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The Origins of the Chasm

SOFTWARE ENGINEERING

Report on a conference sponsored by the
NATO SCIENCE COMMITTEE
Garmisch, Germany, 7th to 11th October 1968

Chairman: Professor Dr. F. L. Bauer

Co-chairmen: Professor L. Bolliet, Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html

Part 1: Software Engineering vs. Computational Science

HIGHLIGHTS

Although much of the discussions were of a detailed technical nature, the report also contains sections reporting on
discussions which will be of interest to a much wider audience. This holds for subjects like

. the problems of achieving sufficient reliability in the data systems which are becoming increasingly
integrated into the central activities of modern society

* the difficulties of meeting schedules and specifications on large software projects

. the education of software (or data systems) engineers

. the highly controversial question of whether software should be priced separately from hardware.

Thus, while the report is of particular concern to the immediate users of computers and to computer manufacturers,
many points may serve to enlighten and warn policy makers at all levels. Readers from the wider audience should
note, however, that the conference was concentrating on the basic issues and key problems in the critical areas of
software engineering. It therefore did not attempt to provide a balanced review of the total state of software, and tends
to understress the achievements of the ficld,

In fact, a tremendously excited and enthusiastic atmosphere developed at the
conflerence as participants came o realize the degree of common concern
about what some were even willing to term the “soffware crisis”, and general
agreement arose about the importance of trying to convince not just other
colleagues, but also policy makers at all levels, of the seriousness of the
problems that were being discussed.

[Randell 2018]



Mutual Ignorance: Software Engineering

Software Engineering for Generality [Randell 2018]:

That NATO was the sponsor of this conference marks the relative distance of
software engineering from computation in the academic context.

The perception was that while errors in scientific data processing applications
might be a “hassle,” they are all in all tolerable.

In contrast, failures in mission-critical military systems might cost lives and
substantial amounts of money.

Based on this attitude, software engineering—like computer science as a
whole— aimed for generality in its methods, techniques, and processes and
focused almost exclusively on business and embedded software.

Because of this ideal of generality, the question of how specifically
computational scientists should develop their software in a well-engineered
way would probably have perplexed a software engineer, whose answer might
have been:

— “Well, just like any other application software.”

Part 1: Software Engineering vs. Computational Science



Characteristics of Scientific Software

 Requirements are not known up front
— And often hard to comprehend without some PhD in science

e Verification and validation are difficult,
— and strictly scientific

* Overly formal software processes restrict research

Vague idea of Develop piece Is this
what is needed of software what | want?

L Modify/extend [¢———

No
Looks
No like it.
Decide: Does it seem to
“That will do.” do what | expect!

Part 1: Software Engineering vs. Computational Science



Characteristics of Scientific Software

e Software quality requirements

— Jeffrey Carver and colleagues.found that scientific software
developers rank the following characteristics as the most
important, in descending order [Carver et al. 2007]:

1. functional (scientific) correctness,
2. performance,

3. portability, and

4. maintainability.

e Scientific software in itself has no value

— Not really true for community software

* Few scientists are trained in software engineering

— Disregard of most modern software engineering methods and
tools

Part 1: Software Engineering vs. Computational Science



Mutual Ignorance: Computational Science

The Productivity Crisis in Computational Science

e As early scientific software was developed by small teams of scientists primarily
for their own research, modularity, maintainability, and team coordination
could often be neglected without a large impact.

The Credibility Crisis in Computational Science:

e Climategate. The scandal erupted after hackers leaked the email
correspondence of scientists just before the 2009 United Nations Climate
Change Conference.

 While the accusations that data was forged for this conference turned out to be
unfounded, the emails uncovered a lack of programming skills among the
researchers and exposed to a large public audience the widely applied practice
in climate science of not releasing simulation code and data together with
corresponding publications [Merali 2010].

 This in itself was, of course, enough to undermine the scientists’ work, as the
predictive capabilities of simulations are only as good as their code quality and
their code was not even available for peer review—not to mention public
review [Fuller and Millett 2011].

e Within the scientific community, Climategate initiated a debate about the
reproducibility of computational results.

