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. Abstract

Easter Island is a geographically isolated location in the South Pacific Ocean, which has
remained unstudied in microbiological terms. Actinobacteria are Gram-positive bacteria which are
widely recognized by producing chemicals with medical applications and having a wide
environmental distribution. Marine actinobacterial representatives have shown large potential for
the production of biological active chemicals. Therefore, this study focuses in the isolation and
characterization of the culturable actinobacterial diversity dwelling in the coastal zone of Easter
Island, as well as in the chemical analysis of the secondary metabolites produced by actinobacterial
representatives. To develop this project, we used a wide variety of culture media which had
different nutritive conditions in order to broaden the diversity of cultured Actinobacteria. The
identification and classification of the isolates was developed on the basis 16S rRNA genetic
marker. For the evaluation of the chemical profiles, as well as the purification and identification of
pure molecules we used techniques of analytic chemistry like chromatography, mass spectroscopy
and nuclear magnetic resonance. Our results indicated that Easter Island had a large Actinobacteria
diversity, since we obtained a total of 163 pure cultures, which represented 72 phylotypes
distributed in 20 different genera. Phylogenetic evaluation suggested a high degree of novelty
showing that 45% of the isolates may represent new taxa. The chemical evaluation of an Easter
Island sea anemone and its actinobacterial symbionts showed the presence of two known
antitumoral anthraquinones. Chemical experiments showed that the real producer of the
anthragquinones was a previously unidentified actinobacterial strain, and not the sea anemone. In
addition, the study of two Streptomyces strains, which were geographically distant, but
phylogenetically almost identical, indicated that they had different morphological and chemical
features which were strain specific. Finally, our study showed that Easter Island was a rich source
of new actinobacterial taxa, as well as of known representatives. The chemically studied
Actinobacterial representatives showed interesting potential for the production of antitumoral and
antibiotic chemicals and the secondary metabolite comparison of phylogenetical identical, but
geographical distant, Actinobacteria clarified that 16S rRNA is not a suitable genetic marker to

determine chemical novelty potential.
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Il. Zusammenfassung

Die Osterinsel ist ein geographisch isolierter Ort im Siidpazifik, der mikrobiologisch noch
nicht untersucht wurde. Aktinobakterien sind Gram-positive Bakterien, von denen allgemein
bekannt ist, dass sie weit verbreitet sind und zahlreiche Substanzen produzieren, die fir
medizinische Anwendungen interessant sind. Vertreter mariner Aktinobakterien haben ein groRes
Potenzial zur Produktion biologisch aktiver Substanzen gezeigt. Daher konzentriert sich diese
Studie auf die Isolierung und Charakterisierung der kultivierten aktinobakteriellen Vielfalt, die sich
in der Kistenzone der Osterinsel aufhélt, sowie auf die chemische Analyse der sekundéren
Metaboliten, die von aktinobakteriellen Vertretern produziert werden. Zur Entwicklung dieses
Projekts verwendeten wir eine Vielzahl von Nahrbéden mit unterschiedlichen Kulturbedingungen,
um die Vielfalt an kultivierten Aktinobakterien zu erhéhen. Die Identifizierung und Klassifizierung
der Isolate wurde auf der Grundlage des 16S rRNA-Genmarkers entwickelt. Fur die Auswertung
der chemischen Profile sowie die Reinigung und Identifizierung reiner Molekile wurden
Techniken der analytischen Chemie wie Chromatographie, Massenspektroskopie und
Kernspinresonanz eingesetzt. Unsere Ergebnisse zeigten, dass die Osterinsel eine groRe Vielfalt an
Aktinobakterien besitzt: die insgesamt 163 erhaltenen Reinkulturen verteilten sich auf 72
Phylotypen und 20 verschiedene Gattungen. Die phylogenetische Auswertung ergab einen hohen
Grad an Neuheit. Sie zeigte, dass 45% der Isolate neue Taxa darstellen kdnnen. Die chemische
Bewertung einer Seeanemone der Osterinsel und ihrer aktinobakteriellen Symbionten ergab das
Vorhandensein von zwei bekannten antitumoralen Anthrachinonen. Chemische Experimente
zeigten, dass der eigentliche Produzent der Anthrachinone ein Aktinobakterium war und nicht die
Seeanemone. Dariiber hinaus zeigte die Untersuchung von zwei Streptomyces-Stammen, die aus
geographisch entfernten Regionen stammten, aber phylogenetisch fast identisch waren, dass sie
unterschiedliche, stammspezifische morphologische und chemische Merkmale hatten. SchlieRlich
zeigte die vorliegende Studie, dass die Osterinsel eine reiche Quelle fiir neue aktinobakterielle Taxa
und bekannte Vertreter war. Die chemisch untersuchten Aktinobakterien-Vertreter zeigten ein
interessantes Potenzial fiir die Produktion von antitumoralen und antibiotischen Substanzen. Der
Vergleich der Sekundarmetabolite dieser phylogenetisch nahezu identischen, aber aus
geographisch weit entfernten Standorten isolierten Aktinobakterien verdeutlichte, dass 16S rRNA

kein geeigneter genetischer Marker ist, um das Potenzial fiir chemische Neuerungen zu bestimmen.
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I11. Abstract of the publications

High diversity and novelty of Actinobacteria isolated from the coastal zone of the
geographical remote young volcanic Easter Island, Chile.

Ignacio Sottorff, Jutta Wiese, and Johannes F. Imhoff:
International Microbiology, 2019

https://doi.org/10.1007/s10123-019-00061-9

Abstract

Easter Island is an isolated volcanic island in the Pacific Ocean. Despite the extended knowledge
about its origin, flora, and fauna, little is known about the bacterial diversity inhabiting this
territory. Due to its isolation, Easter Island can be considered as a suitable place to evaluate
microbial diversity in a geographically isolated context, what could shed light on actinobacterial
occurrence, distribution, and potential novelty. In the present study, we performed a comprehensive
analysis of marine Actinobacteria diversity of Easter Island by studying a large number of coastal
sampling sites, which were inoculated into a broad spectrum of different culture media, where most
important variations in composition included carbon and nitrogen substrates, in addition to salinity.
The isolates were characterized on the basis of 16S ribosomal RNA gene sequencing and
phylogenetic analysis. High actinobacterial diversity was recovered with a total of 163 pure cultures
of Actinobacteria representing 72 phylotypes and 20 genera, which were unevenly distributed in
different locations of the island and sample sources. The phylogenetic evaluation indicated a high
degree of novelty showing that 45% of the isolates might represent new taxa. The most abundant
genera in the different samples were Micromonospora, Streptomyces, Salinispora, and Dietzia.
Two aspects appear of primary importance in regard to the high degree of novelty and diversity of
Actinobacteria found. First, the application of various culture media significantly increased the
number of species and genera obtained. Second, the geographical isolation is considered to be of

importance regarding the actinobacterial novelty found.
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Antitumor anthraquinones from an Easter Island sea anemone: animal or bacterial origin?

Ignacio Sottorff, Sven Kiinzel, Jutta Wiese, Matthias Lipfert, Nils Preul3ke, Frank Sénnichsen, and
Johannes F. Imhoff:

Marine Drugs, 2019
https://doi.org/10.3390/md17030154

Abstract

The presence of the anthraquinones, Lupinacidin A and Galvaquinone B which have antitumoral
activities, has been identified in the sea anemone (Gyractis sesere) from Easter Island. So far these
anthraquinones have been characterized from terrestrial and marine Actinobacteria only. In order
to identify the anthraquinones producer, we isolated Actinobacteria associated with the sea
anemone and obtained representatives of seven actinobacterial genera. Studies of cultures of these
bacteria by HPLC, NMR, HRLCMS analyses showed that the producer of Lupinacidin A and
Galvaquinone B indeed was one of the isolated Actinobacteria. The producer, strain, SN26_14.1,
was identified as a representative of the genus Verrucosispora. Genome analysis supported the
biosynthetic potential to the production of these compounds by this strain. This study adds
Verrucosispora as a new genus to the anthraquinone producers, in addition to well-known species
of Streptomyces and Micromonospora. By a cultivation-based approach, the responsibility of
symbionts of a marine invertebrate for the production of complex natural products found within the
animal’s extracts could be demonstrated. This finding re-opens the debate about the producers of
secondary metabolites in sea animals. Finally, it provides valuable information about the chemistry

of bacteria harbored in the geographically-isolated and almost unstudied, Easter Island.
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Different secondary metabolite profiles of phylogenetically almost identical Streptomyces
griseus strains originating from geographically remote locations

Ignacio Sottorff, Jutta Wiese, Matthias Lipfert, Nils Preul3ke, Frank Sonnichsen and Johannes F.
Imhoff:

Microorganisms, 2019

https://doi.org/10.3390/microorganisms7060166

Abstract

As Streptomyces have shown outstanding capacity for drug production, different campaigns in
geographical-distant locations are currently aiming at isolating new antibiotic producers. However,
many of this newly isolated Streptomyces strains are classified as identical to already described
species. Nevertheless, as discrepancies in terms of secondary metabolites and morphology are
possible, we compared two Streptomyces strains with identical 16S rRNA gene sequences, but
geographical distant origin. Chosen were an Easter Island Streptomyces isolate (Streptomyces sp.
SN25_8.1) and the next related type strain, which is Streptomyces griseus subsp. griseus DSM
402367 isolated from Russian garden soil. Compared traits included phylogenetic relatedness based
on 16S rRNA gene sequences, macro and microscopic morphology, antibiotic activity and
secondary metabolite profiles. Both Streptomyces strains shared several common features, such as
morphology and core secondary metabolite production. They revealed differences in pigmentation
and in the production of accessory secondary metabolites which appear to be strain-specific. In
conclusion, despite identical 16S rRNA classification Streptomyces strains can present different
secondary metabolite profiles and may well be valuable for consideration in processes for drug

discovery.
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V. Introduction

Easter Island or Rapa Nui (Polynesian name) is an isolated Chilean insular territory with
an area of 163.6 km? (Casanova et al. 2013), it is located in the southern Pacific Ocean, specifically
3,515 km from continental Chile, and 9,430 km to the nearest part of Australia (Figure 1). Easter
Island is classified as an intraoceanic volcanic island, since it is the product of the eruption and
buildup of oceanic volcanoes (Vezzoli et al. 2009). Commonly, oceanic volcanoes are placed in
the boundaries of tectonic plates where magma plumes flow out, accordingly, Easter Island is

located in the intersection between the Nazca and Pacific plates (Vezzoli et al. 2009).

