In the format provided by the authors and unedited.

Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence

Kosmas Hench¹^{*}, Marta Vargas², Marc P. Höppner³, W. Owen McMillan² and Oscar Puebla^{1,2,4*}

¹Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany. ²Smithsonian Tropical Research Institute, Panamá, Panama. ³Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany. ⁴Faculty of Mathematics and Natural Sciences, University of Kiel, Kiel, Germany. *e-mail: khench@geomar.de; oscar.puebla@mail.mcgill.ca

Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence (Supplementary Information)

Kosmas Hench^{1,*}, Marta Vargas², Marc P. Höppner³, W. Owen McMillan², and Oscar Puebla^{1,4,2,*}

¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Evolutionary Ecology of Marine Fishes,

Düsternbrooker Weg 20, 24105 Kiel, Germany

²Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá

³Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany

⁴University of Kiel, Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Platz 4, 24118 Kiel,

Germany

*oscar.puebla@mail.mcgill.ca, khench@geomar.de

List of Supplementary Figures

1	Broad-scale synteny between the hamlet and stickleback genomes	4
2	Identification of putative backcrosses and hybrids	5
3	Genome wide $G\timesP$ association	6
4	Large low-recombining region on linkage group 8 (LG08)	7
5	Extent of differentiation under various scenarios	8
6	Gene expression in the retinal tissue	9
7	Genomic intervals above the 99.90th F_{ST} percentile	9
8 (I)	Close-up on all the intervals above the 99.90th F_{ST} percentile \ldots \ldots \ldots	10
8 (11)Close-up on all the intervals above the 99.90th F_{ST} percentile \ldots \ldots \ldots \ldots	11
8 ()Close-up on all the intervals above the 99.90th F_{ST} percentile \ldots \ldots \ldots	12
9	Close-up on the four additional intervals containing candidate vision and pigmentation genes	13
10	Genome-wide recombination patterns	14
11	Long-distance and inter-chromosomal linkage disequilibrium (LD) among the eight intervals	
	containing candidate vision and pigmentation genes	15
12	Patterns of genomic differentiation among hamlets from Belize, Honduras and Panama	16
13	Long-distance and inter-chromosomal linkage disequilibrium (LD) among the four candidate	
	intervals for each species pair	17
14	Long-distance and inter-chromosomal linkage disequilibrium (LD) among the eight intervals	
	containing vision and pigmentation candidate genes	18
15	PCA based on filtered dataset.	18
16	Comparison of linear model and linear mixed model results of the genotype by phenotype	
	(G \times P) association	19
17	Extended close-up on the four intervals above the 99.98th F_{ST} percentile \ldots	20

List of Supplementary Tables

1	Genomic regions above the 99.90 th F_{ST} percentile	21
2	Software versions used in this study	22
3a	Sample list for re-sequencing	23
3b	Sample list for re-sequencing	24
3с	Sample list for re-sequencing	25
4	Sequencing data generated for the assembly	25
5	Sample list for RNA sequencing	26
6	Global estimates of the weighted mean F_{ST}	26
7	Anchoring statistics	26

Supplementary Information

Supplementary Figures

Supplementary Figure 1: Broad-scale synteny between the hamlet and stickleback genomes. The comparison is based on a whole-genome alignment using last. Only alignments > 5000 bp are shown. Left: stickleback (*Gasterosteus aculeatus*, 21 LGs & mitochondria). Right: hamlet (*Hypoplectrus puella*, 24 LGs & mitochondria).

Supplementary Figure 2: Identification of putative backcrosses and hybrids. a, bars indicate the posterior probability of assignment to the different hybrid classes for each pairwise comparison. A total of nine individuals, highlighted in bold, were identified as putative hybrids or backcrosses, eight of which with high (>0.99) posterior probabilities (five in Belize, two in Honduras and one in Panama). Five of these involved butter hamlets (*H. unicolor*) from Belize, which is consistent with the fact that this species is rare in this location. The same individuals were often identified as putative hybrids or backcrosses in two pairwise comparisons, suggesting either multi-species exchanges or false positives in one species pair resulting from exchanges with a third species. **b**, putative hybrids and backcrosses (highlighted) were also intermediate (e.g. 18267) or clustered with other species (e.g. 18274) in the whole-genome PCA. Note that the sampling design explicitly excluded individuals with intermediate colour patterns, thereby reducing the probability of recovering F1 hybrids in our data set.

Supplementary Figure 3: Genotype by phenotype ($G \times P$) association among black (*H. nigricans*), barred (*H. puella*) and butter (*H. unicolor*) hamlets. Each species pair is represented by one colour, pooled across locations (Global) as well as within each location (Belize, Honduras & Panama). The *p* values are from the linear model with Wald test, transformed using the negative of the common logarithm and averaged across 50 kb window with 5 kb increments ($-\log_{10}(p)$). The four genomic regions highlighted with a vertical line, included as reference, correspond to the four intervals identified in Fig. 2.

