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Abstract 18 

Pointer Ridge is a gas hydrate prospect on the South China Sea continental slope offshore SW 19 

Taiwan. It is characterized by densely distributed bottom simulating reflections (BSRs), active gas 20 

seepage, and potential sandy gas hydrate reservoirs. To understand how the fluids have migrated toward 21 

the seafloor, and the role of geological processes in the gas hydrate system, we have collected and 22 

analyzed high-quality 2D and 3D reflection seismic data. We first mapped the spatial distribution of the 23 

BSRs, and interpreted a major normal fault, Pointer Ridge Fault (PR Fault). The NE-SW trending fault 24 

dips to the east, and separates the erosional regime to the west from the depositional regime to the east. 25 

One active vent site was identified directly above the PR Fault, while another is located on a topographic 26 

high to the west of the fault. On the hanging block of the fault we found at least one major unconformity. 27 

The seismic data indicate refilled channels with coarser-grained sediments in the hanging wall of the 28 

normal fault. Seismic attribute analysis shows subsurface fluid conduits and potential gas hydrate 29 

reservoirs. We propose two types of gas chimneys, which are separated by the fault. Gas plumes derived 30 

from hydroacoustic data are mostly from the footwall block of the fault. We infer that fluid flow is more 31 

active in the erosional environment compared to the depositional one, is the result of reduced 32 

overburden. The methane-bearing fluids migrate upward along the PR Fault and chimneys and form 33 

hydrates above the base of the gas hydrate stability zone. Based on seismic interpretation and seismic 34 

attribute analysis, we postulate that the channel infill constitutes the most promising hydrate reservoirs 35 

in this geological setting. In the surveyed area of Pointer Ridge these channels occur mainly below the 36 

gas hydrate stability zone.   37 

38 
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1. Introduction 39 

   Gas hydrates, a potentially vast energy resource, are ice-like solid materials composed of water 40 

and gas molecules, often formed in deep ocean sediments. Studying gas hydrate systems helps us to 41 

better understand marine resources, seafloor stability, and changes in the environment. Gas hydrates 42 

have been considered as a future energy resource in some countries, including the United States, Canada, 43 

Japan, India, Korea, China, and Taiwan. Dissociation of gas hydrates may contribute to submarine 44 

geohazards (Nixon & Grozic, 2007) and greenhouse gas release (Kvenvolden, 1998; Sloan, 1998; 45 

Ruppel, 2011; Berndt et al., 2014). The key issues that need to be considered while studying a gas 46 

hydrate system include: (1) the dynamics of the gas hydrate stability zone (GHSZ) where pressure and 47 

temperature conditions allow natural gas hydrate to form; (2) recent gas flux into the GHSZ along fluid 48 

conduits; and (3) the suitability of reservoirs, such as sediment type and fractures within the GHSZ 49 

(Collett, 2012; Max and Johnson, 2014).  50 

In the region offshore SW Taiwan, gas hydrates have been extensively studied in recent years. 51 

Ubiquitous bottom simulating reflections (BSRs) that indicate the presence of gas hydrates have been 52 

observed in both the active and passive margins (Lundberg et al., 1992; Reed et al., 1992; Chi et al., 53 

1998, 2006; Shyu et al., 1998; Schnurle et al., 1999; Chow et al., 2000; McDonnell et al., 2000; Liu et 54 

al., 2006; Lin et al., 2009; Chen et al., 2012; Lin et al., 2014). The gas hydrate investigation program,  55 

funded by the Central Geological Survey (CGS) of the Ministry of Economic Affairs, Taiwan, ROC 56 

identified several gas hydrate prospects, including Jiulong Ridge, Horseshoe Ridge, Pointer Ridge, 57 

Formosa Ridge and Palm Ridge, on the northern margin of the South China Sea (SCS) (Fig. 1). Gas 58 

hydrates were sampled at Jiulong Ridge and Horseshoe Ridge (Fig.1) by the Guangzhou Marine 59 

Geological Survey gas hydrate expeditions (GMGS2) (Zhang et al., 2014; 2015), while an active cold 60 

seep system was identified at Formosa Ridge (Chen et al., 2014; Feng and Chen, 2015; Hsu et al., 2017). 61 