The formation and rise of Easter Island occurred as a result of submarine volcanic activity
(Casanova et al. 2013), by the eruption and buildup of three different and neighboring shield-
volcanoes; Rano Kau, Terevaka and Poike. The buildup and convergence of the shield-volcanoes
occurred in two different phases: Phase one, buildup of the magmatic material from an eruptive
fissure in the tectonic plate, which ended up in the formation of summit calderas, which continued
releasing and accumulating magmatic material. This first phase took place 0.78-0.3 Ma ago
(Casanova et al. 2013). Phase two, constituted the continue accumulation of volcanic material
through fissure eruptions which provoked the convergence and rise of the three shield-volcanoes
as one joined mass land. This process took place 0.24-0.11 Ma ago (Casanova et al. 2013, Vezzoli
et al. 2009). A schematic representation of the formation process is presented in Figure 2.

Currently, the forming volcanoes, Rano Kau, Terevaka and Poike, are thought to be extinct,
since no major volcanic activity has been recorded in the last centuries (Routledge et al. 1917),
although stream cracks were reported in the Rano Kau volcano crater during the first quarter of the

twenty century (University of Hawaii et al. 2019).
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Figure 2 Easter Island formation process. A) Location and distribution of the shield-volcanoes
Rano Kau, Terevaka and Poike in the Pacific Ocean. B) Phase one in the island formation, buildup.
C) Phase two in the island formation, lateral expansion, convergence and rise. Extracted from
Vezzoli et al. (2009).
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1.2. Main features

Easter Island has a maximum ground elevation of 560 m a.s.l. The highest points in the
island are characterized by extinct volcanoes, such as Poike, Rano Kau, and Terevaka, which are
located in each corner of the island (Casanova et al. 2013), see Figure 3. The soil of the island is
structured by volcanic rocks, clay soils, and lava outcrops (Casanova et al. 2013). The coastal zone
of the island is formed by abundant volcanic rocks, though the Anakena-Ovahe zone differs by
presenting a sandy beachfront. Some of the most common features of the island are presented in
Figure 4.

Easter Island has a southern subtropical weather, having summer season during December
to March and winter season during June to September. The range of temperatures spans from a
minimal of 10°C during the winter, while the maximum temperature is of 30°C during the summer
(Azizi et al. 2008). The climate at Easter Island has been reported as mostly moist, with humidity
values of 70-88%. The registered annual rainfall for 2018 was 936.4 mm. The highest levels of
monthly precipitation were registered in May and September for 2018 (Meteochile et al. 2019).

Figure 3 Geomorphology of Easter Island. In each corner, the extinct volcanoes are signaled as
following: A) Rano Kau, B) Terevaka, and C) Poike. Figure extracted from Casanova et al. (2013).
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Figure 4 Easter Island geographical features. 1) Anakena beach, one of two sandy coastal zone at
the island 2) North coast of the island 3) South coast of the island 4) Intertidal zone at west coast
of the island 5) Volcanic-derived rocky ponds 6) Intertidal zone at the east coast of the island 7)
Inland flatlands at the island 8) Crater of the inactive volcano Rano Kau 9) Panoramic view of the
North coast of the island, and its erosion.

1.3. Easter Island colonization and human population

The island colonization occurred by different events of dispersion through time, in which
different macro and microorganisms reached this territory by physical and biological mechanisms.
An example is the Chilean palm, Jubaea chilensis, which is endemic from continental Chile, but it
has also been reported on Easter Island. It has been suggested that its arrival to Easter Island
occurred by accidental drift by marine currents (Grau et al. 1996). A similar case has been proposed
for the sweet potato, Ipomoea batatas, and its arrival to Easter Island and Polynesia, since this tuber

has its origin in Central and South America (Montenegro et al. 2008).

Animal and human arrivals have been documented on Easter Island. The first human
settlement has been estimated to be 1200 years A.D. (Hunt and Lipo 2006), and initiated as a
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progressive spread of Polynesians from Samoa towards the East, ending up in Easter Island
(Wilmshurst et al. 2011). During colonization, Polynesians relied their subsistence upon the
consumption of small animals and plants, like the pacific rat (Barnes et al. 2006), the Polynesian
chicken (Fitzpatrick and Callaghan 2009), and the sweet potato (Polet and Bocherens 2016) which
were carried to the new destinations. After the first settlement, several European visits were
documented starting in 1722 (Fischer, 2005), but the most critical episode for the people of Rapa
Nui occurred in 1862 when islanders that had been taken as slaves to Peru, were returned to Easter
Island after having contracted diseases (tuberculosis, smallpox, dysentery), severally decimating
the population (Fischer 2005).

The biodiversity of Easter Island has only been studied partially because its geographical
isolation has complicated the explorations. Despite logistic issues, progress has been made in the
study of the Easter Island flora and fauna. To date, the study of the Easter Island flora has reported
a total of 48 species of which 11 are endemic (Dubois et al. 2013). Most of the species studied have
been associated to grasses, which can be related to the fact that nearly 90 % of the island is covered
by grasslands (Finot et. al 2015). Trees at Easter Island are limited to few patches, where coconut
and Chilean palms, in addition of bananas and eucalyptus trees are the most abundant (Mann et al.
2008).

Studies on Easter Island fauna have faced the same logistic considerations, but advancement
has been made during the last thirty years. Easter Island fauna has been described as a combined
biodiversity, with origins in South America and Asia-Pacific territories, as well as having an
endemic population (Escalante and Arancibia 2016). To date, marine organisms have been by far
the most studied subject. The most common organisms found are marine sponges (DiSalvo et al.
1988), cnidarian (DiSalvo et al. 1988; Glynn et al. 2007), crustaceans (DiSalvo et al. 1988; Retamal
2004), mollusks (DiSalvo et al. 1988; Osorio and Cantuarias 1989; Rehder 1980), polychaetes
(DiSalvo et al. 1988; Kohn and Lloyd 1973), echinoderms (DiSalvo et al. 1988; Massin 1996),
fishes (Randall and Cea 2011) and bryozoan (Moyano 2001). The knowledge of the biodiversity of
the island is still growing with new species being periodically reported (Ng and Boyko 2016),

however to date there is not a total estimation of the fauna of Easter Island.
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Contrasting with the studies in flora and fauna, only few studies have dealt with Easter Island’s
microbiological diversity (Cumsille et al. 2017; Miller et al. 2014; Vezina et al. 1975), despite the

remarkable endemism rate found in other biological domains.

Ultimately, microbial importance has been unveiled due to the comprehension that
microbes play a key role in their habitats and hosts. For instance, the human microbiome has been
studied to determine the influence of microbes in human health. These studies have concluded that
the microbiome of healthy individuals differs of that of sick ones (Huttenhower et al. 2012).
Additionally, it has been shown that a stable microbiome is essential to keep individuals healthy
(Huttenhower et al. 2012). Similar conclusions have been made for other organisms, such as fishes
and cattle (Merrifield et al. 2014, Stewart et al. 2018). Plants are another example of beneficial
interaction with microbes, since the close relationship between the root system of plants and
nitrogen fixer microbes has been demonstrated to be a beneficial symbiotic relation (Mus et al.
2016).

Microbiologically, Easter Island is an interesting place to investigate due to its
geographical isolation and conservation state. Easter Island can be a study case of how different
the bacterial populations are in zones with little or no anthropogenic impact. Furthermore, the study
of the microbes on this territory would further support a better understanding of the biogeography
of microorganisms by comparing its population to other distant locations. Additionally,
biogeographic information would provide more means to evaluate the hypothesis of Beijerinck:
"Microbial ubiquity and environmental determinism” and Baas Becking: “Everything is
everywhere, but the environment selects” (Becking et al. 1934; O’Malley et al. 2008). Finally, it is
of importance to generate microbiological data from Easter Island in order to compare it with
studies on the microbial diversity of Hawaii, to assess if two distant locations with similar origin

(interoceanic volcanic) may harbor related microbial diversity.
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Currently, the increasing number of reports of multi drug resistant pathogens (Lockhart et
al. 2016) has triggered the search of new molecules which can be effective in the treatment of these
emerging pathogens. Furthermore, it has also been observed that tumoral cells can develop
tolerance and resistence against anticancer drugs (Chisholm et al. 2015), worsening the possibilities
of disease recovery. To date, there are different strategies of drug discovery, which vary in
effectivity, costs and feasibility. They can mainly be classified as following: chemical based,

genome based, computer based and microbiology based.

Chemical based drug discovery strategy is developed with synthetic chemistry, mainly
through structure activity relationship (SAR). These studies are developed by adding, exchanging
or modifying chemical groups in an already characterized chemical entities (Koehn et al. 2005).
The aim of this strategy is to increase the biologial activity of a chemical on a particular target or
the manufacture of novel biological activity in previously not active targets (Koehn et al. 2005).
Despite the great utility of this strategy, it is limited to a defined chemical scaffold and the
complexity of its synthetic modification. A genome based study may be explained as the the
analysis of the genetic information of a given organism to survey secondary metabolites
biosynthetic genes (Kersten et al. 2011). Recently, this strategy has been enormously avanced due
to the lower cost of genome sequencing and the development of platforms that score secondary
metabolites gene similarity (Weber et al. 2015), enzyme identity and chemical novelty. Despite
how this analysis is quite insigthful in terms of information, it also faces limitations because it
targets only known secondary metabolties genes, ignoring genes with unknown function but great
potential. A computer-aided drug discovery approach is the computational modelling of molecules
for a given target which is mainly essential proteins. Computational modeling is developed in order
to build molecules which can satisfy the required chemical interactions to fit into a drug-target
docking site (Kapetanovic et al. 2008). This strategy overlaps with SAR studies, but it is majorly
developed in silico only. The main limitation of this approach is the amount of time and computer-

human resource it consumes.

A microbiology based approach aims the search of microorganisms with pharmaceutical
potential. The determination of the biological activity is made through the individual growth of
microbial strains, their chemical extraction and subsequent biological activity testing with the
desired target. This strategy requires the isolation of the bacterial strains and has been the most

used approach during the last 50 years (Demain and Sanchez, 2009). The main limitation of this
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approach is drug re-discovery, but this issue can be reduced through an exhaustive process of
dereplication, which intends the preliminary characterization of the molecules produced by the
microbial strains as early as possible in the process of discovery. Dereplication allows discerning,
in an early stage, if the purification, isolation and structure elucidation of a molecule has potential

for novelty.