Supplementary Figure 4: Large low-recombining region on linkage group 08 (LG08). Top and bottom: linkage maps of the two parents used for the F_1 cross, from²⁶. Middle: assembled linkage group 08. Lines connect individual RAD markers that are identified in both the linkage maps and the assembly. Gray and white blocks represent individual scaffolds. A large number of RAD markers that are in close proximity on the linkage maps are distributed over a wide region on the assembled linkage group, providing direct evidence of low recombination in this region.

Supplementary Figure 5: Extent of differentiation under various simulated scenarios. The demographic history underlying the simulations consisted of two populations (1 & 2) of constant size N_e that split t generations ago and experienced constant and symmetrical migration (m) since then. A selected site was considered in the middle of a 500-kb chromosome, consisting of a codominant locus with two alleles A and a that are advantageous in population 1 and 2, respectively, with a fitness of 1+s for homozygotes and 1+s/2 for heterozygotes where s is the selection coefficient. Scenarios highlighted in grey are similar to those explored by Charlesworth *et al.*¹⁴³. Patterns similar to the ones observed in this study (highlighted in orange) were obtained with larger N_e (10,000) and higher m (0.01), which we suggest may be more representative of the situation in the hamlets.

Supplementary Figure 6: Gene expression in the retinal tissue. a, only three genes, highlighted in bold, were significantly differentially expressed among species. Genes included in the figure correspond, from top to bottom, to the three most differentially expressed genes for each species pair (labelled by the colour-coded rings on the right) followed by the candidate genes related to vision identified in this study (grey rings, not differentially expressed). Data from 10 adult barred, 9 black and 5 butter hamlets from Panama (labelled by the colour bar on the bottom). **b**, albeit not differentially expressed, many of the candidate genes showed consistent above-average expression levels. Expression data transformed with regularised logarithm in both panels.

Supplementary Figure 7: Genomic intervals above the 99.90th F_{ST} percentile. F_{ST} values were estimated as the weighted mean per 50 kb window with 5 kb increments, considering all locations for each species. A total of 19 genomic intervals above the 99.90th F_{ST} percentile, highlighted with a vertical bar, were identified (**Suppl. Tab. 1**). Intervals containing candidate genes are labelled with capital letters. Peaks A – D are also above the 99.98th F_{ST} percentile, peaks E – H are not.

Supplementary Figure 8 (I): Close-up on all the intervals above the 99.90th F_{ST} percentile The panels (a-r, figure continued below) correspond to the 18 intervals above the 99.90th F_{ST} percentile. From top to bottom, each panel includes the respective linkage group (LG) and interval ID, the position on the LG, the gene model annotation and F_{ST} values. Gene models include the extent and direction of genes as well as exon boundaries. The F_{ST} plots show the pairwise comparisons among species (lines, weighted mean per 10 kb window with 1 kb increments). Additionally, the global F_{ST} values among the three species are shown as dots on a SNP basis. All comparisons with species samples pooled across the three locations. The highlighted area corresponds to the whole intervals as defined in Suppl. Tab. 1

Supplementary Figure 8 (II): Close-up on all the intervals above the 99.90th F_{ST} percentile The panels (a-r, figure continued below) correspond to the 18 intervals above the 99.90th F_{ST} percentile. From top to bottom, each panel includes the respective linkage group (LG) and interval ID, the position on the LG, the gene model annotation and F_{ST} values. Gene models include the extent and direction of genes as well as exon boundaries. The F_{ST} plots show the pairwise comparisons among species (lines, weighted mean per 10 kb window with 1 kb increments). Additionally, the global F_{ST} values among the three species are shown as dots on a SNP basis. All comparisons with species samples pooled across the three locations. The highlighted area corresponds to the whole intervals as defined in Suppl. Tab. 1

Supplementary Figure 8 (III): Close-up on all the intervals above the 99.90th F_{ST} percentile The panels (a-r) correspond to the 18 intervals above the 99.90th F_{ST} percentile. From top to bottom, each panel includes the respective linkage group (LG) and interval ID, the position on the LG, the gene model annotation and F_{ST} values. Gene models include the extent and direction of genes as well as exon boundaries. The F_{ST} plots show the pairwise comparisons among species (lines, weighted mean per 10 kb window with 1 kb increments). Additionally, the global F_{ST} values among the three species are shown as dots on a SNP basis. All comparisons with species samples pooled across the three locations. The highlighted area corresponds to the whole intervals as defined in Suppl. Tab. 1

Supplementary Figure 9: Close-up on the four additional intervals containing candidate vision and pigmentation genes. The four panels (a-d) correspond to the four additional intervals above the 99.90th F_{ST} percentile (but not above the 99.98th) that include candidate vision and pigmentation genes. From top to bottom, each panel includes the respective linkage group (LG), the position on the LG, the gene model annotation, F_{ST} and d_{XY} . Gene models include the extent and direction of genes as well as exon boundaries. For clarity only the genes in high F_{ST} intervals are labelled, and candidate genes are highlighted in green. The F_{ST} plots show the pairwise comparisons among species (lines, weighted mean per 10 kb window with 1 kb increments). Additionally, the global F_{ST} values among the three species are shown as dots on a SNP basis. The d_{XY} values are also averaged over 10 kb windows with 1 kb increments. All comparisons with species samples pooled across the three locations.