Although densely distributed BSRs (Liu et al., 2006) and geochemical anomalies (Chuang et al., 2010) 62 

at Pointer Ridge suggest it is a good site for future gas hydrate exploitation, the geological controls on 63 

the gas hydrate system at Pointer Ridge are poorly understood.  64 
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This study elucidates how hydrocarbon-bearing fluids have migrated through conduits and 65 

accumulated to form gas hydrate reservoirs at Pointer Ridge. As gas can only be produced commercially 66 

from high-porosity and high-permeability sandy intervals (Johnson and Max, 2006), the identification 67 

of sand-rich hydrate reservoirs is one of the most important issues for gas hydrate exploration. 68 

Subsurface fluid conduits are major pathways that transport fluids into the GHSZ and then form gas 69 

hydrates under favorable conditions. To understand the gas hydrate system in Pointer Ridge, we 70 

analyzed 2D and 3D seismic data for structural and stratigraphic interpretations. Then detailed seismic 71 

attribute analysis was applied to detect subtle features, such as paleo-channels and fluid conduits, from 72 

the 3D seismic cube. Finally, the spatial distribution of fluid conduits and reservoirs was mapped and 73 

used to construct a conceptual model of the Pointer Ridge gas hydrate system.  74 

 75 

2. Geologic background 76 

The area offshore SW Taiwan is situated in the incipient collision between the Eurasian continent 77 

and the Luzon arc (Huang et al., 1997; Liu et al., 1997). The deformation front separates the active 78 

Taiwan accretionary wedge to the east from the passive SCS continental slope to the west (Liu et al., 79 

1997; Yu, 2004; Han et al., 2017) (Fig. 1).  Located west of the deformation front, the Tainan Basin has 80 

experienced a rapid tectonic subsidence since the late Miocene (Ru and Pigott, 1986; Lin et al., 2003), 81 

probably related to the tectonic evolution of the Dongsha and Taiwan blocks (Yu et al., 2012). A series 82 

of ENE-trending normal faults (Yang et al., 1991; Liu et al., 1997) and graben/half-graben structures 83 

(Yeh et al., 2012; Li et al., 2007; Lester et al., 2012; Liao et al., 2014; 2016) form the predominant 84 

tectonic structures in this area. Growth strata related to a large normal fault strike along the northeastern 85 

SCS shelf break and die out to the southwest near the Formosa Ridge (Fig. 1). This normal fault acts as 86 

a major fluid conduit transporting thermogenic gas from deep-seated gas kitchens as suggested by Lin 87 

et al. (1993) to the F-structure gas field in the north (Lin et al., 2009). In addition to faults, mud diapirs 88 

transport gas from depth for the formation of gas hydrates in the Tainan Basin (Yan et al., 2006; Li et 89 

al., 2013). Morphologically, the SCS slope is dissected by the Formosa Canyon, the Penghu Canyon, 90 

the West Penghu Canyon, and several erosional gullies (Fig. 1) (Han, 2017). These submarine 91 
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canyons/channels are major conduits that transport significant amounts of sediment to the toe of the 92 

SCS Slope where they are reworked by contourites and form sediment wave fields (Gong et al., 2012).  93 

3. Data and methodology   94 

The bathymetric map used in this study was derived from a 50 m resolution digital elevation model 95 

offshore SW Taiwan following the procedures described in Liu et al. (1998). In this study, we use 2D 96 

multi-channel seismic (MCS) reflection data to constrain the regional geologic framework and to image 97 

deep structures. In addition, we analyzed a 3D seismic cube to constrain detailed spatial variations of 98 

the geological features. 99 

MCS data used in this study were collected from 2009 to 2015 by the R/V Ocean Researcher I (OR1) 100 

and during the 2009 MGL0905 cruise of the R/V Marcus G. Langseth (MGL) (Fig. 2). Acquisition 101 

parameters of the seismic survey systems used in this study are presented in Table 1. All the seismic 102 

data were processed at the Institute of Oceanography, National Taiwan University, using ProMAX and 103 

OpendTect. Typical seismic processing procedures followed the workflow proposed by Han et al. 104 

