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ABSTRACT

Tomodel tracer spreading in the ocean, Lagrangian simulations in an offline framework are a practical and

efficient alternative to solving the advective–diffusive tracer equations online. Differences in both approaches

raise the question of whether bothmethods are comparable. Lagrangian simulations usually usemodel output

averaged in time, and trajectories are not subject to parameterized subgrid diffusion, which is included in the

advection–diffusion equations of ocean models. Previous studies focused on diffusivity estimates in idealized

models but could show that both methods yield similar results as long as the deformations-scale dynamics are

resolved and a sufficient amount of Lagrangian particles is used. This study compares spreading of anEulerian

tracer simulated online and a cloud of Lagrangian particles simulated offline with velocities from the same

ocean model. We use a global, eddy-resolving ocean model featuring 1/208 horizontal resolution in the

Agulhas region around South Africa. Tracer and particles were released at one time step in the Cape Basin

and below the mixed layer and integrated for 3 years. Large-scale diagnostics, like mean pathways of floats

and tracer, are almost identical and 1D horizontal distributions show no significant differences. Differences in

vertical distributions, seen in a reduced vertical spreading and downward displacement of particles, are due to

the combined effect of unresolved subdaily variability of the vertical velocities and the spatial variation of

vertical diffusivity. This, in turn, has a small impact on the horizontal spreading behavior. The estimates of

eddy diffusivity from particles and tracer yield comparable results of about 4000m2 s21 in the Cape Basin.

1. Introduction

Analyses of tracer spreading are widely used in ob-

servational oceanography to study subsurface ocean

circulation and attendant material transport (Ledwell

and Watson 1991; Ledwell et al. 1998; Ho et al. 2008;

Gary et al. 2012; Banyte et al. 2012, 2013; Tulloch et al.

2014). In tracer release experiments distinct water

masses aremarked through conservative (i.e., remaining

constant and not growing or decaying with time) and

passive (i.e., not affecting the ocean flow) chemical

constituents (e.g., rhodamine dye or sulfur hexa-

fluoride). From subsequent measurements of the in-

jected tracer concentrations, the water mass spreading

(pathways), as well as mixing rates due to turbulent

flows, like eddies and filaments (so-called eddy diffu-

sivities), can be inferred. A common diagnostic of

oceanic mixing is the calculation of a diffusivity tensor,

which relates mixing rates due to turbulent flows to

the gradient of a tracer concentration. Tracer release

experiments have been used to estimate the diffusivity

in different regions of the world oceans (e.g., Tulloch

et al. 2014; Banyte et al. 2012; Ledwell et al. 1998).Major

tracer release experiments were conducted in the east-

ern and northeastern Atlantic (Ledwell et al. 1998;

Sundermeyer and Price 1998; Banyte et al. 2012, 2013),

northeastern Pacific (Ledwell and Watson 1991; Ho

et al. 2008), and Southern Oceans (Tulloch et al. 2014).

To guide and advance our understanding of ocean

mixing processes, ocean general circulation models

(OGCMs), often in high-resolution regional configu-

rations, are a valuable tool. They help in interpreting

the sparse observational spreading and diffusivity

estimates, but can also be used to design tracer and

float release experiments in the first place (e.g., Banyte

et al. 2013).

The OGCMs integrate a passive tracer field C(x, t) in

time t and in the Eulerian frame (i.e., fixed spatial

frame x defined on the model grid) using the advection–

diffusion equation:Corresponding author: Patrick Wagner, pwagner@geomar.de
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›C

›t
5=(KM=C)2U � =(C) , (1)

where U(x, t) is the velocity and KM(x, t) is the model

eddy diffusion coefficient. These, respectively, represent

advection by the oceanic flow resolved by the OGCM,

and the combined effect of molecular diffusion and ad-

vection by unresolved turbulent flow, parameterized as

Fickian diffusion (for the different formulations of the

diffusivity tensorKM and numerical solution techniques;

see, e.g., Griffies et al. 2000). The integration of Eq. (1) is

usually done during the ocean model integration. Al-

though popular as a diagnostic tool (e.g., Sarmiento and

Gruber 2002; Tulloch et al. 2014; Böning et al. 2016;

Dukhovskoy et al. 2016), these tracer calculations can

be costly, in particular with new generations of eddy-

resolving global and regional models targeting small-

scale processes, and continually pushing up the limits

of computational feasibility.

A practical alternative to an advective–diffusive

tracer in an Eulerian framework, are Lagrangian

(moving-frame, particle-following) simulations. Here,

the fundamental concept of describing fluid motion as

the accumulation of continuum fluid particle motion is

employed. A tracer patch can be approximated by a

cloud of Lagrangian particles (e.g., Sundermeyer and

Price 1998; LaCasce 2008; Banyte et al. 2013). The ve-

locity field of anOGCM is used to calculate a large set of

individual particle trajectories, with each particle de-

scribing the pathway of an imaginary point particle, that

moves as a small element of fluid. Example applications

of such Lagrangian studies target the spread of geo-

chemical tracers (e.g., Gary et al. 2012), simulation

of tracer release experiments (Banyte et al. 2013),

spreading of water masses (e.g., Bower et al. 2009;

Koszalka et al. 2013; Rühs et al. 2013; Durgadoo et al.

2017), back-tracing sources of water masses (von Appen

et al. 2014; Gelderloos et al. 2017), or calculation of

eddy diffusivities in eddy-permitting or eddy-resolving

models (Koszalka et al. 2009a; Griesel et al. 2010, 2014;

Rühs et al. 2018).
The main advantages of Lagrangian techniques are

lower computational costs, because the calculation is

done per trajectory and not at every single model grid

point. Lagrangian experiments also offer the ability to

perform backward tracing and the capacity to calculate

conditional statistics, like transit time distributions and

water property changes, on subsets of the trajectories.

(e.g., von Appen et al. 2014; Durgadoo et al. 2017;

Gelderloos et al. 2017). Acoustically tracked Lagrangian

floats (following the currents at a certain pressure or

density surface) have also been used to assess lateral

water mass pathways and eddy diffusivities in the

subpolar North Atlantic and in the Southern Ocean

(e.g., Zhang et al. 2001; Bower et al. 2009).