Supplementary Figure 10: Genome-wide recombination patterns. a, recombination landscape inferred from the combination of a within-species cross and the genome assembly. Recombination rate was inferred by mapping the linkage map²⁶ markers onto the genome assembly and dividing linkage (cM) by physical distance (Mb). b, recombination landscape inferred from population genomic data considering all species and locations. As expected due to the different data sets considered, the two types of recombination maps differ substantially. Yet both identify a large low-recombining region in LG08. c, correlation between population recombination rate and genetic differentiation among the three species considering non-overlapping 50-kb windows. As expected, a negative relationship is observed. The correlation and regression slope are nevertheless weak, indicating that recombination does not have a strong impact on differentiation at this stage of genomic divergence. Red dots correspond to the 50 kb windows that are within our four candidate regions; these windows do not show particularly low recombination rates. d, decay in linkage disequilibrium with physical distance, estimated over 20 randomly placed 15 kb windows. The shading of the hexagonal bins indicates the log_{10} count for each combination of distance and r^2 values. The red lines indicates a smoothing spline (gam, cubic regression spline) of the original data. Physical linkage decays rapidly within 2 kb.

Supplementary Figure 11: Long-distance and inter-chromosomal linkage disequilibrium (LD) among the eight intervals containing candidate vision and pigmentation genes. a, the intervals identified in Fig. 2 & Suppl. Fig. 7 displayed increased long-distance and inter-chromosomal LD. LD was calculated between individual SNP pairs and averaged over 10 kb \times 10 kb areas. b, LD among the eight intervals ordered by increasing differentiation among the three species (indicated by gray gradient, Fig. 1b,c, Suppl. Tab. 6). c, in contrast, LD was very low or absent within each of the three species.

Supplementary Figure 12: Patterns of genomic differentiation among hamlets from Belize, Honduras and Panama. The alternating white and grey blocks represent the 24 linkage groups (LGs). Each population comparison is represented by one colour, pooled across species (Global) as well as within each species (*H. nigricans, H. puella & H. unicolor*). F_{ST} values were estimated as the weighted mean per 50 kb window with 5 kb increments. The four genomic regions highlighted with a vertical line, included as reference, correspond to the four intervals identified in Fig. 2.

Supplementary Figure 13: Long-distance and inter-chromosomal linkage disequilibrium (LD) among the four candidate intervals for each species pair. The intervals identified in Fig. 2 displayed increased long-distance and inter-chromosomal LD, yet different pairs of intervals were in LD in each species pair. LD calculated between individual SNP pairs and averaged over 10 kb \times 10 kb areas.

Supplementary Figure 14: Long-distance and inter-chromosomal linkage disequilibrium (LD) among the eight intervals containing vision and pigmentation candidate genes. The intervals identified in & Suppl. Fig. 7 displayed increased long-distance and inter-chromosomal LD, yet different pairs of genes were in LD in each species pair. LD was calculated between individual SNP pairs and averaged over 10 kb \times 10 kb areas.

Supplementary Figure 15: PCA based on filtered data set. Principal Component Analysis (PCA) within each location. Genomic data was filtered for a minimum distance of 25 kb between SNPs to rule out physical linkage. After filtration 22,266 SNPs (0.3%) of the original data set remained.

Supplementary Figure 16: Comparison of linear model and linear mixed model results of the genotype by phenotype ($G \times P$) association among black (*H. nigricans*), barred (*H. puella*) and butter (*H. unicolor*) hamlets. Each species pair is represented by one colour, pooled across locations. Species comparisons are indicated on the right as well as model type (Im: linar model; Imm: linear mixed model). The *p* values are from the linear model with Wald test, transformed using the negative of the common logarithm and averaged across 50 kb window with 5 kb increments ($-\log_{10}(p)$).

