Please ensure that your abstract fits into one column on one page and complies with the *Instructions to Authors* available from the Abstract Submission web page.

δ²⁶Mg record of Phanerozoic oceans

P. B. TÖRBER^{1,2,3*}, J. FARKAŠ^{2,1,3}, C. ROLLION-BARD⁴, K. WALLMANN⁵, U. BRAND⁶, K. AZMY⁷, A. TOMAŠOVÝCH⁸, C. LÉCUYER⁹, N. VIGIER¹⁰, S. SAULNIER¹¹, M. KOMÁREK¹, T. MAGNA³, M. ŠIMEČEK³, M. FRANCOVÁ³, F. BÖHM⁵, AND A. EISENHAUER⁵

*Email (corresponding author): toerber@fzp.czu.cz

¹Czech University of Life Sciences Prague, Czech Republic

²University of Adelaide, Australia; ³Czech Geological
Survey, Czech Republic; ⁴CNRS/IPGP Paris, France;

⁵GEOMAR, Germany; ⁶Brock University, Canada; ¬Memorial
University of Newfoundland, Canada; ¬Slovak Academy of
Sciences, Slovakia; ¬University of Lyon, France;

¹⁰Villefranche Oceanographic Laboratory, France;

¹¹Laboratory of Physical Geography, France

The secular variation in the marine Mg/Ca ratio over geologic time is undisputed, however, the role of driving forces behind this phenomenon remains uncertain. A key to the discrimination of major fluxes is the quantification of the Mg oceanic cycle that in turn can be examined by using the Mg isotope compositions of low-Mg calcite brachiopod shells. Within the BASE-LiNE Earth project, a total of 95 analyses on modern and fossil (early Ordovician to Quaternary) brachiopod specimens were performed to generate an inferred $\delta^{26} Mg$ paleo-seawater record. As a prerequisite, selected modern, globally distributed species, whose average "habitat temperatures" range from about 0 to 29°C, were investigated and results revealed a weak $(\sim 0.02\%^{\circ}\text{C}^{-1})$ temperature-sensitivity of $\delta^{26}\text{Mg}$ in shells. This supports their suitability for paleo-seawater $\delta^{26}Mg$ reconstructions. The offset $\Delta^{26}Mg$ between modern global seawater δ^{26} Mg [1] and the average of modern brachiopods is about -1.26 ‰, and has been applied to fossil samples. A preliminary locally weighted and smoothed δ²⁶Mg paleoseawater trend yielded (i) short-term negative and positive anomalies during the Cenozoic, (ii) rather constant values during most of the Mesozoic, (iii) a significant positive-tonegative shift during the Permian/Carboniferous transition, and (iv) systematically negative values during the rest of the Palaeozoic (relative to modern seawater). This composite δ²⁶Mg record of Phanerozoic seawater will be simulated via a coupled numerical model of oceanic elemental cycles [2], and conclusions will be made regarding the plausible driving mechanism(s) behind the observed long-term changes in the marine Mg/Ca record.

[1] Ling et al. (2011) Rapid Commun. Mass Spectrom. 25 2828–2836. [2] K. Wallmann (2001), Geochim. Cosmochim. Acta 65, 3005–3025.