Because the extensive exploration of continental locations and occurrences of drug re-
discovery, it was proposed that unstudied environments can harbor novel microorganisms that can
potentially produce unknown chemicals (Dhakal et al. 2017). Therefore, diverse investigations
were made to test this hypothesis. One successful example of the exploration of unstudied
environments was the ocean. To date, the exploration of marine sediments and invertebrates has
produced a relevant number of novel bacteria and chemicals (Bull et al. 2007). Even, a new
bacterial phylum (Fieseler et al. 2004) and genus (Jensen et al. 2015) have been documented
coming from the ocean. For example, the discovery of the actinobacterial genus Salinispora,
obtained exclusively from marine sediments was achieved as a result of the exploration of new
environments. Thus far, this genus has produced three novel species, S. arenicola, S. tropica and
S. pacifica (Jensen et al. 2015), which have shown to be distributed only in the ocean, as Figure 5
describes. This same actinobacterial genus has yielded a quite important number of new and known
chemicals (Figure 6), which confirms the high potential of unexplored sources, in this case the

ocean, to provide novel microorganisms and chemicals.

@ s. tropica @s. arenicola QO s. pacifica
1. Hawaii 6. Red Sea 11. Papua New Guinea  16. Madeira Islands
2. Sea of Cortez 7. Guam 12. Palmyra 17. Mexico (Caribbean)
3. Costa Rica 8. Palau 13. Great Barrier Reef 18. Japan
4. Bahamas 9. South China Sea  14. Dominica
5. US Virgin Islands  10. Fiji 15. Mexico (Pacific)

Figure 5 Global distribution of the actinobacterial genus, Salinispora. Figure extracted from Jensen
et al. (2015).
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Table 1 Chemical diversity obtained from the novel actinobacterial genus, Salinispora. Figure

extracted from Jensen et al. (2015).

No. Speciesg Compound Biosynthetic origin Novelty Activity (target)

1 S. tropica salinosporamide A PKS-NRPS new proteasome

2 S tropica sporolide A ePKS new reverse lranscriptaseg
3 S. tropica salinilactam type I PKS new ND

4 S tropica sioxanthin terpene new ND

5 S tropica antiprotealide PKS-NRPS new proteasome

6 S pacifica pacificanone A type I PKS new ND

7 S pacifica salinipyrone A type I PKS new ND

8 S pacifica cyanosporoside A PKSe new ND

9 S pacifica lomaiviticin A type I PKS new cytotoxic (DNA)

10 S pacifica enterocin type I PKS known  antibiotic

11 S arenicola  saliniketal At—J type I PKS new ornithine decarboxylase
12 S. arenicola  arenicolide A type I PKS new ND

13 S arenicola  saliniquinone type II PKS new cytotoxic

14 S arenicola  cyclomarin A NRPS known  anti-inflammatory

15 S. arenicola cyclomarazineg NRPS new ND

16  S. arenicola  arenimycin NRPS new antibiotic

17  S. arenicola  arenamide A type I PKS new anti-inflammatory (NFkB)
18  S. arenicola  staurosporines alkaloid known  protein kinase

19 S. arenicola  isopimara-8.15-dien-19-ol terpene new ND

20 S. arenicola  rifamycin B type I PKS known RNA polymerase

21 S arenicola  mevinolin PKS known HMG-CoA reductase
22 St Sa, and Sp desferioxamine B NRPS known iron chelator

23 St, Sa, and Sp lymphostin NRPS-PKS known  immunosuppressant

#Original report of compound detection from Salinispora spp.

bRifamycin synthase intermediate.
“Cyclomarin synthetase intermediate.
dPredicted.

¢ = enediyne, ND = not determined.
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In addition to Salinispora, other actinobacterial genera such as; Streptomyces,
Micromonospora, Nonomuraea and Verrucosispora are commonly found in sea sediments. Only
this reduced group of Actinobacteria has produced a wide variety of molecules with different
biological activities like antibiotic (Socio et al. 2003), antifungal (Nair et al. 1992), and antitumoral
activities (Jensen et al. 2015). The common feature of Salinispora, Streptomyces, Micromonospora,
Nonomuraea and Verrucosispora genera is that all belong to the Actinobacteria phylum. This
phylum has shown to be outstanding in the production metabolites (Hopwood, 2007; Waksman,
1967; Goodfellow & Fiedler, 2010). For instance, today most of the commonly used antibiotics
have been isolated from Actinobacteria (Sun et al. 2018), demonstrating large potential for drug
discovery and medical application. In addition, Actinobacteria have also shown capabilities to
produce antitumoral (Fenical et al. 2009), anti-inflammatory (Brafia et al. 2015) and immune-

suppression molecules (Manuelli et al. 2010), presenting great relevance for human health safety.

Actinobacteria are Gram-positive bacteria with a wide range of morphological properties, from
unicellular spherical to filamentous multicellular structures known as hyphae (Trujillo 2016).
Actinobacteria were first described in the nineteenth century and were named as “the ray fungi”
due to their similarities to fungal hyphae (Krasil’nikov, 1938; Stackebrandt and Schumann, 2006).
For instance, the actinobacterial genus, Streptomyces, has been well characterized by producing
abundant aerial hyphae structures and spores (Gray et al. 1990), meanwhile other Actinobacteria
genera do not necessarily produce hyphae, like the genus Arthrobacter, which has shown coccoid
morphology (Jones and Keddie 2006). The phylum is composed of six different classes,
Rubrobacteria, Thermoleophilia, Coriobacteriia, Acidimicrobiia, Nitriliruptoria, and
Actinobacteria (Ludwig et al. 2012). Within these actinobacterial classes, 18 different orders can

be found, see Figure 6. Currently, a total of 222 genera have been described.
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Figure 6 To date officially accepted actinobacterial orders. The phylogenetic construction was
made through the analysis of the 16S rRNA gene sequence. Figure extracted from Ludwig et al.
(2012).
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The Actinobacteria represent one of the most diverse bacterial phylum (Ludwig et al. 2012).
Actinobacteria are mostly classified based on the 16S rRNA gene sequence, which has
demonstrated to be a reliable phylogenetic marker due to its high degree of conservation, its
coherency and evaluation rapidness. However, nowadays in the genomic era, a higher rate of
studies is establishing their research on genome-based phylogeny (Barka et al. 2016). The
advantage of this new classification system lies in the larger number of genetic markers in use,
which have a direct effect in the resolution of the phylogenetic trees constructed, delivering a more
elegant and sensitive taxonomic classification. An example of genome-based phylogenetic

classification is shown in Figure 7.

Another main feature of Actinobacteria is the high GC-content found in their genomes, which
can range from 51% to >70% (Ventura et al. 2007). The Actinobacteria genome size is also diverse,
finding genomes as small as 0.75 Mb in Acidimicrobiia bacterium strain UBA1281 (NCBI #
PRJINA348753) to large genomes, like in the case of the Streptomyces genus, which can be larger
than 7 Mb (Jiao et al. 2018). Remarkably, the genomes size in Actinobacteria varies strongly.
Pathogenic Actinobacteria have shown to have reduced genomes size, in comparison with
environmental species. It has been proposed that bacterial genome size and gene content are directly
dictated by environmental pressures (Ventura et al. 2007). For instance, since pathogenic species
need a host to survive, they do not need to keep all the metabolic pathways to survive, and may
reduce their genome by releasing certain genes with non-essential biochemical pathways which can
be replaced by host metabolic products (He et al. 2015). In contrast, environmental non-pathogenic
Actinobacteria, which dwell in a nutritive variable niche, need to keep as much genes as possible,
in order to have metabolic flexibility and assure survival, or in other words, use what is available.
Streptomyces have a large genome size strategy by keeping a large number of genes related to

various metabolic pathways in order multiple their survival options (Barbe et al. 2011).

Actinobacteria have provided immense benefits for human health, however there are also
pathogenic actinobacterial representatives, such as Mycobacterium tuberculosis, responsible of
tuberculosis, which has caused millions of deaths (Cole et al. 1998). Another pathogenic
Actinobacteria is Tropheryma whipplei (Raoult et al. 2003), which is the cause of the Whipple's
disease. This disease attacks mainly the digestive system and produces the malabsorption of
nutrients, generating a wide range of symptoms, like arthritis, diarrhea, intestinal mucosa bleeding,

abdominal pain and occasionally hepatitis (Fenollar et al. 2007).
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| | Rubrobacterales

| | Acidimicrobiales Subgrdas
Solirubrobacterales Corynebacterineae Streptomycineae Propionibacterineae
Coriobacterales Pseudonocardineae Catenulisporineae Micrococcineae

| | Bifidobacterales Frankineae Micromonosporineae Kineosporiineae
Actinomycetales Streptosporangineae Glycomycineae Actinomycineae

Figure 7 Genome-based phylogenetic tree for the phylum Actinobacteria. Constructed with 97
genomes sequences. Figure extracted from Barka et al. (2016).
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Actinobacteria were primarily described as soil dwellers decomposing complex sugars
(Waksman 1940), however they have ultimately been found in diverse habitats, such as animals
(Schneemann et al. 2010a), the deep sea (Hohmann et al. 2009), volcano-derived lakes (Villalobos
et al. 2018), sea sediments (Maldonado et al. 2009), plant root systems (Wang et al. 2011), and
caves (Riquelme et al. 2015), among others. Actinobacteria have been isolated from quite diverse
locations. For instance, many actinobacterial representatives have been isolated from the Atacama
desert, Chile, which is the driest desert of the world (Neilson et al. 2012), as well as in the Antarctic
territory, where the new actinobacterial genus, Marisediminicola, was discovered (Li et al. 2010).
Consequently, Actinobacteria representatives appear to have a global distribution and ubiquitous

distribution in the different ecological niches.

Additionally, Actinobacteria have been reported as symbionts in plants (Martinez-Hidalgo et
al. 2014), animals (Karimi et al. 2019) and humans (Lewis et al. 2016), generating discussion about
their specific function in the host organisms. A long standing example of Actinobacteria symbiosis
is the interaction between Micromonospora and the root systems of plants. Micromonospora has
been hypothesized to play a role in nitrogen fixation (Martinez-Hidalgo et al. 2014) and therefore
is considered a key element for the plant survival. Another relevant case are marine sponges, which
harbor enormous microbial diversity (Hentschel et al. 2003; Imhoff and Stéhr 2003).
Actinobacteria have been shown to be an important player of the sponge microbial community
(Karimi et al. 2019), however their specific function in this sea animal remains to be fully clarified,
although it has been proposed that they may be involved in the sponge chemical defense mechanism
(Paul et al. 2019), since sponges lack a physical defense system. Despite the understanding that
Actinobacteria can be found in different environments, discussion has been going on niche
specificity (Hanshew et al. 2015). In this context, of particular importance is the genus Salinispora,
since it is said to be the first obligated marine Actinobacteria to be isolated and characterized
(Maldonado et al. 2005). This discovery place the question whether or not there are niche specific

Actinobacteria.
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2.3. Easter Island Actinobacteria

Easter Island Actinobacteria have not been studied in depth, despite the potential they may

have for pharmaceutical and industrial applications. So far, only two studies have been developed

in this territory or in its surrounding. The first study developed by Vezina et al. (1975) resulted in

the isolation of Streptomyces hygroscopicus and discovery of rapamycin, a hybrid polyketide non-

ribosomal peptide that primarily was characterized as an antifungal agent. Nowadays, rapamycin

(also known as Rapamune®) is widely used as an inmunosuppressive drug (Sehgal et al. 1998).

