
Software Engineering
for Computational Science

Journal paper: A. Johanson, W. Hasselbring:
“Software Engineering for Computational Science: Past, Present, Future”,
In: Computing in Science & Engineering, pp. 90-109, March/April 2018.

https://doi.org/10.1109/MCSE.2018.108162940

Arne Johanson

Wilhelm Hasselbring
http://se.informatik.uni-kiel.de

Agenda

Agenda

1. Software Engineering vs. Computational Science
2. Software Engineering for Computational Science
3. Sprat: Domain-specific SE for Ecology
4. Reproducibility
5. Modularity
6. Summary & Outlook

2

The Origins of the Chasm

Part 1: Software Engineering vs. Computational Science 3

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
[Randell 2018]

Mutual Ignorance: Software Engineering

Part 1: Software Engineering vs. Computational Science

Software Engineering for Generality [Randell 2018]:
• That NATO was the sponsor of this conference marks the relative distance of

software engineering from computation in the academic context.
• The perception was that while errors in scientific data processing applications

might be a “hassle,” they are all in all tolerable.
• In contrast, failures in mission-critical military systems might cost lives and

substantial amounts of money.
• Based on this attitude, software engineering—like computer science as a

whole— aimed for generality in its methods, techniques, and processes and
focused almost exclusively on business and embedded software.

• Because of this ideal of generality, the question of how specifically
computational scientists should develop their software in a well-engineered
way would probably have perplexed a software engineer, whose answer might
have been:
– “Well, just like any other application software.”

4

Characteristics of Scientific Software

Part 1: Software Engineering vs. Computational Science

• Requirements are not known up front
– And often hard to comprehend without some PhD in science

• Verification and validation are difficult,
– and strictly scientific

• Overly formal software processes restrict research

5

Characteristics of Scientific Software

Part 1: Software Engineering vs. Computational Science

• Software quality requirements
– Jeffrey Carver and colleagues22 found that scientific software

developers rank the following characteristics as the most
important, in descending order [Carver et al. 2007]:

1. functional (scientific) correctness,
2. performance,
3. portability, and
4. maintainability.

• Scientific software in itself has no value
– Not really true for community software

• Few scientists are trained in software engineering
– Disregard of most modern software engineering methods and

tools

6

Mutual Ignorance: Computational Science

Part 1: Software Engineering vs. Computational Science

The Productivity Crisis in Computational Science
• As early scientific software was developed by small teams of scientists primarily

for their own research, modularity, maintainability, and team coordination
could often be neglected without a large impact.

The Credibility Crisis in Computational Science:
• Climategate. The scandal erupted after hackers leaked the email

correspondence of scientists just before the 2009 United Nations Climate
Change Conference.

• While the accusations that data was forged for this conference turned out to be
unfounded, the emails uncovered a lack of programming skills among the
researchers and exposed to a large public audience the widely applied practice
in climate science of not releasing simulation code and data together with
corresponding publications [Merali 2010].

• This in itself was, of course, enough to undermine the scientists’ work, as the
predictive capabilities of simulations are only as good as their code quality and
their code was not even available for peer review—not to mention public
review [Fuller and Millett 2011].

• Within the scientific community, Climategate initiated a debate about the
reproducibility of computational results.

7

Agenda

Agenda

1. Software Engineering vs. Computational Science
2. Software Engineering for Computational

Science
3. Sprat: Domain-specific SE for Ecology
4. Reproducibility
5. Modularity
6. Summary & Outlook

8

Software Carpentry

Part X: Titel

• Programming / Coding (Fortran, C++, Python, R,
etc)

• Using compilers, interpreters, editors, etc
• Using version control (git etc)
• Team coordination (GitHub, Gitlab, etc)
• Continuous integration (Jenkins etc)
• Test automation, static analysis, etc

9

https://software-carpentry.org/

SE for Computational Science

Part 2: Software Engineering for Computational Science

[Johanson & Hasselbring 2018]:
• Among the methods and techniques that software

engineering can offer to computational science are
– model-driven software engineering with domain-specific

languages,
– modular software architectures,
– specific requirements engineering techniques [Thew et al.

2009], and
– testing without test oracles [Kanewala and Bieman 2014].

• This way, computational science may achieve
maintainable, long-living software [Goltz et al., 2015],
– in particular for community software.