(2017), including trace editing, geometry setup, band-pass filtering, amplitude correction, spike noise 105 

removal, velocity analysis, normal moveout correction, water velocity F-K migration and water bottom 106 

muting. Forty-eight closely spaced (100-m) 2D seismic lines were collected inside an area of 107 

approximately 70.5 km2 (4.7 km by 15 km) during a pseudo-3D seismic survey. The 2D seismic data 108 

used to build the 3D seismic cube were collected by OR1 during the survey cruises OR1-1083 and OR1-109 

1089 (Table 1). By utilizing the streamer feathering, we filled in the large cross-line gaps following the 110 

procedure proposed by Han (2017), and then processed the seismic data to obtain a 3D cube. The 111 

processing flow included trace editing, band-pass filtering, amplitude correction, spike noise removal, 112 

3D geometry setup, 3D velocity analysis, normal moveout correction, 3D stacking, and one pass water 113 

velocity 2D F-K migration in inline direction. After that, a dip-steering medium filtering was applied 114 

by using OpendTect remove high frequency noise (Brouwer and Huck, 2011; Qayyum & de Groot, 115 

2012). The final 3D seismic cube (see Table 2 for geometry parameters) was then interpreted using 116 

seismic attribute analysis. 117 
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We conducted a tectono-stratigraphic analysis of all available seismic data, particularly of seismic 118 

features that may indicate hydrocarbon presence, such as fluid conduits and turbidite channel sands with 119 

anomalous amplitudes. We applied multi-attribute analyses including co-blending of seismic attributes 120 

and neural network technology to better detect critical geological features. Co-blending of seismic 121 

attributes can visualize several seismic attributes at the same time and it has been introduced as a 122 

powerful way to enhance the contrast between the geologic targets and the background (Taner, 2001; 123 

Ferguson et al., 2010; Chopra and Marfurt, 2008; 2011; Barnes et al., 2011; Chinwuko et al., 2015). 124 

The trained neural networks can generate probability cubes of interests such as “chimney cubes” or 125 

“fault cubes” by building a neural network for seismic attributes at each position of the 3D seismic cube 126 

(Meldahl et al., 2001; Ligtenberg, 2005; Tingdahl and De Rooij, 2005). “Chimney cube” shows the 127 

probability of the vertical disturbance, while the “fault cube” indicates faults and fractures. The 128 

attributes used for neural network training include energy, polar dip, polar dip variance, similarity, 129 

reference time. These attributes are generally extracted from the traces surrounding the trace of 130 

investigation. For details of the neural network processing procedure see Meldahl et al. (2001) and 131 

Aminzadeh et al. (2002).        132 

 133 

4. Results from seismic analysis 134 

Widely distributed BSRs (Fig. 3a), seafloor venting/seeps leakage (Fig. 4), and the presence of 135 

subsurface fluid conduits (Fig. 4) suggest Pointer Ridge is a potential gas hydrate prospect. To better 136 

understand the geologic features and the nature of the gas hydrate system, we used the IHS Kingdom 137 

software of IHS and the OpendTect software dGB Earth Sciences for structural/stratigraphic 138 

frameworks and seismic attribute analysis, respectively. 139 

    140 

4.1 Topographic and structural settings of the Pointer Ridge area 141 

The Pointer Ridge Fault (PR Fault) is a blind, NE-SW striking normal fault (Fig. 5) with a length 142 

around 5.2 km (Fig. 2) based on available seismic data. Although there are growth strata and possibly 143 

a maximum offset of  460 m across this fault (Fig. 5), there is no indication that it has deformed the 144 
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shallow sediments. Thus the PR Fault is not currently active. In addition to the PR Fault, minor normal 145 

faults are also observed in the seismic data (Fig. 5). 146 

The PR Fault separates the depositional and erosional settings at Pointer Ridge. Topographic (Figs. 147 