More recently, another investigation in the offshore of Easter Island was developed by Cumsille et

al. (2017), where they studied the marine sediment and sponges samples. This investigation gave

as a result the characterization of 16 different genera of Actinobacteria, being the most abundant

Micrococcus, Serinococcus, Kocuria, Nocardioides and Streptomyces. More details are shown in

Figure 8.
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Figure 8 Actinobacterial diversity of marine sponge offshore Easter Island. Figure extracted and
modified from Cumsille et al. (2017). No sediment diversity was reported.
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Actinobacteria have shown an outstanding capacity for the production of secondary metabolites
with unprecedented chemical structures (Fenical et al. 2009; Jang et al. 2013; Trischman et al.
1994), ranging from polyketides, non-ribosomal peptides, ribosomal peptides and polyketides-non-
ribosomal peptide hybrids. As diverse as the chemistry found in Actinobacteria are the biological
activities produced for these molecules. The most remarkable biological activities describe to-date

and the producers are shown in Table 2.

Despite Actinobacteria immense potential for drug discovery, their biotechnological abilities
are not limited to only chemical production. Thus, the advancement of molecular biology and
genome sequencing technologies has allowed shedding light on many different biotechnological
applications that Actinobacteria can deliver. Currently, many representatives of this phylum are
being used to produce enzymes, such as proteases, amylases, xylanases and cellulases (Hamedi et
al. 2017). The main function of these enzymes is to produce the hydrolysis of polymers in order to
make available the individual units of the chain. A well-known example is the case of amylases,
which produce the hydrolysis of starch to simpler hydrocarbons, like maltose, which can be used

by wider range of organisms (McKillop et al. 1986).

Another biotechnological application of Actinobacteria is the biotransformation of chemicals.
Biotransformation is the modification of the chemical structure in a molecule through a microbe
catalyzed process (Pervaiz et al. 2013). This application takes advantage of the enzymatic
capabilities of microbes, which can generate isomerization, oxidative and reductive reactions
(Hamedi et al. 2017). The main benefit of biotransformation is the avoidance of synthetic chemistry
for chemical modification, which may require several synthetic steps with highly toxic reagents
and low yields, to produce the same modification than a microbe can develop in a single or few
steps. An example of this process is the performed by Rhodococcus rhodochrous IEGM66, which
produce the biotransformation of betulin, a pentacyclic lupane triterpenoid to betulona, a terpene
which is a useful intermediate for the synthesis of biological active molecules. Betulin is obtained
from the birch bark (Betula spp.) and it is biotransformed to betulona through a one-step
regioselective oxidation of a secondary hydroxyl group, producing an oxo group (Grishko et al.
2013). If this chemical modification were carried out in a synthetic fashion, it would require
multiple steps, as protection, oxidation and deprotection. Also, it would involve the use of high

priced and eventually toxic reagents.
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Bioremediation through the use of actinobacterial representatives is another application of great
importance. Due to the large biodiversity and persistence of the phylum, Actinobacteria are adapted
to live in conditions that other microorganisms cannot tolerate. This actinobacterial feature has
been used in the recovery of contaminated soils (Alvarez et al. 2017). There have been reports of
the use of Actinobacteria for the recovery of heavy metals (Alvarez et al. 2017), modification and
solubilization of persistent organic chemicals (Chaudhary et al. 2011). A dual example of
bioremediation of contaminated soils with cancerogenic heavy metals and organohalogenated
chemicals is the case performed by Streptomyces sp. M7, which efficiently remedied Cr(V1) and
lindane from contaminated soils (Polti et al. 2014). This finding has great potential due to the
necessity of decontamination of currently or previously industrial areas in developed and
developing countries. Nevertheless, the precise mechanism of intake and modification of the

pollutants is not characterized yet.

Furthermore, Actinobacteria are being currently tested as a non-chemical antifungal agent in
pilot agricultural farms. These studies have demonstrated that by adding Streptomyces spores to
wheat seeds, plants will be able to tolerate infections of pathogenic fungi (Rhizoctonia solani,
Pythium sp.) and will perform as good as with the addition commercial antifungal agents (Araujo
etal. 2017). The relevance of this finding lies in that commercial antifungal agents have high level
of toxicity and high cost for small farmers. Interestingly, similar results were obtained with rice
(Oryza sativa) cultures. In a field trial, rice cultures were treated with broth cultures of Streptomyces
obtained from the rice rhizosphere. These treated rice cultures were subsequently exposed to the

pathogenic fungus Rhizoctonia solani. The result obtained (Figure 9) was the tolerance of the

cultures when exposed to the infective agent (Araujo et al. 2017).
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Figure 9 Fungal tolerance of rice treated with Streptomyces broth culture. Extracted from Araujo

etal. (2017).
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Biotechnological applications of Actinobacteria are more extensive than here presented
(Hamedi et al. 2017). However, their most relevant ability is the production of secondary metabolite
with biomedical and industrial applications. Several decades have been invested in the study and
development of these features, and they have provided hundreds of molecules that we currently use
in our everyday life (Imhoff et al. 2011; Miao and Davies 2010). Table 2 presents a list of selected

actinobacterial representatives, its chemical products and biological activities.

Table 2 Examples of bioactive chemicals produced by actinobacterial representatives and their
biological activity. Table extracted from Barka et al. (2016).

Type of compound and producing species Bioactive agent(s)

Antibacterial agent producers
Verrucosispora spp. Abyssomycin
Streptomyces anulatus Actinomycins
Streptomyces canus Amphomycin
Micromonospora spp. Anthracyclin
Streptomyces cattley Antibiotics and fluorometabolites
Streptomyces canus Aspartocins
Streptomyces avermitilis Avermectin
Streptomyces venezuelae Chloramphenicol
Micromonospora spp. Clostomicins
Streptomyces griseus Cycloheximide
Streptomyces orchidaceus Cycloserine
Streptomyces roseosporus Daptomycin
Saccharopolyspora erythraea Erythromycin (Ilotycin)
Micromonospora purpurea Gentamicin
Streptomyces hygroscopicus Hygromycin
Streptomyces kanamyceticus Kanamycin
Streptomyces kitasoensis Leucomycin
Streptomyces lincolnensis Lincomycin
Marinispora spp. Marinomycin
Streptomyces fradiae Neomycins
Micromonospora spp. Netamicin
Streptomyces niveus Novobiocin
Streptomyces antibioticus Oleandomycin
Streptomyces rimosus Oxytetracycline
Streptomyces spp. Pristinamycin
Streptomyces lindensis Retamycin
Streptomyces mediterranei Rifamycin
Nocardia lurida Ristocetin
Streptomyces ambofaciens Spiramycin
Streptomyces virginiae Staphylomycin
Streptomyces endus Stendomycin
Streptomyces lydicus Streptolydigin
Streptomyces griseus Streptomycin
Streptomyces lavendulae Streptothricin
Streptomyces aureofaciens Tetracycline
Micromonospora spp. Thiocoraline
Amycolatopsis orientalis Vancomycin
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Table 2 (Continued) Examples of bioactive chemicals produced by actinobacterial representatives
and their biological activity. Table extracted from Barka et al. (2016).

Type of compound and producing species Bioactive agent(s)
Bioherbicide/biopesticide producers
Actinomadura spp. 2,4-Dihydro-4-(B-D-ribofuranosyl)-1, 2, 4 (3H)-triazol-3-one (herbicide)
Streptomyces hygroscopicus Herbimycin
Streptomyces avermitilis Ivermectin (derivative of avermectin)
Streptomyces prasinus Prasinons
Saccharopolyspora spinosa Spinosad (neurotoxic insecticides)

Antiparasitic agent producers

Streptomyces avermitilis Avermectins
Streptomyces coelicolor Prodiginine
Streptomyces bottropensis Trioxacarcin

Antiviral agent producers

Streptomyces antibioticus 9-B-D-Arabinofuranosyladénine
Streptomyces hygroscopicus Hygromycin
Streptomyces spp. Panosialins

Hypercholesterolemia agent producer
Streptomyces hygroscopicus Rapamycin

Antitumor agent producers

Micromonospora spp. Anthraquinones

Nocardia asteroides Asterobactine
Streptomyces spp. Borrelidine
Micromonospora spp. Diazepinomicin
Actinomadura spp. 1B-00208

Micromonospora spp. LL-E33288 complex
Micromonospora spp. Lomaiviticins
Micromonospora spp. Lupinacidins
Thermoactinomyces spp. Mechercharmycin
Marinospora spp. Marinomycin

Salinispora tropica Salinosporamide
Streptomyces peucetius Doxorubicin (adriamycin)
Streptomyces peucetius Daunorubicin (daunomycin)
Micromonospora spp. Tetrocarcin
Micromonospora spp. Thiocoraline

Immunostimulatory agent producers

Nocardia rubra Rubratin
Streptomyces olivoreticuli Bestatin
Kitasatospora kifunense FR-900494

Immunosuppressive agent producers

Nocardia brasiliensis Brasilicardin
Streptomyces filipinensis Hygromycin
Streptomyces filipinensis Pentalenolactone

Therapeutic enzyme (antitumor) producers
Streptomyces spp. L-Asparaginase
Streptomyces olivochromogenes L-Glutaminase
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Table 2 (Continued) Examples of bioactive chemicals produced by actinobacterial representatives

and their biological activity. Table extracted from Barka et al. (2016).

Type of compound and producing species

Bioactive agent(s)

Antifungal agent producers
Streptomyces anulatus
Streptomyces nodosus
Streptomyces griseochromogenes
Streptomyces griseus
Streptomyces spp.

Streptomyces venezuelae
Streptomyces padanus
Streptomyces galbus

Streptomyces violaceusniger YCED-9
Streptomyces venezuelae
Streptomyces kasugaensis
Streptomyces spp.

