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Abstract Global biogeochemical ocean models rely on many parameters, which govern the interaction
between individual components, and their response to the physical environment. They are often
assessed/calibrated against quasi-synoptic data sets of dissolved inorganic tracers. However, a good fit to
one observation might not necessarily imply a good match to another. We investigate whether two different
metrics—the root-mean-square error to nutrients and oxygen and a metric measuring the overlap between
simulated and observed oxygen minimum zones (OMZs)—help to constrain a global biogeochemical
model in different aspects of performance. Three global model optimizations are carried out. Two
single-objective optimizations target the root-mean-square metric and a sum of both metrics, respectively.
We then present and explore multiobjective optimization, which results in a set of compromise solutions.
Our results suggest that optimal parameters for denitrification and nitrogen fixation differ when applying
different metrics. Optimization against observed OMZs leads to parameters that enhance fixed nitrogen
cycling; this causes too low nitrate concentrations and a too high global pelagic denitrification rate.
Optimization against nutrient and oxygen concentrations leads to different parameters and a lower global
fixed nitrogen turnover; this results in a worse fit to OMZs. Multiobjective optimization resolves this
antagonistic effect and provides an ensemble of parameter sets, which help to address different research
questions. We finally discuss how systematic model calibration can help to improve models used for
projecting climate change and its effect on fisheries and climate gas emissions.

1. Introduction

Global biogeochemical ocean models are not only applied to estimate the ocean biota's impact on
climate-relevant gases such as atmospheric carbon dioxide and nitrous oxide (Ciais et al., 2013) but also to
assess its impact on other, societal relevant processes. For example, they are used to investigate the influ-
ence of a changing climate on the potential expansion of oxygen minimum zones (OMZs, e.g., Cocco et al.,
2013; Stramma et al., 2012), which might be of consequence for marine fisheries (Stramma et al., 2012), on
ocean acidification, which affects the spatial distribution of coral reefs and other calcaerous organisms (e.g.,
Bopp et al., 2013), and on biogeochemical interactions and regime shifts (e.g., Laufkétter et al., 2013, 2016;
Segschneider & Bendtsen, 2013), which, in turn, might affect higher trophic levels or the storage of carbon
in the deep ocean. Thus, any biogeochemical model has to represent a plethora of different processes and
organisms in an appropriate way. This includes not only a “correct” present mean state but also the right
sensitivities to transient forcing.

However, a correct representation of one variable (e.g., global nutrient distribution) does not necessarily
imply that a model correctly represents all inherent processes and tracers. For example, a model that cor-
rectly represents oxygen in equatorial upwelling regions might do so at the cost of nitrate concentrations
(Moore & Doney, 2007) or benthic exchange processes (Kriest & Oschlies, 2013). So far, optimization of
global biogeochemical ocean models against observed nutrient and oxygen concentrations, which were
combined into one single metric, has shown that this single-objective optimization can help to improve
simulated global fluxes such as primary and export production, which are of relevance for the simulation
of air-sea gas exchange (Kriest, 2017; Kriest et al., 2017). However, to date it has not been shown that this
also holds for other diagnostics, such as ocean oxygen content or the volume and location of OMZs, which
might be anticorrelated to nutrient concentrations (as indicated by the experiments carried out by; Moore
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& Doney, 2007). Further, combining different tracers and diagnostics into one single metric usually requires
some form of normalization and, possibly, weighting, all of which can strongly influence the outcome of
optimization (Evans, 2003).

Given these complications, and the ongoing application of global models to investigate various processes of
societal relevance, it might be worthwhile to develop a tool that provides model solutions calibrated against
different objectives (model-data misfit measures). From these ensembles of model solutions we can then
pick a posteriori those solutions (or parameterizations), which are suitable to be applied to a specific research
question or scenario.

One such tool is multiobjective optimization (MO). Rather than seeking a single compromise parameter
set by optimizing a weighted sum of misfit measures, MO yields a collection of compromise solutions with
respect to the different misfit measures of interest. Ideally, the collection of compromise solutions contains
(nearly) optimal solutions for each single objective as “extremes” and further well-distributed compromises
in between. The latter solutions are of special interest if we face diverging model calibration results with
respect to different types of real-world observations. For example, dealing with the most common case of
two objectives, it is often observed that compromise solutions obtained by MO follow the so-called Pareto
principle, meaning that we only need to sacrifice 20% of the best value with respect to one objective in order
to reach 80% of the other objectives’ optimum.

MO approaches gained most attention in economy and operations research but have also been applied
for geoscientific problems, mainly and long-established in the field of hydrology (see, e.g., Efstratiadis &
Koutsoyiannis, 2010; Mostafaie et al., 2018; Yapo et al., 1998). Recent contributions also deal with emula-
tors/surrogates of earth system models in order to apply MO in the face of different prediction tasks (see,
e.g., Langenbrunner & Neelin, 2017a, 2017b; Price et al., 2009).

Here, we parallelize and apply a state-of-the art estimation of distribution algorithm for MO (Igel et al., 2007)
in order to calculate the required set of good compromise parameter sets at once. While exemplarily demon-
strating the approach with our OMZ test case, MO can be applied to any situation where single-objective
model calibrations tend to be in conflict, either with respect to different observation types or with respect to
observations from different sites. MO will help to obtain more universally reliable model parameters, espe-
cially when cross validation of single-objective parameter optimization results fails due to multiple sources
of uncertainty. More background about the issues that we aim to facilitate with MO, for example, simulta-
neous data assimilation with respect to different ocean sites or cross validation of model calibration results,
can be found, for example, in sections 6.1 and 7.2 of the overview article by Schartau et al. (2017).

We first investigate if calibration against concentrations of nutrient and oxygen of a coupled global biogeo-
chemical model (i.e., the model's root-mean-square error, RMSE) improves the model's fit to OMZs, that is,
whether the two objectives—{it to global nutrients and oxygen and fit to OMZs—are correlated. This ini-
tial analysis examines a posteriori the optimization trajectory, of a calibration presented in Kriest (2017).
We then present and investigate an optimization where the fit to OMZs is added to the fit to nutrient and
oxygen concentrations. In case of uncorrelated objectives, this will result in a compromise solution of the
optimization. We contrast these two solutions with those of a third optimization that applies MO and thus
targets both objectives (RMSE and OMZ) simultaneously, yet independently.

The paper is structured as follows: After a brief presentation of the biogeochemical model, its coupling to
the off-line circulation framework and to the optimization framework, we introduce the MO applied here
and describe the metric for OMZs (our second objective), which is based on the metric developed by Cabre
et al. (2015). We then present and discuss the results of the three different optimizations against different
misfit functions. In our analysis we focus on the correlation between both objectives and on their ability
to constrain the model parameters. We finally discuss the impact of optimization and parameter values
on global biogeochemical model fluxes (as an independent estimate of model fit), as well as its relation to
different criteria for OMZs, which might be relevant for higher trophic levels such as fish.

2. Models, Experiments, and Optimizations

2.1. Circulation and Physical Transport

All model simulations apply the transport matrix (TM) method (github.com/samarkhatiwala/tmm;
Khatiwala, 2007) for tracer transport, with monthly mean TMs, wind, temperature, and salinity (for air-sea
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gas exchange) derived from a 2.8° global configuration of the Massachusetts Institute of Technology Gen-
eral Circulation Model (MITgcm), with 15 levels in the vertical, as described in Marshall et al. (1997) and
Dutkiewicz et al. (2005). The circulation model was forced with climatological annual cycles of wind, heat,
and freshwater fluxes and subject to a weak restoring of surface temperature and salinity to observations.
Its configuration is similar to that applied in the Ocean Carbon-Cycle Model Intercomparison Project (Orr
et al., 2000), which has been assessed against observations of temperature, salinity, and mixed layer depth
(Doney et al., 2004), CFCs (Dutay et al., 2002; Matsumoto et al., 2004), and radiocarbon (Graven et al., 2012;
Matsumoto et al., 2004). Overall, its performance is comparable to other global models.

Using this efficient off-line approach for describing the transport of the tracers of the biogeochemical model
(see below), a time step length of (1/2) day for tracer transport and (1/16) day for biogeochemical interac-
tions, simulation of 3,000 years requires about 0.5-1.5 hr on four nodes (24 core Intel Xeon Ivybridge) at a
High Performance Computing Centre (www.hlrn.de). After 3,000 years most tracers have approached steady
state (see also; Kriest & Oschlies, 2015, for long time trends of MOPS simulated in a different circulation),
and the transient of the misfit function becomes very small. The last year is used for model analysis and
evaluation of the misfit function.