Lagrangian experiments are often done in an offline

framework. The stored velocity field of an OGCM is

used to advect a tracer or particles. The temporal reso-

lution of the OGCM output velocity field for offline

simulations can be much lower than the internal OGCM

time step with which the online calculations are per-

formed (e.g., Keating et al. 2011). This reduces the

computational effort. Moreover, offline experiments

offer a possibility of flexible use of the stored ocean

model output for multiple release experiments. The

Lagrangian framework does not require an offline in-

tegration (e.g., Wolfram et al. 2015) and tracer experi-

ments are not limited to online calculations (e.g., Ribbe

and Tomczak 1997). Since they are commonly used we

will compare these two specific setups of online Eulerian

tracer and offline Lagrangian particles. This means,

however, that we not only compare a Lagrangian to

an Eulerian framework but also online to offline calcu-

lations, and differences between our experiments can

stem from either difference.

The general aim of this study is to explore if and under

what assumptions do online integration of tracers and

offline integration of Lagrangian particles yield similar

results regarding spreading and mixing diagnostics.

Previous research addressed several aspects that could

cause differences in the results.

First, offline experiments use model output sub-

sampled and often averaged in time (usually daily to

5-day-mean velocities are used), which smears out short-

time and small-scale advective processes simulated

by the OGCM. Keating et al. (2011) examined the

sensitivity to subsampling for a range of diffusivity

diagnostics in two models of oceanic turbulence: the

Philips model (in which tracer transport is controlled

by large eddies) and the Eady model (where it is

determined by local scales of motion). They defined a

critical output time step criterion for the onset of ‘‘par-

ticle overshoot’’ and showed that the tracer diagnostics

in the Philips model show less sensitivity to the spatio-

temporal subsampling as long as the deformation scale

dynamics is resolved.

Second, the Eulerian tracer method in ocean model-

ing has a disadvantage of being susceptible to numerical

(spurious) diffusion associated with finite-element and

finite-difference techniques applied to solve the advec-

tion and diffusion of tracer [Eq. (1)] on a fixed grid.

These spurious effects have implications for the realism

of the model solutions and pose high requirements on

horizontal and vertical resolution of the model and

the choice of the advection and diffusion schemes (e.g.,

Rood 1987; Gerdes et al. 1991; Beckers et al. 2000;
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Griffies et al. 2000; Lévy et al. 2001; Delhez and

Deleersnijder 2007; Spivakovskaya et al. 2007; Hill et al.

2012; Marchesiello et al. 2009; Naughten et al. 2017).

They can lead to an underestimation of spatial gradients

and finescale structures (e.g., Reithmeier and Sausen

2002; Hoppe et al. 2014; Wohltmann and Rex 2009) due

to an excessive transport across physical mixing barriers

(Hoppe et al. 2014; McKenna et al. 2002). In the ocean,

these are often associated with turbulent eddies and

filaments or certain reactive processes like plankton

blooms and ice formation. High initial tracer concen-

trations (e.g., when simulating tracer releases) can also

lead to spurious numerical advection.

In that respect, another advantage of the Lagrangian

approach is that the spurious effects due to limited

accuracy of numerical schemes are, in principle, elimi-

nated (for analytical Lagrangian integration schemes) or

greatly reduced (for the discrete Lagrangian integration

schemes); for the latter method various diffusive pro-

cesses can be included explicitly by virtue of carefully

chosen stochastic differential equations (SDEs; see

van Sebille et al. (2018) and references herein). For

that reason, the Lagrangian and semi-Lagrangian

methods are preferred (e.g., Abraham 1998; Koszalka

et al. 2007; Spivakovskaya et al. 2007; Lehahn et al. 2017).

However, we expect the effect to act on a very small

time scale in the case of eddy-permitting and eddy-

resolving OGCMs.

Third, an important factor is that a sufficient number

of particles is necessary to achieve robust Lagrangian

statistics (Hunter et al. 1993; Davis 1994; Griffa 1996;

Spivakovskaya et al. 2007). Klocker et al. (2012a)

showed that, for a given velocity field, particle- and

tracer-based estimates of eddy diffusivities are equiva-

lent as long as Lagrangian diffusivities are estimated

from a sufficiently high number of trajectories (hun-

dreds of floats) and by using their asymptotic and not

their maximum values.

Even though the Lagrangian framework is frequently

used in ocean modeling community, there are relatively

few studies rigorously addressing the issues around its

applicability. There are studies that present systematic

comparisons between online tracer and offline La-

grangian diffusivity estimates (e.g., Sundermeyer and

Price 1998; Klocker et al. 2012a; Abernathey et al. 2013),

but only for idealized models and/or velocity fields de-

rived from altimetry. In general they find a good

agreement between both approaches. To our knowledge

nobody has ever carried out a similar comparison

using a 3D primitive equation OGCMwith a much richer

dynamic. Moreover, a comparison between the two

methods in terms of large-scale spreading diagnostics,

like pathways, horizontal and vertical distributions in

function of time, and variance ellipses—relevant to a wide

community of researchers dealing with water masses and

basin-scale ‘‘connectivity’’—is also missing. In this work,

we aim to fill this gap.

We compare the spreading of a passive tracer, in-

tegrated online [Eq. (1)] in a mesoscale resolving

OGCM to the dispersal of Lagrangian particles, that are

advected with the stored velocities of the same OGCM.

Throughout the study we refer to the former as ‘‘tracer’’

and to the latter as ‘‘particles.’’We address the following

questions:

d Is a cloud of Lagrangian particles simulated offline

capable of representing pathways of the online simu-

lated tracer?
d How well do the horizontal distribution, as a function

of time, agree for the two methods?
d Do particles and tracer yield consistent estimates of

lateral eddy diffusivity?

To address these questions, we use an eddy-resolving

OGCM configuration that resolves the greater Agulhas

region with a horizontal resolution of 1/208. The scales

on which this study focuses are regional to basinwide in

space and intraseasonal to interannual in time. Eddies

on the order of hundreds of kilometers are regarded

as turbulent flow. The release experiment is conducted

in the Cape Basin southeast of Africa in the South

Atlantic. The region is characterized by high eddy activity

and, at the same time, a lack of strong mean flow. Large

anticyclonic eddies, ‘‘Agulhas rings,’’ shed from the retro-

flecting Agulhas current, cross the region, while the

Agulhas Current itself does not reach into the region

(Lutjeharms 2006). The paper is organized as follows:

section 2 describes the model and the Lagrangian soft-

ware, gives an overview of the diffusivity calculations,

and introduces the experimental design. Section 3

presents the results, and section 4 summarizes the results

and provides a discussion.