2 and 3b) and seismic (Figs. 5 and 6) variations can be observed across the PR Fault. On the footwall, 148 

irregular topography and chaotic seismic facies indicate erosion; whereas on the hanging wall, smooth 149 

topography and stratified sediment reflections are linked to a relatively stable depositional regime. On 150 

top of Pointer Ridge, several NE-SW trending gullies reveal that the paleo-activities of PR Fault may 151 

lead to the present morphology in Pointer Ridge area. 152 

 153 

4.2 Seismic units and sedimentary features  154 

Three seismic units, including Ua, Ub and Uc, are identified in the study area. Ua is interpreted as the 155 

oldest and Uc as the youngest unit that can be recognized from the seismic data. Ua is characterized by 156 

weak, chaotic and discontinuous reflections with locally bright sections. Ub is characterized by 157 

continuous, NW-dipping reflections with moderate to strong amplitudes that are truncated by the Ua to 158 

the bottom and by the Uc to the top, respectively (Fig. 6). Uc consists of wavy, continuous reflections 159 

with low to moderate amplitudes. Overall the seismic characteristics of Ub and Uc correlate with 160 

stratified sediments, whereas the chaotic facies with poor seismic penetration of Ua may be caused by 161 

more consolidated sediments. We interpret the unit with wavy reflections in Uc as contourite deposits. 162 

The origin of the three seismic units is linked to the activity of the PR Fault. Growth strata observed in 163 

Ub suggest that the sediments of Ub are syn-faulting deposits, while Ua and Uc are interpreted as pre-164 

faulting sediments and post-faulting sediments, respectively.  165 

Since turbidite channel sands in the paleo-channel deposits have been suggested as the best 166 

reservoirs for gas hydrate exploitation in deep sea environments (Johnson and Max, 2006; Bowswell et 167 

al., 2016), it is crucial to map the location of paleo-channels using the 3D seismic cube in detail as these 168 

promise the coarsest grain sizes. It has been suggested that using a seismic attribute alone is inefficient 169 

to detect subsurface geologic features of a natural gas hydrate system (Ligtenberg, 2003).  In addition, 170 

Chinwuko et al. (2015) further suggests that co-blending of seismic attributes including the energy, 171 
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impedance, and the similarity can enhance, and thus allow more efficient interpretation of sandy channel 172 

deposits. For example, the edge of the channels is often characterized by high energy, high impedance 173 

contrast, and low similarity compared to the surrounding sediments. Therefore, besides conventional 174 

seismic interpretation (Figs. 7a and 7b), co-blending of seismic attributes was applied to enhance the 175 

edge of channel sand deposits (Figs. 7c and 7d.). The results show that paleo-channel cutting and filling 176 

features exist both within and beneath the GHSZ (Figs. 7a and 7c). The paleo-channels in the GHSZ, 177 

which could act as gas hydrate reservoirs, mostly occur in the footwall of the PR Fault, while in the 178 

hanging wall of the PR Fault, paleo-channel deposits are generally below the BSR (Figs. 7b and 7d). 179 

Figure 8 shows the distribution of paleo-channels that were identified in the GHSZ from the 3D seismic 180 

cube. 181 

 182 

4.3 Seismic indicators of focused fluid flow 183 

Gas flares, carbonates (Figs. 5 and 6) and chimneys (Figs. 4; 6 and 9) indicate ongoing fluid flow 184 

at Pointer Ridge (Fig. 4). Chimneys observed in seismic sections, which are widely accepted as 185 

indications of active fluid conduits for focused flow, are characterized as low amplitude, chaotic vertical 186 

disturbances (Berndt, 2005; Gay et al., 2006; 2012). Two types of chimneys are identified in the study 187 

area (Fig. 10). Type I chimneys act as active fluid conduits for fluids migrating into the GHSZ and are 188 

potentially linked to near-surface fluid migration structures, and even seepage at the surface, while type 189 

II chimneys are buried by thick sediments and cannot lead to surface seepage (Fig. 9). The distribution 190 

of chimneys shows that type I chimneys and gas flares mainly occur in the footwall of the PR Fault, 191 

whereas type II chimneys occur mostly in the hanging wall (Fig. 2). 192 

 The distribution of gas flares implies that surface seepage may be linked to subsurface fluid 193 

conduits (Fig. 4). To understand how gas-bearing fluids have migrated into the GHSZ and into the water 194 

column, subsurface fluid conduits including chimneys and faults/fractures were detected by neural 195 

networks based multi-attribute analysis. Fig. 11 illustrates how the neural network was trained to 196 

