
Modularization of Research Software for
Collaborative Open Source Development

Christian Zirkelbach
Software Engineering Group

Kiel University
Kiel, Germany

email: czi@informatik.uni-kiel.de

Alexander Krause
Software Engineering Group

Kiel University
Kiel, Germany

email: akr@informatik.uni-kiel.de

Wilhelm Hasselbring
Software Engineering Group

Kiel University
Kiel, Germany

email: wha@informatik.uni-kiel.de

Abstract—Software systems evolve over their lifetime. Changing
conditions, such as requirements or customer requests make it
inevitable for developers to perform adjustments to the underly-
ing code base. Especially in the context of open source software
where everybody can contribute, requirements can change over
time and new user groups may be addressed. In particular,
research software is often not structured with a maintainable
and extensible architecture. In combination with obsolescent
technologies, this is a challenging task for new developers,
especially, when students are involved. In this paper, we report on
the modularization process and architecture of our open source
research project ExplorViz towards a microservice architecture.
The new architecture facilitates a collaborative development
process for both researchers and students. We describe the
modularization measures and present how we solved occurring
issues and enhanced our development process. Afterwards, we
illustrate our modularization approach with our modernized, ex-
tensible software system architecture and highlight the improved
collaborative development process. Finally, we present a proof-
of-concept implementation featuring several developed extensions
in terms of architecture and extensibility.

Keywords–collaborative software engineering; open source soft-
ware; software visualization; architectural modernization; microser-
vices.

I. INTRODUCTION

Software systems are continuously evolving during their
lifetime. Changing contexts, legal, or requirement changes
such as customer requests make it inevitable for developers
to perform modifications of existing software systems. Open
source software is based on the open source model, which
addresses a decentralized and collaborative software develop-
ment. Open research software [1] is available to the public and
enables anyone to copy, modify, and redistribute the underlying
source code. In this context, where anyone can contribute code
or feature requests, requirements can change over time and new
user groups may appear. Although this development approach
features a lot of collaboration and freedom, the resulting
software does not necessarily constitute a maintainable and ex-
tensible underlying architecture. Additionally, employed tech-
nologies and frameworks can become obsolescent or are not
updated anymore. In particular, research software is often not
structured with a maintainable and extensible architecture [2].
This causes a challenging task for developers during the
development, especially when inexperienced collaborators like
students are involved. Based on several drivers, like technical
issues or occurring organization problems, many research and

industrial projects need to move their applications to other
programming languages, frameworks, or even architectures.
Currently, a tremendous movement in research and industry
constitutes a migration or even modernization towards a mi-
croservice architecture, caused by promised benefits like scal-
ability, agility, and reliability [3]. Unfortunately, the process of
moving towards a microservice-based architecture is difficult,
because there a several challenges to address from both techni-
cal and organizational perspectives [4]. In this paper, we report
on the modularization process of our open source research
project ExplorViz towards a more collaboration-oriented de-
velopment process on the basis of a microservice architecture.
We later call the outdated version ExplorViz Legacy, and the
new version just ExplorViz.

The remainder of this paper is organized as follows.
In Section II, we illustrate our problems and drivers for a
modularization and architectural modernization. Afterwards,
we illustrate our software system and underlying architecture
of ExplorViz Legacy in Section III. The following modu-
larization and modernization process as well as the target
architecture of ExplorViz are described in Section IV. Sec-
tion V introduces our proof of concept in detail, including
an evaluation based on several developed extensions. Our
ongoing work in terms of achieving an entire microservice
architecture is presented in Section VI. Section VII discusses
related work on modularization and modernization towards
microservice architectures. Finally, the conclusions are drawn
and an outlook is given.