2. Model and methods

a. Ocean general circulation model

We use a high-resolution nested model configuration

of the Nucleus for European Modeling of the Ocean

(NEMO) code, version 3.6 (Madec 2016), for the

greater Agulhas region, called INALT20r. Embedded

into a global tripolar ORCA configuration at 1/48 hor-
izontal resolution is a nest covering the region around

southern Africa from 208W to 708E and from 508 to

6.58S at 1/208 resolution (;5 km), using Adaptive Grid

Refinement in FORTRAN (AGRIF; Debreu et al.

2008). As the local first baroclinic Rossby radius of

deformation yields about 15 km (Chelton et al. 1998),
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the model setup can be regarded as mesoscale-eddy

resolving (Hallberg 2013).

INALT20r is a member of a hierarchy of model con-

figurations focused on the Agulhas region and is a suc-

cessor of the established model configuration INALT01

(Durgadoo et al. 2013).

The vertical grid consists of 46 z levels with varying

layer thickness from 6m at the surface to 250m in the

deepest levels. Bottom topography is interpolated from

2-Minute Gridded Global Relief Data ETOPO2v21 and

represented by partial steps (Barnier et al. 2006). The

model is forced with the CORE (version 2) forcing

(Large and Yeager 2009) which builds on NCEP–NCAR

reanalysis product merged with satellite-based radiation

and precipitation via bulk formulas.

Laplacian and bi-Laplacian operators are used to pa-

rameterize horizontal diffusion of tracer and momentum

respectively. Lateral eddy diffusion coefficients are scaled

with local mesh size: they are highest at the equator and

decrease toward the poles. Nominal eddy coefficients for

the nest are set to At
h0 5 60m2 s21 (tracer, temperature,

and salinity) and Am
h0 5263 109 m4 s21 (momentum).

This implies that the tracer coefficients decrease from

60m2 s21 at the northern nest boundary to 40m2 s21

at the southern boundary.

The turbulent kinetic energy (TKE) model is used to

estimate vertical mixing in the mixed layer (Blanke and

Delecluse 1993; Gaspar et al. 1990). Background vertical

mixing coefficients are set to At
y0 5 1:23 1025 m2 s21

(tracer) and Am
y0 5 1:23 1024 m2 s21 (momentum). For

tracer advection, the positive flux-corrected total

variance dissipation (TVD) scheme is used (Zalesak

1979) which is less prone to spurious numerical dif-

fusion then other available schemes (Lévy et al. 2001).
The passive tracer is simulated using the MY_TRC

module of the ‘‘Tracer in the Ocean Paradigm’’ (TOP)

implemented in NEMO. This provides the possibility

to introduce user-defined tracer behavior. The passive

tracer purely underlies advection and diffusion using

the same schemes and parameters as for temperature

and salinity.

For the tracer and particle release experiments de-

scribed in this paper, we use a 30-yr-long integration

(years 1980–2009), initialized with hydrography from

the World Ocean Database (Levitus et al. 1998) and an

ocean at rest, driven by interannually varying atmo-

spheric boundary conditions. After a spinup phase of

20 years tracer and particles were released. The particles

are advected with three-dimensional, daily mean model

velocity output. Tracer concentrations are also stored as

daily averages.

We evaluate the model’s ability to represent observed

mesoscale dynamics by comparing modeled and remotely

sensed sea surface height (SSH) variance. Altimetric ob-

servations are provided by AVISO2 (Le Traon et al. 1998;

Ducet et al. 2000) (Fig. 1). The model slightly un-

derestimates SSH variance, but it reproduces major fea-

tures seen in the observations. The Agulhas Current, as

well as the Agulhas Return Current, can be identified. The

Agulhas Current retroflection is marked by a local max-

imum in SSH variance. The pathways of Agulhas rings

form a weak mean flow in the northwesterly direction.

Schwarzkopf et al. (2019) present a comprehensive

evaluation of the INALT model family. The specific

configuration used here (INATL20r) is a reduced

version of the 1/208 model INALT20.

b. Experimental design

The focus of this study is on the effect of mesoscale

mixing on the dispersal of Eulerian tracers and La-

grangian particles. The experiments were conducted in

the Cape Basin, where strong mesoscale eddy activity

due to the Agulhas rings coincides with the absence of

strong mean currents. Those would quickly advect

tracers out of the region, and thereby masking the im-

pact of mesoscale processes on tracer transport and

hindering statistical assessment due to exits out of the

high-resolution nest. The tracer and particle release was

designed such that it fulfilled the following criteria:

particles and tracer should be released in the center of

this area with a sufficient horizontal distance from the

coastline, the boundaries of the high-resolution nest,

and theAgulhas Return Current; the initial patch should

be larger than a typical Agulhas ring to ensure not all

particles would be entrained by a single eddy; and the

largest part of tracer and particles should stay below the

mixed layer but still within the vertical extend of eddies,

typically focused on the upper 1000m (Arhan et al.

1999). The release area was therefore located at 160-m

depth in a box covering 298–348S, 38–78E (marked in

Fig. 1). A total of 105 particles were seeded uniformly

over this area. For the tracer, a layer of 10 horizontal

grid boxes (0.58) was added to the release area at each

side where the tracer values decay exponentially from

1 to 1/(2e) to avoid sharp gradients at the patch

boundary leading to spurious numerical diffusion of

the tracer. A similar transition zone is not required

for the particles since they do not suffer from spurious

numerical diffusion.

1 http://www.ngdc.noaa.gov/mgg/global/relief/ETOPO2/ETOPO2v2-

2006/ETOPO2v2g/. 2 http://www.aviso.altimetry.fr.
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The particles and tracer were released on 1 January

2000. Since the year 2000 is chosen somewhat arbitrarily,

sensitivity experiments were conducted to make sure

that it does not represent an anomalous year in terms of

particle/tracer spreading. Following the same strategy,

particles were released in eight different years (1990,

1992, 1994, 1996, 1998, 2002, 2004, 2006) and advected

for 2 years in each experiment. Note that a spinup phase

of 10 years is already sufficient for the upper ocean

dynamics. The overall size and orientation of the parti-

cle patches after two years look comparable in all years,

except for individual eddy tracks (not shown).

c. Lagrangian particle trajectories

For the computation of three-dimensional particle

trajectories the community software ARIANEwas used

(Blanke and Raynaud 1997; http://stockage.univ-brest.

fr/;grima/Ariane/). ARIANE advects particles with a

3D velocity output from anOGCM. The software is well

established and has been used for a range of applications

concerned with diagnosis of modeled ocean circulation

(Blanke et al. 1999, 2001; Dutrieux et al. 2008; Pizzigalli

et al. 2007; Rühs et al. 2013) and biological dispersal

(e.g., Bonhommeau et al. 2009; Scott et al. 2017).