2.2. Biogeochemical Model Structure

The biogeochemical model applied in this study is of intermediate complexity and represents the pelagic
cycle of phosphorus, nitrogen, and oxygen with seven components, which are coupled via constant sto-
ichiometric ratios (Model of Oceanic Pelagic Stoichiometry, MOPS; Kriest & Oschlies, 2015). In MOPS
phosphate, phytoplankton, zooplankton, dissolved organic phosphorus, and detritus are calculated in units
of millimoles of phosphorus per cubic meter. All organic components are characterized by a constant N:P
stoichiometry of d = 16. Oxygen is coupled to the P cycle with a constant stoichiometry given by R_,.p.
Aerobic remineralization of organic matter follows a saturation curve, with half-saturation constant K,.
It ceases when oxygen declines, depending on K,; at the same time, denitrification takes over, as long as
nitrate is available above a defined threshold, DIN,;, . Like the oxic process, suboxic remineralization follows
a saturation curve for oxidant nitrate, with half-saturation constant Kp,;,. MOPS does not explicitly resolve
the different oxidation states of inorganic nitrogen (nitrite, N,O, and ammonium) but assumes immediate
coupling of the different processes involved in nitrate reduction, the end-product being dinitrogen (see also;
Kriest & Oschlies, 2015; Paulmier et al., 2009). On long time scales (Kriest & Oschlies, 2015), loss of fixed
nitrogen is balanced by a simple parameterization of nitrogen fixation by cyanobacteria, which relaxes the
surface layer nitrate-to-phosphate ratio to d with a time constant, p . .

Detritus sinks with a vertically increasing sinking speed: w = az. Assuming a constant degradation rate
r, in equilibrium this would result in a particle flux curve given by F(z) « z~?, with b = r/a. For bet-
ter comparison with values of b derived from observations (e.g., Buesseler et al., 2007; Martin et al., 1987;
Van Mooy et al., 2002) a is here expressed in terms of b (assuming constant, nominal r = 0.05 day!). A frac-
tion of detritus deposited at the seafloor (at the bottom of the deepest vertical box) is buried instantaneously
in some hypothetical sediment. The fraction buried depends on the deposition rate onto the sediment. Non-
buried detritus is resuspended into the last box of the water column, where it is treated as regular detritus.
The phosphorus budget is closed on an annual time scale through resupply via river runoff. More details
about the biogeochemical model and parameters and their effects on model behaviour can be found in Kriest
and Oschlies (2013, 2015).

2.3. Parameter Calibrations

Kriest and Oschlies (2015) presented a “hand-tuned,” a priori setup of MOPS, which we refer to as MOPS*
(see also Table 1). The first systematic calibration of this model was presented by Kriest et al. (2017), who
optimized six parameters against the RMSE (equation (1)) to observed annual mean phosphate, nitrate, and
oxygen. Four of the parameters were related to the dynamic phosphorus turnover by plankton in the surface
layer. The remaining two parameters were related to particle flux (parameter b) and the stoichiometric oxy-
gen demand of remineralization (R_g,.p). The six optimal parameters led to a better agreement of simulated
biogeochemical fluxes to observations of primary and export production, zooplankton grazing, particle flux
at 2,000 m, and benthic burial (Kriest et al., 2017).

In a follow-up calibration (Kriest, 2017) kept the four optimal parameters related to phytoplankton and
zooplankton dynamics of the calibration by Kriest et al. (2017) constant. Instead, four parameters related
to remineralization and nitrogen fixation were optimized against the same data set and misfit, together
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Table 1

Experimental Design and Optimization Results

Experiment: MOPS! MOPS° MOPS°* MOPS™°|RMSE MOPS™°|0MZ

Reference: (Kriest & Oschlies, 2015) (Kriest, 2017) This study This study This study

Calibration: — Single-objective Single-objective Multiobjective

Cost function: — Jruse (equation (1)) Jrmse + Jomz (equation (4)) Jruse (equation (1)) Jomz (equation (3))
Parameters

S) o Re(Q) 0" Re(Q) o' Re(Q) e Ro(Q)

b 0.86 1.39 [1.33-1.45] 1.39 [1.32-1.48] 1.40 [1.34-1.45] 1.38 [1.21-1.46]

R_o2p 170 172 [166-178] 177 [170-187] 176 [166-183] 185 [175-200]

Prae 2.00 1.19 [1.08-1.84] 1.99 [1.68-2.64] 1.98 [1.47-3.00] 2.99 [1.88-3.00]

DIN, i, 4.00 15.80 [12.18-16.00]  7.59 [6.95-16.00] 1032 [3.93-16.00] 340  [1.78-14.16]

Kpin 8.00 31.97 [17.18-32.00]  31.61 [15.80-32.00] 2597  [12.15-32.00] 17.58  [5.57-28.51]

Ko 2.00 1.00 [1.00-8.48] 1.00 [1.00-12.10] 1.00 [1.00-12.87] 1.00 [1.00-5.89]
Optimization performance

M(Q) — 705 1,051 746 969

AXM 1 1,190 1,530 3,400

T 0.529 0.439 1.130 —

JEMSE 0.529 0.439 0.444 0.439 0.474

JgMZ 0.791 0.704 0.686 0.701 0.673

Note. Minimum misfit function J*, optimal parameters ©", and their uncertainties Rg. To determine parameter uncertainty, we selected a group Q of individuals
defined by a misfit J; : J;/J° — 1 < 0.01. For each parameter the first column gives the optimal parameter ©", and the second column presents the parameter
range in Q. For the single-objective optimizations we present the respective optimal misfit J* and the value for equations (1) and (3) for this individual. For
MOPS™® we present the values for the two outmost individuals of the Pareto front, that is, those best with respect to either misfit function and the corresponding
misfit of the other objective. All analyses are restricted to individuals whose parameters lie within the prescribed boundaries. Values of unoptimized MOPS" are
also shown for comparison. The smallest misfit values (for the respective metrics) that we have found in all our experiments are shown in bold. MOPS = Model
of Oceanic Pelagic Stoichiometry; OMZ = oxygen minimum zone; RMSE = root-mean-square error.

with the stoichiometric ratio for oxygen demand of remineralization, R_y,, and b. In the following, this
latter, single-objective optimization against nutrients and oxygen carried out by Kriest (2017) is referred to
as MOPS° (see also Table 1). The selection of parameters optimized in MOPS® was motivated by the large
uncertainty regarding extent and expansion of OMZs in models (Cabre et al., 2015; Cocco et al., 2013) and
by the fact that very little knowledge exists about parameters (or parameterizations) that might affect nitrate
and oxygen in subsurface layers. Therefore, upper and lower boundaries of parameters to be optimized were
set to a rather wide range (see Kriest, 2017).

Given the large number of parameters required even by simple models such as MOPS, it would be appealing
to calibrate many more, if not all, parameters of the biogeochemical model. However, because of possible
correlations between the parameters, it is very likely that not all of them can be determined; this depends on
the cost function applied and the ability of available data to constrain the parameters (Matear & Holloway,
1995; Ward et al., 2010). Especially noninformative (“flat”) cost functions, or those with a rough topogra-
phy, might cause the optimization to become trapped in local minima or result in biologically meaningless
parameters (e.g., Kriest et al., 2017; Schartau et al., 2001; Ward et al., 2010). To avoid these complications,
and because our cost functions do not include direct information about planktonic interactions, in this study
we therefore restrict optimizations again to the six parameters calibrated by Kriest (2017).

2.4. Objectives (Data Components of the Metric)

2.4.1. Objective 1: RMSE to Nutrients and Oxygen

As in Kriest et al. (2017) the standard misfit to observations J is defined as the RMSE between simulated
and observed annual mean phosphate, nitrate, and oxygen concentrations of spatially interpolated data pro-
vided in Garcia et al. (2006b) and Garcia et al. (2006a), mapped onto the three-dimensional model geometry.
Although regridding the observations onto the coarser model geometry removes some of the variability,
this method is computationally more efficient in an optimization framework. Also, a sensitivity study with
a similar coupled model showed that accounting for the variance inherent in the observational data and
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arising from regridding did not have a large influence on the misfit function (Kriest et al., 2010). In our
model experiments we did not carry out any weighting for different spatial densities of observations.