10

Agenda

Agenda

1. Software Engineering vs. Computational Science
2. Software Engineering for Computational Science
3. Sprat: Domain-specific SE for Ecology
4. Reproducibility
5. Modularity
6. Summary & Outlook

11

The Sprat Approach: Hierarchies of DSLs

Part 3: Sprat: Domain-specific SE for Ecology 12

[Johanson & Hasselbring 2014a,b, 2016b]

The Sprat Ecosystem DSL

Part 3: Sprat: Domain-specific SE for Ecology 13

Evaluation of the Sprat Ecosystem DSL

Part 3: Sprat: Domain-specific SE for Ecology 14

[Johanson &
Hasselbring 2017]

The Sprat PDE DSL

Part 3: Sprat: Domain-specific SE for Ecology

Evaluation:
• Expert interviews with domain experts and professional

DSL developers from industry
• Micro- and macro-benchmarks for performance evaluation

[Johanson et al. 2016b]

The Sprat Marine Ecosystem Model

Part 3: Sprat: Domain-specific SE for Ecology 16

Biogeochemical Ocean Model

Currents TemperatureZooplankton

The Sprat Model

Movement

PassiveActive

PredictiveReactive

Reproduction

Background Mortality
Metabolic Costs

Net Swimming
Costs

Resting
Metabolic Rate

Fishing

Predation (Opportunistic)

Intake Losses

Growth
Controlled by
Time/Temp.

Controlled by
Biomass Uptake

Original scientific contributions to Ecological Modeling [Johanson et al. 2017a]

Sprat: Summary

Part 3: Sprat: Domain-specific SE for Ecology

The Sprat Approach:
Model-driven software engineering
for computational science

– Concept of DSL Hierarchies
– DSLs for Marine Ecosystem Modeling
– Empirical Evaluation of the Sprat Approach

17

http://dx.doi.org/10.5281/zenodo.61373

Available online:
– DSL implementations
– Sprat Model source code

– Experimental data and analysis scripts

http://www.sprat.uni-kiel.de/

Agenda

Agenda

1. Software Engineering vs. Computational Science
2. Software Engineering for Computational Science
3. Sprat: Domain-specific SE for Ecology
4. Reproducibility
5. Modularity
6. Summary & Outlook

18

Reproducible Research in Computational Science

Part 4: Reproducibility

“Replication is the ultimate standard by which
scientific claims are judged.”

19

[Peng 2011]

Publishing Ocean Observation Data & Analysis
• Paper: http://dx.doi.org/10.1016/j.ecoinf.2017.02.007
• Code: https://github.com/cau-se/oceantea/
• Software service with data: http://oceantea.uni-kiel.de/

[Johanson et al. 2017b]
Part 4: Reproducibility

http://oceantea.uni-kiel.de/
19

“Science advances faster when we can build on existing results,
and when new ideas can easily be measured against the state of
the art.”
Repeatability, replicability & reproducibility
Several ACM SIGMOD, SIGPLAN, and SIGSOFT conferences have
initiated artifact evaluation processes.

Part 4: Reproducibility 21

Example Experimental “Reproducibility Data” in Software Engineering

Part 4: Reproducibility 22

[Waller and Hasselbring 2012] [Eichelberger et al. 2016]

Example Empirical “Reproducibility Data”
with Artifact Evaluation

Part 4: Reproducibility 23

[Fittkau et al. 2013, 2015a-d, 2017]

Impact of Artifact Evaluation

Part 4: Reproducibility 24

[Childers & Chrysanthis 2017]

Agenda

Agenda

1. Software Engineering vs. Computational Science
2. Software Engineering for Computational Science
3. Sprat: Domain-specific SE for Ecology
4. Reproducibility
5. Modularity
6. Summary & Outlook

25

Modular Scientific Software

Part 5: Modularity

OceanTEA: Microservice-based Architecture

26

OceanTEA: [Johanson et al. 2016a, Johanson et al. 2017b]
Microservices: [Hasselbring 2016, 2018, Hasselbring & Steinacker 2017, Knoche & Hasselbring 2018, 2019]

<<microservice>>
SpatialAnalysis

<<web browser>> Oceanographic
Time Series Exploration and

Analysis Client

<<executionEnvironment>>
NodeJS (REST Wrapper)