Part 1: Software Engineering vs. Computational Science
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Software Carpentry

e Programming / Coding (Fortran, C++, Python, R,
etc)

e Using compilers, interpreters, editors, etc
e Using version control (git etc)

e Team coordination (GitHub, Gitlab, etc)
 Continuous integration (Jenkins etc)

* Test automation, static analysis, etc

Teaching basic lab skills

S d[’ftw a re C a r p e n t ry for research computing

https://software-carpentry.org/

Part X: Titel 9



SE for Computational Science

[Johanson & Hasselbring 2018]:

e Among the methods and techniques that software
engineering can offer to computational science are

— model-driven software engineering with domain-specific
languages,

— modular software architectures,

— specific requirements engineering techniques [Thew et al.
2009], and

— testing without test oracles [Kanewala and Bieman 2014].

 This way, computational science may achieve
maintainable, long-living software [Goltz et al., 2015],

— in particular for community software.

Part 2: Software Engineering for Computational Science 10
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The Sprat Approach: Hierarchies of DSLs

>

Deployment Language Engineer

>

Ecosystem Language Engineer

o

PDE Language Engineer

Part 3: Sprat: Domain-specific SE for Ecology

Deployment Specification -

Ansible Playbook DSL

X

Deployment Engineer

X

Stock Assessment Scientist

«refer»
—— Simulation Specification -
Sprat Ecosystem DSL
«generatey
— Ecosystem Model -
Sprat PDE DSL, embedded in C++
«include»
FEM PDE Solver <

Sprat PDE DSL, embedded in C++

X

Ecological Modeler

X

Numerical Mathematician

[Johanson & Hasselbring 2014a,b, 2016b]
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The Sprat Ecosystem

Oz Qutline &2 %|&|= 8 | balicecosystem i3
> $ Ecosystem Ecosystem {
4 g Output Hame: "Baltic Sea”
B CutputFormat SimulateFor: 3.5 [v]
i@ Juvenile Herring Biomass TimeStep: 5 [h]

f&@ Herring Mumber Distribution SeabirdDeathTerm:

4 % Herring

Ontput {

3 Scientifichlame )
B MaSwimmingSpeed CutputFormat: NetCDFFile @
record

B GrowthCoefficient

"Juvenile Herring Biomass"™ (Bewvery(o

DSL

Deployment Specification

Ansible Playbook DSL

«refery»

R

Simulation Specification

Sprat Ecosystem DSL
Ry,

«generatey

Ecosystem Model

7

Sprat PDE DSL, embedded in C++
«include»

FEM PDE Solver
Sprat PDE DSL, embedded in C++

I

"output..nc”

[nl):

biomass (species = Herring, mass = [g] ~ 5 [g])
. B MaxMass record "Herring Number Distribution™ fafterSimulation:
’ Dc:ziprdﬁt massConcentration(species = Herring) / localBiomass (species = Herring, mass = ~)
3 [;c::, o
et Input Species Herring {
ScientificName: "Clupea harengus™
MaxSwimmingSpeed: 0.08 [m/=3]
GrowthCoefficient: # log(l.5) @ 1C [°C]
l MaxMa=ss: 450

|Mi55ing attribute 'InitialDis.triI::lutiu:un'l (X]

A

Spec

B InitialDistribution - Attribute

Part 3: Sprat: Domain-specific SE for Ecology

s Expression should have unit from category 'Mass' - using default unit

1 quick fix available:

By Add base unit to expressior
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Evaluation of the Sprat Ecosystem DSL

very high —

high |

relatively high

relatively low

low —

very low —

(a) Level of abstraction

very high

high

relatively high

relatively low

low

very low

1

relatively high

1

DSL

(d) Absence of technicalities

Part 3: Sprat: Domain-specific SE for Ecology

(b) Simplicity of use

very high

high

relatively high

relatively low

low

very low

(e) Maintainability of solutions

relatively high

(¢) Ease

Comprehension

[Johanson &
Hasselbring 2017]
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The Sprat PDE DSL

Deployment Specification

Ansible Playbook DSL

«refery»

Simulation Specification

Sprat Ecosystem DSL

«generatey

Ecosystem Model

( Sprat PDE DSL )mbedded in C++
e

«include»