ARIANE assumes three-dimensional nondivergence

and continuity of volume to compute streamlines for

successive time intervals:

›
i
T

x
1 ›

j
T

y
1 ›

k
T

z
5 0: (2)

Here Txyz indicates the transport in the three spatial

directions, and i, j, and k refer to the three axes. Under

the assumption of temporal stationarity over the sam-

pling period (here 1 day), these streamlines represent

true trajectories. The three velocity components are

known across each grid box interface. Each component

is interpolated linearly across the grid box. Assuming

the spatial extend of the grid box to be from 0 to 1 any

transport component T(r) is given by

T(r)5T(0)1 r[T(1)2T(0)] , (3)

with r 2 [0, 1]. The constraint of three-dimensional non-

divergence ensures that a crossing time can be computed

for at least one direction, and the shortest one defines the

crossing time in the cell under consideration. The com-

putation is then repeated for the next cell, with the starting

position equal to the exit location from the previous cell.

We use the stored daily velocity output of the OGCM

described above to calculate Lagrangian trajectories and

store their position at daily intervals. Vertical velocities

are diagnosed by ARIANE from the horizontal flow

field. For technical reasons, particles cannot leave the

high-resolution domain and are terminated upon arrival

at the nest boundaries.

d. Spreading diagnostics: Time-dependent
concentrations and error variance ellipses

For many diagnostics, the Lagrangian model output

has to bemapped to a regular, Eulerian grid. This can be

done via binning in space, that is, 2D or 3D histograms

(e.g., van Sebille et al. 2018) and the bin size has to be

carefully chosen by trading the bias and the variance of

the histogram estimator. An alternative is to use a

Kernel estimator where the bandwidth also needs to be

chosen carefully and special care has to be taken for

locations close to the boundaries (e.g., Spivakovskaya

et al. 2007). There are also more advanced approaches

to the ‘‘pseudo-Eulerian’’ mapping, for example, via

clustering (Koszalka and Lacasce 2010).

FIG. 1. SSH averaged for the period 2000–09 (contours; 20-cm interval) and SSH variance (shading; cm2; log

scale) from (left) INALT20r and (right) altimetric observations (AVISO). The red box indicates the release area of

the particles and the tracer, and the red line indicates themean displacement of the particle and tracer clouds during

2 years.
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We followed the approach of Gary et al. (2011). At

every time step all particle positions were binned into a

0.258 3 0.258 grid with 46 vertical layers. This coarse

horizontal resolution is necessary to avoid aliasing due

to the reduced time step of daily data (van Sebille et al.

2018). To compare particles and tracer concentration

Cparticle and Ctracer respectively, the particle counts were

normalized in such a way that every particle represents

an equal portion of the initial tracer budget. The re-

sulting concentration is further normalized with respect

to the gridbox volume V:

C
particle

(x, y, z, t)5
C

0

N
0

H(x, y, z, t)

V(x, y, z)
, (4)

whereN0 is the total amount of particles released, C0 the

initial tracer budget, and H(x, y, z, t) is the number of

observed particles. This yields a concentration with

dimensionsm3m23 that (initially) represents the full

tracer budget and can be compared to theEulerian tracer.

Variance ellipses quantify directional spreading of

tracer and particle patches. They are defined by

�
x

l
1

�2

1

�
y

l
2

�2

5 s , (5)

where l1,2 denotes the major and minor eigenvalues of

the covariance tensor Cov(Dx, Dy) of the displacement

Dx, Dy, with respect to the center of mass, and represent

the standard deviation in directions of the eigenvectors

y1,2. Parameter s is a constant scaling factor. The angle

a of y1 toward the x axis is calculated to align the axis of

the ellipse with the eigenvectors:

a5 arctan
y
1
(y)

y
1
(x)

. (6)

The radii represent 2 times the standard deviation.

e. Estimation of lateral eddy diffusivities

The lateral eddy diffusivities derived from tracer and

particles quantify the combined effect of themolecular and

subgrid effects parameterized by KM in Eq. (1), and the

advection by turbulent flows resolved by the OGCM, with

the latter being several magnitudes larger than the former.

To estimate the dispersion of the tracer cloud, the

growth of its second moment, the variance with respect

to the center of mass, is estimated (Garrett 1983):

s2
ij 5

ð
x

ð
y

(x
i
2 xci )(xj 2 xcj )C(x, y) dy dxð

x

ð
y

C(x, y) dy dx

, (7)

where C(x, y) is the tracer column inventory and xci is

the center of mass given by

xci 5

ð
x

ð
y

x
i
C(x, y) dy dxð

x

ð
y

C(x, y) dy dx

, (8)

The tracer diffusivity is given by the time derivative:

kt
ij 5

1

2

›s2
ij

›t
. (9)

The tracer statistics are computed in the domain of

the high-resolution nest.

The dispersion of a Lagrangian particle in the two-

dimensional case is defined as its mean quadratic

excursion from its origin (Taylor 1921):

dx2ij
dt

5 2x
i
(t)

dx
j
(t)

dt
5 2y

j
(t)

ðt
0

y
i
(t

0
) dt

0
5 2

ðt
0

y
i
(t)y

j
(t0) dt0

5 2

ðt
0

P
ij
(t) dt , (10)

where xij describes the position vector of a particle and

yij its Lagrangian velocity. The last equality does only

hold if we assume a homogeneous flow field, that is, the

velocity covariance Pij does only depend on t5 t2 t0.
As above, the diffusivity is calculated as the temporal

derivative of the dispersion and by averaging over all

trajectories (indicated by angle brackets):

k
ij
(t)5

1

2

�
d

dt
x
i
(t)x

j
(t)

�
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

5

�ðt
0

P
ij
(t) dt

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

2

. (11)

In theory, terms 1 and 2 in Eq. (11) should yield the same

result, however, when applied to discrete time series, the

results differ (e.g., LaCasce et al. 2014), with the first

formulation being conceptually closer to the tracer-

derived estimate and the latter formulation yielding

smoother results, due to the convolution operator. As in

LaCasce et al. (2014) we will employ both formulations

to assess the methodological uncertainty.