Deviations between model and observations are weighted by the volume of each individual grid box, V;,
expressed as fraction of total (model) ocean volume, V. The resulting sum of weighted deviations is then
normalized by the volume-weighted, global mean concentration of the respective observed tracer:

3 . 3 1 N 1/1
Jrumse = Z](J) = Z = Z(mi’j - ()14’/,)27T (1)

j=1 j=19; i=1

Jj = 1,2,3 indicates the tracer type and i = 1, ..., N are the model locations for N = 52,749 model grid
boxes. 0; is the global average observed concentration of the respective tracer. m;; and o;; are model and
observations, respectively. By weighting each individual misfit with volume, Jyygr serves more as a long
time scale geochemical estimator, in contrast to a misfit function that, for example, focuses on (rather fast)
turnover in the surface layer, or resolves the seasonal cycle.

2.4.2. Objective 2: Fit to OMZs

The model's fit to observed OMZs, C, is calculated following Cabre et al. (2015): Let V(c) be the fractional
volume of a model box i defined by an oxygen concentration of O, < c¢ and V(c) the observed volume.
Then, with N being the total number of all model grid boxes, V™(c) = Zfi L Vi(e) and V°(c) = Zfi V(o)
are the global volume of suboxic water for model and observations, respectively.

Further, let V’(c) be the fractional volume of a box where either model or observation have an oxygen
concentration of O, < c. Then V¥(c) = Zfi 1 Viu(c) is the global volume of water where either model or
observation is suboxic with respect to the given criterion c (i.e., the union of all suboxic water masses). Let
further Vi”(c) be the fractional volume of a box where both model and observation have an oxygen concen-
tration of O, < c¢. Then V"(c) = ZL Vi“ (c) is the global volume of water where both model and observation
are suboxic (the intersection volume). The degree of overlap C is then given by the union divided by the
intersection:

_ Ve _ V()

T VY Vm(e)+ Vo(e) — VN(c)

©)

Obviously, this metric varies between 0 (model and observations do not overlap at all or V"(c) = 0) and 1
(perfect match; V"(c) = VV(c)). The advantage of the metric is that even if the total simulated OMZ volume
matches perfectly that of observations (V™ (c) = V°(c)), butif simulated OMZs are located in the wrong place
(think of all simulated OMZ waters being around Antarctica), C will be 0. Likewise, if the entire simulated
ocean was suboxic according to criterion ¢ (V™(c) = 1), the intersection would equal the observed volume
(C = V(c) = V°(c)) and thus be very small (unless we choose a rather large criterion c).

For evaluation of the cost function for optimization we then define
Jomz =1-0C, (3)

which varies between 0 (optimal fit) and 1 (no overlap between observed and simulated OMZs). The new
term J°MZ is of the same order of magnitude as Jpygy: For example, in the reference model MOPS' Jyysp =
0.53 and Jgy;, = 0.79 for an OMZ criterion of ¢ = 50 mmol/m? (see Table 1).

2.5. Experimental Setup

In addition to the uncalibrated model simulation MOPS" (Kriest & Oschlies, 2015), and the single-objective
calibration MOPS® presented by (see also section 2.2 ; Kriest, 2017), we here present two new optimizations,
which account in different ways to the model's fit to OMZs (see also Table 1).

Optimization MOPS®? is based on a single metric that is the sum of two components of misfit, namely, the
RMSE to nutrients and oxygen (equation (1)) and the model's match to observed OMZ (equation (3)):

J =Jomz + Jrmse Q)

Because Jyygp Varies typically between ~0.4 and 1.7 (see above and; Kriest, 2017) and J,,, between 0 and
1, the two components are of equal order of magnitude. This new misfit function J thus pursues a single
compromise solution.
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A second experiment MOPS™ treats the two objectives Jyy, and Jyyge Separately by applying MO, as
described in detail in section 2.7 below. In short, this new approach evaluates a trade-off between the two
different components by a so-called Pareto front, which includes parameter sets that fit either objective to a
varying degree. Among those sets are also individuals that form a compromise (an equally weighted solution
with regard to both objectives), similar to the best solution of optimization MOPS®*.

2.6. Single-Objective Optimization

In order to optimize a single-objective function f : A — R, A C R", we use the (u/y,,, 4)-CMA-ES (Hansen,
2006, 2016) and our parallel implementation described in Kriest et al. (2017). Note, that in our case, n is
the number of free model parameters, A defines the reliable (feasible) parameter domain, and the objective
function f is composed of a model simulation and the associated misfit metric, that is, Jyysg, Jomz, OF J-

In a nutshell, the (u/u,,, 41)-CMA-ES works as follows: A population of A candidate solutions (= 4 different
sets of n parameters) is sampled from a multidimensional normal distribution, N'(x, C), defined by a mean
vector X and a matrix of covariances C (similar to the definition of a univariate normal distribution N (%, o)
by its mean X and its standard deviation o). Following A model simulations with these parameters, and
evaluation of A different misfit values, a new normal distribution is empirically reestimated from the better
half of y = % samples, and the new probability distribution is used for an elaborated and smooth update
of the former distribution, which in turn is sampled in the next iteration. The procedure is supposed to
efficiently move the normal distribution toward good regions of the searchspace and to converge to a single
solution x, that is, to N'(x*,0), where, ideally, x" is a (local) optimum of the given misfit function J in the
n-dimensional parameter space.

Using single-objective optimization, we can address different targets by minimizing a (weighted sum of)
certain model-data misfit(s). This approach is realized by minimizing the misfit metric J, introduced above.
Optionally, we might impose constraints on certain model-data misfits. However, it appears difficult to prop-
erly join different model-data misfits into a single-objective function or to impose a proper bound on the
model-data misfit to some set of observations while minimizing the misfit to another set of observations.
Decisions about weights applied to different data sets, or a particular form of misfit function, may be very
influential for the optimal parameter choice (Evans, 2003).

2.7. MO

A single-objective optimization converges to a single parameter set, only. Facing diverging model calibration
results with respect to different target observations, we expect enhanced model assessment by calculating a
couple of well-distributed compromise parametrizations at once. That task is what MO methods are desig-
nated for: MO provides a collection of parameter sets such that the user obtains a nearly optimal parameter
set with respect to each target but also has the option to choose a best compromise parametrization in
his/her opinion. Furthermore, the obtained collection of parameter sets might allow more insights about
how specific model skills are influenced by the values of specific parameters.

Multiple, say, k, targets are addressed by corresponding objective functions f;, ..., f;. In this situation a solu-
tion (parameter set) x € R” is said to dominate another y € R" if fi(x) < fi(y) foralli € {1, ...,k} and
]}-(x) < ]j-(y) for somej € {1, ...,k}. We write x < y to express that x dominates y. On the contrary, two
solutions x # y are said to be incomparable if there are i # jwith fi(x) < f,() but f;(x) > f(y). Ideally,
provided a set X C R" of allowed solutions, we would like to know the subset of all solutions that are not
dominated by other ones, that is, the entire set of “best compromises”

ndom(X) := {x € X|There is no y€X with y<x}.

The elements of the set ndom(X) are called Pareto optimal and the image of ndom(X) in the k-dimensional
object space R* is called Pareto frontier. Figure 1 illustrates the situation for k = 2 objectives (the case we
deal with in this paper). The complement of ndom(X) is the set dom(X) = X \ ndom(X) of all dominated
elements in X. Clearly, like it is hard to find global optima subject to complex single-objective functions, it
is even harder to find some (or all) Pareto optimal solutions in the multiobjective case. Therefore, the aim is
to find a good Pareto approximate set, that is, a set of solutions, which are (in objective space)

1. incomparable,
2. close to the Pareto frontier, and
3. well distributed.
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Second objective, fo

{(H0) e e X}

—— Pareto front

e Pareto-appr. set

Figure 1. A set X C R" of feasible parameters, mapped to the objective
space (given k = 2 objectives f7, f, : X — R), its Pareto front (the image of

First objective, f;

ndom(X)) and the image of a Pareto approximate set.
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An example that satisfies all desired properties is given as the blue dots
in Figure 1. Population-based algorithms like evolutionary algorithms
(“EA”; Deb, 2009) and estimation of distribution algorithms (“EDA”;
Hauschild & Pelikan, 2011) have shown to be quite suitable for this aim.

