
Modularization of Research Software for
Collaborative Open Source Development

The 9th International Conference on Advanced Collaborative Networks,
Systems and Applications (COLLA 2019)

Rome, Italy
July 1, 2019

Christian Zirkelbach
Software Engineering Group, Kiel University

Introduction

2

Current trend to move towards microservice
architectures, caused by promised benefits [3]

Software continously evolving during lifetime

Open research software is constantly increasing [1]

Technical or organizational circumstances cause problems [2]

3

https://www.explorviz.net
https://github.com/ExplorViz

Repeateadly extended since the beginning

Program- and system comprehension for developers

Live trace visualization for large software landscapes based on monitoring

Started as a Ph.D project in 2012

Free license (Apache License, Version 2.0) from the beginning

[5,6]

Visualization (Landscape-Level)

4

5

Visualization (Application-Level)

Selected Features

6

7

8

9

10

Problem Statement

Problem Statement

11

Result
Unstructured architecture due to an unsuitable collaboration and
integration process

Several extensions since the beginning

Introduced a lot of new features

Software is realized on the Java-based Google Web Toolkit (GWT)

Introduced Problems

12

Extensibility
&

Integrability

Code Quality
&

Comprehensibility

Software Configuration
&

Delivery

Extensibility & Integrability: Architecture

13

Logic (Core) Visualizations Extensions

Extensibility & Integrability: New Features

14

(Student)
Collaboration

New Feature New Git Branch No extension
mechanism

Single
Codebase

Merging
Problematic

15

• Modern JS web Frameworks became increasingly mature

• We used GWT’s JavaScript Native Interface (JSNI)
to embed JS functionality in client-related Java methods

• Integration of modern JS libraries to improve UX

Code Quality & Comprehensibility

JSNI was planned to be removed in upcoming release version 3 of GWT

16

Software Configuration & Delivery

Problems worsened the extensibility, maintainability,
and comprehension for developers

• Integrated features (extensions) were deeply coupled

• Users often did only need just a subset of features
 Create branches for several use cases, e.g., a live demo

17

Legacy Architecture of ExplorViz

18

Monitored Server

Application

Monitoring

Client

TCP HTTP

Server

Feature

Filesystem

Visualization

Analysis

19

Modularization Process and
Architecture of ExplorViz

Modularization Process and Architecture of ExplorViz

20

First step: Requirement Analysis
• Identification of obstacles
• Focus: Provide a collaborative development process [18]

Second step: Developer Meeting
• Agreement to build upon a microservice architecture
• Architectural style features small, lightweight,

and independent services

How did we address the problems?

21

Extensibility
&

Integrability

Code Quality
&

Comprehensibility

Software Configuration
&

Delivery

22

TCP

Client

HTTPHTTP

Backend

Filesystem

Analysis

Backend-Extension

Frontend

Visualization

Frontend-Extension

Monitored Server

Application

23

Proof-of-Concept Implementation

24

• Split the project as planned into two separate projects –
a backend project Java-based framework,
and a frontend project employing the JS web framework

• Both have large and active community and offer good documentation

• Since the end of our process in early 2018,
we successfully develop several extensions (backend and frontend)

Proof-of-Concept Implementation

Developed Extensions

25
[31]

26

27

Restructured Architecture and
New Process of ExplorViz

28

How can we improve the first iteration?

Extensibility
&

Integrability

Code Quality
&

Comprehensibility

Software Configuration
&

Delivery

29

Extensibility & Integrability: New Features

• Still a monolithic application with high coupling of modules
 Decoupling into separated microservices
 Data-Exchange: API-Gateway, based on

• Inter-service communication is now realized with

• Frontend extensions are based on Ember’s addon mechanism

• The backend used the package scanning feature of Jersey to include
extensions

30

• Improvements for code quality and accessibility, showed a perceptible
impact on contributor’s work

• Recurring students approved the easier access to ExplorViz and especially
the obligatory exchange format

Code Quality & Comprehensibility

Still lacked a common code style in terms of conventions
and best practices
 Compulsory rule sets for Checkstyle, PMD, and Spotbugs
 ESLint with an Ember community-driven rule set
 All tools are integrated into our CI pipeline

Frontend requires a different approach
• Not possible to install an Ember addon inside of a deployed