II. PROBLEM STATEMENT

The open source research project ExplorViz started in
2012 as part of a PhD thesis and is further developed and
maintained until today. ExplorViz enables a live monitoring
and visualization of large software landscapes [5], [6]. The
tool has the objective to aid the process of system and program
comprehension for developers and operators. We successfully
employed the software in several collaboration projects [7],
[8] and experiments [9], [10]. The project is developed from
the beginning on GitHub with a small set of core developers
and many collaborators (more than 30 students) over the
time. Several extensions have been implemented since the first
version, which enhanced the tool’s feature set. Unfortunately,
this led to an unstructured architecture due to an unsuitable
collaboration and integration process. In combination with
technical debt and issues of our employed software framework



and underlying architecture, we had to perform a technical
and process-oriented modularization. Since 2012, several re-
searchers, student assistants, and a total of 25 student theses as
well as multiple projects contributed to ExplorViz. We initially
chose the Java-based Google Web Toolkit (GWT) [11], which
seemed to be a good fit in 2012, since Java is the most used
language in our lectures. GWT provides different wrappers
for Hypertext Markup Language (HTML) and compiles a set
of Java classes to JavaScript (JS) to enable the execution of
applications in web browsers. Employing GWT in our project
resulted in a monolithic application (hereinafter referred to as
ExplorViz Legacy), which introduced certain problems over the
course of time.

1) Extensibility & Integrability: ExplorViz Legacy’s con-
cerns are divided in core logic (core), e.g., predefined software
visualizations, and extensions. When ExplorViz Legacy was
developed, students created new git branches to implement
their given task, e.g., a new feature. However, there was
no extension mechanism that allowed the integration of fea-
tures without rupturing the core’s code base. Therefore, most
students created different, but necessary features in varying
classes for the same functionality. Furthermore, completely
new technologies were utilized, which introduced new, some-
times even unnecessary (due to the lack of knowledge), depen-
dencies. Eventually, most of the developed features could not
be easily integrated into the master branch and thus remained
isolated in their feature branch.

2) Code Quality & Comprehensibility: After a short period
of time, modern JS web frameworks became increasingly
mature. Therefore, we started to use GWT’s JavaScript Native
Interface (JSNI) to embed JS functionality in client-related
Java methods. Unfortunately, JSNI was overused and the
result was a partitioning of the code base. Developers were
now starting to write Java source code, only to access JS,
HTML, and Cascading Style Sheets (CSS). Furthermore, the
integration of modern JS libraries in order to improve the
user experience in the frontend was problematic. Additionally,
Google announced that JSNI would be removed with the
upcoming release of Version 3, which required the migration
of a majority of client-related code. Google also released a
new web development programming language, named DART,
which seemed to be the unofficial successor of GWT. Thus, we
identified a potential risk, if we would perform a version up-
date. Eventually, JSNI reduced our code quality. Our remaining
Java classes further suffered from ignoring some of the most
common Java conventions and resulting bugs. Students of our
university know and use supporting software for code quality,
e.g., static analysis tools such as Checkstyle [12] or PMD [13].
However, we did not define a common code style supported
by these tools in ExplorViz Legacy. Therefore, a vast amount
of extensions required a lot of refactoring, especially when we
planned to integrate a feature into the core.

3) Software Configuration & Delivery: In ExplorViz
Legacy, integrated features were deeply coupled with the core
and could not be easily taken out. Often, users did not need all
features, but only a certain subset of the overall functionality.
Therefore, we introduced new branches with different config-
urations for several use cases, e.g., a live demo. Afterwards,
users could download resulting artifacts, but the maintenance
of related branches was cumbersome. Summarized, the stated

problems worsened the extensibility, maintainability, and com-
prehension for developers of our software. Therefore, we were
in need of modularizing and modernizing ExplorViz.