A popular approach to accomplish items 1-3 is to order solutions by a
hierarchical ranking criterion combining the so-called level of nondom-
inance criterion (mainly addressing items 1 and 2) with a secondary
ranking criterion like the crowding distance (Deb et al., 2002) or the con-
tributing hyper volume (Emmerich et al., 2005; mainly addressing item 3).
We will apply a multiobjective variant of the CMA-ES, which uses the
combined level of nondominance and contributing hyper volume criteria
for ranking. We introduce the ranking procedures in Appendices Al and
A2 and outline the multiobjective CMA-ES in Appendix A3.

Our parallel implementation of the MO-CMA-ES is available on GitHub
(https://github.com/vsauerland/calibrate20). A permanent version of
the code we used for the experiments of this paper is archived in a public
Zenodo repository (Sauerland, 2018). For compilation, usage, and further
notes, we refer to the README file contained in the repository.

3. Results

The optimizations converge after M = 119 (MOPS°) to M = 170
(MOPS™) generations (Table 1). Therefore, MO is computationally more

MOPS® MOPSO*

Figure 2. Extent of region with O, < 50 mmol/m? at 400 m of observations (blue hatched area) and model (red), for model simulation MOPSY, MOPS?,
MOPS®*, and two individuals of MOPS™®, with best fit to RMSE (lower mid panel) and best fit to OMZ (lower right panel). The lower left panel shows the
OMZ area in the eastern tropical Pacific (east of 140°W, between 20°S and 20°S) of observations (circles), MOPS! (black lines), MOPS° (red lines), MOPS®*
(blue lines), and MOPS™°. For MOPS™© the best individual with respect to Jyysg is shown with green lines and the best with respect to Joyz with light blue
lines. MOPS = Model of Oceanic Pelagic Stoichiometry; OMZ = oxygen minimum zone; RMSE = root-mean-square error.
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Figure 3. Projection of parameter values (normalized, color scale) onto model misfits, in the vicinity of the optimal solution of optimization MOPS°. Parameter
values have been scaled by (6 — 6.)/(0,, — 6)), where 6 is the parameter value, 6, and 6, are upper and lower boundary constraints, and 6. = (6, + 6;)/2is the
center of the allowed interval. The first 50 generations are plotted as small squares, and the remaining parameters as circles. Lined circles denote the
parameters of the last generation. Horizontal and vertical lines denote the minimum value of each objective +1%. OMZ = oxygen minimum zone;

RMSE = root-mean-square error.

expensive than single-objective optimization, because of a slower convergence and a larger population size
of A = 20 (MOPS™®) instead of A = 10 (MOPS® and MOPS°*).

The generally rather slow rate of convergence is partly due to the type of the misfit function, which is quite
insensitive to some parameters. For example, a large number of individuals of MOPS° and MOPS°* almost
equally good (within 1% of the optimal fit; see Table 1, M(Q2)) with respect to the misfit function. Some param-
eters relevant for OMZs (such as Ky and DIN, ;) are not well constrained by equation (1), as indicated by
their large variation in the vicinity of the optimum. This is because OMZs occupy only a small fraction of
the global ocean volume, but equation (1) is influenced strongly by the deep waters of the global ocean.

However, adding the fit to OMZs as in MOPS°* does not narrow the uncertainty range of the parameters
but results in a wider range of “good” parameters: While for MOPS° almost 60% of the parameters result in
a misfit (with respect to equation (1)) that is almost as good as the optimal model, the fraction increases to
almost 70% for MOPS°*, which optimizes against equation (4), the combined fit to both objectives. In con-
trast, MOPS™® only 22% and 29% of all individual model simulations are in the vicinity of the respective
optimal fit; this lower percentage is due partly to the large number of model simulations (4 x M = 3,400).
Another reason is that single-objective optimization converges to a single solution, while MO explores the
parameter space along the Pareto front. Thus, the search for a simultaneous good fit to both objectives deal-
ing with 20 compromise solutions results in a quite high additional computational demand. In the following
sections we will see that this additional computational burden is justified in terms of model performance
and flexibility.
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Table 2

Parameters and Cost Functions for Model Simulations With Minimum Jgyg and Jopz for
the Entire Optimization Trajectory of the Three Optimizations MOPS® MOPS°* and MOPS™°

Experiment MOPS° MOPS°* MOPS™°
TRNSE Tz JRMSE I TRMSE Tz
b 1.39 1.19 141 1.26 1.40 1.34
R_opp 172 168 171 182 173 187
HNFix 1.20 3.00 1.76 1.94 1.56 3.00
DIN,i, 158 7.1 10.7 1.0 132 23
Kpix 32,0 20.9 27.0 32,0 25.8 15.5
Ko, 1.00 3.18 1.00 1.36 1.00 1.00
TRMSE 0.439 0.502 0.440 0.487 0.439 0.474
Jomz 0.704 0.681 0.704 0.679 0.701 0.673

Note. All analyses are restricted to individuals whose parameters lie within the prescribed
boundaries.

3.1. Does Calibration Only against Nutrient and Oxygen Concentrations Improve OMZs?
(MOPS®)

In a perfect model an improvement in one objective would also improve the other, and therefore, a good fit
to observed nutrients and oxygen would coincide with a good match to OMZs. As coupled models contain
many simplifications on the physical and biological side, this is likely not the case. Instead, an improvement
in one metric might result in deterioration of a second one. To investigate the potential trade-off between
Jonmz and Jryse, We here first analyze the output of all 1,190 individuals (simulations to near steady state) of
the optimization by Kriest (2017), a single-objective optimization only against Jgg, With respect to their
fit to OMZs.

The final, best (with respect to Jpysg) solution of MOPS® leads to a slight extension of the OMZ at 400-m
depth (Figure 2) and improves the fit to OMZs (C of equation (2)) by about 50%, relative to the uncalibrated
model MOPS', resulting in Joy; = 0.704 (Table 1). However, this solution does not perform best with
respect to OMZs (Figure 3). Instead, the best fit to observed OMZs of all 1,190 model simulations of the
optimization trajectory is Joy,; = 0.681 (Table 2). This solution is achieved with different parameters than
for optimal Jyygs, Namely, a lower affinity of aerobic remineralization to oxygen (K,), a higher affinity of
denitrification to nitrate (Kpy), and a lower threshold for the onset of denitrification (Table 2).

Koz Kom DINpmin HNFIX b
(mmol 0, m~3) (mmol N m~3) (mmol N m~3) (nmol N L~' g~ 1)
TEETEE] EF 3.00 g T
14.0 1.60 -
10.0 A 1.20 _Jﬁ‘ :lz
801 0.80
2.0 A
L. 040 4~~~
LSS LSS
¥ & ¥ &
AU AR

Figure 4. Parameter ranges of all individuals of MOPS®, MOPS®*, and MOPS™ whose misfit is not worse that 1% of the best individual with respect to Jyysg
(hatched black bars) and Joy7 (red bars). Horizontal thick lines denote the final misfit J of the optimization; for MOPS™® these are those individuals of the last
generation that are optimal with respect to Jpysg (black) and Jgyz (red). For MOPS®™ the open rectangle displays the range of parameters with respect the
combined misfit, J. Only those parameters inside the prescribed boundaries (see Kriest, 2017, here indicated by horizontal dashed lines) are considered in the
analysis. MOPS = Model of Oceanic Pelagic Stoichiometry.
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Figure 5. As Figure 3 but for optimization MOPS®+.

Together with a maximum nitrogen fixation rate pyg, that is more than twice as high as for best Jpysp,
this indicates an enhanced fixed nitrogen turnover. Also, a lower value for b indicates that a longer particle
flux length scale is of advantage to achieve a good match to OMZs. The improvement with respect to OMZs
comes at the cost of a larger misfit to dissolved tracer concentrations, resulting in Jyyge = 0.502. Thus,
the a posteriori analysis of the simulations from single-objective optimization clearly illustrates a trade-off
between these two diagnostics, and the need for different parameter sets, that are required for a good match
to either tracer concentrations or OMZs.

Yet a quite wide range of parameters accommodates a good fit to observed OMZs. This holds particularly for
the affinity of remineralization to oxygen (K,), the threshold for the onset of denitrification (DIN,;,), and
maximum nitrogen fixation rate (uyg;y), as illustrated in Figure 4. For the latter parameter, values optimal
with respect to Jq), (red areas in Figure 4) diverge strongly from those for Jyygr (black hatched areas in
Figure 4). Thus, even in the presence of a large indeterminacy of parameters relevant for OMZs, a good
representation of these areas is likely associated with a high fixed nitrogen turnover.