Streptomyces natalensis
Streptomyces tendae

Streptomyces diastatochromogenes
Streptomyces humidus
Streptomyces cacaoi

Streptomyces canus

Streptomyces lavendulae
Streptomyces canus

Nocardia transvalensis
Streptomyces hygroscopicus

Actinomycins
Ampbhotericin B
Blasticidin
Candicidin
Carboxamycin
Chloramphenicol
Fungichromin
Galbonolides
Guanidylfungin
Jadomycin
Kasugamycin
Kitamycin
Natamycin
Nikkomycin
Oligomycin
Phenylacetate
Polyoxin B
Resistomycin
Streptothricin
Tetracenomycin
Transvalencin
Validamycin

3. Microbial natural products chemistry

3.1. General overview and uses

Natural Products refers to a broad variety of small molecules that are produced by organisms.

Most of these chemicals are products of secondary metabolism, which means that they are

important for survival but not essential (Buchanan et al. 2015). Most of the microbial secondary

metabolites discovered to date have biological activities, such as antibacterial (Hohmann et al.

2009), antitumoral (Pamboukian and Facciotti 2004), immune-suppressive (Abraham 1998),

antifungal (Caffrey et al. 2001) and metal chelation activity (Wang et al. 2014). The wide

bioactivity of these chemicals has direct relation to their chemical diversity. Currently, there are a

number of classes of microbial natural products described. The most relevant are polyketides (PK),

non-ribosomal peptides (NRP), ribosomal peptides (RiP) and hybrids of non-ribosomal peptide-

polyketides (PK-NRP). Examples of these molecules are shown in Figure 10.
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Figure 10 Biosynthetic chemical diversity of Actinobacteria. PK: polyketide, NRP: non-ribosomal
peptide, RiP: ribosomal peptide, PK-NRP: hybrid of polyketide-non-ribosomal peptide.

3.2. Biosynthesis

The biosynthesis of microbial natural products occurs in different ways depending of the nature

of the chemicals to be produced. The main classes can be divided in polyketides, peptides, and

hybrids. The information for the biosynthesis is encoded in the microbial genes, which produce

large enzymatic modules that take simple chemical units (acetate and its derivatives, aminoacids,),

to produce complex and highly modified molecules which in some cases cannot be directly

recognized.
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Polyketides molecules are built on the base of acetate units (C>), as the minimal building block.
The coupling reaction between two different units is made though a Claisen condensation, which
results in a poly-B-ketone chain (Rittner and Grininger 2014). The growing chain is transferred to
other enzymatic modules in an assembly line fashion to produce further chemical modifications by
multi-modular or iterative enzymatic processes. Polyketides have different classification depending
of the enzymatic building strategy, thus there are three types: type I, type Il and type 11 (Weissman
2009). Type | PKS are characterized by large multi-modular enzymatic complexes. Each module
has at least one catalytic domain, which modifies the growing polyketide. During the assembly
each module only acts once on the growing polyketide chain (Figure 11A). Type Il PKS are known
to be the minimal PKS, due to that they are composed of only three domains which are used
multiple times in an iterative fashion (Figure 11B). Type Ill PKS are mainly characterized by the
lack of a transporter protein, the acyl carrier protein (ACP), and their mode of action, which works
iteratively (Figure 11C) (Weissman 2009). The catalytic domains differ depending of the chemical
modification encoded in the genes. To date known catalytic domains are: acyl carrier proteins
domain (ACP), ketosynthase domain (KS), thioesterase domain (TE), ketoreductase domains
(KR), dehydratase domain (DH), enoylreductase domain (ER), methyl Transferases domain (MT),
halogenases domain (Hal), cyclases domain (Cyc) and oxigenases domain (Ox) (Olano et al. 2010).
Examples of the PKS products are 6-deoxyerythronolide B (Type I), Galvaquinone B (Type Il) and
Resveratrol (Type Il).
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Figure 11 Types of polyketide synthases. A: Type I, B: Type Il, C: Type Ill. Extracted from
Weissman et al. (2009).

3.4. Peptides

Peptide natural products are as diverse as polyketides, their primary classification is based in
the origin, which can be non-ribosomal and ribosomal synthesis. Both of these chemotype are
encoded in the microbial genomes and built with simpler units, proteinogenic and non-

proteinogenic aminoacids (Arnison et al. 2013; Marahiel and Essen, 2009).
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Non-ribosomal peptides (NRP) are synthesized through a multi-modular system, quite similar
to the one shown in the synthesis of type | polyketides, but differing in the enzymatic machinery.
The condensation reaction occurs through a peptide bond formation, with a previous activation by
phosphorylation (Marahiel and Essen, 2009). Subsequently, the substrate aminoacid is coupled
with the peptide intermediary, extending the peptide chain (Figure 12). The condensation,
activation, transference and chemical modification of the growing peptide chain are catalyzed by
different enzymatic modules which are composed of catalytic units, such as: adenylation domain
(A), thiolation domain (T), condensation domain (C) and thioesterase domain (TE). Generally,
long peptide chains undergo a macrocyclization in order to improve their stability (Marahiel and
Essen, 2009).
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Figure 12 Basic non-ribosomal peptide biosynthesis mechanism. adenylation domain (A),
thiolation domain (T), condensation domain (C). **Thioesterase domain (TE) not shown in the
figure. Extracted from Watanabe et al. (2009).

Ribosomal peptides are synthetized by the ribosomes and they undergo posttranslational
chemical modifications (Figure 13). The encoded genetic information is directly translated by the
ribosomes. The translation produces a precursor peptide which is composed by the leader peptide
and the core peptide. The leader peptide major function is to provide recognition sites for further
modifications of the final product. The core peptide is the precursor of the final peptide product
(Ortega and van der Donk, 2016).
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Figure 13 Biosynthesis of ribosomal peptides. Extracted and modified from Ortega et al. (2016).

There are different types of ribosomal peptides, which are: lassopeptides, thiopeptides,
linaridins, cyanobactins, lanthipeptides and microcins. The main difference among these peptide is
the aminoacids composition, heteroatom ring formation, sulfur bonds, disulfide bonds, and by their

terminal aminoacid modifications (Bagley et al. 2005; Claesen and Bibb, 2011; Dong et al. 2019;
Donia et al. 2008; Knappe et al. 2009; Knerr and van der Donk, 2012).
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V. Research aims

The aim of my thesis was to study the Actinobacteria diversity dwelling in the coastal zone

of Easter Island and the chemical exploration of selected actinobacterial representatives.

This thesis has three major objectives:

Characterize the culturable Actinobacteria diversity of the coastal zone of Easter Island
Multiples marine-derived samples were taken from the intertidal zone of Easter Island and cultured
in seven different nutritive media. The characterization of the obtained actinobacterial
representatives was made through the analysis of the 16S rRNA gene, which was also used to

construct phylogenetic trees for further classification.

Investigation of the Easter Island sea anemone, Gyractis sesere, its actinobacterial diversity

and anthraquinone content

The actinobacterial symbionts and the anthraquinone content of the sea anemone, Gyractis sesere,
were investigated in order to clarify the producer of two known antitumoral anthraquinones,
lupinacidin A and galvaquinone B. To develop this investigation chemical dereplication through
HPLC, LC-MS and NMR were used. For the isolation of the symbionts, culture techniques were
developed with seven different media. Symbionts characterization and anthraquinone biosynthetic
potential were elucidated through gene and genome sequencing and subsequent bioinformatic

analysis.

Comparison of the secondary metabolites profiles and morphological traits of two
phylogenetic almost identical Streptomyces griseus strains originating from geographically

remote locations

!H NMR, HPLC and LC-MS were used compared the secondary metabolites production of two
almost identical Streptomyces griseus strains, originating from geographical distant locations.
Chemical data was associated with morphological, biological activity and phylogenetic evaluation

to discern whether or not two Streptomyces strains with identical 16S rRNA gene sequence may
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produce a dissimilar chemical diversity with medicinal potential.
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Abstract

Easter Island is an isolated volcanic island in the Pacific Ocean. Despite the extended knowledge about its origin, flora, and fauna,
little is known about the bacterial diversity inhabiting this territory. Due to its isolation, Easter Island can be considered as a
suitable place to evaluate microbial diversity in a geographically isolated context, what could shed light on actinobacterial
occurrence, distribution, and potential novelty. In the present study, we performed a comprehensive analysis of marine
Actinobacteria diversity of Easter Island by studying a large number of coastal sampling sites, which were inoculated into a
broad spectrum of different culture media, where most important variations in composition included carbon and nitrogen
substrates, in addition to salinity. The isolates were characterized on the basis of 16S ribosomal RNA gene sequencing and
phylogenetic analysis. High actinobacterial diversity was recovered with a total of 163 pure cultures of Actinobacteria
representing 72 phylotypes and 20 genera, which were unevenly distributed in different locations of the island and sample
sources. The phylogenetic evaluation indicated a high degree of novelty showing that 45% of the isolates might represent new
taxa. The most abundant genera in the different samples were Micromonospora, Streptomyces, Salinispora, and Dietzia. Two
aspects appear of primary importance in regard to the high degree of novelty and diversity of Actinobacteria found. First, the
application of various culture media significantly increased the number of species and genera obtained. Second, the geographical
isolation is considered to be of importance regarding the actinobacterial novelty found.

Keywords Easter Island - Actinobacteria - Pacific Ocean - New taxa - Polynesia

Introduction

Easter Island, or Rapa Nui (Polynesian name), is a young
island of volcanic origin (0.78 Ma) (Vezzoli and Acocella
2009) located in the Pacific Ocean. It has an area of
163.6 km” and a maximum ground elevation of 560 m a.s.l.
The island is mostly formed by volcanic rock, lava outcrops,
and clay soils (Casanova et al. 2013). It is known worldwide
for its rock statues, the Moai. After its emergence as a
volcano-derived territory, Easter Island was colonized by an-
imals and plants through migration and oceanic drift (Barnes
et al. 2006; Grau 1996; Montenegro et al. 2008). The human
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colonization of the territory has happened approx.
1200 years A.D. (Hunt and Lipo 2006) and was initiated as
a progressive spread of the Polynesians through Pacific Ocean
islands (Wilmshurst et al. 2011).

Easter Island has a privileged location for studies of biodi-
versity due to its geographically isolated location in the south-
ern Pacific Ocean. Diverse marine biodiversity surveys have
been developed on the island, targeting mostly
macroorganisms, and have found that this territory has a high
degree of endemism (Glynn et al. 2007; Kohn and Lloyd
1973; Osorio and Cantuarias 1989; Rehder 1980; Santelices
and Abbott 1987). Despite the wide knowledge in the geology
and zoology of the island, marine microorganisms have stayed
almost untouched with the exception of a few studies targeting
the island or its surroundings (Cumsille et al. 2017; Miller
et al. 2014; Vezina et al. 1975).