To exclude skew fluxes we consider only the sym-

metric part of k (for a detailed discussion, see Garrett

2006):

ks
ij 5 ks

ji 5
k
ij
1k

ji

2
; ks

ii 5 k
ii
. (12)

In general, the presence of a weak mean or large-scale

(shear) flow is likely to increase the eddy diffusivity in

the along shear direction. One way to deal with this
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problem was suggested by Oh et al. (2000). They iden-

tified the cross-stream direction for every time step by

decomposing k into major and minor principal compo-

nents. The minor principal component should yield a

diffusivity estimate that is unaffected by the shear flow,

assuming that the diffusivity is otherwise isotropic and

only the along shear direction is amplified. The minor

principal components can be calculated at every time

step using (Brandt 1976):

ks
minor 5 ks

ii sin
2a2ks

ij sin2a1 ks
jj cos

2a , (13)

where a is the angle of the major principal axis given by

tan2a5 2
ks
ij

ks
ii 2 ks

jj

. (14)

For the decomposition to be possible,

ks
ii . 0 and ks

iik
s
jj . ks

ijk
s
ji . (15)

Finally, another way to estimate diffusivity from La-

grangian particles relies on the calculation of relative

(double-particle) dispersion of particle pairs as a func-

tion of time. This eliminates the effect of the mean

(large-scale) flow acting pairwise on particles separated

by a distance r and, by this, isolates the effects of eddy

advection and/or mean or large-scale shear (e.g.,

LaCasce 2008; Koszalka et al. 2009b). The derivative of

the relative dispersion is the relative diffusivity:

kr
ij(t)5

1

2

�
d

dt
r
i
(t)r

j
(t)

�
, (16)

where in the diffusive limit of long time since the release,

when the particles separate to large distances and their

motion becomes uncorrelated, the relative diffusivity

saturates to a constant value which is twice the value of

absolute diffusivity.

3. Results

To compare mean pathways of tracer and particles,

the center of mass of both clouds and their evolution

with time will be compared. Five analyses will be pre-

sented to compare the spread of tracer and particle and

their spatial distributions: the spatial variance about the

center of mass, the absolute horizontal extent of both

clouds, the entrainment into themixed layer, a statistical

comparison of both distribution, and a check for normal

distribution. Finally, diffusivities are calculated accord-

ing to section 2. Most analyses will be limited to two

years, because about 3% of tracer and particles has

already left the high-resolution nest after 2 years

(Fig. 2). Two years is also a typical length of tracer

release experiments.

a. Inventories and mean pathways

Almost identical inventories of particles and tracer in

the nested region are indicating a similar mean advec-

tion of both patches (Fig. 2). The comparison of the

mean displacement of tracer and particles, shown in

Fig. 3a) is indeed favorable. Both centers move about

1100km in the zonal direction and 660 km in the

meridional direction. The mean zonal displacement of

the particles is slightly stronger when compared to the

tracer, which indicates a weaker eastward dispersal.

b. Horizontal spreading

Figure 4 shows the horizontal spread of tracer and

particle concentrations on a logarithmic scale at four

different time steps and together with variance ellipses.

The radii represent two standard deviations while the

diamonds mark the center of the clouds. The initially

rectangular shapes of both patches are quickly distorted

by the flow field and filaments start to evolve. Only a

small amount of particles and tracer is entrained into

the Agulhas retroflection zone, and quickly advected

out of the Cape Basin by the Agulhas Return Current.

The turbulent stirring is mediated by eddies whose sig-

natures are clearly visible in both fields.

During the first 180days the growth of both patches is

almost isotropic with respect to the center of mass, that

is, the standard deviations into the major and minor

direction of variance are almost equal. It is only after

around 180days that a dominant direction of dispersal is

evident (Fig. 3b). The particle patch shows a much more

isotropic behavior than the tracer patch; we will come

back to this point below. The growth of the standard

deviations in the minor variance direction are similar for

both patches and only show a small offset of about

200 km after 2 years.

The area covered by tracer is larger compared to the

area covered by particles (Figs. 4 and 3c). This is already

apparent after 30 days; after 180 days the tracer has

reached the western boundary of the nest at 208W, while

the westernmost particle spread only to 58W. The area

covered by the particles grows much slower than the

area covered by tracer. After 1 year the difference

amounts to 65 3 106 km2 (an area of about 158 3 158).
The difference is reduced by 99.8% (to 0.13 106 km2) if

the lowest concentrations are discharged until only

99.9% of the total tracer budget is considered, and by

94% (to 3.6 3 106 km2) when 99.99% of the total tracer

budget is considered. Note that the base model was

used to calculate the region covered by the tracer, be-

cause unlike the particles the tracer reached the nest
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boundaries after 1 year. Particles are not advected

across the domain, which leads to an overestimation of

the discrepancies after 1 year.

Although the evolving major axes coincide with the

direction of the mean displacement in northwesterly

direction, that is, the direction of the mean flow (Fig. 4),

the major axis of the particle cloud shows a slightly more

zonal orientation which is shown in Fig. 5. This dis-

crepancy is mainly due to tracer that is entrained in the

Agulhas Return Current (not shown) and reduced when

all tracer concentration below the minimum particle

concentrations are discharged (Fig. 5d). This reduces the

total tracer budget by less than 2%.

The deepening of themixed layer during winter has an

impact on the vertical spreading, differing between

tracer and particles. When wintertime mixing sets in

after about 6 months after the release, the mixed layer

deepens and entrains both tracer and particles (Fig. 6a).

However, the level of entrainment differs: a larger

amount of tracer is entrained into the mixed layer, in

FIG. 2. Tracer (green) and particle (blue) inventories. Tracer inventory is shown separately

for the base (dashed) and nested (solid) domains. Gray dashed lines indicate the limits of the

analyses: 100% and day 730.

FIG. 3. (a) Mean displacements (m) of the tracer (green) and particles (blue) with respect

to longitude (solid) and latitude (dashed). (b) The standard deviations (m) in the major (solid)

and minor (dashed) directions of the particle cloud (blue) and the tracer patch (green).