FEM PDE Solver

Sprat PDE DSL )mbedded in C++

Evaluation:

= W M=

[0 s BN BN RO |

11
12
13
14

15

DistributedVector u, q;
ElementVectorArray F_L;
ElementMatrixArray C;
ElementMatrix D;

foreach_omp(tau, Elements(mesh), private(D), {
foreach(i, ElementDoF(tau), {
foreach(j, ElementDoF(tau), {
D(i, j) = max(i.globalIndex(), j.globalIndex());
b
})
F_L[tau] = C[taul*xq + Dx*u;
})
u *= u.dotProduct(q);
u.exchangeDatal();

e Expert interviews with domain experts and professional
DSL developers from industry

 Micro- and macro-benchmarks for performance evaluation

Part 3: Sprat: Domain-specific SE for Ecology

[Johanson et al. 2016b]



The Sprat Marine Ecosystem Model

The Sprat Model

Growth
Controlled by Controlled by
Time/Temp. Biomass Uptake
Reproduction
Metabolic Costs
Resting Net Swimming Background Mortality
Metabolic Rate Costs
Fishing
Movement
Active Passive Predation (Opportunistic)

Reactive Predictive Intake Losses

Biogeochemical Ocean Model

Zooplankton Currents Temperature

Original scientific contributions to Ecological Modeling [Johanson et al. 20173]

Part 3: Sprat: Domain-specific SE for Ecology



Sprat: Summary

The Sprat Approach:
Model-driven software engineering
for computational science
— Concept of DSL Hierarchies
— DSLs for Marine Ecosystem Modeling
— Empirical Evaluation of the Sprat Approach

Available online:
— DSL implementations

— Sprat Model source code http://www.sprat.uni-kiel.de/

— Experimental data and analysis scripts

http://dx.doi.org/10.5281/zenodo0.61373

Part 3: Sprat: Domain-specific SE for Ecology 17
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Reproducible Research in Computational Science

Science

“Replication is the ultimate standard by which
scientific claims are judged.”

Reproducibility Spectrum
Publication +

Publication LifKEEET Full
only Code replication
Code executable
and data
code and data

Not reproducible Gold standard

[Peng 2011]

Part 4: Reproducibility 19



ECOLOGICAL

== Publishing Ocean Observation Data & Analysis

e Paper: http://dx.doi.org/10.1016/j.ecoinf.2017.02.007 4 4
e Code: https://github.com/cau-se/oceantea/ ~ <
 Software service with data: http://oceantea.uni-kiel.de/ e O28aN der zukunt

Modeling Polyp Activity of Paragorgia arborea
Using Supervised Learning

Arne Johanson,” Sascha Tfliigcl,b Wolf-Christian Dullo,?
Peter Linke,” Wilhelm Hasselbring®

“ Software Engineering Group, Kiel University, Germany
ECEOMAR Helmholtz Centre for Occan Research, Kiel, Germany

Abstract—While the distribution patterns of cold-water corals, such as Paragorgia ar-
borea, have received increasing attention in recent studies, little is known about their in
situ activity patterns. In this paper, we examine polyp activity in P arborea using ma-
chine learning techniques to analyze high-resolution time series data and photographs
obtained from an autonomous lander cluster deployed in the Stjernsund, Norway. An
interactive illustration of the models derived in this paper is provided online as sup-
plementary material.

We find that the best predictor of the degree of extension of the coral polyps is cur-

e—a Observations = 1 Feature 2 Features = & Features o—o Decision Boundary

10

12-06-14 12-06-15 12-06-16

[Johanson et al. 2017b] http://oceantea.uni-kiel.de/
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COMMUNICATIONS OF THE ACM | MARCH 2015 | VOL. 58 | NO. 3

DOI:10.1145/2658987 Shriram Krishnamurthi and Jan Vitek

Viewpoint

The Real Software
Crisis: Repeatability
as a Core Value

Sharing experiences running artifact evaluation
committees for five major conferences.

“Science advances faster when we can build on existing results,

and when new ideas can easily be measured against the state of
the art.”

Repeatability, replicability & reproducibility

Several ACM SIGMOD, SIGPLAN, and SIGSOFT conferences have
initiated artifact evaluation processes.