Unfortunately, the area of the parameter space that might be beneficial for J,,, is only sparsely explored
by the optimization algorithm, due to the applied misfit function. This is observed by the colors in Figure 3,
which represent normalized parameter values in terms of relative deviations from the center of the corre-
sponding boundary constraints. This fact, the above-mentioned trade-off between the two objectives, and
the different optimal parameter sets indicate that we might need to explicitly include the fit to the OMZs in
the cost function of the optimization.

3.2. Combining Two Objectives Into One Single Metric (MOPS°*)

Optimization against equation (4) (J = Jrusg+Jomz) results in an extension of the OMZ in the eastern
equatorial Pacific at 400-m depth but at the cost on an overestimate of OMZ extent in the Indian Ocean
(Figure 2). The parameter space for both Jpysp and Jg),; is now exhaustively explored in the vicinity of the

SAUERLAND ET AL.

1294



A

fa\ 4% ° .
100 Journal of Advances in Modeling Earth Systems 10.1029/2018MS001510
R_o2p Koin
0.720 ! ! ! 0.720 0.720
[ [ ] 0.5
I
| . . | | 0.4
- . 0.3
(] 0.2
0.700 - 0.700 | 0.700 - o
g w .I .‘ ;
S ] WL N S [
. -.'l n ‘.. " . " . - - -0.1
L) L. -0.2
= = -0.3
0.680 i el 0.680 0.680 -
. | -0.4
%4 s -0.5
T T T T T T T T T T T T T
0.440 0.460 0.480 0.440 0.460 0.480 0.440 0.460 0.480
JrmsE Jrmse Jrumse
MN2Fix b
0.720 0.720 0.720 L L !
m n
| .. 0.5
== " 0.4
I L : - 0.3
| sl L 02
0.700 0.700 0.700 { © - " o
N ~N ~N = u - L.
3 3 H o | " 0
= = = L - " "
. n 4 9 . = -0.1
-0.2
L -0.3
0.680 0.680 | 0.680 - % e - s
o
°°o = -0.5
T T T T T T T T T T T T T
0.440 0.460 0.480 0.440 0.460 0.480 0.440 0.460 0.480
JrmsE JrmsE JrumsE

Figure 6. As Figure 3 but for optimization MOPS™°.

optimum, and a good model solution with respect to RMSE is now closer to the optimal value for the OMZ
(Figure 5).

Optimization MOPS®* results in a maximum nitrogen fixation rate uyg;, that is almost twice as high as that
of MOPS® (Table 1) and is associated with a reduced threshold for the onset of denitrification. This tendency
of enhanced nitrogen cycling agrees with the results obtained from the a posteriori analysis of MOPS® (see
above). However, again a very wide range of parameters related to the oxidant affinity allows a good fit
to observed OMZs (Figure 4). Because this optimization targets a compromise solution, the two ranges of
maximum nitrogen fixation rate, which are optimal for the two objectives, now overlap, instead of being
distinctly different (as in MOPS®; Figure 4).

As for MOPS® the best fit to observed OMZs of all model simulations of MOPS®* is achieved with a sightly
lower affinity of aerobic remineralization to oxygen and a lower threshold for the onset of denitrification
(Table 2), together with a slightly increased maximum nitrogen fixation rate. Also, a smaller b points toward
the necessity of faster particle sinking (deeper flux penetration) for a good representation of OMZs. The
divergence between parameters optimal for the different objectives is generally less than for MOPS?, likely
because the metric applied here attempts to fit both objectives at the same time.

Therefore, because both MOPS® and MOPS®* point toward different sets of parameters to satisfy different
objectives, it seems worthwhile to apply MO, which treats both objectives to some extent independently.

3.3. MO Against Nutrients and Oxygen Concentration and OMZs (MOPS™°)

The extension of the OMZ in the eastern equatorial Pacific at 400-m depth improves considerably, when
selecting the individual of the Pareto front that matches best with respect to Jg,, (Figure 2). However, this
comes at the cost of an overestimate of OMZ extent in the Indian Ocean. Globally, the combination of both
effects leads to an only small improvement in Jy.
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MO of MOPS against both metrics Jpy g and Joy, does not result in one single, best solution but in a selection
of 20 different parameter sets, in which one objective can only be improved at the cost of the other objective.
Within this group, the individuals are quite uniform with respect to the same, low value of K, (Figure 6
and Table 1). The fit to J,), improves with larger R_,., = 185 and a lower b, as was already evident in the
a posteriori analysis of MOPS® and MOPS°*. The MO clearly indicates distinct sets of parameters related to
nitrogen cycling: For a low misfit with respect to Jy, a very low affinity to nitrate (Kpy) and threshold for
the onset of denitrification (DIN,;,) are necessary, together with a high rate of nitrogen fixation (pyp;, ). In
contrast, a good fit to Jpgp requires a high nitrate affinity and threshold and a reduced nitrogen fixation
rate. This result qualitatively agrees with the a posteriori analysis of the two optimizations presented above.

The optimal parameters of the Pareto front are of a slightly narrower range than the parameters that perform
best throughout the entire (explorative) optimization trajectory (Table 2) but the tendency of faster particle
sinking and enhanced nitrogen cycling as an improvement for OMZs that we found for MOPS® and MOPS°*
remains.

To summarize, optimization leads to an improvement of OMZ representation. All three optimizations indi-
cate a trade-off between the two objectives and require different parameter sets for the best representation
of tracer concentrations or OMZs. While the former are better simulated with b representing slow particle
sinking and fixed nitrogen turnover, the latter benefit from slightly enhanced particle sinking a more rapid
nitrogen cycling in OMZs. This change might be of consequence for simulated different global nitrogen
inventory or OMZ volume, which can be of importance for model dynamics and higher trophic levels.

4. Discussion

4.1. Robustness of Calibration

For our model calibrations we apply variants of the covariance matrix adaption evolution strategy, CMA-ES,
which has proven successful with regard to many benchmark problems (Hansen et al., 2010). CMA-ES
requires rather few model simulations compared to other population-based search heuristics but more
model simulations to converge to some local optimum than gradient-based methods. However, it is a suit-
able choice in the face of complicated, irregular “search landscapes” with local optima (which might be far
worse than the global optimum), or discontinuities.

There is also evidence that population-based search heuristics, especially evolution strategies like CMA-ES,
are comparably robust with respect to measurement errors (e.g., and the first references therein; Jeballa et al.,
2011). Sauerland et al. (2018) examine methods to calculate lower bounds on the best attainable model-data
misfit with respect to noise disturbed data.

Concerning MO and the concept of Pareto optimality, population-based algorithms have proven to be the
best choice. For example, many MO studies in the field of hydrology applied the genetic algorithm NSGA-II
(Deb et al., 2002). The CMA-ES variant we apply has shown to perform well in comparison to NSGA-II (Igel
et al., 2007).

4.2. MO as Tool for Global Model Calibration

Our experiments show that calibration of a global biogeochemical model against “only” nutrient and oxygen
distributions in MOPS® helps to improve the model with respect to the representation of OMZs; yet the
parameter space is not exhaustively explored and other parameter sets may achieve an even better fit to
the observed OMZs. Adding several objectives into one single metric (as in MOPS®*) results in compromise
solutions and may, to a certain extent, be sufficient. In this experiment the individual components of the
combined misfit were of equal magnitude—this does not have to be the case for other tracers or diagnostics.
Then it is necessary to assign weights to the different terms of the misfit function. Weighting might be very
influential for the resulting parameters and fluxes (Evans, 2003), and any decision about weights will add
a somewhat subjective component to the procedure, best parameter set, and model dynamics, as indicated
by the very different global nitrogen turnover of MOPS™°|RMSE and MOPS™|OMZ. Thus, a model that
has been calibrated successfully against one objective might not perform optimally for other tasks. One
way out of this dilemma could be multiple, single-objective optimizations against different misfit functions
and/or data. However, it is likely undesirable to calibrate a global model against very specific objectives
without preserving at least a reasonable fit against observed dissolved inorganic tracers, which are at the
heart of global biogeochemical models, and are available from quality-controlled, and very dense data sets.
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Considering the drawbacks of weighting mentioned above, MO provides a tool that enables us to calibrate
global models with a large flexibility regarding later applications of the model, in particular when objectives
are not clear a priori.