III. ExplorViz Legacy

The overall architecture and the employed software stack
of ExplorViz Legacy is shown in Figure 1. We are instrument-
ing applications, regardless whether they are native applica-
tions or deployed artifacts in an application server like Apache
Tomcat. The instrumentation is realized by our monitoring
component, which employs in the case of Java AspectJ, an
aspect-oriented programming extension for Java [14]. AspectJ
allows us to intercept an application by bytecode-weaving in
order to gather necessary monitoring information for analysis
and visualization purposes. Subsequently, this information is
transported via (Transmission Control Protocol (TCP) towards
a server, which hosts our GWT application. This part repre-
sents the two major components of our architecture, namely
analysis and visualization. The analysis component receives
the monitoring information and reconstructs traces. These
traces are stored in the file system and describe a software land-
scape consisting of monitored applications and communication
in-between. Our user-management employs a H2 database [15]
to store related data. The software landscape visualization
is provided via Hypertext Transfer Protocol (HTTP) and is
accessible by clients with a web browser. GWT is an open
source framework, which allows to develop JS front-end ap-
plications in Java. It facilitates the usage of Java code for server
(backend) and client (frontend) logic in a single web project.
Client-related components are compiled to respective JS code.
The communication between frontend and backend is handled
through asynchronous remote procedure calls based on HTTP.
In ExplorViz Legacy, the advantages of GWT proved to be a
drawback, because every change affects the whole project due
to its single code base. New developed features were hard-
wired into the software system. Thus, a feature could not be
maintained, extended, or replaced by another component with
reasonable effort. This situation was a leading motivation for us
to look for an up-to-date framework replacement. We intended
to take advantage of this situation and modularize our software
system in order to move from a monolithic, to a distributed
(web) application divided into separately maintainable and
deployable backend and frontend components.

IV. MODULARIZATION PROCESS AND ARCHITECTURE
OF ExplorViz

The previously mentioned drawbacks in ExplorViz
Legacy and recent experience reports in literature about suc-
cessful applications of alternative technologies, e.g., Repre-
sentational State Transfer (REST or RESTful) Application
Programming Interfaces (API) [16], [17], were triggers for a
modularization and modernization. In [18], we gave a very
brief description on the modernization process of ExplorViz to-
wards a microservice architecture. During the modularization
planning phase, we started with a requirement analysis for
our modernized software system and identified technical and
development process related impediments in the project. We
kept in mind that our focus was to provide a collaborative de-
velopment process, which encourages developers to participate
in our research project [18]. Furthermore, developers, espe-
cially inexperienced ones, tend to have potential biases during



Server

Monitored Server

Application

Monitoring

Client

Feature

Filesystem

TCP HTTPVisualization

Analysis

Figure 1: Architectural overview and software stack of ExplorViz Legacy.

the development of software, e.g., they make decisions on
their existing knowledge instead of exploring unknown solu-
tions [19]. A more detailed description of decision triggers and
the decision making process will be published in a technical
report [20]. In general, there exist many drivers and barriers for
microservice adoption [21]. Typical barriers and challenges are
the required additional governance of distributed, networked
systems and the decentralized persistence of data.

As a result of this process, we agreed on building upon
an architecture based on microservices as shown in Figure 2.
This architectural style offers the ability do divide monolithic
applications into small, lightweight, and independent services,
which are also separately deployable [3], [22]–[24]. However,
the obtained benefits of a microservice architecture can bring
along some drawbacks, such as increased overall complexity
and data consistency [25].

1) Extensibility & Integrability: In a first step, we modular-
ized our GWT project into two separated projects, i.e., backend
and frontend, which are now two self-contained microservices.
Thus, they can be developed technologically independent and
deployed on different server nodes. This allows us to exchange
the microservices, as long as we take our specified APIs into
account. The backend is implemented as a Java-based web
service based on the Jersey Project [26], which provides a
RESTful API via HTTP for clients. Furthermore, we replaced
our custom-made monitoring component by the monitoring
framework Kieker [27]. This framework provides an extensible
approach for monitoring and analyzing the runtime behavior
of distributed software systems. Monitored information is sent
via TCP to our backend, which employs the filesystem and
H2 database for storage. The frontend uses the JS framework
Ember.js, which enables us to offer visualizations of software
landscapes to clients with a web browser [28]. Since Ember
is based on the model-view-viewmodel architectural pattern,
developers do not need to manually access the Document
Object Model and thus need to write less source code. Ember
uses Node.js as execution environment and emphasizes the use

of components in web sites, i.e., self-contained, reusable, and
exchangeable user interface fragments [29]. We build upon
these components to encapsulate distinct visualization modes,
especially for extensions. Communication, like a request of a
software landscape from the backend, is abstracted by so-called
Ember adapters. These adapters make it easy to request or
send data by using the convention-over-configuration pattern.
The introduced microservices, namely backend and frontend,
represent the core of ExplorViz. As for future extensions,
we implemented well-defined extension interfaces for both
microservices, that allow their integration into the core.

