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The Origins of the Chasm

Part 1: Software Engineering vs. Computational Science 3

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/index.html
[Randell 2018]



Mutual Ignorance: Software Engineering

Part 1: Software Engineering vs. Computational Science

Software Engineering for Generality [Randell 2018]:
• That NATO was the sponsor of this conference marks the relative distance of 

software engineering from computation in the academic context. 
• The perception was that while errors in scientific data processing applications 

might be a “hassle,” they are all in all tolerable. 
• In contrast, failures in mission-critical military systems might cost lives and 

substantial amounts of money.
• Based on this attitude, software engineering—like computer science as a 

whole— aimed for generality in its methods, techniques, and processes and 
focused almost exclusively on business and embedded software.

• Because of this ideal of generality, the question of how specifically 
computational scientists should develop their software in a well-engineered 
way would probably have perplexed a software engineer, whose answer might 
have been: 
– “Well, just like any other application software.”
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Characteristics of Scientific Software

Part 1: Software Engineering vs. Computational Science

• Requirements are not known up front
– And often hard to comprehend without some PhD in science

• Verification and validation are difficult, 
– and strictly scientific

• Overly formal software processes restrict research
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Characteristics of Scientific Software

Part 1: Software Engineering vs. Computational Science

• Software quality requirements
– Jeffrey Carver and colleagues22 found that scientific software 

developers rank the following characteristics as the most 
important, in descending order [Carver et al. 2007]:

1. functional (scientific) correctness,
2. performance,
3. portability, and
4. maintainability.

• Scientific software in itself has no value
– Not really true for community software 

• Few scientists are trained in software engineering
– Disregard of most modern software engineering methods and 

tools
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Mutual Ignorance: Computational Science

Part 1: Software Engineering vs. Computational Science

The Productivity Crisis in Computational Science
• As early scientific software was developed by small teams of scientists primarily 

for their own research, modularity, maintainability, and team coordination 
could often be neglected without a large impact.

The Credibility Crisis in Computational Science:
• Climategate. The scandal erupted after hackers leaked the email 

correspondence of scientists just before the 2009 United Nations Climate 
Change Conference. 

• While the accusations that data was forged for this conference turned out to be 
unfounded, the emails uncovered a lack of programming skills among the 
researchers and exposed to a large public audience the widely applied practice 
in climate science of not releasing simulation code and data together with 
corresponding publications [Merali 2010]. 

• This in itself was, of course, enough to undermine the scientists’ work, as the 
predictive capabilities of simulations are only as good as their code quality and 
their code was not even available for peer review—not to mention public 
review [Fuller and Millett 2011].

• Within the scientific community, Climategate initiated a debate about the 
reproducibility of computational results.
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Software Carpentry

Part X: Titel

• Programming / Coding (Fortran, C++, Python, R, 
etc)

• Using compilers, interpreters, editors, etc
• Using version control (git etc)
• Team coordination (GitHub, Gitlab, etc)
• Continuous integration (Jenkins etc)
• Test automation, static analysis, etc
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SE for Computational Science

Part 2: Software Engineering for Computational Science

[Johanson & Hasselbring 2018]:
• Among the methods and techniques that software 

engineering can offer to computational science are
– model-driven software engineering with domain-specific 

languages,
– modular software architectures,
– specific requirements engineering techniques [Thew et al. 

2009], and
– testing without test oracles [Kanewala and Bieman 2014].

• This way, computational science may achieve 
maintainable, long-living software [Goltz et al., 2015], 
– in particular for community software.
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The Sprat Approach: Hierarchies of DSLs

Part 3: Sprat: Domain-specific SE for Ecology 12

[Johanson & Hasselbring 2014a,b, 2016b]



The Sprat Ecosystem DSL

Part 3: Sprat: Domain-specific SE for Ecology 13



Evaluation of the Sprat Ecosystem DSL

Part 3: Sprat: Domain-specific SE for Ecology 14

[Johanson & 
Hasselbring 2017]



The Sprat PDE DSL

Part 3: Sprat: Domain-specific SE for Ecology

Evaluation:
• Expert interviews with domain experts and professional 

DSL developers from industry
• Micro- and macro-benchmarks for performance evaluation

[Johanson et al. 2016b]



The Sprat Marine Ecosystem Model

Part 3: Sprat: Domain-specific SE for Ecology 16
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Sprat: Summary

Part 3: Sprat: Domain-specific SE for Ecology

The Sprat Approach: 
Model-driven software engineering 
for computational science

– Concept of DSL Hierarchies
– DSLs for Marine Ecosystem Modeling
– Empirical Evaluation of the Sprat Approach
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http://dx.doi.org/10.5281/zenodo.61373

Available online: 
– DSL implementations
– Sprat Model source code

– Experimental data and analysis scripts

http://www.sprat.uni-kiel.de/
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Reproducible Research in Computational Science

Part 4: Reproducibility

“Replication is the ultimate standard by which 
scientific claims are judged.”