Ember application
• Currently developing a build service for that ships ready-to-use,

pre-built configurations
• Alternatively these will be available as Docker images

31

Still need to provide backend configurations for different use cases
• First approach for an integration of extensions,

but delivery was cumbersome
• We provide a jar file for each service with an embedded web server
• We offer ready-to-use Docker images for each part of our software

Software Configuration & Delivery

32

Message Broker

Monitored Server

Application

Discovery-Agent

Client

Records

Analysis

TracesRecords Traces Landscapes

Discovery

Processes Data

Backend-
Extension

HTTP

HTTP

Landscape Authentication &
Authorization

Processes

Frontend

Visualization

Frontend-Extension

API-Gateway / Reverse Proxy

Conclusion and Future Work

33

Modularized and migrated our architecture
from a Monolith to Microservices

Ongoing development
• Further refactoring and modularization
• Migrating missing features
• Adding new features

Significant simplification on the development of features

https://www.explorviz.net
https://github.com/ExplorViz

References

34

[1] C. Goble, “Better Software, Better Research,” IEEE Internet Computing, vol. 18, no. 5, pp. 4–8, Sep. 2014.

[2] A. Johanson and W. Hasselbring, “Software engineering for computational science: Past, present, future,”
Computing in Science & Engineering, vol. 20, no. 2, pp. 90–109, Mar. 2018.

[3] W. Hasselbring and G. Steinacker, “Microservice Architectures for Scalability, Agility and Reliability in ECommerce,”
in Proceedings of the IEEE International Conference on Software Architecture Workshops (ICSAW), Apr. 2017.

[5] F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape and application visualization for system
comprehension with ExplorViz,” Information and Software Technology, vol. 87, pp. 259–277, Jul. 2017.

[6] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz: Visual runtime behavior analysis of enterprise
application landscapes,” in 23rd European Conference on Information Systems (ECIS 2015 Completed
Research Papers), AIS Electronic Library, May 2015, pp. 1–13.

[18] C. Zirkelbach, A. Krause, and W. Hasselbring, “On the Modernization of ExplorViz towards a Microservice Architecture,”
in Combined Proceedings of the Workshops of the German Software Engineering Conference 2018,
vol. Online Proceedings for Scientific Conferences and Workshops, Ulm, Germany: CEUR Workshop Proceedings,
Feb. 2018.

[31] A. Krause, C. Zirkelbach, and W. Hasselbring, “Simplifying Software System Monitoring through Application
Discovery with ExplorViz,” in Proceedings of the Symposium on Software Performance 2018:
Joint Developer and Community Meeting of Descartes/Kieker/Palladio, Nov. 2018.

Image References

35

• Share Icon made by Hadrien
• Correct, Cancel, Right arrow Icon made by Lucy G
• Right arrow Icon made by Lyolya
• Circular outlined Button Icon made by Catalin Fertu
• Planning Icon made by Prosymbols
• Puzzle Icon made by DinosoftLabs
• Coliseum Icon made by zlatko-najdenovski
• Network Icon made by itim2101
• Jigsaw, Purpose Icon made by geptatah
• Technical Support Icon made by srip
• Settings Icon made by Gregor Cresnar
• OSS Icon made by Pixel perfect
• Blueprint, Puzzle, Evolution Icon made by Freepik
• Problem, Merging Arrow, Medical shape, Data, Binary,

Application, API, Demand, HR, Projector, Product Icon made by Eucalyp

All icons are from www.flaticon.com

	Modularization of Research Software for Collaborative Open Source Development
	Introduction
	Foliennummer 3
	Visualization (Landscape-Level)
	Visualization (Application-Level)
	Selected Features
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Problem Statement
	Introduced Problems
	Extensibility & Integrability: Architecture
	Extensibility & Integrability: New Features
	Code Quality & Comprehensibility
	Software Configuration & Delivery
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Modularization Process and Architecture of ExplorViz�
	How did we address the problems?
	Foliennummer 22
	Foliennummer 23
	Proof-of-Concept Implementation
	Developed Extensions
	Foliennummer 26
	Foliennummer 27
	How can we improve the first iteration?
	Foliennummer 29
	Code Quality & Comprehensibility
	Software Configuration & Delivery
	Foliennummer 32
	Conclusion and Future Work
	References
	Image References