(c)Difference of area covered by vertically integrated concentrations of the tracer andparticles;

100% (blue), 99.99% (black), and 99.9% (gray) of the total tracer content are considered. Note

that the global base model was used to calculate the region covered by the tracer.
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particular in the second winter season (around day 600).

Ten percent of all particles are entrained in the mixed

layer but almost 20% of the total tracer budget.

The reason for this varying behavior can be seen in

Fig. 7, which shows the spread in zonal and vertical di-

rections on a logarithmic scale. As already seen in Fig. 3,

low values of tracer spread much faster than particles.

This is also true for the vertical direction. The tracer fills

the upper 500m after just 30 days when particles are still

confined to a depth range of 250m around their release

depth. Possible reasons are high frequency and small-

scale variability of vertical velocities and/or vertical

diffusion coefficient that are implicit in the online tracer

simulation [Eq. (1)] but not resolved in the daily model

output used to advect the particles. Once the tracer

is entrained in the mixed layer, the TKE model begins

to act on the tracer, providing increased vertical diffu-

sivities that quickly homogenize concentrations over

the vertical extend of the mixed layer.

The entrainment into the mixed layer has an impact

on the vertical allocations of tracers and particles. The

mean vertical displacement is shown in Fig. 6b). Both

centers of mass show a similar downward propagation

during the first 180days (Fig. 6) along tilted isopycnals

(not shown). When the deepening of the mixed layer

sets in, the tracer’s center of mass is pulled upward by

almost 10m; after day 300 it shows a continuous down-

ward movement. This has an impact on the horizontal

spreading as well, because both patches are now

sampled by a different horizontal velocity field. The

westward velocity of the particle cloud is now stronger,

while the northward component is, on average, slightly

weaker, which accounts for theminor discrepancies seen

in Fig. 3a). The main difference are strong absolute

velocities in the mixed layer that only affect the tracer

patch and increase the dispersion along the major vari-

ance direction (Fig. 3b). Consequently, the time when

the mixed layer deepens coincides with the time where

discrepancies in the mean displacement and the spread

start to evolve.

Figure 8 shows the distribution of particles and tracer

along the direction of minor and major variances at

different time steps. To make these distributions com-

parable, tracer concentrations were transformed into

independent counts as follows. Each particle is assumed

to represent a certain tracer volume: Vparticle 5C0/N0,

where C0 is the initial tracer budget and N0 the initial

number of particles. The tracer volume of every grid box

was divided by Vparticle to give the number of artificial

tracer counts. To compare the distributions of tracer

and particles a Kolmogorov–Smirnov test (e.g., Press

et al. 2007) was used. The artificial tracer counts are

considered independent for time scales greater than

the Lagrangian decorrelation time scale of 7 days (not

shown). To avoid the detection of deviations from

the null hypothesis that are only due to the huge number

FIG. 4. Vertical integral of (top) tracer and (bottom) particle concentrations (m3 s22; logarithmic scale) at different time steps (daily

averages) after release. Variance ellipses with radii of two standard deviations are shown, and blue diamonds indicate center of mass.
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of observations, but are not physically meaningful, N

observations were subsampled from each dataset before

the significance testing was applied. Klocker et al.

(2012b) showed that 100 floats serve as a lower boundary

to gain similar lateral diffusivity estimates to these de-

rived from a tracer, which is why we choose N 5 100.

The procedure was repeated 200 times and the averaged

p values were considered. A close match between tracer

and particle distributions is already obvious from visual

inspection with the tracer distributions being slightly

broader in both directions. The discrepancies are largest

at the beginning of the simulation. This is to be expected

because the release strategies for both patches are dif-

ferent, as descried above. Based on a significance level of

95%, no significant difference between both (tracer and

particle) distributions can be detected. The distributions

broaden with time but keeping a near-Gaussian shapes as

confirmed by a Shapiro test (Shapiro andWilk 1965). The

tracer distribution in both directions is Gaussian shaped

after 30days. The particle distribution takes longer to

adjust, but is eventually also Gaussian shaped after about

180days (not shown). It is important to keep in mind that

the initial distribution is non-Gaussian. We find that the

upper and lower permill of the tracer distribution deviate

from a normal distribution (not shown).

c. Lateral eddy diffusivities

The diffusivity estimates from tracer and particles are

shown in Fig. 9a. Only the minor principal component,

which should yield the best estimate, that is, unaffected

by the mean flow (see section 2), is shown. The in-

tegrated velocity covariance converges after a few days

onto a value of about 4000m2 s21. To obtain a robust

best estimate, the curve is averaged over the period of

40–50days, a period greater than the integral time scale

FIG. 6. (a) Percentage of particles (blue) and tracers (green)

entrained in the mixed layer. Percentage is given relative to total

amount within the nested domain at the respective time step.

(b) Mean vertical displacement (m) of the tracer (green) and

particles (blue).

FIG. 5. Vertical integral of tracer and particle concentrations (m3 s22; logarithmic scale) at day 365 (daily average) after release for

(a) the full tracer, (b) the reduced tracer with concentrations below the minimum tracer concentration discharged, and (c) the particles.

Variance ellipses are as in Fig. 4. (d) The difference in major variance direction between the particles and the full tracer (solid) and

between the particles and the reduced tracer (dashed).
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of a few days, after which the covariance estimate con-

verges and we can assume decorrelated motion. This

yields 4031m2 s21. The derivative of the single-particle

dispersion does not show a convergent behavior. It

underestimates the former value during the first 50 days

and shows strong fluctuations around the best estimate

at a later stage. It is difficult to infer a robust value but

when smoothed with a window length of 91 days (thin

lines in Fig. 9), the derivative of the dispersion roughly

converges onto the same value as the integrated velocity

covariance. The estimate based on the growth of the

tracers second moment, shows some resemblance to

the derivative of particle dispersion. The correlation

coefficient between the diffusivity series is 0.56. Again,

FIG. 7. Meridional integral of the (top) tracer and (bottom) particle concentrations (m3 s22; logarithmic scale) at different time steps

(daily averages). Variance ellipses with radii of two standard deviations are shown, and blue diamonds indicate the center of mass. Black

line indicates mixed layer depth, averaged over the whole domain. Lines of potential density (kgm22) are also shown (blue).

FIG. 8. Distribution with respect to the center of mass along the (top) major axis and (bottom) minor axis of the variance ellipses of the

particles (blue) and tracer (green) at different time steps. Dashed lines indicate the associated normal distributions.
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it is difficult to infer a reliable estimate of k, but this

curve, too, oscillates around the estimate from the in-

tegrated velocity covariance.