Supplementary Figure 17: Extended close-up on the four intervals above the 99.98th F_{ST} percentile. The four panels (a-d) correspond to the four intervals above the 99.98th F_{ST} percentile identified in Fig. 2 (A-D). From top to bottom, each panel includes the respective linkage group (LG), the position on the LG, the position of genes, F_{ST} , the $-\log_{10}(p)$ value from the G × P association, d_{XY} , π (per species and species pair), iHH₁₂ and xpEHH values. Candidate genes are highlighted in high green. All statistics show the pairwise comparisons among species (lines, averaged per 10 kb window with 1 kb increments). On the F_{ST} track, the global F_{ST} values among the three species are shown as dots on a SNP basis. Non-synonymous SNPs in candidate genes are highlighted in green. All comparisons with species samples pooled across the three locations.

Supplementary Tables

Supplementary Table 1: Genomic regions above the 99.90th F_{ST} percentile, based on sliding window analysis with 50 kb windows and 5 kb increments. The Comparison column refers to the specific pairs in which the region is above the 99.90th F_{ST} percentile: *H. nigricans vs. H. puella* (NP), *H. nigricans vs. H. unicolor* (NU) & *H. puella vs. H. unicolor* (NP). Regions containing candidate genes are labelled with capital letters. Regions A – D are also above the 99.98th F_{ST} percentile. The **Other genes** column includes all genes overlapping with the 50-kb windows above the 99.90th F_{ST} percentile. Note that this approach conservatively includes genes situated before and after peaks of differentiation at a 10-kb window resolution (**Suppl. Fig. 8**).

Nr	ID	LG	Start (kb)	End (kb)	Candidate genes	Other genes	Comparison
1	Е	04	5835	5925	ednrb	polr1d, hpv1g7175, cysltr1, mtus1a, vamp7	NP,NU
2		04	6555	6645		asb12, zc4h2, hpv1g7205, msn, ar, arhgef9, efnb1	NP,NU
3	F	08	1945	2090	foxd3	hpv1g10963, alg6, efcab7, pgm1	NU,PU
4		08	9505	9595		arhgef18, insr	PU
5		08	10270	10420		klhl23, soat1, abl2, iqca1, cers2, cac1e, osbpl9	PU
6		08	12810	12895		fpgt, acot11, dio1, tnni3k, ssbp3, glis1	PU
7	G	08	12945	13010	rorb	mpnd, sh3gl1, hpv1g11382, lgals3bpb	NP
8		80	14825	14875		ctdspl2a, arid3a, tmem79	PU
9	A	09	17821	17930	sox10	smdt1, hpv1g12847, kcnj12, rnaseh2a, mast1, triobp	NP,NU
10		09	20995	21085		rnf24, smox, fbxo41	NP,NU
11		12	15050	15105		csf1, ren, eif2d, hpv1g15947	PU
12	В	12	20085	20355	casz1	pgd, c1orf127, kif1c, kif1b, tardbp	NP,PU
13	С	12	22150	22290	hoxc13a	hoxc5a, hoxc6a, hoxc8a, hoxc9, hoxc10a, hoxc11a, hoxc12a, calcoco1, rarga	NP,NU,PU
14		17	21340	21415		itih3, hpv1g21480	NU
15	D	17	22505	22660	lws, sws2aβ, sws2aα, sws2b	mafb, deptor, adnp, rab7, hcfc1, gnl3l, tfe3, mdfic2, cxxc1, srpk3, comt, gata2, mbd1, ccdc120	NP,NU,PU
16	Н	20	13840	13900	invs	hpv1g24338, stx17, erp44, tex10	NU,PU
17		23	13965	14030		ntf3	NP,NU
18		23	15445	15530		crys, glipr1l1, ache, nxpe3, krr1, st3gal1. gp2	NP,NU

Supplementary Table 2: Software versions used in this study

Software	version	Software	version	Software	version
Allmaps	Version 1	LAST	737	proovread	2.13.13
bedtools	v2.27.1	Maker	v 3.0	D	3.4.1 (calculations)
Bowtie2	version 2.3.4.1	msa2vcf		N	3.4.3 (visualisations)
BUSCO	2	98d97d07d6101fal	o1b0bef757b4ceee279e171d9	${\sf RepeatMasker}$	Open-4.0.6
BWA	0.7.12-r1044	msms	3.2rc	${\sf RepeatModler}$	open-1-0-8
Circos	v 0.69	MultiQC	Version 0.8	SAMtools	1.7
FastQC	v0.11.3	NextClip	v1.3.1	selscan	v1.2.0a
GATK	v3.7-0-gcfedb67	NextFlow	0.31.1	SeqChunker	v0.22.2
GEMMA	0.97.2	NewHybrids	2.0+ Developmental	seq-gen	1.3.4
gffread	v0.9.12	PBjelly	v14.1	seqtk	1.2-r94
HISAT2	2.0.4	PGDSpider	2.1.1.5	SHAPEIT	v2.r837
Inkscape	0.91 r13725	Picard Tools	2.9.2-SNAPSHOT	Trimmomatic	0.33
kallisto	0.43.1	Platanus	1.2.4	Trinity	v2.2.0
Kraken	0.10.6-unreleased	plink	v1.90b4 64-bit	VCFtools	0.1.15

Supplementary Table 3a: Samples used for resequencing (Samples 1-50).