<<executionEnvironment>>
R

<<database>>
RDS Data Storage

<<executionEnvironment>>
JavaScript

<<microservice>>
Time Series Pattern Discovery

<<executionEnvironment>>
Python

<<database>>
NetflixAtlas

API Gateway

<<microservice>>
Univariate Time Series

Management

<<microservice>>
Multivariate Time Series

Management

<<executionEnvironment>>
NodeJS

<<database>>
JSON Data Storage

<<executionEnvironment>>
Python

<<database>>
Pickle Data Storage

<<database>>
NumPy Array Storage

<<microservice>>
Time Series Conversion

(TEOS-10)

<<executionEnvironment>>
NodeJS (REST Wrapper)

<<executionEnvironment>>
Hosted C Environment

<<microservice>>
User Authentication

<<service>>
Google Maps

Data Exchange

RESTRESTRESTREST

HTTP,REST

REST

Generic Research Data Infrastructure

Part 5: Modularity 27

http://www.gerdi-project.de/ [Tavares de Sousa et al. 2018]

SearchRepository Bookmark Store Process Analyze SubmitHarvest

Search UI

Query/ Index
API

Search DB

Repository UI

Repository
API

Repository DB

Bookmark UI

Bookmark API

Bookmark DB

Store UI

Store API

Storage

Process UI

Process API

Process
Storage

Analyze UI

Analyze
API

Analyze
Storage

Submit UI

Submit API

Submit
Storage

Harvest API

Harvest DB

Frontend Integration

Backend Integration

External
Frontend

Jupyter Computational Notebooks

Part 5: Modularity

• Jupyter is a free, open-source, web tool, which researchers can use to combine
– software code,
– computational output,
– explanatory text and
– multimedia resources in a single document.

• Besides exploration, the result may be a “computational narrative”
– A document that allows researchers to supplement their code and data with analysis, hypotheses and

conjecture.
– You may also use notebooks to create tutorials or interactive manuals for your software.

• Some features:
– Provenance tools.
– Back-end ‘kernels’ run the code (on HPC servers) and return the results.
– JupyterLab offers an enhanced, IDE-line interface, which can be extended through extensions.
– JupyterHub allows to provide Jupyter notebooks as a service (SaaS).
– Various cloud services such as BinderHub and Code Ocean exist.

• However, Jupyter notebooks also encourage poor coding practice [Perkel 2018]:
– by making it difficult to organize code into reusable modules and
– develop tests to ensure the code is working properly.

• Notebooks do require discipline from programmers!
– With great power comes great responsibility.

28

deRSE19 - Conference for Research Software Engineers in Germany
https://www.de-rse.org/en/conf2019/

Announcement 29

Summary & Outlook

Summary & Outlook

• On the basis of an examination of the historical development of the relationship
between software engineering and computational science (the past),
– we identified key characteristics of scientific software development by reviewing

published literature (the present).
• We found that scientific software development’s unique characteristics prevent

scientists from using state-of-the-art software engineering tools and methods.
– This situation created a chasm between software engineering and computational

science, which resulted in productivity and credibility crises of the latter discipline.
• We examined attempts to bridge the gap in order to reveal the shortcomings of

existing solutions and to point out further research directions,
– such as the use of DLSs and testing techniques without predefined oracles (the

possible future).
• Reproducibility is essential for good scientific practice.
• Modularity is essential for maintainability, scalability and agility

We are recruiting (deadline in April):
http://mardata.de

30

Slides: http://eprints.uni-kiel.de/45769/
Preprint: http://eprints.uni-kiel.de/41442/

References

31

[Carver et al. 2007] J.C. Carver et al., “Software Development Environments for Scientific and Engineering Software: A
Series of Case Studies,” Proc. 29th Int'l Conf. Software Eng. (ICSE 07), 2007, pp. 550–559.

[Childers & Chrysanthis 2017] B.R. Childers and P.K. Chrysanthis, "Artifact Evaluation: Is It a Real Incentive?," 2017 IEEE
13th International Conference on e-Science, 2017, pp. 488-489. http://doi.org/10.1109/eScience.2017.79

[Eichelberger et al. 2016] H. Eichelberger et al., “From reproducibility problems to improvements: A journey,”
Softwaretechnik-Trends: Proceedings of the Symposium on Software Performance (SSP'16). Vol. 36. No. 4. 2016.