In this context, information on Easter Island actinobacterial
diversity is very limited (Cumsille et al. 2017; Vezina et al.
1975), though of particular importance due to harboring inter-
esting biotechnological features, such as the production of
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pharmacological chemicals (Miao and Davies 2010). A previ-
ous study on a single soil-dwelling Easter Island Gram-
positive bacterium, Streptomyces rapamycinicus DSM
41530", demonstrated the potential of Streptomyces represen-
tatives for the discovery of pharmacologically relevant mole-
cules (Vezina et al. 1975). The strain produced rapamycin
(Sirolimus®), an immunosuppressive drug with a unique
mechanism of action (Sehgal 1998). Moreover,
Actinobacteria constitute an important part of bacteria
inhabiting soils (Babalola et al. 2009), marine sediments
(Pathom-aree et al. 2006), and a broad range of
macroorganisms (Abdelmohsen et al. 2010; Kaltenpoth
2009). Furthermore, their distribution has shown signs of
global dispersal of a diverse array of genera and species
(Maldonado et al. 2005), for which a study of this bacterial
phylum in a geographically isolated context would contribute
to improve the understanding of the actinobacterial distribu-
tion on the globe.

The present study aims to gain knowledge on the diversity,
uniqueness, and biogeography of Actinobacteria inhabiting
the Easter Island. For this purpose, different samples that orig-
inated from the coastal zone were studied using a cultivation-
based approach. Isolates were characterized through phyloge-
netic analysis of 16S rRNA gene sequences. The results re-
vealed high actinobacterial diversity at the species and genus
level, with dependency on the sample location and nature.

Materials and methods
Sample collection and treatment

Samples were taken from marine habitats at the coastal zone
of the Easter Island by the first author (Chilean citizen), during
March 2016. All sampling sites were outside of the Isla de
Pascua national park (Table 1, Fig. 1) and were taken in agree-
ment with regulations by the Chilean government. Samples
were collected and stored at 0 °C 1 hour after the sampling
process. The number of samples for each zone depended on
the accessibility of the particular sample site. Salinity and
water temperature of the island were checked by local indica-
tors and were in agreement with those published (Moraga
et al. 1999), i.e., 22 °C for sea water temperature and 35%
of salinity.

Approx. 1 cm® of each sample was taken, homogenized if
possible, and transferred into a new sterile tube. Subsequently,
9 mL of Ringer’s buffer % strength (Goodfellow and Fiedler
2010) were added to produce a final solution of 1:10. Then,
this solution was incubated at 56 °C for 10 min with the aim of
reducing the viability of non-actinobacterial microbes. After
the incubation, 1 min of vortex was applied, and 1 mL of 1:10
solution was taken and diluted with 9 mL of Ringer’s buffer to
obtain a 1:100 solution. This last step was repeated to obtain
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10 mL of a 1:1000 solution. The inoculation of the culture
media was done by adding 50 pL of the dilution into 15 cm
of diameter Petri dishes containing the media and spreading
the solution with a triangular glass-made cell spreader. This
process was repeated with each dilution and each culture me-
dium. All the sample dilutions were equally inoculated in the 7
media using the same conditions and incubated at 25 °C in
darkness. Darkness was chosen as a filtering factor to elimi-
nate potential microalgal contamination. After 3 weeks of in-
cubation, the agar plates were visually checked. When growth
was evident, all the grown colonies were purified by streaking
on a new agar plate of the same isolation media, until an
axenic culture was achieved. All actinobacterial isolates were
cryo-conserved at —80 °C using the Cryobank™ Bacterial
storage system (Mast Diagnostica GmbH, Germany).

Cultivation media

The design and selection of the culture media were carried out
by selecting nutrient sources that have environmental avail-
ability, and that in addition can be used by actinobacterial
representatives in the detriment of other bacteria, as complex
and uncommon sugars, organic and inorganic nitrogen mole-
cules, and minerals (Kopf et al. 2015). Another relevant factor
was salinity, since it was used as a filter to increase the isola-
tion of actinobacterial representatives with a degree of salt
tolerance or sea adaptation (Seymour 2014). Salinity was ad-
justed by the use of artificially reconstituted sea salt, sodium
chloride, and natural sea water. Finally, we included an artifi-
cially reconstituted oligotrophic medium, which mimics the
sea water components (Muscholl-Silberhorn et al. 2008), as
well as naturally occurring oligotrophic sea water media
(North and Baltic Sea water) to test the importance of micro-
elements in the isolation of marine Actinobacteria.

The isolation and cultivation media for the present
work were performed using new generated culture media
(BCM, chitin medium; BTM, trehalose medium; BSEM,
Baltic Sea water medium; NSEM, North sea water medi-
um) as well as of previously reported media with subtle
modifications (SIMAI, starch-based Salinispora isolation
medium (Patin et al. 2016); HA, humic acid medium
(Hayakawa and Nonomura 1987); OLI, oligotrophic me-
dium (Muscholl-Silberhorn et al. 2008). Medium SIMA1
(2.5 g starch, 1 g yeast extract, 0.5 g peptone, 1 L aq.
deion., 25 g Tropic Marin™ salt (Wartenberg, Germany),
15 g/L agar (Patin et al. 2016)); medium BCM (3 g chitin,
0.5 g N-acetyl glucosamine, 0.2 g K;HPO,, 0.25 g KNO;,
0.25 g casein, 5 mL of mineral solution, 4 mL vitamin
solution, 1 L aq. deion., 15 g/L Tropic Marin™ salt
(Wartenberg, Germany), 12 g/L Gellan gum, pH =7.35);
medium BTM (1 g trehalose, 0.25 g histidine, 0.25 g pro-
line, 0.2 g MgCl, x 6H,0, 4 mL vitamin solution, 12 g/L
Gellan gum, 1 L aq. deion., 15 g Tropic Marin™ salt
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Table 1 Easter Island samples

sites, origin, and distribution. Zone  Sample  Sample type Latitude (N-S) Longitude (W-E)

Graphical representation of the

sampling sites can be seen in Fig. 1 SNI Sea grass on rocks 27°04'24.0" S 109° 19" 26.5" W

1 1 SN3 Beach sand 27°04'242" S 109°19' 264" W
1 SN5 Intertidal zone small stone** 27°04'24.1" S 109°19' 26.1" W
1 SN6 Marine sediment (depth 3 m) 27°04'22.5" S 109° 19 26.2" W
1 SN7 Brown algae (depth 3 m) 27°04'24.0" S 109° 19' 25.9" W
1 SN8 Brown algae attached to a stone (depth 3 m)**  27° 04 23.5" S 109° 19’ 25.6" W
1 SN10 Holothuria nest sand (depth 3 m) 27°04'23.1" S 109° 19' 26.7" W
2 SN20 Intertidal zone stone** 27°05' 364" S 109° 16' 49.0" W
3 SN21 Small stone (depth 10 cm)** 27° 07" 24.2" S 109° 16’ 12.0" W
4 SN11 Coral (Porites lobata) 27°08' 58.0" S 109°20' 07.7" W
5 SN22 Rocky pond sediment 27°09'45.8" S 109° 26' 34.5" W
5 SN23 Sediment from intertidal pool 27°09'37.8"S 109° 26' 35.6" W
6 SN25 Marine sediment (depth 40 cm) 27°08'45.0" S 109° 25" 49.8" W
6 SN26 Unknown zoanthid specimen 27°08'45.1" S 109° 25’ 50.0" W
6 SN27 Small stone (depth 10 cm)** 27°08'45.4" S 109° 25’ 50.1" W
6 SN28 Brown algae from intertidal zone 27°08'44.8" S 109° 25" 49.7" W

#*All the marine-derived stones were submerged and had an approx. volume of 1 cm®

(Wartenberg, Germany), pH =7.2; medium HA (0.5 g hu-
mic acid, 0.25 g Na,HPO, 0.85 g KCl, 0.25 g MgSO, x
7H,0, 5x 107 g FeSO, x 7TH,0, 0.01 g CaCOs, 12 g/L
Gellan gum, 4 mL/L of vitamin solution (Hayakawa and
Nonomura 1987), 1 L aq. deion., pH=7.2). The natural
oligotrophic media used were medium BSEM (0.1 g tyro-
sine, 0.1 g D-galactose, 4 mL vitamin solution, 5 mL
mineral solution, 1 L Baltic Sea water, 16 g/L agar,
pH=7.4) and medium NSEM (0.1 g tyrosine, 0.1 g D-
galactose, 4 mL vitamin solution, 5 mL mineral solution,
1 L North Sea water, 16 g/L agar, pH =7.4). The vitamin
solution added to BCM, BTM, HA, BSEM, and NSEM

Fig. 1 Geographical distribution
of sample sites and actinobacterial
richness of Easter Island, Chile
(expressed as phylotype diversity).
Samples originate from six
different zones and include
samples: SN1, SN3, SN5, SN 10,
SN6, SN7, SN8 from zone 1;
SN20 from zone 2; SN21 from
zone 3; SN11 from zone 4; SN22,
SN23 from zone 5; and SN25,
SN26, SN27, SN28 from zone 6.
Each dot represents a sample site,
and its size is directly proportional
to the number of phylotypes found
(as indicated on right side scale)

'f

media contained 1 L aq. deion., 5 mg thiamine x HCI,
5 mg riboflavin, 5 mg niacin, 5 mg pyridoxine HCI,
5 mg inositol, 5 mg Ca-pantothenate, 5 mg p-amino
benzoic acid, and 2.5 mg biotin (Hayakawa and
Nonomura 1987). The mineral solution added to BCM,
BSEM, and NSEM media contained 1 L aq. deion.,
50 mg FeSO,4 x 7TH,0, 50 mg ZnCl,, 50 mg CuSO, x
5H,O. The artificially reconstituted oligotrophic OLI me-
dium was prepared as reported in Muscholl-Silberhorn
et al. 2008 (called HSPC medium), but without the addi-
tion of fatty acids. Briefly, it contained 10 mineral salts,
with NaCl as the major salt (25 g/L), 14 trace elements,

8

Zone 1

Easter Island, Chile

o Zone 4
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10 vitamins, 13 carbon sources, and 2 nitrogen sources.
All media were supplemented with 50 mg/L of nalidixic
acid and 100 mg/L of cycloheximide with the aim of
avoiding the growth of Gram-negative bacteria, yeasts,
and fungi (Thaker et al. 2014).