ID	Species	Location	Date	Latitude	Longitude	Cov.	Acces. Nr.
18151	H. nigricans	Belize	2004-07-25	16.7653	-088.1442	22.6	ERS2619600
18153	H. nigricans	Belize	2004-07-25	16.7653	-088.1442	23.7	ERS2619601
18155	H. nigricans	Belize	2004-07-25	16.8008	-088.0789	21.2	ERS2619602
18156	H. nigricans	Belize	2004-07-25	16.8008	-088.0789	26.5	ERS2619603
18157	H nigricans	Belize	2004-07-25	16 8008	-088 0789	23.2	ERS2619604
18158	H nigricans	Belize	2004-07-25	16 8008	-088 0780	21.6	ERS2610605
10150	П. Підпіcans Ц nigricons	Polizo	2004-07-25	16 2002	-000.0709	21.0	ERS2019005
10159	H. Higricans	Delize	2004-07-25	16.7652	-000.0709	22.0	ER32019000
10102	H. nigricans	Belize	2004-07-25	10.7053	-088.1442	19.1	ER52019007
18105	H. nigricans	Belize	2004-07-25	16.7653	-088.1442	22.9	ERS2619608
18171	H. nigricans	Belize	2004-07-25	16.7653	-088.1442	26.4	ERS2619609
18185	H. nigricans	Belize	2004-07-26	16.8058	-088.0792	25.6	ERS2619610
18187	H. nigricans	Belize	2004-07-26	16.8058	-088.0792	26.6	ERS2619611
20599	H. nigricans	Honduras	2006-06-04	15.9558	-083.2931	24.2	ERS2619612
20600	H. nigricans	Honduras	2006-06-04	15.9558	-083.2931	25.6	ERS2619613
20601	H. nigricans	Honduras	2006-06-04	15.9558	-083.2931	22.8	ERS2619614
20602	H nigricans	Honduras	2006-06-04	15,9558	-083,2931	23	FRS2619615
20603	H nigricans	Honduras	2006-06-04	15 9558	-083 2931	26	ERS2619616
20005	H nigricans	Honduras	2000 00 04	15.0558	083 2031	20 3	ERS2610617
20004	П. Підпіcans Ц nigricons	Honduras	2000-00-04	15.9550	-003.2931	20.5	EDS2610619
20005	H. Higricans	Honduras	2000-00-04	15.9556	-003.2931	22.9	ER32019010
20000	H. nigricans	Honduras	2006-06-04	15.9558	-083.2931	22.0	ER52019019
20607	H. nigricans	Honduras	2006-06-04	15.9558	-083.2931	25.9	ERS2619620
20608	H. nigricans	Honduras	2006-06-04	15.9558	-083.2931	24.6	ERS2619621
20609	H. nigricans	Honduras	2006-06-04	15.9558	-083.2931	26.2	ERS2619622
20610	H. nigricans	Honduras	2006-06-04	15.9558	-083.2931	22.9	ERS2619623
16 21-30	H. nigricans	Panama	2016	-	-	89.1	ERS2619624
18418	H. nigricans	Panama	2004-05-12	09.3775	-082.3039	18.7	ERS2619625
18424	H. nigricans	Panama	2004-05-12	10.2392	-083.1731	19.3	ERS2619626
18428	H. nigricans	Panama	2004-05-12	10.2392	-083.1731	19.1	ERS2619627
18436	H. nigricans	Panama	2004-05-12	09.3775	-082.3039	9.8	ERS2619628
18901	H nigricans	Panama	2005-03-25	09.2983	-082,2894	25.6	FRS2619629
18902	H nigricans	Panama	2005-03-25	09 2983	-082 2894	22.4	ERS2619630
18903	H nigricans	Panama	2005-03-25	09.2983	-082 2894	17 1	ERS2619631
18004	H nigricans	Danama	2005-03-25	09.2903	082.2094	20.1	ERS2019031
10904	П. Підпіcans Ц nigricons	Danama	2005-05-25	09.2903	-002.2094	20.1	EDS2610622
10903	H. Higricans	Panama	2005-03-25	09.2963	-002.2094	22.2	ER32019033
18900	H. nigricans	Panama	2005-03-25	09.2983	-082.2894	20.7	ER52019034
18907	H. nigricans	Panama	2005-03-25	09.2983	-082.2894	18.1	ERS2019035
18909	H. nigricans	Panama	2005-03-25	09.2983	-082.2894	21.9	ERS2619636
18152	H. puella	Belize	2004-07-25	16.7653	-088.1442	23.4	ERS2619637
18154	H. puella	Belize	2004-07-25	16.7653	-088.1442	24.6	ERS2619638
18161	H. puella	Belize	2004-07-26	16.8058	-088.0792	18.4	ERS2619639
18166	H. puella	Belize	2004-07-25	16.7653	-088.1442	24.2	ERS2619640
18169	H. puella	Belize	2004-07-25	16.7653	-088.1442	19.6	ERS2619641
18172	H. puella	Belize	2004-07-25	16.7653	-088.1442	23.4	ERS2619642
18174	H. puella	Belize	2004-07-25	16.7653	-088.1442	24.8	ERS2619643
18175	H. puella	Belize	2004-07-25	16.7653	-088,1442	22.2	FRS2619644
18176	H nuella	Relize	2004-07-25	16 7653	-088 1442	20	ERS2610645
18178	H nuella	Baliza	2004 07-25	16 7653	_088 1//2	220	ER\$2610646
10170	H puella	Baliza	2004-01-23	16 7652	-000.1442 000.1442	22.9 00 1	EDC2610647
101/9	п. puella Ц puella	Bolizo	2004-01-23	16 7652	-000.1442 000.1442	∠∠.⊥ 21.7	EDC2610640
10100	п. риена	Delize	2004-07-25	10.7055	-000.1442	21.1	CR32019048
20551	H. puella	Honduras	2006-06-04	15.9558	-083.2931	23	ERS2619649