2) Code Quality & Comprehensibility: New project devel-
opers, e.g., students, do not have to understand the complete
project from the beginning. They can now extend the core
by implementing new mechanics on the basis of a plug-in
extension. Extensions can access the core functionality only
by a well-defined read-only API, which is implemented by
the backend, respectively frontend. This high level of encap-
sulation and modularization allows us to improve the project,
while not breaking extension support. Additionally, we do no
longer have a conglomeration between backend and frontend
source code, especially the mix of Java and JS, in single com-
ponents. This eased the development process and thus reduced
the number of bugs, which previously occurred in ExplorViz
Legacy. Another simplification was the use of json:api [30]
as data exchange format specification between backend and
frontend, which introduced a well-defined JavaScript Object
Notation (JSON) format with attributes and relations for data
objects.

A. Software Configuration & Delivery

One of our goals was the ability to easily exchange the
microservices. We fulfill this task by employing frameworks,
which are exchangeable with respect to their language do-
main, i.e., Java and JS. We anticipate that substituting these
frameworks could be done with reasonable effort, if neces-
sary. Furthermore, we offer pre-configured artifacts of our



software for several use cases by employing Docker images.
Thus, we are able to provide containers for the backend
and frontend or special purposes, e.g., a fully functional live
demo. Additionally, we implemented the capability to plug-in
developed extensions in the backend, by providing a package-
scanning mechanism. The mechanism scans a specific folder
for compiled extensions and integrates them at runtime.

V. PROOF-OF-CONCEPT IMPLEMENTATION

We realized a proof-of-concept implementation and split
our project as planned into two separate projects – a backend
project based on Jersey, and a frontend project employing
the JS framework Ember. Both frameworks have a large and
active community and offer sufficient documentation, which is
important for new developers. As shown in Figure 2, we strive
for an easily maintainable, extensible, and plug-in-oriented
microservice architecture. Since the end of our modularization
and modernization process in early 2018, we were able to
successfully develop several extensions both for the backend
and the frontend. Two of them are described in the following.

1) Application Discovery: Although we employ a mon-
itoring framework, it lacks a user-friendly, automated setup
configuration due to its framework characteristics. Thus, users
of ExplorViz experienced problems with instrumenting their
applications for monitoring. In [31], we reported on our
application discovery and monitoring management system to
circumvent this drawback. The key concept is to utilize a
software agent that simplifies the discovery of running appli-
cations within operating systems. Furthermore, this extension
properly configures and manages the monitoring framework.
The extension is divided in a frontend extension providing a
configuration interface for the user, and a backend extension,
which applies this configuration to the respective software
agent lying on a software system.

Finally, we were able to conduct a first pilot study to
evaluate the usability of our approach with respect to an easy-
to-use application monitoring. The improvement regarding the
usability of the monitoring procedure of this extension was a
great success. Thus, we recommend this extension for every
user of ExplorViz.

2) Virtual Reality Support: An established way to un-
derstand the complexity of a software system is to employ
visualizations of software landscapes. However, with the help
of visualization alone, exploring unknown software is still a
potentially challenging and time-consuming task. For this ex-
tension, three students followed a new approach using Virtual
Reality (VR) for exploring software landscapes collaboratively.
They employed head mounted displays (HTC Vive and Oculus
Rift) to allow the collaborative exploration of software in VR.
They built upon our microservice architecture and employed
WebSocket connections to exchange data to achieve modular
extensibility and high performance for this real-time user
environment. As a proof of concept, they conducted a first
usability evaluation with 22 probands. The results of this
evaluation revealed a good usability and thus constituted a
valuable extension to ExplorViz.