Figure 9b shows relative (i.e., double-particle)

diffusion. After 10 days, the difference between

zonal and meridional component is very small (not

shown) indicating that the dispersion is isotropic with

respect to the center of mass. The averaged separa-

tion angle, shown as the gray line in Fig. 9b, reaches

its asymptotic value of about 808 after 180 days and

we will assume decorrelated motion from there on.

An average over the period 180–300 days was taken

to infer a relative diffusivity estimate. The result

of 4065m2 s21 is in good agreement with the single-

particle diffusivities.

The period after which the motion can be assumed

decorrelated is very sensitive to the initial separation

distance. A distance of one model grid box (about

4.7 km) was used here. When this separation scale is

reduced to 1.5 km, particles show decorrelated motion

only after about 300days (not shown), still, the diffusivity,

when averaged over a period when the particle motion is

uncorrelated, is consistent with the nominal estimate.

Averaging the two converging measures (integrated

velocity covariance and double-particle diffusion) gives

an overall value of 4048m2 s21.

4. Discussion

In this work, we used a high-resolution (eddy-resolving)

configuration of an OGCM to compare spreading of an

Eulerian tracer simulated online and of a cloud of

Lagrangian particles simulated offline with velocity output

from the same model. The study domain is the greater

Agulhas region characterized by intense mesoscale vari-

ability and weak mean flows.

We showed that the lateral mean displacement of

tracer and particle clouds follow almost identical path-

ways. This puts confidence in the estimates of mean

pathways and transit times of tracer spreading that are

based on particle advection (e.g., Gary et al. 2011)—at

least if particle trajectories are calculated from the daily

mean output of mesoscale resolving OGCMs. We will

discuss the potential sensitivity to the spatial and tem-

poral resolution below.

The comparison of the spread of particle and tracer in

the direction of minor variance is also favorable.

No significant differences, at the 95% level, could be

detected between the 1D horizontal distributions of

particles and tracers after an initial adjustment period

of a few days. There is a small difference regarding the

2D horizontal distributions. Tracer seems to cover a

much greater area than the particles at very low tracer

concentrations (,10213m3m23). This does not yield

significant differences in the overall spatial distributions

between tracer and particles, because in the presented

framework this extended spatial coverage after 1 year is

only due to about 0.1% of the total tracer volume.

However, for the same reason, a larger amount of tracer

reaches the Agulhas retroflection and accumulates in the

Agulhas Return Current. This leads to a slightly different

horizontal orientation of and tracer particle clouds.

These differences can only be due to parameterized or

spurious numerical diffusion and numerical dispersion

or due to the temporal subsampling of the velocity field

used for the particles.

d Using the tracer variance equation (Klocker et al.

2012b):

1

2

›hC2i
›t

5 k
total

hj=Cj2i , (17)

where ktotal is the total numerical diffusivity,C is the tracer

content, and the angle brackets denote a domain average.

We find a total numerical diffusivity of ktotal 5 110m2 s21,

which means that the spurious numerical diffusion is

on the same order of magnitude as the parameterized

diffusion (At
h0 5 60m2 s21) and neither can explain the

observed difference which amount to 65 3 106km2 after

1 year.

d The daily output averaged model velocities used to

integrate particles do not resolve the subdaily vari-

ability of the advective term (U � =C) inherent in

the online OGCM tracer integration [Eq. (1)]. The

INALT20r model is (mesoscale) eddy resolving while

FIG. 9. Diffusivity estimates (m2 s21) calculated using (a) growth

of minor variance of tracer concentrations (black), growth of the

particle dispersion (blue), and growth of the integral of the La-

grangian velocity covariance (red) and (b) relative diffusion. Thin

lines are smoothed with a 91-day Hanning window. Gray shading

indicates the timespan used for averaging.
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it is submesoscale permitting. The daily averages re-

solve the integral time scales of 7days and are sufficient

in terms of the overshoot criterion of Keating et al.

(2011). However, while their work considered oceanic

flows under quasigeostrophic approximation, our

OGCM features fully three-dimensional, divergent,

primitive-equation dynamics, including the vertical

velocity varying on shorter time scales (inertial and

shorter related to internal dynamics). The combined

effect of small-scale horizontal and vertical motions

leads to differences regarding the tracer and particle

distributions inside eddy cores seen in Fig. 4: while the

particle distributions disclose the empty eddy cores

(due to potential vorticity gradients at the eddy

boundaries acting as mixing barriers), the tracer fields

are much more smooth.
d A similar float release experiment with 5 3 105 floats

showed that the volume covered by floats after 2 years

already saturates at 104 floats. It is therefore unlikely,

that the discrepancy is due to the number of floats

(here not shown).

We cannot rule out numerical dispersion as a possible

reason for the discrepancies and therefore consider a

combination of the latter and temporal subsampling to

be the most likely reason for the small discrepancies.

There are also differences regarding the vertical dis-

tributions (see Fig. 6). The average depth of the tracer

after two years is about 22m below the release depth

while the particle cloud sinks about 33m. Beside the

points discussed above another possible reason is the

spatial variation of numerical diffusivity:

d The spatial variation of the numerical diffusivity KM
z

in the tracer equation [Eq. (1)], is absent in the

integration of particles. In presence of the spatially

varying diffusivity, Eq. (1) yields

›C

›t
5=KM � =C1KM=2C2U � =C

5 [=KM 2U] � =C1KM=2C , (18)

which implies that the spatially varying diffusivity acts as

an apparent velocity Uk 5=KM in the advection term

(e.g., Hunter et al. 1993; Davis 1983, 1985). In our

model, this term is negligible for the horizontal tracer

diffusivity since its variation,DAt
h0 is 20m

2 s21 (section 2a)

over the entire nested domain. The corresponding

horizontal velocity scale is UH
k ; 20/3500, 0:006m s21,

and At
h0 is constant with depth. However, the vertical

diffusion coefficient strongly varies with depth and time

(Fig. 10) with a corresponding vertical velocity scale

Uk
Z(max); 1/250; 0:004m s21, that is, ;300mday21.

This apparent vertical velocity will lead to an effective

vertical advection of tracer in the water column.The

combined effect of the unresolved subdaily variability in

vertical velocity, because particles are calculated offline,

and the spatial variation of vertical diffusivity, which is

not explicitly applied to particles, results in the greater

spreading of tracer in the vertical (Fig. 7) leading to its

further entrainment in the mixed layer.