Supplementary	Table 3b:	Samples used	for resequencing	(continued,	Samples	51-100).

ID	Species	Location	Date	Latitude	Longitude	Cov.	Acces. Nr.
20552	H. puella	Honduras	2006-06-04	15.9558	-83.2931	24.5	ERS2619650
20553	H. puella	Honduras	2006-06-04	15.9558	-83.2931	26.2	ERS2619651
20554	H. puella	Honduras	2006-06-04	15.9558	-83.2931	22	ERS2619652
20555	H. puella	Honduras	2006-06-04	15.9558	-83.2931	23.2	ERS2619653
20556	H. puella	Honduras	2006-06-04	15.9558	-83.2931	29.1	ERS2619654
20558	H. puella	Honduras	2006-06-04	15.9558	-83.2931	25.5	ERS2619655
20559	H. puella	Honduras	2006-06-04	15.9558	-83.2931	26	ERS2619656
20625	H. puella	Honduras	2006-06-05	15.9558	-83.2931	21.8	ERS2619657
20633	H. puella	Honduras	2006-06-05	15.9558	-83.2931	27.6	ERS2619658
20635	H. puella	Honduras	2006-06-05	15.9558	-83.2931	26.3	ERS2619659
20638	H. puella	Honduras	2006-06-05	15.9558	-83.2931	21.7	ERS2619660
18419	H. puella	Panama	2004-05-12	10.2392	-83.1731	19.8	ERS2619661
18421	H. puella	Panama	2004-05-12	10.2392	-83.1731	22.7	ERS2619662
18422	H. puella	Panama	2004-05-12	9.3775	-82.3039	22.9	ERS2619663
18426	H. puella	Panama	2004-05-12	10.2392	-83.1731	20.9	ERS2619664
18427	H. puella	Panama	2004-05-12	10.2392	-83.1731	21.3	ERS2619665
18429	H. puella	Panama	2004-05-12	10.2392	-83.1731	23.5	ERS2619666
18430	H. puella	Panama	2004-05-12	10.2392	-83.1731	19.5	ERS2619667
18432	H. puella	Panama	2004-05-12	10.2392	-83.1731	21.6	ERS2619668
18434	H. puella	Panama	2004-05-12	9.3775	-82.3039	25.7	ERS2619669
18912	H. puella	Panama	2005-03-25	9.2983	-82.2894	23	ERS2619670
18915	H. puella	Panama	2005-03-25	9.2983	-82.2894	19.4	ERS2619671
18917	H. puella	Panama	2005-03-25	9.2983	-82.2894	18.8	ERS2619672
27678	H. puella	Panama	2013-04-12	9.3681	-82.2928	89.8	ERS2619673
18163	H. unicolor	Belize	2004-07-25	16.7653	-88.1442	24.5	ERS2619674
18261	H. unicolor	Belize	2004-07-24	-	-	21.8	ERS2619675
18267	H. unicolor	Belize	2004-07-24	-	-	28.4	ERS2619676
18274	H. unicolor	Belize	2004-07-24	-	-	24.4	ERS2619677
18276	H. unicolor	Belize	2004-07-25	16.7653	-88.1442	23.8	ERS2619678
19881	H. unicolor	Belize	2005-08-16	16.7078	-87.8598	23.7	ERS2619679
20092	H. unicolor	Belize	2005-08-15	16.8936	-88.1226	23.5	ERS2619680
20120	H. unicolor	Belize	2005-08-11	16.8008	-88.0789	30.3	ERS2619681
20126	H. unicolor	Belize	2005-08-12	16.8936	-88.1226	22.4	ERS2619682
20128	H. unicolor	Belize	2005-08-12	16.8936	-88.1226	22.6	ERS2619683
20135	H. unicolor	Belize	2005-08-12	16.8936	-88.1220	21.2	ERS2019084
20149		Delize	2005-06-12	10.0950	-00.1220	23.5	ER32019065
20560	H. unicolor	Honduras	2006-06-04	15.9558	-83.2931	21.3	ERS2619686
20561	H. unicolor	Honduras	2006-06-04	15.9558	-83.2931	24.2	ERS2619687
20562	H. unicolor	Honduras	2006-06-04	15.9558	-83.2931	25.4	ERS2019088
20503	H. UNICOIOR	Honduras	2006-06-04	15.9558	-83.2931	23.1	ERS2019089
20504	H. UNICOIOR	Honduras	2006-06-04	15.9558	-83.2931	28.9	ERS2019090
20505	H unicolor	Honduras	2000-00-04	12.9220 12.9220	-03.2931 83 2021	∠3 27 4	ER\$2019091
20500	H unicolor	Honduras	2000-00-04 2006_06 04	12.9000	-03.2931 _83 2031	∠1.4 27.2	ERS2610602
20507	H unicolor	Honduras	2000-00-04 2006_06_04	15.9550	-03.2931	∠7.3 30.1	ERS2610604
20500	H unicolor	Honduras	2000-00-04	15.9550	-03.2931	24.6	ERS2610605
20572	H. unicolor	Honduras	2006-06-04	15.9558	-83,2931	23.8	FRS2619695
16 31.40	H unicolor	Panama	2016		_	52.0	ERS2610607
18420	H unicolor	Panama	2010	- 10 2302	- -83 1731	20.3	ERS2610608
18435	H. unicolor	Panama	2004-06-23	9.3328	-82.2547	20.2	ERS2619699