generate the chimney cube. Firstly, chimneys were identified from conventional seismic profiles by the 197 

interpreter (Fig. 11a).  Then typical examples of “chimney” and “non-chimney” locations were picked 198 
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as the input for supervised neural network learning (Fig. 11b). Finally, the “chimney cube” was created 199 

and compared to the conventional seismic cube (Figs. 11c; 11d and 11e). Subtle fluid conduits that are 200 

difficult to identify from conventional seismic images are enhanced in the “chimney cube” (Figs. 11 201 

and 12). The results reveal that fluid conduits in shallow sediments are more densely distributed  in the 202 

footwall than that in the hanging wall of the PR Fault (Fig. 12).  203 

 204 

5. Discussion 205 

5.1 Fluid flow behavior along faults  206 

Extensional faults frequently act as conduits for focused fluid flow in passive margins worldwide. 207 

For instance, focused fluid flow along polygonal fault systems are observed at the Norwegian margin 208 

(Dalland et al., 1988; Berndt et al., 2003), Lower Congo Basin (Gay et al., 2004), South China Sea (Sun 209 

et al., 2012) and North Sea (Lonerga et al., 1998). Li et al. (2013) suggest that basement-involved 210 

normal faults transport mixed biogenic and thermogenic methane to the GHSZ, forming gas hydrates 211 

in the Joulong Ridge area, South China Sea. In the Pointer Ridge area, the PR Fault also plays an 212 

important role in transporting gas-bearing fluids toward the seafloor since it terminates upward in 213 

chimney structures that are linked to surface gas seeps (Fig. 6). 214 

Previous studies suggest that by comparing seismically derived chimney and fault probability cubes 215 

it can be determined whether a fault or fracture is sealing or leaking (Ligtenberg, 2003; 2005). In this 216 

study, we applied this method for fault seal analysis. High probability locations of chimneys (high 217 

probability for fluid migration) are distributed along the NE-SW striking PR Fault zone, suggesting that 218 

the PR Fault acts as a fluid pathway, whereas the NW-SE striking minor faults/fractures may not act as 219 

good fluid conduits since they all show low probability for chimneys (Fig. 13). Ligtenberg (2005) 220 

suggests that local dilatational zones are formed along the faults planes with orientations parallel/sub-221 

parallel to the main horizontal stress field (SHmax), while sealing faults orient normal to SHmax. These 222 

observations may imply that the PR Fault is parallel/sub-parallel to the main horizontal stress field. 223 

However, further evidence such as borehole data and geotechnical analysis is required on core samples 224 

to test the hypothesis. 225 
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 226 

5.2 Pointer Ridge gas hydrate system 227 

As a potential gas hydrate prospect, Pointer Ridge is characterized by active fluid flow, densely 228 

distributed BSRs and incised channels that probably contain sandy turbidites. We propose a conceptual 229 

model to illustrate the gas hydrate system (Fig. 14).  230 

Several submarine channel systems exist on both sides of the PR Fault (Fig. 7). Since these channels 231 

in the footwall of the PR Fault are caused by erosion in higher energy environments than the surrounding 232 

contourites and levee deposits there is an increased probability that they contain more coarse-grained 233 

sediments and would therefore make the best hydrate reservoirs in this geological setting (Figs. 7 and 234 

14). Although there are high seismic amplitude anomalies indicating gas accumulation in the hanging 235 

wall of the PR Fault, the potential turbidite sands cannot act as hydrate reservoirs but rather as potential 236 

gas reservoirs as they are all situated deeper than the GHSZ (Figs. 7, 8 and 14).  237 

The PR Fault and gas chimneys act as predominant conduits for fluids towards the GHSZ, with 238 

some extending up to the seafloor. Due to the absence of large-scale fluid pathways, such as basement 239 

faults, to transport fluids at depth toward the GHSZ, we suggest that shallow biogenic gas might be the 240 

major source forming gas hydrates in the GHSZ, which is consistent with the geochemical (Chuang et 241 

al., 2006; 2010) and geophysical (Sahoo et al., 2018) studies conducted in the SCS continental slope. 242 

However, we cannot exclude the possibility of small amounts of thermogenic methane at this site. 243 