VI. RESTRUCTURED ARCHITECTURE AND NEW PROCESS

Our modularization approach started by dividing the old
monolith into separated frontend and backend projects [18].

Since then, we further decomposed our backend into several
microservices to address the problems stated in Section II. The
resulting, restructured architecture is illustrated in Figure 3
and the new collaborative development process is described
below. As reported in Section V, the new architecture already
improved the collaboration with new developers who realized
new features as modular extensions.

1) Extensibility & Integrability: Frontend extensions are
based on Ember’s addon mechanism. The backend, however,
used the package scanning feature of Jersey to include ex-
tensions. The result of this procedure was again an unhandy
configuration of a monolithic application with high coupling
of its modules. Therefore, we once again restructured the
approach for our backend plug-in extensions. The extensions
are now decoupled and represent separated microservices.
As a result, each extension is responsible for its own data
persistence and error handling. Due to the decomposition of
the backend, we are left with multiple Uniform Resource
Identifiers (URI). Furthermore, new extensions will introduce
additional endpoints, therefore more URIs again. To simplify
the data exchange handling based on those endpoints, we
employ a common approach for microservice-based backends.
The frontend communicates with an API gateway instead of
several single servers, thus only a single base Uniform Re-
source Locator (URL) with well-defined, multiple URIs. This
gateway, a Nginx reverse proxy [32], passes requests based
on their URI to the respective proxied microservices, e.g., the
landscape service. Furthermore, the gateway acts as a single
interface for extensions and offers additional features like
caching and load balancing. Extension developers, who require
a backend component, extend the gateway’s configuration file,
such that their frontend extension can access their complement.
The inter-service communication is now realized with the
help of Apache Kafka [33]. Kafka is a distributed streaming
platform with fault-tolerance for loosely coupled systems. The
decomposition into several independent microservices and the
new inter-service communication approach both facilitate low
coupling in our system.

2) Code Quality & Comprehensibility: The improvements
for code quality and accessibility, which were introduced in our
first modularization approach, showed a perceptible impact on
contributor’s work. For example, recurring students approved
the easier access to ExplorViz and especially the obligatory
exchange format json:api. However, we still lacked a com-
mon code style in terms of conventions and best practices.
To achieve this and therefore facilitate maintainability, we
defined compulsory rule sets for the quality assurance tools
Checkstyle and PMD. In addition with SpotBugs [34], we
impose their usage on contributors for Java code. For JS, we
employ ESLint [35], i.e., a static analysis linter, with an Ember
community-driven rule set. All tools are integrated into our
continuous integration pipeline configured in TravisCI [36].

A. Software Configuration & Delivery

One major problem of ExplorViz Legacy was the necessary
provision of software configurations for different use cases.
The first iteration of modularization did not entirely solve
this problem. The backend introduced a first approach for an
integration of extensions, but their delivery was cumbersome.
Due to the tight coupling at source code level we had to



Frontend

Monitored 
Server

Backend

Application
TCP

Client

HTTPHTTP

Filesystem

VisualizationAnalysis

Frontend-ExtensionBackend-Extension

Figure 2: Architectural overview and software stack of the modularized ExplorViz.

provide the compiled Java files of all extensions for download.
Users had to copy these files to a specific folder in their
already deployed ExplorViz backend. Therefore, configuration
alterations were troublesome. With the architecture depicted
in Figure 3 we can now provide a jar file for each service
with an embedded web server. This modern approach for
Java web applications facilitates delivery and configuration
of ExplorViz’s backend components. In the future, we are
going to ship ready-to-use Docker images for each part of
our software. The build of these images will be integrated
into the continuous integration pipeline. Users are then able to
employ docker-compose files to achieve their custom ExplorViz
configuration or use a provided docker-compose file that fits
their needs. As a result, we can provide an alternative, easy to
use, and exchangeable configuration approach that essentially
only requires a single command line instruction. The frontend
requires another approach, since (to the best of our knowledge)
it is not possible to install an Ember addon inside of a deployed
Ember application. We are currently developing a build service
for users that ships ready-to-use, pre-built configurations of our
frontend. Users can download and deploy these packages. Al-
ternatively, these configurations will also be usable as Docker
containers.