ID	Species	Location	Date	Latitude	Longitude	Cov.	Acces. Nr.
18439	H. unicolor	Panama	2004-06-25	9.3328	-82.2547	23.8	ERS2619700
18440	H. unicolor	Panama	2004-06-25	9.3328	-82.2547	19.7	ERS2619701
18441	H. unicolor	Panama	2004-06-25	9.3328	-82.2547	25.1	ERS2619702
18442	H. unicolor	Panama	2004-07-08	9.2983	-82.2894	20.6	ERS2619703
18445	H. unicolor	Panama	2004-06-28	9.3328	-82.2547	19	ERS2619704
18446	H. unicolor	Panama	2004-06-29	9.3328	-82.2547	26	ERS2619705
18447	H. unicolor	Panama	2004-07-09	9.2894	-82.2589	16.8	ERS2619706
18448	H. unicolor	Panama	2004-06-28	9.3328	-82.2547	26.1	ERS2619707
18450	H. unicolor	Panama	2004-06-25	9.3328	-82.2547	17.7	ERS2619708
18454	H. unicolor	Panama	2004-06-30	9.3481	-82.2633	22.7	ERS2619709

Supplementary Table 3c: Samples used for resequencing (continued, Samples 101-110).

Supplementary Table 4: Overview of the sequencing data generated for the assembly of the *Hypoplectrus* genome (PE: paired end, MP: mate pair, PB: PacBio)

Nr	Tissue	Туре	Туре	Targeted insert size (bp)	Mapped insert size (bp, mean \pm SD)	Read length (bp)	Coverage (×)
1	gill	PE	DNA	300	264 ± 94	151	24
2	gill	PE	DNA	300	255 ± 80	151	144
3	gill	PE	DNA	500	299 ± 106	151	46
4	gill	PE	DNA	800	321 ± 123	151	67
5	muscle	PE (PCR-free)	DNA	550	579 ± 155	251	100
6	muscle	MP	DNA	3000	2457 ± 639	101	34
7	muscle	MP	DNA	6000	4329 ± 1110	101	31
8	muscle	PB	DNA	-	-	50-33680	16
9	gill	PE	RNA	-	-	251	-
10	muscle	PE	RNA	-	-	251	-
11	liver	PE	RNA	-	-	251	-