19

[Peng 2011]



Publishing Ocean Observation Data & Analysis
• Paper: http://dx.doi.org/10.1016/j.ecoinf.2017.02.007
• Code: https://github.com/cau-se/oceantea/
• Software service with data: http://oceantea.uni-kiel.de/

[Johanson et al. 2017b]
Part 4: Reproducibility

http://oceantea.uni-kiel.de/
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“Science advances faster when we can build on existing results, 
and when new ideas can easily be measured against the state of 
the art.”
Repeatability, replicability & reproducibility
Several ACM SIGMOD, SIGPLAN,  and SIGSOFT conferences have 
initiated artifact evaluation processes.

Part 4: Reproducibility 21



Example Experimental “Reproducibility Data” in Software Engineering

Part 4: Reproducibility 22

[Waller and Hasselbring 2012] [Eichelberger et al. 2016] 



Example Empirical “Reproducibility Data”
with Artifact Evaluation

Part 4: Reproducibility 23

[Fittkau et al. 2013, 2015a-d, 2017]



Impact of Artifact Evaluation

Part 4: Reproducibility 24

[Childers & Chrysanthis 2017]
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Modular Scientific Software

Part 5: Modularity

OceanTEA: Microservice-based Architecture

26

OceanTEA: [Johanson et al. 2016a, Johanson et al. 2017b]
Microservices: [Hasselbring 2016, 2018, Hasselbring & Steinacker 2017, Knoche & Hasselbring 2018, 2019]
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Generic Research Data Infrastructure

Part 5: Modularity 27

http://www.gerdi-project.de/ [Tavares de Sousa et al. 2018] 

SearchRepository Bookmark Store Process Analyze SubmitHarvest

Search UI

Query/ Index 
API

Search DB

Repository UI

Repository 
API

Repository DB

Bookmark UI

Bookmark API

Bookmark DB

Store UI

Store API

Storage

Process UI

Process API

Process 
Storage

Analyze UI

Analyze
API

Analyze
Storage

Submit UI

Submit API

Submit 
Storage

Harvest API

Harvest DB

Frontend Integration

Backend Integration

External
Frontend



Jupyter Computational Notebooks

Part 5: Modularity

• Jupyter is a free, open-source, web tool, which researchers can use to combine 
– software code, 
– computational output, 
– explanatory text and 
– multimedia resources in a single document.

• Besides exploration, the result may be a “computational narrative” 
– A document that allows researchers to supplement their code and data with analysis, hypotheses and 

conjecture.
– You may also use notebooks to create tutorials or interactive manuals for your software.

• Some features:
– Provenance tools.
– Back-end ‘kernels’ run the code (on HPC servers) and return the results.
– JupyterLab offers an enhanced, IDE-line interface, which can be extended through extensions.
– JupyterHub allows to provide Jupyter notebooks as a service (SaaS).
– Various cloud services such as BinderHub and Code Ocean exist.

• However, Jupyter notebooks also encourage poor coding practice [Perkel 2018]:
– by making it difficult to organize code into reusable modules and 
– develop tests to ensure the code is working properly.

• Notebooks do require discipline from programmers!
– With great power comes great responsibility.
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deRSE19 - Conference for Research Software Engineers in Germany
https://www.de-rse.org/en/conf2019/

Announcement 29



Summary & Outlook

Summary & Outlook

• On the basis of an examination of the historical development of the relationship 
between software engineering and computational science (the past), 
– we identified key characteristics of scientific software development by reviewing 

published literature (the present). 
• We found that scientific software development’s unique characteristics prevent

scientists from using state-of-the-art software engineering tools and methods. 
– This situation created a chasm between software engineering and computational 

science, which resulted in productivity and credibility crises of the latter discipline. 
• We examined attempts to bridge the gap in order to reveal the shortcomings of 

existing solutions and to point out further research directions, 
– such as the use of DLSs and testing techniques without predefined oracles (the 

possible future).
• Reproducibility is essential for good scientific practice.
• Modularity is essential for maintainability, scalability and agility

We are recruiting (deadline in April):
http://mardata.de
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Slides:     http://eprints.uni-kiel.de/45769/
Preprint: http://eprints.uni-kiel.de/41442/
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