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, W. Hasselbring: “Live Trace Visualization for Comprehending Large
Software Landscapes: The ExplorViz Approach“, In: 1st IEEE International Working Conference on Software
Visualization (VISSOFT 2013).

[Fittkau et al. 2015a] F. Fittkau, S. Roth, W. Hasselbring: “ExplorViz: Visual Runtime Behavior Analysis of Enterprise
Application Landscapes“, In: 23rd European Conference on Information Systems (ECIS 2015).

[Fittkau et al. 2015b] F. Fittkau, A. Krause, W. Hasselbring: “Hierarchical Software Landscape Visualization for System
Comprehension: A Controlled Experiment”. In: 3rd IEEE Working Conference on Software Visualization, 2015.

[Fittkau et al. 2015c] F. Fittkau, A. Krause, W. Hasselbring: “Exploring Software Cities in Virtual Reality”, In: 3rd IEEE
Working Conference on Software Visualization, September 2015, Bremen, Germany.

[Fittkau et al. 2015d] F. Fittkau, S. Finke, W. Hasselbring, J. Waller: “Comparing Trace Visualizations for Program
Comprehension through Controlled Experiments”, In: 23rd IEEE International Conference on Program
Comprehension (ICPC 2015), May 2015, Florence.

[Fittkau et al. 2017] F. Fittkau, A. Krause, W. Hasselbring: “Software landscape and application visualization for system
comprehension with ExplorViz”, In: Information and Software Technology. DOI 10.1016/j.infsof.2016.07.004

[Fuller and Millett 2011] S.H. Fuller and L.I. Millett, “Computing Performance: Game Over or Next Level?,” Computer, vol.
44, no. 1, 2011, pp. 31–38.

[Goltz et al., 2015] U. Goltz et al., “Design for Future: Managed Software Evolution,” Computer Science - Research and
Development, vol. 30, no. 3, 2015, pp. 321–331.

References

32

[Hasselbring 2016] W. Hasselbring, “Microservices for Scalability (Keynote Presentation),” In: 7th ACM/SPEC
International Conference on Performance Engineering (ACM/SPEC ICPE 2016), March 15, 2016 , Delft, NL.

[Hasselbring 2018] W. Hasselbring, “Software Architecture: Past, Present, Future,” In: The Essence of Software
Engineering. Springer, pp. 169-184. 2018. DOI 10.1007/978-3-319-73897-0_10

[Hasselbring & Steinacker 2017] W. Hasselbring, G. Steinacker: “Microservice Architectures for Scalability, Agility and
Reliability in E-Commerce”, In: Proceedings of the IEEE International Conference on Software Architecture (ICSA
2017), April 2017, Gothenburg, Sweden.

[Johanson & Hasselbring 2014a] A. Johanson, W. Hasselbring: “Hierarchical Combination of Internal and External
Domain-Specific Languages for Scientific Computing”. In: International Workshop on DSL Architecting & DSL-Based
Architectures (DADA'14), August 2014, Vienna, Austria, pp. 17:1-17:8.

[Johanson & Hasselbring 2014b] A. Johanson, W. Hasselbring: “Sprat: Hierarchies of Domain-Specific Languages for
Marine Ecosystem Simulation Engineering”. In: Spring Simulation Multi-Conference (SpringSim 2014), April 2014,
Tampa, Florida, USA, pp. 187-192.

[Johanson et al. 2016a] A. Johanson, S. Flögel, C. Dullo, W. Hasselbring: “OceanTEA: Exploring Ocean-Derived Climate
Data Using Microservices”. In: Sixth International Workshop on Climate Informatics (CI 2016), September 2016,
Boulder, Colorado.

[Johanson et al. 2016b] A. Johanson, W. Hasselbring, A. Oschlies, B. Worm: “Evaluating Hierarchical Domain-Specific
Languages for Computational Science: Applying the Sprat Approach to a Marine Ecosystem Model”. In: Software
Engineering for Science. CRC Press. 175-200.

[Johanson et al. 2017a] A. Johanson, A. Oschlies, W. Hasselbring, A. Worm: “SPRAT: A spatially-explicit marine ecosystem
model based on population balance equations”, In: Ecological Modelling, 349, pp. 11-25, 2017.

[Johanson et al. 2017b] A. Johanson, S. Flögel, C. Dullo, P. Linke, W. Hasselbring: “Modeling Polyp Activity of Paragorgia
arborea Using Supervised Learning”, In: Ecological Informatics, 39, pp. 109-118, 2017.