ID	Date	Species	Latitude	Longitude	Raw reads	Filtered (n, 10^6)	Alignment rate (%)	Acession Number
28385	2017-02-06	H. nigricans	09.318	-082.222	2x7.4	2x4.7	60.84	ERS2619746
28387	2017-02-06	H. nigricans	09.318	-082.222	2x6.3	2x4.7	59.34	ERS2619747
28390	2017-02-06	H. nigricans	09.318	-082.222	2x5.9	2x4.4	61.72	ERS2619748
28394	2017-02-07	H. nigricans	09.301	-082.294	2x4.8	2x3.0	63.55	ERS2619749
28399	2017-02-07	H. nigricans	09.301	-082.294	2x7.3	2×5.2	62.11	ERS2619750
AG9RX46	2017-02-06	H. nigricans	09.318	-082.222	2x7.1	2×5.3	60.73	ERS2619751
AG9RX49	2017-02-07	H. nigricans	09.301	-082.294	2x7.1	2×5.3	63.38	ERS2619752
AG9RX50	2017-02-07	H. nigricans	09.301	-082.294	2x6.8	2x4.8	60.68	ERS2619753
AG9RX52	2017-02-07	H. nigricans	09.301	-082.294	2×6.7	2x4.9	59.98	ERS2619754
28384	2017-02-06	H. puella	9.318	-082.222	2×6.1	2x4.2	63.13	ERS2619755
AG9RX47	2017-02-06	H. puella	09.318	-082.222	2×5.5	2x4.0	68.03	ERS2619756
AG9RX48	2017-02-07	H. puella	09.301	-082.294	2x6.2	2x4.5	66.079	ERS2619757
AG9RX51	2017-02-07	H. puella	09.301	-082.294	2×6.7	2×5.0	61.41	ERS2619758
AG9RX53	2017-02-07	H. puella	09.301	-082.294	2x6.3	2x4.5	62	ERS2619759
PL17_02	2017-02-07	H. puella	09.301	-082.294	2x6.1	2x4.6	62.61	ERS2619760
PL17_04	2017-02-07	H. puella	09.301	-082.294	2×6.5	2x4.7	63.17	ERS2619761
PL17_16	2017-02-09	H. puella	09.367	-082.291	2x7.5	2x5.3	62.1	ERS2619762
PL17_17	2017-02-09	H. puella	09.367	-082.291	2x7.3	2x5.3	61.72	ERS2619763
PL17_18	2017-02-09	H. puella	09.367	-082.291	2x6.3	2x4.6	63.68	ERS2619764
28383	2017-02-06	H. unicolor	09.318	-082.222	2x6.8	2x4.7	61.04	ERS2619765
28391	2017-02-07	H. unicolor	09.301	-082.294	2x7.1	2x5.2	61.75	ERS2619766
AG9RX54	2017-02-06	H. unicolor	09.318	-082.222	2x5.5	2x3.9	59.2	ERS2619767
AG9RX55	2017-02-07	H. unicolor	09.301	-082.294	2x6.3	2×4.7	61.54	ERS2619768
PL17_01	2017-02-07	H. unicolor	09.301	-082.294	2x8.1	2x5.9	62.11	ERS2619769

Supplementary Table 5: Samples used for RNA sequencing

Supplementary Table 6: Whole-genome weighted mean F_{ST} estimates among *H. nigricans, H. puella & H. unicolor*.

Location	H. nigricans H. puella	H. nigricans H. unicolor	H. puella H. unicolor	All
Global	0.0079	0.0098	0.0027	0.0068
Belize	0.0168	0.0153	0.0047	0.0123
Honduras	0.0033	0.0051	0.0030	0.0038
Panama	0.0274	0.0348	0.0125	0.0249

Supplementary Table 7: Anchoring statistics. Size selection refers to the removal of contigs smaller than 501 bp, which was done after anchoring.

	p	re size selectio	on	post size selection (> 500 bp)			
	Anchored	Oriented	Unplaced	Anchored	Oriented	Unplaced	
Markers (unique)	2602	1991	0	2658	2012	0	
Markers per Mb	4.6	4.5	0	4.7	4.6	0	
N50 Scaffolds	50	48	0	38	36	0	
Scaffolds	376	131	502438	380	127	14341	
with 1 marker	128	0	0	131	0	0	
with 2 markers	64	17	0	65	17	0	
with 3 markers	33	12	0	32	11	0	
\geqslant 4 markers	151	102	0	152	99	0	
Total bases	559 614 477	437 616 820	140 002 979	561 222 590	434 765 886	51 030 271	
percent	80.0	62.6	20.0	91.7	71.0	8.3	

Supplementary Table 8: Assembly statistics

	Super-Scaffolds	Scaffolds	Contigs	BUSCO	n	%
Sequences (n)	14 375	14 721	58 827	Complete Single-Copy	2597	85
Min (bp)	501	501	28	Complete Duplicated	61	2.0
Median (bp)	902	919	3 972	Fragmented	218	7.2
Mean (bp)	42 594	41 590	10 240	Missing	208	6.8
Max (bp)	31 702 000	17 788 340	212 451	Total	3023	100
Total (bp)	612 290 098	612 252 861	602 376 265			
n50 (bp)	24 210 077	4 424 055	25 823			
n90 (bp)	13 699 534	304 599	5 215			
n95 (bp)	108 356	2 813	89 255			