The experiment with MO has shown good performance with respect to the exploration of the parameter
space. It accomplishes our intention to find a collection of compromise solutions that is well distributed in
objective space, where the unique compromise which provides the lowest misfit with respect to observed
distributions of nutrients and oxygen (first objective) is almost as good as the corresponding single-objective
calibration result. The subsequent analysis of the “best” individuals provides a wealth of information and
offers a high flexibility for model and parameter choice (when these are used, e.g., for further application
such as projections). The parameter set to be picked depends very much on the research question. For
single-objective, those solutions that are close to J (e.g., within 1% of the optimum; Table 1) can be deemed
equally good. For MO, in the current example it depends if we are more interested in a good representa-
tion of nutrient and oxygen concentrations—then we would pick any of the parameter sets providing nearly
optimal Jpyqe. If we are interested in the representation of OMZ, we would pick a parameter set with nearly
optimal J,y;. In any case, MO assures that the other objective is not entirely neglected—the benefit com-
pared to two single-objective optimization, whenever the objectives are uncorrelated. The most versatile
model configuration might be represented by a parameter set that is close to the “knee” of the Pareto front,
that is, the region where one objective’s gain is in balance with the other objective's loss (Figure 6), as such
configuration is likely to imply the most universal applicability of a model and might help to narrow suit-
able parameter ranges. Indeed, the multiobjective approach can help model developers to setup particularly
new models in a more versatile way, rendering them applicable to a wider range of research questions. This
could be done by, for example, providing the model code together with the range of parameters (at the Pareto
front from MO).

Model assessment can be facilitated by examining the final collection of compromise solutions obtained
by MO: if certain parameter values show a clean monotonic tendency while traversing the final Pareto
approximate set from one objective's best solution to another “extreme” solution, we gain more evidence
about dependencies between processes and the parameters than by considering two single-objective model
calibration results. This is the case, for example, for our parameters R_g,., and puyg;y, as indicated by the
corresponding color gradients in Figure 6.

Dealing with two objectives, the chosen population size of 4,;, = 20 normal distributions seems sufficient
for a good MO exploration of the parameter space. Note that the single-objective CMA-ES deals with only
one distribution but (by default for six parameters) samples a population of A = 10 individuals. Further, the
two extreme compromise solutions of the Pareto approximate set are as good as the corresponding solutions
obtained by two single-objective optimizations. Our choice of 4y is in accordance with a rule of thumb sug-
gested in Deb (2009, Chapter 8.8). It defines a threshold value for the maximum portion of nondominated
solutions in a randomly generated start population. According to this rule, the population size grows expo-
nentially with the number of objectives, but for two objectives a threshold between 30% and 20% implies a
minimum population size between 10 and 20 individuals. Summarizing, although of higher computational
cost (because of a larger population size), MO can be a very helpful and flexible tool for model calibration,
with many, so far unexplored future applications.

4.3. OMZs and the Pelagic Nitrogen Cycle

As noted earlier (Kriest, 2017) optimization of global models against Jpyg results in a much better fit
to observed global biogeochemical fluxes as well, as evident from enhanced global primary production,
reduced particle flux at 2,000-m depth, lower global pelagic denitrification and a strong reduction in ben-
thic burial (see also Figure 7). Many of these changes are likely related to the reduction in particle sinking
(higher b), as well as a lower affinity of denitrification to nitrate (Table 1). When using J,, as objective,
as in MOPS°t or MOPS™°|OMZ, the model again overestimates pelagic denitrification. The overestimate is
most severe in the solution of MOPS™|OMZ that is optimal for J,,, (Figure 7) and disappears when select-
ing the individual of the Pareto front that is optimal for Jyygg, as in MOPS™ |RMSE. This response of the
model to changes in the parameters is most likely due to the antagonistic effects of the two oxidants oxy-
gen and nitrate and the parameters relevant for these processes. A high affinity of denitrification to nitrate
(as mediated through low Kp,;y, and DIN, ;) “protects” oxygen from becoming depleted in regions of weak
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Figure 7. Global biogeochemical fluxes of primary and export productions, organic particle flux at 2,000-m depth, pelagic denitrification and benthic burial,
simulated with MOPS', MOPS®, MOPS®°*, and MOPST. For the latter optimization we give the flux of the individual with best root-mean-square error and the
individual with best oxygen minimum zone. Horizontal dashed lines denote observed estimates. For global observed primary production we refer to a range of
40-60 Gt C/year (Carr et al., 2006). The ranges for particle flux and export production have been determined from Honjo et al. (2008), Lutz et al. (2007), and
Dunne et al. (2007). Observed global pelagic denitrification has been compiled from various sources, as listed in Table 2 of Kriest and Oschlies (2015). The
estimate for observed benthic burial is based on Wallmann (2010). MOPS = Model of Oceanic Pelagic Stoichiometry.

ventilation but at the cost of a strong decline in nitrate (see Figure 8). This causes an increase in the model's
misfit to nitrate, which is reflected in Jyygp.

This latter result is in agreement with results obtained by Moore and Doney (2007). In their global model
experiments Moore et al. had to impose a high threshold of 32 mmol/m? nitrate for denitrification, to prevent
the model from simulating unrealistically low nitrate concentrations in the eastern equatorial Pacific and
excessive fixed N loss. This is equivalent to the optimization against Jyygs, Which targets at very high K
and DIN_ ;.. The better fit to J)gs comes at the cost of a worse representation of OMZs, which are better rep-
resented with low Ky, and DIN, ;. Therefore, even model MOPS, that explicitly resolves the dependency

min*

MOPS'’ MOPS® MOPSO*

1 1 1 1 1 1 1
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Figure 8. As Figure 2 but for nitrate and a criterion of NO; < 20 mmol/m? at 400 m. Note that axes in the lower left panel differ from that of Figure 2.
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Figure 9. Fit to OMZ, for model solutions of optimization trajectory (lines) of MOPS® (left), MOPS®* (middle), and MOPS™®. The plots are similar to Figure 7a
of Cabre et al. (2015), but for the global ocean: The x axis shows the criterion ¢ for OMZ definition (O, < c), and the y axis the degree of overlap between model

and observations (equation (2)). Black lines: model solutions with Jpnsg — /TRyse

— 1> 0.01. Blue lines: model solutions with Jrpsg  /Jgpygp — 1 < 0.01.

Red line: individuals of the last generations of the optimization. Red pluses: best individual with respect to Joy7 of all simulations. Red squares: MOPS'. Only
individuals with parameters inside the prescribed boundaries are considered in the analysis. Bold dashed lines indicate (hypothetical) solution for an entirely
suboxic ocean. MOPS = Model of Oceanic Pelagic Stoichiometry.

20.0

of remineralization on organic carbon and oxidant supply cannot circumvent or resolve the discrepancy of
too large demands for oxidants in the weakly ventilated OMZs.

A likely candidate for the better simulation of these regions is a more advanced circulation model, which
allows for a better representation of physical processes. However, we note that this comes at much higher
computational costs, complicating the calibration of the biogeochemical module (if not rendering it impossi-
ble). A possible solution to this dilemma could be to optimize biogeochemical model parameters in a coarse
resolution model, whose properties resemble those of the higher resolved one and then apply the optimized
parameters to the latter. This approach is similar to the surrogate-based optimization proposed by Priess
et al. (2013), which alternates between so-called high-fidelity and low-fidelity models. Future research will
show if, and to what extent, we can transfer parameters calibrated in different circulations among the dif-
ferent setups. Another solution might be the application of model emulators or metamodeling techniques
on a high-resolution or more complex global model. While the TM method approach applied here can be
classified with physical emulators, statistical emulators based on uncertainty propagation (e.g., utilizing
the latin hypercube approach; Battaglia & Joos, 2018; Urban & Fricker, 2010) and combinations of both,
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Figure 10. Total suboxic volume (as percent of total ocean volume), for model solutions of optimization trajectory, plotted against the criterion for OMZ
definition. Panels from left to right: MOPS® (left), MOPS°* (middle), and MOPS™® (right). Lines and symbols as of Figure 9. Open red circles: OMZ volume
from observations (WOAOS5). MOPS = Model of Oceanic Pelagic Stoichiometry; OMZ = oxygen minimum zone.
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physical, and statistical emulators have also been examined in order to reduce computational burden (also
see Schartau et al., 2017, Chapter 8, and the references therein).