VII. RELATED WORK

In the area of software engineering, there are many papers
that perform a software modernization in other contexts. Thus,
we restrict our related work to approaches, which focus on the
modernization of monolithic applications towards a microser-
vice architecture. [25] present a survey of architectural smells
during the modernization towards a microservice architecture.
They identified nine common pitfalls in terms of bad smells
and provided potential solutions for them. ExplorViz Legacy
was also covered by this survey and categorized by the
“Single DevOps toolchain” pitfall. This pitfall concerns the
usage of a single toolchain for all microservices. Fortunately,
we addressed this pitfall since their observation during their
survey by employing independent toolchains by means of

pipelines within our continuous integration system for the
backend and frontend microservices. [22] present a migration
process to decompose an existing software system into several
microservices. Additionally, they report from their gained
experiences towards applying their presented approach in a
legacy modernization project. Although their modernization
drivers and goals are similar to our procedure, their approach
features a more abstract point of view on the modernization
process. Furthermore, they focus on programming language
modernization and transaction systems. In [3], the authors
present an industrial case study concerning the evolution of
a long-living software system, namely a large e-commerce
application. The addressed monolithic legacy software system
was replaced by a microservice-based system. Compared to
our approach, this system was completely re-build without
retaining code from the (commercial) legacy software system.
Our focus is to facilitate the collaborative development of open
source software and also addresses the development process.
We are further planning to develop our pipeline towards contin-
uous delivery for all microservices mentioned in Section VI to
minimize the release cycles and offer development snapshots.

VIII. CONCLUSION

In this paper, we report on our modularization and modern-
ization process of the open source research software ExplorViz,
moving from a monolithic architecture towards a microservice
architecture with the primary goal to ease the collaborative
development, especially with students. We describe technical
and development process related drawbacks of our initial
project state until 2016 in ExplorViz Legacy and illustrate our
modularization process and architecture. The process included
not only a decomposition of our web-based application into
several components, but also technical modernization of ap-
plied frameworks and libraries. Driven by the goal to easily
extend our project in the future and facilitate a contribution
by inexperienced collaborators, we offer a plug-in extension
mechanism for our core project, both for backend and frontend.
We realized our modularization process and architecture in



Processes

Message Broker

Monitored
Server

Application

Discovery-Agent

Client

Records

Analysis

TracesRecords

Landscape

Filesystem

Traces Landscapes

API-Gateway / Reverse Proxy

DiscoveryAuthentication 
& Authorization

Backend-
Extension

Processes Data

Frontend
HTTP

Visualization

Frontend-Extension

HTTP

Figure 3: Architectural overview and software stack of the restructured ExplorViz.

terms of a proof-of-concept implementation and evaluated it
afterwards by the development of several extensions of Ex-
plorViz. However, the modularization process is not fully
completed, as yet. We are still improving the project in order to
achieve a fully decoupled microservice architecture, consisting
of a set of self-contained systems and well-defined interfaces
in-between. In the future, we are planning to evaluate our fi-
nalized project, especially in terms of developer collaboration.
Additionally, we plan to move from our continuous-integration
pipeline towards a continuous-delivery environment. Thus, we
expect to decrease the interval between two releases and allow
users to try out new versions, even development snapshots,
as soon as possible. Furthermore, we plan to use architecture
recovery tools like [37] for refactoring or documentation
purposes in upcoming versions of ExplorViz.

REFERENCES

[1] C. Goble, “Better Software, Better Research,” IEEE
Internet Computing, vol. 18, no. 5, pp. 4–8, Sep. 2014.

[2] A. Johanson and W. Hasselbring, “Software engineer-
ing for computational science: Past, present, future,”
Computing in Science & Engineering, vol. 20, no. 2,
pp. 90–109, Mar. 2018. DOI: 10 . 1109 / MCSE . 2018 .
021651343.