Molecular characterization

For the molecular characterization of the isolates, DNA was
extracted using the DNeasy™ kit (Qiagen GmbH, Hilde,
Germany) according to the manufacturer’s instructions. 16S
rRNA gene sequence amplification was performed using gen-
eral primers for bacteria in a concentration of 10 pmol/uL, i.e.,
27f and 1492r (Lane 1991), 342f and 534r (Staufenberger
et al. 2008), 1387r (Ellis et al. 2003), and 1525r (Frank et al.
2008). PCR reagents were obtained from GE Healthcare
illustra™ PuReTaq Ready-To-Go™ PCR Beads (GE
Healthcare, Glattbrugg, Switzerland) containing DNA poly-
merase, MgCl, x 6H,0, and dNTPs. The sequencing process
was run at the Centre for Molecular Biology at Kiel University
(IKMB). The 16S rRNA gene sequences were manually cu-
rated using Chromas pro software (version 1.7.6) and saved in
FASTA format. The classification of the isolates on the genus
level was performed by using the Ribosomal Database Project
(Cole et al. 2013). BLAST was used for the alignment of the
16S rRNA gene sequences and for the phylogenetic affiliation
of the isolates with the next related strain (Altschul et al.
1990). The BLAST analysis was run twice, with comparing
against type strains only, and once against all available bacte-
rial sequences in order to obtain a view of the isolate phylo-
genetic relationship, but only the former was considered for
the phylogenetic construction and assessment. Data about the
number of species for Actinobacteria genera was obtained
from the list of prokaryotic names with standing in nomencla-
ture (Parte 2014). The sequences of the representatives of the
phylotypes were deposited in NCBI under Genbank accession
number MH299425-MH299496 (Table 4).

Phylotype assignment

By using the nucleotide sequence of the 16S rRNA gene of
the Easter Island isolates, affinity phylogenetic trees were
constructed with the representatives of each genus in order
to delineate phylotypes. A phylotype was defined on the
dissimilarity of the 16S RNA gene sequence among the
Easter Island isolates. In the case two or more isolates
shared 100% of similarity of the 16S RNA gene sequence,
they were assigned to a single phylotype, but only one strain
was selected as representative for the phylogenetic evalua-
tion, which is listed in Table 4 and Figs. 3, 4, and 5. The
comparison between the numbers of total isolates and phy-
lotypes per sample can be seen in Table 3.
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Phylogenetic analysis

Phylogenetic tree calculations were performed with the 16S
rRNA gene sequences of the Easter Island phylotypes and
their respective closest type strains. The sequences were
aligned using SILVA-SINA (Quast et al. 2013), and the align-
ment was saved in FASTA format. MEGA version 7.08.18
was used for gap deletion, phylogenetic model calculations,
and bootstrapped phylogenetic tree construction using a max-
imum likelihood model (Tamura et al. 2011). The final version
of phylogenetic trees was made with Figtree version 1.4.3
software to improve visualization only (Rambaut 2015).

Data analysis

Figure 1 was created through the usage of Qgis software
(QGIS 2018), Fig. 2 was drawn up with RAWGraphs
(Mauri et al. 2017).

Results
Sampling sites and Actinobacteria richness

We took various samples on the coastal shoreline around
Easter Island. The different sampling sites are shown in Fig.
1, a map of the island. More details can be found in Table 1,
where sample origin and geographic coordinates are present-
ed. The actinobacterial richness varied largely on the different
samples, from no actinobacterial isolates found in a few sam-
ples (SN1, SN5, and SN11), to high abundance and diversity
in samples like SN25, SN26, and SN27. The recovery of
Actinobacteria from the samples showed different success,
which is detailed in Table 3. Interestingly, no isolate was ob-
tained from a coral fragment (homogenized tissue and skele-
ton) of the species Porites lobata (sample SN11), even though
corals are commonly associated with abundant microbes
(Mahmoud and Kalendar 2016).

In terms of sample richness, samples SN25, SN26, and
SN27 (all zone 6) had the highest number of Actinobacteria
isolates, phylotypes, and genera. Sample SN25, representing a
coastal sediment sample, revealed the highest diversity. It
yielded 12 out of 20 genera found in all sites, represented by
21 phylotypes and also contained the highest number of
Micromonospora phylotypes (7). Sample SN25 was followed
in actinobacterial richness by a small stone (SN27) which
exhibited 13 phylotypes distributed in 7 genera, and an un-
identified zoanthid individual (SN26), which revealed 10 phy-
lotypes belonging to 7 actinobacterial genera, as shown in
Table 3. Furthermore, the samples from zone 6 (SN25,
SN26, SN27, and SN28) yielded a total of 18 genera, indicat-
ing an above average Actinobacteria diversity for this small
area whereas the regular number of isolated genera in the other
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Fig. 2 Media-specific isolation of representatives of different genera of
Actinobacteria obtained from 6 different cultivation media. The
broadness of the connection is directly proportional to the number of
isolates for each genus. NSEM medium is not included in the figure,
because no Actinobacteria were isolated. Media and key components.

samples varied from 1 to 4 genera. Further details, i.e., data
about the number of isolates and phylotypes affiliating to the
genera for each sample, are depicted in Table 3.

Impact of culture media on isolation success

In order to evaluate the specificity of culture media and to
improve the recovery of the environmental diversity, 7 differ-
ent culture media were used for the isolation. The isolation of
representatives of different genera with the different composi-
tion of culture media was achieved, in some cases showing
specificity. Each culture medium yielded different levels of

BTM: trehalose, amino acids, 15 g/L salinity. BCM: chitin, N-acetyl
glucosamine, casein, 15 g/L salinity. SIMALI: starch, peptone, yeast ex-
tract, 25 g/L salinity. HA: humic acid, no salt added. OLI: oligotrophic
media, 25 g/L salinity. BSEM: tyrosine, galactose, 15 g/L salinity.
NSEM: tyrosine, galactose, 35 g/L salinity

diversity, which are compared in Table 2 with regard to the
number of isolates/phylotypes/genera obtained. Interestingly,
it seems that our cultivation procedure and media were spe-
cific for Actinobacteria, as the growth of other bacterial
groups was negligible, with just a few representatives of the
Firmicutes (Bacillus, Staphylococcus, and Aerococcus) being
isolated.

It turned out that some of the media were highly specific
and, as a result, several of the genera/species/phylotypes were
isolated specifically from one of the media. Only in a few
cases, the same phylotypes, affiliated to Streptomyces,
Dietzia, Salinispora, and Micromonospora, were isolated
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Table 2 Comparison of the isolation success of each culture media in

function of the number of isolates/phylotypes/genera obtained

of chitin and starch reduced the growth of non-Actinobacteria,
due to the inability of these competitors to metabolize long-

Media Isolates Phylotypes Genera  chain carbohydrates. This last factor indirectly supported the

isolation of Actinobacteria. Moreover, the use of different
SIMAI 32 25 14 nutrient sources revealed the preference of Actinobacteria to
BCM 39 20 8 carbohydrate and protein derivatives (higher diversity with the
BTM 57 18 8 media SIMA1, BTM, and BCM media). In contrast, when
HA 15 8 5 culture media were deprived of carbohydrates and supple-
OLI 13 8 6 mented with humic acid (medium HA), the actinobacterial
BSEM 7 7 5 diversity was significantly reduced. The optimal carbohydrate
NSEM 0 0 0 concentrations of the media used in this study were those used

in SIMA1 (2.5 g/L of starch), BCM (3 g/L chitin and 0.5 g/L
N-acetyl glucosamine), and BTM (trehalose 1 g/L). These
media also had protein-derived nutrients (peptone, amino

from different media. For instance, by adding chitin (medium
BCM), specifically representatives of the genus Yimella, could
be isolated. On the other hand, the addition of starch into the
culture media provided a more universal medium for
Actinobacteria (medium SIMAL1), ending up in a wider range
of Actinobacteria genera. Besides, medium SIMA1 provided
specificity for Ornithinimicrobium, Geodermatophilus,
Actinomycetospora, and Microbacterium, which were solely
isolated with this culture medium. Furthermore, the selection

acids, yeast extract) in the order of 0.1-1.0 g/L.

Additionally, the use of natural (BSEM, NSEM) and syn-
thetic (OLI) oligotrophic media showed a lower actinobacterial
diversity when compared with non-oligotrophic media
(SIMAI1, BCM, BTM, HA). This fact is in accordance with
the reduced nutrient concentrations of these media. Despite
the nutritive limitation, OLI medium was the most successful
oligotrophic medium, being able to recover 8 different
actinobacterial phylotypes distributed in 6 genera. Medium

Table3  Actinobacteria genera isolated from different samples from Easter Island, indicating the number of isolates (first number) and of phylotypes

(second number) for each genus

Genus Sample

SN3
Zone 1

SN6
Zone 1

SN7
Zone 1

SN8
Zone 1

SN10
Zone 1

SN20
Zone2 Zone3 Zone5 Zone5

SN21 SN22  SN23  SN25 SN26  SN27  SN28

Zone 6 Zone6 Zone6 Zone 6

Actinomycetospora - - - - -
Aeromicrobium - -
Arthrobacter - = - s —
Blastococcus - s - - -
Cellulosimicrobium - - = - —
Dactylosporangium
Dietzia* o - _ _ _
Geodermatophilus - - = - .
Marmoricola - - = - B
Microbacterium - - = - _
Micromonospora**
Nocardioides -
Nocardiopsis - - . - -
Nonomuraea - - =
Ornithinimicrobium - - = = -
Rhodococcus - = = . -
Salinispora*** 5 = = =
Streptomyces*##* -
Verrucosispora - - = = =
Yimella - -
Total 7-4 11-5

2-1 2-2

1-1 S = =

2-1
7-1

28-10 47-13 11-9

Samples SN1, SN5, and SN11 did not reveal any actinobacterial isolate
*Samples SN25 and SN27 shared the same phylotype

#*All the samples but SN22 shared phylotypes

##%Only 1 phylotype in all the samples

*#+*Two phylotypes were repeated in samples SN25 and SN28
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BSEM yielded the isolation of 7 phylotypes distributed in 5
genera, while medium NSEM did not produce any
actinobacterial isolates. OLI medium contained carbohydrates,
but the concentration levels were low in comparison with those
found in SIMA1, BCM, and BTM. OLI medium mimics an
ocean oligotrophic situation with carbon source concentrations
in the order of 0.0013 g/L in average, quite low when compared
with other media (SIMA1, BCM, and BTM).

We recovered a number of isolates which are closely relat-
ed or identified as specific marine taxa by using media with an
intermediate high salinity (2.5%). Among these were
Salinispora arenicola, Nonomuraea maritima,
Micromonospora sediminicola, Blastococcus aggregatus,
and Streptomyces nanshensis. However, a combination of
high salinity (3.5%) and low availability of nutrients seemed
to be detrimental for the isolation of Actinobacteria, as medi-
um NSEM showed. Our data also revealed that several
Actinobacteria previously described from soil samples were
obtained from our marine samples. Finally, Table 2 and Fig. 2
show culture media yield and specificity.