Besides, strong gas accumulation in the hanging wall of the PR Fault (Figs. 6 and 14) suggests the fluid 244 

migration along dipping sedimentary layers, which has been also investigated in Hikurangi margin 245 

(Crutchley et al., 2018).  246 

The near-vertical conduits for focused fluid flow in the subsurface, such as chimney or pipe 247 

structures, are fractures created when the overpressure of fluids overcomes the tensile strength of the 248 

surrounding rocks (Talukder et al., 2012). Studies conducted worldwide suggest that the development 249 

of such fluid conduits can be greatly controlled by sedimentary and tectonic processes (Dugan and 250 

Flemings, 2000; Tingay et al., 2007; Talukder et al., 2012). Erosion leads to the decrease of the 251 

overburden stress and thus the strength of surrounding rocks, which requires lower overpressure to open 252 
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new fractures, while deposition increases the overburden stress, preventing fracture development. Our 253 

results suggest that the fluid flow is more active in the footwall (erosional setting) than in the hanging 254 

wall (depositional setting) of the PR Fault (Figs. 7; 8 and 12), which may indicate that erosional 255 

processes triggered subsurface fluid flow and thus led to type I chimney development in the study area. 256 

 257 

6. Conclusions 258 

We have identified various features from seismic data that are related to specific interesting 259 

geological processes in the Pointer Ridge area. Based on our observations, we propose a conceptual 260 

model that illustrates the controlling mechanisms for the gas hydrate system in Pointer Ridge. As the 261 

other ridges along the northern margin of the SCS slope have a similar geological setting it may be 262 

expected that the findings for Pointer Ridge also apply there although deep-seated faults have not been 263 

observed beneath the ridges further east. The results suggest that Pointer Ridge has all the elements 264 

required as a potential gas hydrate prospect including a wide spread GHSZ, active fluid conduits that 265 

penetrate the GHSZ and potential sandy reservoirs, but most of the promising targets currently lie below 266 

the GHSZ. We summarize our results as follows: 267 

1. Multi-attribute analysis can enhance subtle features, including paleo-channel deposits, chimneys and 268 

faults, which would be missed in conventional seismic display. Results from neural network analysis 269 

suggest that the NE-SW striking faults/fractures are active pathways for fluid migration, while those 270 

aligned NW-SE are not.  271 

2. Although the PR Fault is inactive at present, it is significant since clear variations of seafloor 272 

topography, stratigraphy and fluid migration patterns are observed across it. Moreover, the PR Fault 273 

acts as the primary fluid conduit that feeds gas-bearing fluids to the GHSZ, forming gas hydrates under 274 

favorable conditions, in addition to the chimneys and dipping stratigraphic layers.  275 

3. Results from seismic attribute analysis suggest that the paleo-channels are likely composed of sand-276 

rich turbidite deposits. We suggest that the paleo-channels located in the footwall of the PR Fault are 277 

the best targets for future gas hydrate exploitation in the wider study area, while the paleo-channels 278 
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identified in the hanging wall of the PR Fault act as gas reservoirs instead of hydrate reservoirs, since 279 

they are all deeper than the base of GHSZ.  280 

4. Due to the reduced overburden, fluid flow is more active in the erosional environment than in the 281 

depositional, indicating that the gas hydrate system can be greatly affected by varying sedimentary 282 

processes in the study area.  283 

 284 
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Figures and figure captions 472 

 473 

Fig. 1. Bathymetric map showing major tectonic structures and submarine canyons offshore SW Taiwan. 474 

The black box indicates the study area. The black line with teeth show the location of deformation front 475 

(Han et al., 2017). 476 
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 477 

Fig. 2. Bathymetric map showing distributions of the seismic data, PR fault, chimneys and gas plume 478 

sites in the study area. The red box indicates the 3D seismic survey area; the black lines show the 479 

location of available 2D seismic data; the white lines are seismic sections shown in this study. 480 
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 481 

Fig. 3. (a) 3D Seismic volume and 3D geometries of the BSRs and the PR Fault in the 3D cube; (b) 3D 482 

bathymetry display which shows different sedimentary settings across the PR Fault. 483 
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 484 

