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Introduction
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Current trend to move towards microservice
architectures, caused by promised benefits [3]

Software continously evolving during lifetime

Open research software is constantly increasing [1]

Technical or organizational circumstances cause problems [2]
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https://www.explorviz.net
https://github.com/ExplorViz

Repeateadly extended since the beginning

Program- and system comprehension for developers

Live trace visualization for large software landscapes based on monitoring

Started as a Ph.D project in 2012

Free license (Apache License, Version 2.0) from the beginning

[5,6]



Visualization (Landscape-Level)
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Visualization (Application-Level)



Selected Features
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Problem Statement



Problem Statement
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Result
Unstructured architecture due to an unsuitable collaboration and 
integration process 

Several extensions since the beginning

Introduced a lot of new features

Software is realized on the Java-based Google Web Toolkit (GWT)



Introduced Problems
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Extensibility & Integrability: Architecture

13

Logic (Core) Visualizations Extensions



Extensibility & Integrability: New Features
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• Modern JS web Frameworks became increasingly mature 

• We used GWT’s JavaScript Native Interface (JSNI) 
to embed JS functionality in client-related Java methods

• Integration of modern JS libraries to improve UX

Code Quality & Comprehensibility

JSNI was planned to be removed in upcoming release version 3 of GWT
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Software Configuration & Delivery

Problems worsened the extensibility, maintainability, 
and comprehension for developers

• Integrated features (extensions) were deeply coupled

• Users often did only need just a subset of features
 Create branches for several use cases, e.g., a live demo
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Legacy Architecture of ExplorViz    
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Modularization Process and 
Architecture of ExplorViz    



Modularization Process and Architecture of ExplorViz
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First step: Requirement Analysis
• Identification of obstacles
• Focus: Provide a collaborative development process [18]

Second step: Developer Meeting
• Agreement to build upon a microservice architecture
• Architectural style features small, lightweight, 

and independent services



How did we address the problems?
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Proof-of-Concept Implementation
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• Split the project as planned into two separate projects –
a backend project Java-based                       framework,
and a frontend project employing the JS web framework

• Both have large and active community and offer good documentation

• Since the end of our process in early 2018, 
we successfully develop several extensions (backend and frontend)

Proof-of-Concept Implementation



Developed Extensions
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[31]
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Restructured Architecture and 
New Process of ExplorViz
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How can we improve the first iteration?
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Extensibility & Integrability: New Features

• Still a monolithic application with high coupling of modules
 Decoupling into separated microservices
 Data-Exchange: API-Gateway, based on

• Inter-service communication is now realized with 

• Frontend extensions are based on Ember’s addon mechanism

• The backend used the package scanning feature of Jersey to include 
extensions 
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• Improvements for code quality and accessibility, showed a perceptible 
impact on contributor’s work

• Recurring students approved the easier access to ExplorViz and especially 
the obligatory exchange format

Code Quality & Comprehensibility

Still lacked a common code style in terms of conventions 
and best practices
 Compulsory rule sets for Checkstyle, PMD, and Spotbugs
 ESLint with an Ember community-driven rule set 
 All tools are integrated into our CI pipeline 



Frontend requires a different approach
• Not possible to install an Ember addon inside of a deployed 

Ember application
• Currently developing a build service for that ships ready-to-use, 

pre-built configurations 
• Alternatively these will be available as Docker images

31

Still need to provide backend configurations for different use cases
• First approach for an integration of extensions, 

but delivery was cumbersome
• We provide a jar file for each service with an embedded web server
• We offer ready-to-use Docker images for each part of our software 

Software Configuration & Delivery
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Conclusion and Future Work
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Modularized and migrated our architecture 
from a Monolith to Microservices

Ongoing development
• Further refactoring and modularization
• Migrating missing features
• Adding new features

Significant simplification on the development of features

https://www.explorviz.net
https://github.com/ExplorViz
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• Share Icon made by Hadrien
• Correct, Cancel, Right arrow Icon made by Lucy G
• Right arrow Icon made by Lyolya
• Circular outlined Button Icon made by Catalin Fertu
• Planning Icon made by Prosymbols
• Puzzle Icon made by DinosoftLabs
• Coliseum Icon made by zlatko-najdenovski
• Network Icon made by itim2101
• Jigsaw, Purpose Icon made by geptatah
• Technical Support Icon made by srip
• Settings Icon made by Gregor Cresnar
• OSS Icon made by Pixel perfect
• Blueprint, Puzzle, Evolution Icon made by Freepik
• Problem, Merging Arrow, Medical shape, Data, Binary, 

Application, API, Demand, HR, Projector, Product Icon made by Eucalyp

All icons are from www.flaticon.com
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