4.4. Different Criteria for OMZ Definition

By targeting one criterion for OMZ definition our optimization and metric never the less include a subjective
element, because an oxygen content that is sufficient for one organism might not be so for another. Con-
sider, for example, the vampire squid, Vampyrotheutis infernalis. These detritivores spend most of their life
at depths where oxygen concentrations are very low (around 20 mmol/m?) and where they can avoid their
predators (Hoving & Robison, 2012). On the other hand, because of their large oxygen demand many top
predators (e.g., commercially exploited fish such as tuna or swordfish) are limited by oxygen concentrations
less than about 150 mmol/m3 and reduce their vertical excursions when OMZs become shallow (Seibel,
2011). The effect of projected changes in OMZ extent on species distribution, global fisheries and the vulner-
ability of fish stocks (Stramma et al., 2012), and other animals can thus depend crucially on the criterion used
for model calibration and OMZ volume assessment. Also, production and consumption of climate-relevant
N, O depends on the occurrence of regions with very low (down to a few millimoles per cubic meter, Farias
et al., 2009) oxygen concentrations, which introduces another potential criterion for OMZ definition.

In our model calibrations we have applied a quite moderate yet for some fish detrimental criterion ofc = 50
mmol/m? for the definition of OMZs. We here finally investigate whether model calibration against this cri-
terion also improves the model's representation of OMZ volume defined via different criteria. To do this, we
evaluated the model's fit to OMZ a posteriori for different criteria (c of equation (2)), over a range from 10-100
mmol/m3. Compared to the reference run, there is already an improvement over the whole range of criteria
when using only Jyysg as the sole objective (Figure 9, left panel). Adding J,),, to the misfit in optimization
MOPS®* results in a further increase in model performance (Figure 9, middle panel). Most encouraging, the
best solutions of optimization MOPS™° show a considerable improvement particularly in the range between
80 and 100 mmol/m? when compared to the reference solution (Figure 9, right panel). Although the fit is
not different to the best (neglecting Jyysg) solutions of MOPS® and MOPS®*, the advantage of MOPS™ is
that these solutions do not have to sacrifice too much of Jygg; that is, they still include some information
on the model's fit to nutrients. The beneficial effect of MO is even more obvious when looking at the sim-
ulated total volume of OMZs over the range of criteria from 10 to 100 mmol/m?3, as shown in Figure 10:
Here, particularly MOPS™® results in an improvement of the model close toward observations, for the range
between about 70 and 80 mmol/m3. Thus, a criterion such as ¢ = 50 mmol/m? seems appropriate for model
calibration toward observations even outside the range considered during optimization.

5. Conclusions

Optimization against nutrient and oxygen concentrations can help to improve the model fit to different,
independent diagnostics and therefore help to improve the general model performance. However, dif-
ferent objectives (as formulated from the research question the model is applied to) might require very
different model parameters for an optimal model performance. Combining different objectives into one sin-
gle metric is not a trivial task, adds a subjective element, and may only result in compromise solutions. MO
may help to set up models that are reliable over a range of different criteria corresponding to different organ-
ism habitats or biogeochemical processes. As biogeochemical models are used more and more in complex
Earth system models with many users, and for many different scientific objectives and tasks, it is therefore
useful to explore algorithms and methods that allow for a wide applicability of these models. MO and its
exploration of the Pareto front can be one way to set up versatile model simulations, so that different users
can, for different applications/objectives, use the (results from the) best model setup for their specific task.

Dealing with two objectives, we find that a moderate population size of 10 to 20 individuals suffices to obtain
a collection of compromise solutions which is (in objective space) well distributed and contains satisfying
extremes, as compared to single-objective model calibration results. The obtained Pareto approximate col-
lection of parameter sets may ease model assessment by revealing more dependencies between parameter
values and model skills. It would also be interesting to simultaneously consider more than two uncorrelated
objectives, although the required population size (computational effort) is supposed to grow exponentially
with the number of objectives, and visualizing/analyzing results will become more difficult beyond three
objectives.
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Our experiments suggest that model parameters, which have been fitted against concentrations of nutrients
and oxygen, are not necessarily best suited to simulate the location and extent of OMZs. These regions
are best represented with parameters that induce in a high fixed nitrogen turnover. However, these results
may depend on the circulation, into which the biogeochemical model is embedded and may change if, for
example, a resolution that represents tropical upwelling systems in a better way, is used. Therefore, a further,
likely important modification would be the incorporation of more reliable physical processes, which resolve
the very detailed dynamics in equatorial and coastal regions, which are of relevance for commercial fisheries
and hot spots of climate gas emissions. Encouragingly, especially MO shows that once parameters have been
fitted against OMZs defined by a single criterion, the model also represents OMZs better across a range of
criteria, thereby rendering the model more applicable to different research questions.

Appendix A: MO

Al. Ranking by Level of Nondominance

Consideraset S = {s;, ...,s, } € X C R" of candidate solutions. The ranking by level of nondominance
is illustrated in Figure A1l. The dots represent the elements of S, mapped to the objective space. The subset
ndom(S) corresponds to the blue dots. All elements of dom(S) are to the right above of the blue line connect-
ing the elements of ndom(S). We set S, : = ndom(S). For all s € S, we define the level of nondominance
of sin S by levelg(s) : = 0.If S, # S we continue with S; : = ndom(S \ S,) and define levely(s) : = 1
forall s € S;. In Figure Al, S, corresponds to the cyan dots. All elements that do neither belong to S, nor
to S, are to the right above of the cyan connection line of the elements in S;. The procedure is repeated
until all elements of S are assigned to a level of nondominance, setting S; : = ndom(S\ (S, U ... US;_1))
and levelg(s) : = jforalls € S;aslongasS,U ... US;_; # S.For our example in Figure Al we have
S = S,US; US, US;, defining four levels of nondominance 0,1,2,3.

Now, the primary (partial) rank of a candidate solution s € S is simply set to the total number of candidate
solutions with a lower level of nondominance, which is rank;(s) :=0fors € S,and

levelg(s)—1

ranky(s) := Z 1S;|

i=0
fors € S\S,. The assignment allows to derive a unique ranking by applying a secondary ranking criterion,
rankg_, within each S; and setting

]

rankg(s) := rankg(s) + ranks; (s)
J

for s € S;. In the next section we describe the secondary ranking criterion, which is applied for the
multiobjective CMA-ES described in section A3.

Ranking by level of non-dominance
1 8-
e

——  Pareto front
—@ Level 0 = rank 0
® Level 1 =rank 7
Level 2 = rank 11
—@— Level 3 = rank 15

Second objective

First objective

Figure Al. Ranking of the set of candidate solutions S of one generation with regard to two objectives. Dots represent
the set S when mapped to the objective space. Each solution s € S is ranked with regard to its level of nondominance
levelg(s). The different levels are indicated by different colors. All solutions on the same level of nondominance are
assigned to the same (partial) rank, which is the total number of candidate solutions on lower levels of nondominance.
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Figure A2. Ranking of a set of nondominated candidate solutions S; C S by the contributing hypervolume (chv)
criterion with regard to two objectives. The blue dots represent the set S; when mapped to the objective space. The black

dot is a reference point x"f of objective values such that all solutions in S; are better with respect to both objectives. The

first two ranks are assigned to the solutions that provide the best first objective value and the best second objective
value, respectively. (a) The contributing hypervolumes of the remaining candidate solutions correspond to the red
rectangles. Among these, the last rank is assigned to the solution with the smallest contributing hypervolume. (b) The
procedure is repeated with the remaining unranked solutions to assign the second last rank, and so on.

A2. Ranking by Contributing Hypervolume

We now consider the subset S; C S for some level j of nondominance. We choose a reference point x**f in the
objective space R¥, which is dominated by all s € S;; that is, fi(s) < xl.rEf foralls € S;andalli = 1, ...,k
Figure A2 illustrates the situation for k = 2 objectives. In panel (a), the blue dots represent the set S; (in
objective space) and the black dot is the reference point. For each s € S; the hypercube between s and the
reference point is the set

he(s, x®) = {x e R* | fi(s9) <x; <X for alli=1,....k}.

The hypervolume (Zitzler & Thiele, 1998) of S; with respect to x™f can be defined as the volume of the union
of all hypercubes between the elements of S; and the reference point (Coello Coello et al., 2002); that is,

vol(S;, x™) = vol U he(s, x"H | .

SES;

In Figure A2, the hypercubes of interest are the rectangles between each blue dot and the black dot.
The entire area that is covered by these rectangles corresponds to vol(S;, xf). Finally, the contributing
hypervolume of a single s € S; (with regard to S;) is

chv (s, S;) = vol (Sj,xref) —vol (S; \ {s},x"5).

In our example, the contributing hypervolume of a candidate solution corresponds to the highlighted
nonoverlapping area of the associated rectangle.