References

33

[Johanson & Hasselbring 2017] A. Johanson, W. Hasselbring: “Effectiveness and efficiency of a domain-specific language
for high-performance marine ecosystem simulation: a controlled experiment”, In: Empirical Software Engineering
22 (8). pp. 2206-2236, 2017.

[Johanson & Hasselbring 2018] A. Johanson, W. Hasselbring: “Software Engineering for Computational Science: Past,
Present, Future”, In: Computing in Science & Engineering, pp. 90-109, March/April 2018.

[Kanewala and Bieman 2014] U. Kanewala and J.M. Bieman, “Testing Scientific Software: A Systematic Literature
Review,” Information and Software Technology, vol. 56, no. 10, 2014, pp. 1219–1232.

[Knoche and Hasselbring 2018] H. Knoche and W. Hasselbring, “Using Microservices for Legacy Software Modernization
IEEE Software, 35 (3). pp. 44-49. 2018. DOI 10.1109/MS.2018.2141035.

[Knoche and Hasselbring 2019] H. Knoche and W. Hasselbring, “Drivers and Barriers for Microservice Adoption - A Survey
among Professionals in Germany,” Enterprise Modelling and Information Systems Architectures (EMISAJ) -
International Journal of Conceptual Modeling, 14 (1). pp. 1-35. 2019. DOI https://doi.org/10.18417/emisa.14.1.

[Merali 2010] Z. Merali, “Computational Science: Error, Why Scientific Programming Does Not Compute,” Nature, vol.
467, no. 7317, 2010, pp. 775–777

[Peng 2011] R.D. Peng, “Reproducible Research in Computational Science,” 334(6060), pp. 1226-1227, 2011
[Perkel 2018] J.M. Perkel, “Why Jupyter is data scientists’ computational notebook of choice,” Nature 563:145-146. 2018
[Randell 2018] B. Randell: 50 years of Software Engineering. May 2018, https://arxiv.org/abs/1805.027421805.02742
[Tavares de Sousa et al. 2018] N. Tavares de Sousa, W. Hasselbring, T. Weber, D. Kranzlmüller: “Designing a Generic

Research Data Infrastructure Architecture with Continuous Software Engineering”, In: 3rd Workshop on Continuous
Software Engineering (CSE 2018), March 2018, Ulm, Germany.

[Thew et al. 2009] S. Thew et al., “Requirements Engineering for e-Science: Experiences in Epidemiology,” IEEE Software,
vol. 26, no. 1, 2009.

[Waller and Hasselbring 2012] J. Waller and W. Hasselbring, “A Comparison of the Influence of Different Multi-Core
Processors on the Runtime Overhead for Application-Level Monitoring,” In: International Conference on Multicore
Software Engineering, Performance, and Tools (MSEPT), 2012

https://arxiv.org/pdf/1805.02742

	Software Engineering �for Computational Science��Journal paper: A. Johanson, W. Hasselbring: �“Software Engineering for Computational Science: Past, Present, Future”, �In: Computing in Science & Engineering, pp. 90-109, March/April 2018.�https://doi.org/10.1109/MCSE.2018.108162940
	Agenda
	The Origins of the Chasm
	Mutual Ignorance: Software Engineering
	Characteristics of Scientific Software
	Characteristics of Scientific Software
	Mutual Ignorance: Computational Science
	Agenda
	Software Carpentry
	SE for Computational Science
	Agenda
	The Sprat Approach: Hierarchies of DSLs
	The Sprat Ecosystem DSL
	Evaluation of the Sprat Ecosystem DSL
	The Sprat PDE DSL
	The Sprat Marine Ecosystem Model
	Sprat: Summary
	Agenda
	Reproducible Research in Computational Science
	Foliennummer 20
	Foliennummer 21
	Example Experimental “Reproducibility Data” in Software Engineering
	Example Empirical “Reproducibility Data”�with Artifact Evaluation
	Impact of Artifact Evaluation
	Agenda
	Modular Scientific Software
	Generic Research Data Infrastructure
	Jupyter Computational Notebooks
	deRSE19 - Conference for Research Software Engineers in Germany�https://www.de-rse.org/en/conf2019/�
	Summary & Outlook
	References
	References
	References