Fig. 4. Interpreted seismic inline profiles 62 and 51 and their corresponding water column images 485 

showing correlation of gas venting sites and subsurface fluid conduits. The black box indicates the 486 

location of Fig. 6.  487 

 488 

Fig. 5. Interpreted seismic profile MGL0905-08R1 showing the structural and sedimentary features in 489 

the Pointer Ridge. An offset around 460 m across the PR Fault is revealed by strata marked by the red 490 

and the orange lines.  491 
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 492 

Fig.6. Interpretation of seismic inline profile 62. Three seismic units Ua (grey), Ub (pink), and Uc 493 

(green) are interpreted as pre-faulting, syn-faulting and post-faulting deposits, respectively.  494 

 495 
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Fig. 7. Examples showing turbidite channel sands identified from seismic sections (a and b) and co-496 

blending of seismic attributes (c and d).  497 

 498 

Fig. 8. Perspective view of the 3D seismic cube showing the distribution of buried canyons located in 499 

the GHSZ that are potential sandy gas hydrate reservoirs. Arrows indicate the thalweg of the buried 500 

canyons. 501 
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 502 

Fig. 9. Interpreted seismic inline profile 9 presenting different chimney types across the PR Fault.  503 
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 504 

Fig. 10. Seepage related feature distribution at Pointer Ridge. The grey box indicates the 3D seismic 505 

survey area; the black line shows the location of the PR Fault; the green stars are location of gas venting 506 

sites imaged from water column data; the blue and yellow stars indicate the type I and type II chimneys 507 

respectively.  For bathymetry legend please refer to Fig. 1. 508 
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 509 

Fig. 11. Inline 9 seismic profile (left) and 3D perspective display of inline 56 and crossline 649 in 3D 510 

(right) showing (a) conventional seismic image; (b) input picking sets for neural networks; (c) attribute 511 

“chimney”; (d) conventional seismic; and (e)  attribute “chimney”. Green and violet points in (b) 512 

indicate the “chimney” and “non-chimney” locations, respectively. Green and yellow areas in (c) and 513 

(e) indicate the high probability “chimney” locations. See Fig. 2 for location of inline 9. 514 

 515 
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Fig. 12. Time slices extracted from 3D conventional seismic and chimney cubes showing the fluid 516 

migration patterns across the PR Fault. (a) time slice (1820 ms, TWT) of the conventional seismic cube 517 

showing the location of PR Fault; (b) time slice (1820 ms, TWT) of the chimney cube; (c) co-blending 518 

of time slices (1820 ms, TWT) of the conventional seismic cube and the chimney cube; (d) time slice 519 

(1880 ms, TWT) of the conventional seismic cube showing the location of PR Fault; (e) time slice (1880 520 

ms, TWT) of the chimney cube; (f) co-blending of time slices (1880 ms, TWT) of the conventional 521 

seismic cube and the chimney cube. Please note that overall the signal of fluid migration in the footwall 522 

(upper left) of the PR Fault is stronger than that in its footwall (lower right).  523 

 524 

Fig. 13 (a) Time slice of the fault cube showing high probability fault/fracture locations (white); (b) co-525 

blending of time slices of the fault cube and the chimney cube. High probability chimney locations 526 

(shown in yellow) mainly distribute along the PR Fault zone and its footwall (NW). 527 
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 528 

Fig. 14. Conceptual model illustrating the gas hydrate system of the Pointer Ridge. Stratigraphic settings, 529 

fluid migration patterns and hydrate reservoir characteristics of Pointer Ridge are illustrated.    530 

 531 

Table 1. Acquisition parameters of the seismic survey systems used in this study. 532 

Cruise MCS1083 MCS1089 MCS1102 MGL0905 

Source 2 air guns 2 air guns 3 air guns large (40guns) air gun 
array 

Source volume  450 in.3 450 in.3 775 in.3 6000 in.3 

No. channels 108 108 108 468 

Channel interval  12.5 12.5 12.5 12.5 

Acquisition vessel R/V OR1 R/V OR1 R/V OR1 R/V Marcus G. Langseth 

 533 

Table 2. Geometry parameter of the 3D seismic cube used in this study. 534 

Parameters Inline No. Inline spacing Xline No.  Xline spacing 

  95 50m 2400 6.25m 

 535 
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