2 Kendomycin biosynthetic gene cluster (55% of genes show similarity) BGC0001066 c1 
Cluster 2* bacteriocin 10.8 Collismycin_A_biosynthetic_gene_cluster (7% of genes show similarity) BGC0000973_c1 
Cluster 3* thiopeptide 34.5 Yatakemycin_biosynthetic_gene_cluster (9% of genes show similarity) BGC0000466_c1 
Cluster 4* nrps 30.6 - - 
Cluster 5* nrps 31.3 Fluorometabolite_biosynthetic_gene_cluster (33% of genes show similarity) BGC0000903_c1 
Cluster 6 nrps 46.0 Pacidamycin_biosynthetic_gene_cluster (22% of genes show similarity) BGC0000951_c1 
Cluster 7 t1pks-nrps 31.8 Lasalocid_biosynthetic_gene_cluster (18% of genes show similarity) BGC0000087_c1 
Cluster 8 lantipeptide-nrps 22.7 - - 
Cluster 9 nrps 21.4 Polyoxypeptin_biosynthetic_gene_cluster (27% of genes show similarity) BGC0001036_c1 
Cluster 10 nrps 17.7 - - 
Cluster 11 t1pks 17.3 Salinomycin_biosynthetic_gene_cluster (12% of genes show similarity) BGC0000144_c1 
Cluster 12 nrps 14.7 Polyoxypeptin_biosynthetic_gene_cluster (24% of genes show similarity) BGC0001036_c1 
Cluster 13 nrps 13.8 - - 
Cluster 14 terpene 13.0 Phosphonoglycans_biosynthetic_gene_cluster (3% of genes show similarity) BGC0000806_c1 
Cluster 15 terpene 12.3 - - 
Cluster 16 siderophore 11.6 Desferrioxamine_B_biosynthetic_gene_cluster (83% of genes show similarity) BGC0000940_c1 
Cluster 17 terpene 11.5 - - 
Cluster 18 t1pks 10.3 Naphthomycin_biosynthetic_gene_cluster (15% of genes show similarity) BGC0000106_c1 
Cluster 19 t2pks 10.0 Spore_pigment_biosynthetic_gene_cluster (33% of genes show similarity) BGC0000271_c1 
Cluster 20 other 9.5 - - 
Cluster 21 nrps 8.5 - - 
Cluster 22* siderophore 8.0 - - 
Cluster 23 t1pks 7.2 Heronamide_biosynthetic_gene_cluster (33% of genes show similarity) BGC0001349_c1 
Cluster 24 nrps 6.2 - - 
Cluster 25 t3pks 5.7 Alkyl-O-Dihydrogeranyl-Methoxyhydroquinones_biosynthetic_gene (28% of 

   
BGC0001077_c1 
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Cluster 26 nrps 5.4 - - 
Cluster 27 nrps 5.2 Thiocoraline_biosynthetic_gene_cluster (7% of genes show similarity) BGC0000445_c1 
Cluster 28 terpene 4.9 Sioxanthin_biosynthetic_gene_cluster (100% of genes show similarity) BGC0001087_c4 
Cluster 29 bacteriocin 4.8 Lymphostin_biosynthetic_gene_cluster (30% of genes show similarity) BGC0001007_c1 
Cluster 30 nrps 4.6 Coelibactin_biosynthetic_gene_cluster (18% of genes show similarity) BGC0000324_c1 
Cluster 31 terpene 3.2 - - 
Cluster 32 t1pks 2.8 - - 
Cluster 33 nrps 2.7 - - 
Cluster 34 nrps 2.6 - - 
Cluster 35 ladderane 1.5 Skyllamycin_biosynthetic_gene_cluster (4% of genes show similarity) BGC0000429_c1 

*Indicates that the biosynthetic gene cluster is complete, therefore it is not split into different contigs. 
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Supplementary Table 7. Predicted biosynthetic gene clusters of Subtercola vilae DB165T. 

Cluster Gene cluster type Size (kb) Compound with gene cluster of highest homology MIBiG BGC-ID 
Cluster 1 terpene 20.8 Carotenoid biosynthetic gene cluster (37% of genes show similarity) BGC0000637 c1 
Cluster 2 t3pks 40.9 Alkylresorcinol_biosynthetic_gene_cluster (100% of genes show similarity) BGC0000282_c1 
Cluster 3 other 17.1 - - 

*Indicates that the biosynthetic gene cluster is complete, therefore it is not split into different contigs. 
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