[3] W. Hasselbring and G. Steinacker, “Microservice Ar-
chitectures for Scalability, Agility and Reliability in E-
Commerce,” in Proceedings of the IEEE International
Conference on Software Architecture Workshops (IC-

SAW), Apr. 2017, pp. 243–246. DOI: 10.1109/ICSAW.
2017.11.

[4] P. D. Francesco, P. Lago, and I. Malavolta, “Migrat-
ing Towards Microservice Architectures: An Industrial
Survey,” in Proceedings of the IEEE International Con-
ference on Software Architecture (ICSA), Apr. 2018,
pp. 29–2909.

[5] F. Fittkau, A. Krause, and W. Hasselbring, “Software
landscape and application visualization for system com-
prehension with ExplorViz,” Information and Software
Technology, vol. 87, pp. 259–277, Jul. 2017. DOI: doi:
10.1016/j.infsof.2016.07.004.

[6] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz:
Visual runtime behavior analysis of enterprise appli-
cation landscapes,” in 23rd European Conference on
Information Systems (ECIS 2015 Completed Research
Papers), AIS Electronic Library, May 2015, pp. 1–13.
DOI: 10.18151/7217313.

[7] R. Heinrich, C. Zirkelbach, and R. Jung, “Architectural
Runtime Modeling and Visualization for Quality-Aware
DevOps in Cloud Applications,” in Proceedings of the
IEEE International Conference on Software Architecture
Workshops (ICSAW), Apr. 2017, pp. 199–201.

[8] R. Heinrich, R. Jung, C. Zirkelbach, W. Hasselbring, and
R. Reussner, “An architectural model-based approach to
quality-aware devops in cloud applications,” in Software
Architecture for Big Data and the Cloud, I. Mistrik,
R. Bahsoon, N. Ali, M. Heisel, and B. Maxim, Eds.,
Cambridge: Elsevier, Jun. 2017, pp. 69–89.



[9] F. Fittkau, A. Krause, and W. Hasselbring, “Hierarchical
software landscape visualization for system comprehen-
sion: A controlled experiment,” in Proceedings of the
3rd IEEE Working Conference on Software Visualization
(VISSOFT 2015), IEEE, Sep. 2015, pp. 36–45. DOI: 10.
1109/VISSOFT.2015.7332413.

[10] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller,
“Comparing Trace Visualizations for Program Com-
prehension through Controlled Experiments,” in Pro-
ceedings of the 23rd IEEE International Conference
on Program Comprehension (ICPC 2015), May 2015,
pp. 266–276. DOI: 10.1109/ICPC.2015.37.

[11] Open Source Software Community, Google Web Toolkit
Project (GWT), version 2.8.2, May 19, 2019. [Online].
Available: http://www.gwtproject.org.

[12] ——, Checkstyle, version 8.10, May 19, 2019. [Online].
Available: http://checkstyle.sourceforge.net.

[13] ——, PMD, version 6.10.0, May 19, 2019. [Online].
Available: https://pmd.github.io.

[14] Eclipse Foundation, AspectJ, version 1.8.5, May 19,
2019. [Online]. Available: https : / / www. eclipse . org /
aspectj.

[15] Open Source Software Community, H2, version 1.4.177,
May 19, 2019. [Online]. Available: http : / / www .
h2database.com.

[16] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau,
“Migration of SOAP-based services to RESTful ser-
vices,” in Proceedings of the 13th IEEE International
Symposium on Web Systems Evolution (WSE), Sep.
2011, pp. 105–114.

[17] S. Vinoski, “RESTful Web Services Development
Checklist,” IEEE Internet Computing, vol. 12, no. 6,
pp. 96–95, Nov. 2008, ISSN: 1089-7801.

[18] C. Zirkelbach, A. Krause, and W. Hasselbring, “On the
Modernization of ExplorViz towards a Microservice Ar-
chitecture,” in Combined Proceedings of the Workshops
of the German Software Engineering Conference 2018,
vol. Online Proceedings for Scientific Conferences and
Workshops, Ulm, Germany: CEUR Workshop Proceed-
ings, Feb. 2018.