Part 4: Reproducibility
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Example Experimental “Reproducibility Data” in Software Engineering

A Comparison of the Influence of Different

Multi-Core Processors on the Runtime e

. . . . . Benchmark for: A Comparison of the Influence 5 0
Overhead for Application-Level Monitoring of Diferent Mt Bore Proceseors o the - s
Runtime Overhead for Application-Level
Monitoring
Jan Waller! and Wilhelm Hasselbring'-? Yo o s 8 . sy
! Software Engineering Group, Christian-Albrechts-University Kiel, Germany . KEﬂl’:P::i -
2 SPEC Research Group. Steering Committee, Gainesville, VA, USA ed [ oemcimains |
Meeting:
Prague, Czech Republic, May 31 - June 1, 2012

Related identifiers:
Supglerment fo

© Overhead (median with gquartiles) of ... c-mfwmlw
o ] Writing (W) Collecting (C) M MioaBench
@ Instrumentation () 03 Method Time (T) - License tor ies):
’w:"“ O (mean values with 95% confidence intervals) AOkE 8 i
‘q-; o 538
g3
8
g o
a8 ] .
c = . |
/% | From Reproducibility Problems to Improvements: A journey
NEEUNTREN IR
g R TRIAN ] ) )
r . : Holger Eichelberger, Aike Sass, Klaus Schmid
Ex ::izment A3 {eichelberger, schmid}@sse.uni-hildeshein.de, sassai@uni-hildesheim.de
P University of Hildesheim, Software Systems Engineering, 31141 Hildesheim, Germany
[Waller and Hasselbring 2012] [Eichelberger et al. 2016]
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Ill

Example Empirical “Reproducibility Data”
with Artifact Evaluation

Hierarchical Software Landscape Visualization for
System Comprehension: A Controlled Experiment

Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring
Software Engineering Group, Kiel University, Kiel, Germany
Email: {ffi, akr, wha} @informatik.uni-kiel.de

GitHub

Get started »

E I V. Searc Communities se Jploa et s
X p 0 r IZ 06 August 2015 m vt

Publication date:

= 3 = E 1 e 06 August 2015
Live trace visualization for lar¢ Experimental Data for: Exploring
| _ Software Cmes through Virtual Reality N
http://iwww.explorviz.net G b o O s [Virtual Reaiity ] Softwre City Metaphor
] Meeting:
Software visualizatio uch as the software city metaphor, are usually displayed on 2D screens Th‘ EEE Working Con 2
and contn Iledbyrnean of a mouse and thus often do not take advantage of more natural oftware Visualiz t ”ISGO
raction techniques. Virtual reality (VR) a aches aim to improve the user experience. 2010), Brefmen. Germany, 2015,

[Fittkau et al. 2013, 2015a-d, 2017]
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Impact of Artifact Evaluation

W
o

N
a

N
o

N
o

an

Avg. Cites per Paper per Year
5

2013 2014 2015 2016

Fig. 1. Average citation counts of AE and non-AE papers for conferences
that used AE in 2013 to 2016 (conferences: VISSOFT, PPoPP, POPL, PLDI,
PACT, OOPSLA, ISSTA, FSE, ECRTS, ECOOP, CGO, CAV).

[Childers & Chrysanthis 2017]

Part 4: Reproducibility
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Modular Scientific Software

OceanTEA: Microservice-based Architecture

. . REST
<<microservice>>

<<web browser>> Oceanographic
Time Series Exploration and
Analysis Client

<<executionEnvironment>>
JavaScript

<<service>>
Google Maps )

HTTP, REST

Network Border 5
1

User Authentication

API| Gateway

REST

REST

REST

REST

<<microservice>>
Time Series Conversion
(TEOS-10)

<<executionEnvironment>>
NodeJS (REST Wrapper)

<<executionEnvironment>>
Hosted C Environment

<<microservice>>
Univariate Time Series
Management

<<microservice>>
Multivariate Time Series
Management

<<executionEnvironment>>
NodeJS

<<executionEnvironment>>
Python

<<database>>
JSON Data Storage

<<database>>
Pickle Data Storage

A A

<<database>>
NumPy Array Storage

<<microservice>>
Spatial Analysis

<<executionEnvironment>>
NodeJS (REST Wrapper)