Once entrained in the mixed layer, tracer is spread

across the vertical extend of themixed layer (Fig. 7), due

to the increased parameterized diffusion (Fig. 10).

Spivakovskaya et al. (2007) use a Lagrangian random

walk model for spatially variable vertical diffusivity to

investigate the spreading of Lagrangian particles in the

mixed layer with a typical vertical diffusivity profile.

They present two idealized cases for which analytic

solutions are known. Given that a sufficient number of

particles are used, their numerical approximation con-

verges to the true value, that is, particle concentrations

are mixed across the vertical extend of the domain.

Once in the mixed layer, the tracer is subject to

stronger mesoscale and submesoscale variability then

the particle cloud lingering below, this in turn will result

in the differences in the lateral spreading seen in Fig. 4.

We have shown that these differences are quite minor in

terms of the inventory, mean pathways, spreading, and

diffusivity diagnostics.

Are these differences relevant in the practical cases,

however? It is illustrative to project our results on to a an

observational tracer release. In case of the DIMES ex-

periment, where a total of 75 kg of CF3SF5 were injected

in the ACC region (Tulloch et al. 2014), 75 g (0.1% of

75 kg) of tracer would account for the extended cover-

age of the tracer. Assuming that these residual 75 g

of tracer would be located in the uppermost grid

box, which has the smallest possible volume, and

assuming a standard density of 1024kgm23, the resulting

FIG. 10. Spatial average over 358–158S, 108W–108E of the vertical

tracer mixing parameter At
y (m

2 s21).
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concentration of 1023 fmol kg21 would be at least three

orders of magnitude below the detection level of

0.8 fmol kg21 for the method used in the DIMES ex-

periment (Ho et al. 2008). Since the discrepancy in-

creases with time, the time scale under consideration is

crucial. The time frame of tracer release experiments

is often comparable to our simulation period (e.g.,

Tulloch et al. 2014).

Another argument for the consistency between the

tracer and particles comes from the results concerning

the lateral eddy diffusivity estimates. The estimates of

diffusivity from the different methods are all in the same

order of magnitude. Particle based estimates show some

dependence on the method. The time derivative of the

dispersion gives noisy results but the integrated velocity

autocorrelation and the two-particle method yield con-

sistent estimates. This is in agreement with previous

studies (e.g., Koszalka and Lacasce 2010; Klocker et al.

2012b; Griesel et al. 2014). Nevertheless, the single

particle method is still valuable because it yields ametric

that can be compared to its Eulerian counterpart. The

resemblance of the growth of minor variance of tracer

and particle patches (black and blue curves in Fig. 9)

shows that the Eulerian and Lagrangian approaches

yield comparable results. Our results are consistent with

Klocker et al. (2012b) and Wolfram and Ringler (2017),

who also concluded that tracer- and particle-based es-

timates should agree in general.

Finally, the obtained value for the lateral diffusivity is

in agreement with Rühs et al. (2018) who find surface

diffusivities in the Cape Basin, estimated from drifter

data and model simulations, of around 4000m2 s21. Their

model configuration is similar to the one we used but

provides a coarser resolution of 1/108. Based on tracer

simulations and mixing length arguments, Klocker and

Abernathey (2014) find lower values around 3000m2 s21.

These estimates are within a typical range for open-ocean

surface diffusivities. Zhurbas and Oh (2004) find values

between 2000 and 7000m2 s21 throughout the Pacific and

Atlantic away from boundary currents and the equator.

Koszalka and Lacasce (2010) find values around

3500m2 s21 in the Nordic seas. It should be kept in mind,

however, that the given estimates are surface diffusiv-

ities, which are likely to differ from the subsurface dif-

fusivities calculated in this study.

The analysis was restricted to a certain model, thereby

to a fixed resolution and conducted in an exemplary

region. No sensitivity experiments with regard to reso-

lution or other model specifications, like advection and

diffusion schemes, were carried out here. It was shown

that especially an increased vertical diffusion parameter

(due to increased TKE) in the mixed layer substantially

impacts the results. Therefore, it is likely that the

increased parameterization of unresolved transport in

coarser models would act to increase the discrepancies

between tracer and particle spread. Also, future pa-

rameterization should account for observed spatial and

temporal variations of diffusivity. This increased com-

plexity is likely to complicate the effect of numerical

tracer and particle experiments.

A more detailed investigation is needed to analyze

which measures are still comparable at which degree of

parameterized diffusion. Simulations of local tracer

release experiments can typically utilizeOGCMs that, at

least in the region of interest, provide a resolution

comparable to the one used here or in Rühs et al. (2018).
The Cape Basin differs from other regions, as it is

characterized by relatively high EKE and lacks a strong

mean flow, but is otherwise indeed representative for

open ocean dynamics, as the estimates for open ocean

diffusivities, given above, show. On the one hand, the

presented results do not suggest a different behavior of

particles and tracers when introduced to a mean flow.

On the contrary, the mean displacement showed the

least deviations. On the other hand, it is well known that

the proportion of eddy propagation speed to mean-flow

velocities are important. Diffusivities can be greatly

suppressed by the mean flowwhen eddies propagate at a

slower speed than that of the mean flow (Klocker et al.

2012a). Further work is required to assess whether these

mechanisms are equally well represented by Lagrangian

and Eulerian methods.

As shown above, one source of discrepancy between

the spreading of tracer and particles is a strong spatial

variability of the flow field, which is usually associated

with strong (boundary) currents (in our case, the Agul-

has retroflection). This might amplify actually small

errors in the spatial distributions of particles and tracer,

because both patches become entrained in different flow

fields. Therefore the design of Lagrangian and tracer

experiments should be done very carefully in boundary

current regions.

This study compared mean advection pathways and

spatial distribution of tracer and particles in a realistic

OGCM for the first time and found the results of

both metrics to be generally consistent, provided that

the model output velocity is resolving turbulent flows

that dominate the mixing, which is in agreement with

Keating et al. (2011). One should take care that the

relevant variability of vertical velocity and/or spatial

variations of eddy diffusivity are taken into account.

The biases of the latter can in principle be estimated

from the OGCM output [Eq. (18)], but because of the

complexity of the fully three-dimensional dynamics, a

sensitivity study to the time step could be a more

practical solution.
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