[19] A. Tang, M. Razavian, B. Paech, and T. Hesse, “Human
Aspects in Software Architecture Decision Making: A
Literature Review,” in Proceedings of the IEEE Inter-
national Conference on Software Architecture (ICSA),
Apr. 2017, pp. 107–116.

[20] C. Zirkelbach, A. Krause, and W. Hasselbring, “On
the Modularization of ExplorViz towards Collaborative
Open Source Development,” Kiel University, Technical
Report TR 1902, May 2019, to appear.

[21] H. Knoche and W. Hasselbring, “Drivers and barriers for
microservice adoption – a survey among professionals
in Germany,” Enterprise Modelling and Information
Systems Architectures (EMISAJ) – International Journal
of Conceptual Modeling, vol. 14, no. 1, pp. 1–35, 2019.
DOI: 10.18417/emisa.14.1.

[22] H. Knoche and W. Hasselbring, “Using Microservices
for Legacy Software Modernization,” IEEE Software,
vol. 35, no. 3, pp. 44–49, May 2018, ISSN: 0740-7459.

[23] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microser-
vices: Yesterday, Today, and Tomorrow,” in Present and

Ulterior Software Engineering. Springer International
Publishing, 2017, pp. 195–216.

[24] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic
Mapping Study in Microservice Architecture,” in Pro-
ceedings of the 9th International Conference on Service-
Oriented Computing and Applications (SOCA), Nov.
2016, pp. 44–51.

[25] A. Carrasco, B. v. Bladel, and S. Demeyer, “Migrat-
ing Towards Microservices: Migration and Architec-
ture Smells,” in Proceedings of the 2nd International
Workshop on Refactoring, ser. IWoR 2018, Montpellier,
France: ACM, 2018, pp. 1–6.

[26] Oracle, Jersey Project, version 2.27, May 19, 2019.
[Online]. Available: https://jersey.github.io.

[27] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker:
A Framework for Application Performance Monitoring
and Dynamic Software Analysis,” in Proceedings of
the 3rd joint ACM/SPEC International Conference on
Performance Engineering (ICPE 2012), ACM, Apr.
2012, pp. 247–248.

[28] Ember Core Team, Ember.js, version 3.6.0, May 19,
2019. [Online]. Available: https://www.emberjs.com.

[29] Joyent, Node.js, version 10.15.0, May 19, 2019. [On-
line]. Available: https://nodejs.org.

[30] Open Source Software Community, json:api, ver-
sion 1.0.0, May 19, 2019. [Online]. Available: https :
//jsonapi.org.

[31] A. Krause, C. Zirkelbach, and W. Hasselbring, “Simpli-
fying Software System Monitoring through Application
Discovery with ExplorViz,” in Proceedings of the Sym-
posium on Software Performance 2018: Joint Developer
and Community Meeting of Descartes/Kieker/Palladio,
Nov. 2018.

[32] Nginx, Nginx, version 1.15.8, May 19, 2019. [Online].
Available: http://nginx.org.

[33] Apache Software Foundation, Apache Kafka, May 19,
2019. [Online]. Available: https://kafka.apache.org.

[34] Open Source Software Community, Spotbugs, ver-
sion 3.1.10, May 19, 2019. [Online]. Available: https:
//spotbugs.github.io.

[35] ESLint Team, ESLint, version 5.12.0, May 19, 2019.
[Online]. Available: https://eslint.org.

[36] Open Source Software Community, TravisCI, May 19,
2019. [Online]. Available: https://travis-ci.org.

[37] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Mala-
volta, L. Iovino, and A. D. Salle, “MicroART: A
Software Architecture Recovery Tool for Maintaining
Microservice-Based Systems,” in Proceedings of the
IEEE International Conference on Software Architecture
Workshops (ICSAW), Apr. 2017, pp. 298–302.