The ranking that is based on contributing hypervolumes proceeds as follows: The best min(k, |S;|) ranks are
assigned to the extreme candidate solutions which (in S;) provide the smallest value with respect to some of
the objective functions fj, ..., f, (confer ranks 1 and 2 in Figure A2). In the remaining set of yet unranked
candidate solutions, say, S;f, rank |S;| is assigned to a solution with minimum contributing hypervolume.
Updating Sj, the latter step is repeated with decreasing ranks |Sj| -1, |Sj| — 2, ..., until all candidate
solutions in S; are ranked (until S; is empty). Emmerich et al. (2005) proposed to use the contributing
hypervolume as selection criterion for a multiobjective evolutionary optimization algorithm. They argue
that in contrast to the crowding distance criterion, which is meant to distribute points uniformly along the
Pareto frontier, the contributing hypervolume selection is meant to distribute points in a way that maxi-
mizes the covered hypervolume. For a typically knee-shaped Pareto frontier, the latter property implies a
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Table Al
Operational Constants of the (1 + 1)-CMA-ES Algorithm
Step size control Covariance matrix adaption
=L =2
9= 35 €= w2
= L C = —2—
P~ 2tq 1~ nZye
d=1+73 Pithresh = 0-44

higher density of compromise solutions close to the knee of the frontier; that is, there will be more candi-
date solutions providing fair trade-offs. The contributing hypervolume criterion also proved well in theory
(e.g., Berghammer et al., 2010). Igel et al. (2007) adopted the ranking by contributing hypervolume for their
Avo X (1,1)-CMA-ES. They observed superior behavior compared the crowding distance criterion using a
couple of benchmark problems.

A3. The Ay, X (1,1)-CMA-ES

Based on our success with our parallelization (Kriest et al., 2017) of the most commonly used single-objective
CMA-ES algorithm, the (u/p,,, )-CMA-ES (Hansen, 2016), we will apply a corresponding parallelized
version for multiple objectives, the 4y, X (1,1)-CMA-ES by Igel et al. (2007). It maintains and itera-
tively updates a population of A,,, normal distributions. It is based on another single-objective CMA-ES
variant, the (1 + 1)-CMA-ES. Compared to the (#/u,,, 4)-CMA-ES, the (1 + 1)-CMA-ES provides some
“simplifications” that are well suited to pass over to MO:

1. Only a single candidate solution x is sampled per iteration.

2. The sample replaces the distribution mean X directly if and only if f(x) < f(X).

3. The covariance matrix is only updated by a so-called rank-one update, using an evolution path vector p,,
which cumulates the move of the mean of former iterations (the (1/u,,, 1)-CMA-ES additionally uses its
u good samples for the so-called rank-u update of the covariance matrix)

4. Similar to the (u/u,,, 1)-CMA-ES, an additional over all scale s is used for step size control but must be
adapted in a different way.

An outline of the (1 + 1)-CMA-ES is given below. We suppose the algorithm to operate on the unit cube [0, 1]"
since, prior to evaluating the objective function f, any point x in [0, 1]" can be uniquely mapped to the actual
parameter space by shifting and scaling x with regard to the boundaries of the biogeochemical parameters.
Thus, distribution mean x and scaling factor s are initialized with (0.5, ...,0.5)T and 0.5, respectively. The
operational constants of the main algorithm are defined in Table A1l and supposed to be accessible within
calls of the subprocedures “updateS” and “updateC.”

Algorithm 1 The (1 + 1)-CMA-ES
1: Setq, Cps d, c., ¢; according to Table 3
2 Setx=(1,.. L)
3: Setp,=0, C=I,s=05andp=gq
4: while stopping criterion is not met do
5:  Sample x € R" from N (%, s*C)
6: iff(x)< f(x)then p=1lelsep=0
7. updateS((x,C,s,p.p,).p)
8: if f(x) < f(x) then
9 updateC((x, C,s,p.p,). ’%)

10: X < X

11:  endif

12: end while
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Algorithm 2 Procedure updateS((x, C, s, p, p.).p)

p « (1 - Cp)p + cpp
La=p
d1-p

5 « s'exp<

Algorithm 3 Procedure updateC((x, C,s, p, pc),xstep)

lfp < Pthresh then

P < a- cc)pc +y Cc(2 - cc) : xstep

C < (Q—-c¢)C+c, -ppl
else

P, < a- Cc)pc

C < (1-c)C+c - (pp! +c.2—c)C)
end if

The (1 + 1)-CMA-ES maintains its normal distribution N'(X, s>C) using five variables. Three of the variables
are the shape-defining ones, namely, the mean vector X, the covariance matrix C, and the factor s which
scales the one-standard-deviation domain of the distribution, controlling the overall step size of the algo-
rithm. Additionally, two auxiliary variables are used for the distribution update: an average sampling success
rate p and the evolution path of cumulated shifts of the mean, p,.

Practically, sampling x € R" from the normal distribution N (%,s?C) in line 5 is realized by drawing n
independent samples of the univariate standard normal distribution N'(0, 1) as components of a vector g
and calculating

X =X+ sBDz,

where the matrices B and D are obtained from an eigendecomposition

C = BD?*BT

of C; that is, the columns of B are orthogonal eigenvectors of C, and D is a diagonal matrix of the
corresponding eigenvalues.

After sampling a single new solution x, updateS adjusts the average success rate p (the rate of samples that
are better than the distribution mean) and uses p to update the scaling factor s of the distribution. Whether
s increases or decreases depends on whether p is less or greater than the target success rate g, which is set
in accordance to the (1/5)th rule (Rechenberg, 1973). A success rate higher than q is supposed to imply
sufficient likelihood that an optimum is within the area of one standard deviation of the current distribution,
while lower success rates are assumed to indicate that the optimum lies beyond that area. The constant c,
is a learning rate and controls how fast the success count of earlier samples fades out from p. The adaption
strength of s is attenuated by d.

If the new sample x is better than the mean X of the current distribution updateC is invoked to adapt the
evolution path p. and the covariance matrix C before x replaces the distribution mean. Usually, the first case
of updateC (p < Pypresn < 0.5) applies and p, is adjusted using the scale-normalized step xy, = X and
the covariance matrix is updated with the rank-one matrix p_p!. Again, the constants ¢, and ¢, are learning
rates, which control how fast information of earlier iterations fade out from p, and C, respectively. In the
case P > Piyresn the evolution path shrinks instead of being updated with X, This approach is suggested by
Igel et al. (2007) in order to prevent too fast expansion of the distribution into certain directions when the
step size s is too small. The latter might happen in regions of the searchspace where f behaves linear. The
shrinking of p, is compensated in the update of C.

Finally, the Ay;5 X (1,1)-CMA-ES hierarchically combines the level of nondominance criterion and the con-
tributing hypervolume criterion described above in order to rank and select 4y, out of 2 X A, normal
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Figure A3. Convergence of the multiobjective CMA-ES for a test case with two objectives. Dots represent the
population of candidate solutions in objective space (first objective versus second objective). In the first iterations, there
might be more than one level of nondominance (indicated by the different colors in panels a and b). Later, when the set
of candidate solutions has become a nondominated set (panels ¢ and d), the selection process only depends on the
ranking by contributing hypervolumes, which prevents “lump formations” and allows the algorithm to convergence to
a good Pareto approximate set (panel d).

distributions as the next iterations’ population. Each distribution itself is operated in a (1 + 1)-CMA-ES fash-
ion. The algorithm outline is summarized below. For a distribution a = (p, X, p,, s, C) we write, for example,
a.s to refer to a single variable that is attributed with the distribution. Figure A3 illustrates how the inter-
play of the (1 + 1)-CMA-ES for single solutions and the suggested ranking procedure for the population of
solutions enables convergence to well-distributed sets of compromises.

Algorithm 4 The 4y X (1 +1)-CMA-ES
Set global constants d, g, c,, c,, ¢; according to Table 3
Initialize population P = {a,, ..., a o } of normal distributions
fori=1,...,i,, do
Make a copy a;{ = g, of each distribution
for k=1,..., 4y do
Sample x € R" from N '(q;.%, a,.C)
a.x < x
if x<aXxthenp=1elsep=0
updateS(a;. p)
updateS(af, p)/

’ ak)'c—)"c
updateC(ak, o
end for
P <« {a,,... ,a,lMO} ufal,... ,a;MO}
Trim P (such that |P| = 4) using ranking-based selection
end for
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