Deep mantle H₂O recycling at 3.3Ga?

A.V. SOBOLEV^{1,2}, E.V. ASAFOV², A. A. GURENKO³, N. T. ARNDT², V.G. BATANOVA^{1,2}, M.V. PORTNYAGIN^{2,4}, D. GARBE-SCHÖNBERG⁵, S. P. KRASHENINNIKOV², A. H. WILSON⁶ AND G.R. BYERLY^{7 123}

¹ UGA, France; <u>alexander.sobolev@univ-grenoble-alpes.fr</u>

² Vernadsky Institute, Russia; <u>evasafov@gmail.com</u>

³ CRPG, Nancy, France, <u>agurenko@crpg.cnrs-nancy.fr</u>

⁴GEOMAR, Kiel, Germany; <u>mportnyagin@geomar.de</u>

⁵CAU Kiel Univ., Germany; <u>d.garbe-schoenberg@gmx.de</u>

⁶ University of the Witwatersrand; <u>Allan.Wilson@wits.ac.za</u>

⁷ LSU, Baton Rouge, USA; <u>glbyer@lsu.edu</u>

Knowledge of water in the Earth's interior and its evolution through time is of great importance for understanding global geodynamics. MgO-rich ultramafic magmas - komatiites - result from highdegree mantle melting at high pressures and thus are excellent probes of H₂O contents in the deep mantle. Recently, a significant excess of H₂O over elements of similar behaviour in magmatic processes (e.g. Ce) was found in melt inclusions in Mg-rich olivine from 2.7 Ga komatiites (Sobolev et al, Nature 2016; Asafov et al, Chem. Geol. 2018). These data were interpreted as the evidence of a deep hydrated mantle reservoir, probably at the transition zone, at the Neoarchean time. In this paper we confirm the mantle origin of elevated H₂O in komatiites using H isotope compositions of the melt inclusions and present similar data for 3.3 Ga old Weltevreden komatiites (S. Africa). The reconstructed initial hydrogen isotope composition of komatiites ($\delta D < -110\%$) is significantly more depleted in deuterium than surface reservoirs and typical mantle and argues that dehydrated subducted lithosphere was the source of H₂O accumulated in the transition zone by ringwoodite or wadsleyite (Bercovici & Karato, Nature, 2003). This interpretation is supported by a significant Cl excess and the temporal trend of Pb/Ce in the mantle sources of komatiites. These results argue that subduction occurred on the Earth well before 3.3 Ga.