<<executionEnvironment>>
R

<<microservice>>
Time Series Pattern Discovery

<<executionEnvironment>>
Python

<<database>>
Netflix Atlas

<<database>>
RDS Data Storage

A A
Time Series Spatial Pattern
Management Analysis Discovery
Data Exchange r
d

OceanTEA: [Johanson et al. 2016a, Johanson et al. 2017b]
Microservices: [Hasselbring 2016, 2018, Hasselbring & Steinacker 2017, Knoche & Hasselbring 2018, 2019]

Part 5: Modularity
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Generic Research Data Infrastructure

Frontend Integration

Repository Harvest Search Bookmark Store Process Analyze Submit

Repository Ul Search Ul Bookmark Ul Analyze Ul Submit Ul
Repository Harvest API Query/ Index Bookmark API Store API Process API Analyze Submit API
API API API
Repository DB Harvest DB Search DB Bookmark DB Storage Process Analyze Submit
Storage Storage Storage
Backend Integration

Leibniz-Informationszentrum T E C H N I S C I.'I_ E
.ﬂ. B w Tl‘.hzll‘:rs\f: ?lt;tformation Centre U N IV E RSI TAT
L for Economies Christian-Albrechts-Universitat zu Kiel D R ES D E N

http://www.gerdi-project.de/ [Tavares de Sousa et al. 2018]

External
Frontend

Part 5: Modularity



Jupyter Computational Notebooks

Jupyter is a free, open-source, web tool, which researchers can use to combine

software code,

computational output,

explanatory text and

multimedia resources in a single document.

e Besides exploration, the result may be a “computational narrative”

A document that allows researchers to supplement their code and data with analysis, hypotheses and
conjecture.

You may also use notebooks to create tutorials or interactive manuals for your software.

¢ Some features:

Provenance tools.

Back-end ‘kernels’ run the code (on HPC servers) and return the results.

JupyterLab offers an enhanced, IDE-line interface, which can be extended through extensions.
JupyterHub allows to provide Jupyter notebooks as a service (SaaS).

Various cloud services such as BinderHub and Code Ocean exist.

 However, Jupyter notebooks also encourage poor coding practice [Perkel 2018]:

by making it difficult to organize code into reusable modules and
develop tests to ensure the code is working properly.

* Notebooks do require discipline from programmers!

With great power comes great responsibility.

Part 5: Modularity
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deRSE19 - Conference for Research Software Engineers in Germany
https://www.de-rse.org/en/conf2019/

de-RSE deRSE19 Conference Call for Contributions Contact For delegates ¥ Sponsorsh

deRSE19 - Call for Contributions

Following the success of the first three international Conferences of Research Software Engineers in the UK, deRSE19,
research software and the people behind it within the German research landscape will be held at the Albert Einstein Scie

The organising committee welcomes submissions for workshops, talks, and posters for the deRSE19 conference, as well
The aim is to reflect the diverse community of research software engineers by seeking input from all levels of experience

genders, and ethnicities.

Timeline

Announcement

29



Slides: http://eprints.uni-kiel.de/45769/

S umma ry & O Ut I o]0 k Preprint: http://eprints.uni-kiel.de/41442/

* On the basis of an examination of the historical development of the relationship
between software engineering and computational science (the past),

— we identified key characteristics of scientific software development by reviewing
published literature (the present).

 We found that scientific software development’s unique characteristics prevent
scientists from using state-of-the-art software engineering tools and methods.

— This situation created a chasm between software engineering and computational
science, which resulted in productivity and credibility crises of the latter discipline.

e We examined attempts to bridge the gap in order to reveal the shortcomings of
existing solutions and to point out further research directions,

— such as the use of DLSs and testing techniques without predefined oracles (the
possible future).

* Reproducibility is essential for good scientific practice.
 Modularity is essential for maintainability, scalability and agility

We are recruiting (deadline in April): M HELMHOLTZ
AR SCHOOL FOR MARINE
http://mardata.de DATA SCIENCE

Summary & Outlook 30
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