Actinobacteria diversity

Using different culture media, we obtained 163 bacterial iso-
lates from the Easter Island, which belong to 20 different
genera and represent 72 different phylotypes. The number of
isolates and phylotypes of the genera is shown in Table 3.

The 5 most abundant genera dwelling in the studied area
were Micromonospora (60 isolates), Streptomyces (24 iso-
lates), Dietzia (16 isolates), Arthrobacter (11 isolates), and
Salinispora (7 isolates). Based on 16S rRNA gene sequences,
the highest number of phylotypes was found in the genus
Micromonospora (29). Representatives of Micromonospora
were isolated from 11 out of 16 samples, and the number of
phylotypes which can be regarded as the number of species
isolated from Easter Island represents 34.5% of all species of
this genus described so far (29 out of 84). This suggests that
Easter Island is a hotspot for Micromonospora species.

Another abundant genus was Streptomyces with 17 phylo-
types affiliating to 2.0% of all known Streptomyces species
(17 out of 842). Although a rather small number of
Streptomyces representatives were isolated, it is important to
recall the immense number of species described of this genus,
as a result of public and private initiatives which primarily
aimed drug discovery (Hopwood 2007). Thus, Streptomyces
is an exception in relation with the other actinobacterial genera
(i.e., Micromonospora, 82 type strains) due to the large the
number of available type strains.

The occurrence of Verrucosispora, Dactylosporangium,
Yimella, Ornithinimicrobium, Nocardiopsis, Microbacterium,
Marmoricola, Geodermatophilus, Cellulosimicrobium,
Actinomycetospora, and Arthrobacter was sample specific,
since the isolation of these genera was restricted to single

samples (Table 3). The members of a larger number of genera
(Aeromicrobium, Blastococcus, Dietzia, Micromonospora,
Nocardioides, Nonomuraea, Rhodococcus, Salinispora, and
Streptomyces) were isolated from more than one sample.
The widest distribution in the studied area with isolates from
different samples and also sampling sites was found by the
representatives of Aeromicrobium, Nocardioides,
Nonomuraea, Micromonospora, Salinispora, and
Streptomyces.

16S rRNA gene sequence similarity, phylogenetic
characterization, and uniqueness

By aligning our sequences with BLAST-NCBI database, and
using type strain only, we determined that 50 out 72 isolated
phylotypes shared >99% similarity of 16S ribosomal RNA
gene sequences to type strains, while 22 out 72 showed lower
sequence similarity, ranging from 94 to 98%. Thirteen phylo-
types had 98%, 5 phylotypes had 97%, 2 phylotypes had 96%,
and 2 phylotypes had 94% (Table 4).

In order to analyze the phylogenetic relationships, just one
representative strain per phylotype (according to affinity trees)
was selected. Different phylogenetic trees are presented for
Micromonospora and Streptomyces genera and the other
Actinobacteria (Figs. 3, 4, and 5). Micromonospora was the
most abundant genus found in our samples, with 60 isolates
belonging to 29 phylotypes. According to the phylogenetic
tree (Fig. 3), only 42% of the Micromonospora isolates from
the Easter Island are closely associated with related type
strains, while 58% showed poor association (SN28 51.1,
SN27_670.1, SN10_5.1, SN22_5.1, SN26_25.1,
SN27_101B.1, SN27_669.1, SN27_39.1, SN26_100.1,
SN3_4.1, SN6_8.1, SN6_55.1, SN23_2.1, SN10_77.1,
SN8 22.1, SN6_25.1, and SN25_6.1) and potentially repre-
sent new species.

In the case of Streptomyces, 24 isolates were obtained,
which were distributed into 17 phylotypes according to se-
quence similarity. By evaluating the phylogenetic tree, we
obtained that 65% of the Easter Island phylotypes were close-
ly affiliated with type strains (97-99% sequence similarity)
(Fig. 4), while 35% might belong to new Streptomyces species
with 97-99% sequence similarity (SN28 94.1, SN28 50.1,
SN20_12.1, SN27_5.1, SN28_222.1, and SN25_508.1).

Most of the other actinobacterial isolates from Easter Island
showed a high 16S rRNA gene sequence similarity and clus-
tered with type strains of known species. Therefore, they quite
likely are strains of these species and identified as such
(Fig. 5). Quite some of our isolates do, however, show signif-
icant differences in the 16S rRNA gene sequences, and these
may be considered to represent new taxa.

Most significantly, isolate SN27_500.1 represents an inter-
esting case, because it has only 96% sequence similarity to
Ornithinimicrobium kibberense DSM 17687" and
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Table 4  First match of BLAST-NCBI comparison using 16S rRNA gene sequence. Only type strains were used for the determination of the next
related type strain

Phylotype 16S rRNA sequence length (nt) Genbank acc. no. Next related type strain Similarity %
SN27_9.1 1474 MH299440 Salinispora arenicola DSM 44819" 100
SN20_15.1 1049 MH299453 Micromonospora sediminicola NBRC 107934" 100
SN25_555.1 1340 MH299425 Actinomycetospora straminea JCM 17983 99
SN27_135A.1 1473 MH299426 Aeromicrobium choanae CCM 8650" 99
SN26_23.1 1338 MH299428 Arthrobacter koreensis JCM 123617 99
SN26_101.1 1476 MH299430 Cellulosimicrobium funkei DSM 16025" 99
SN25_202.1 1334 MH299431 Blastococcus aggregatus DSM 47257 99
SN3 2.1 1472 MH299433 Dactylosporangium luteum DSM 45324 99
SN3 3.1 1473 MH299434 Dactylosporangium maewongense JCM 15933" 99
SN26_13.1A 1471 MH299435 Dietzia cinnamea DSM 44904" 99
SN27_100.1 1475 MH299436 Dietzia schimae DSM 451397 99
SN25_10.1 1335 MH299437 Geodermatophilus tzadiensis DSM 45416" 99
SN20_9.1 1336 MH299441 Nocardiopsis dassonvillei DSM 431117 99
SN28_40.1 1469 MH299443 Nonomuraea jabiensis DSM 45507" 99
SN26_12.1 1475 MH299445 Rhodococcus soli DSM 46662" 99
SN26_15.1 1477 MH299449 Verrucosispora maris DSM 45365" 99
SN10_5.1 1473 MH299451 Micromonospora chokoriensis JCM 13247" 99
SN10_77.1 1334 MH299452 Micromonospora auratinigra DSM 44815" 99
SN20_17.1 1330 MH299454 Micromonospora aurantiaca DSM 43813 99
SN20_19.1 1325 MH299455 Micromonospora auratinigra DSM 4481 5T 929
SN22 1.1 1322 MH299456 Micromonospora schwarzwaldensis DSM 45708" 99
SN22 5.1 1307 MH299457 Micromonospora krabiensis DSM 45344" 99
SN23 2.1 1330 MH299458 Micromonospora auratinigra DSM 44815" 99
SN25_201.1 1332 MH299459 Micromonospora purpureochromogenes DSM 438217 99
SN25 3.1 1330 MH299460 Micromonospora coxensis JCM 13248" 99
SN25 4.1 1209 MH299461 Micromonospora chokoriensis JCM 13247" 99
SN25_5.1 1330 MH299462 Micromonospora chokoriensis JCM 13247" 99
SN25_52.1 1470 MH299463 Micromonospora tulbaghiae DSM 451427 99
SN25 6.1 1330 MH299464 Micromonospora peucetia DSM 43363" 99
SN25_800.1 1466 MH299465 Micromonospora auratinigra DSM 4481 5T 99
SN26_110.1 1330 MH299467 Micromonospora echinospora DSM 43816" 99
SN26_25.1 1417 MH299468 Micromonospora rifamycinica DSM 44983" 99
SN27_669.1 1330 MH299471 Micromonospora aurantiaca DSM 438137 99
SN27_670.1 1469 MH299472 Micromonospora chokoriensis JCM 13247" 99
SN28 51.1 1336 MH299473 Micromonospora chokoriensis ICM 13247" 99
SN3 1.1 1471 MH299474 Micromonospora rifamycinica DSM 44983" 99
SN3 4.1 1329 MH299475 Micromonospora pattaloongensis JCM 128337 99
SN6_25.1 1468 MH299476 Micromonospora echinospora DSM 43816" 99
SN6_55.1 1328 MH299477 Micromonospora auratinigra DSM 44815" 99
SN8_22.1 1470 MH299479 Micromonospora auratinigra DSM 44815" 99
SN20_4.1 1172 MH299481 Streptomyces peucetius DSM 407547 99
SN25_55.1 1341 MH299483 Streptomyces nanshensis SCSIO 01066" 99
SN25_8.1 1339 MH299484 Streptomyces fulvissimus DSM 40593 99
SN26_22.1 1335 MH299485 Streptomyces drozdowiczii JICM 13580" 99
SN27_300.1 1340 MH299486 Streptomyces rimosus DSM 40260" 99
SN28 1.1 1337 MH299489 Streptomyces champavatii DSM 40841 99
SN28 3.1 1342 MH299491 Streptomyces lydicus ATCC 25470" 99
SN28 4.1 1339 MH299492 Streptomyces cyslabdanicus DSM 421357 99
SN28_50.1 1346 MH299493 Streptomyces chilikensis DSM 420727 99
SN6_2.1 1338 MH299496 Streptomyces chumphonensis JCM 185227 99
SN27_51.1 1330 MH299432 Blastococcus saxobsidens DSM 44509" 98
SN26_6.1 1481 MH299429 Arthrobacter arilaitensis DSM 16368" 98
SN8 2.1 1135 MH299442 Nonomuraea maritima NBRC 106687 98
SN25_54.1 1339 MH299444 Rhodococcus phenolicus DSM 448127 98
SN25_300.1 1336 MH299446 Marmoricola bigeumensis DSM 19426" 98
SN25 203.1 1343 MH299447 Microbacterium thalassium DSM 125117 98
SN25_53.1 1340 MH299450 Yimella lutea YIM 45900" 98
SN26_100.1 1364 MH299466 Micromonospora purpureochromogenes DSM 438217 98
SN27_101B.1 1458 MH299469 Micromonospora aurantiaca DSM 438137 98
SN6_8.1 1349 MH299478 Micromonospora pattaloongensis DSM 43 821" 98
SN20_12.1 1323 MH299480 Streptomyces panacagri DSM 418717 98
SN27 5.1 1339 MH299488 Streptomyces albus subsp. albus DSM 40313 98
SN28 94.1 1226 MH299495 Streptomyces fragilis DSM 40044" 98
SN27_39.1 1174 MH299470 Micromonospora aurantiaca DSM 438137 97
@ Springer
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Table 4 (continued)

Phylotype 16S rRNA sequence length (nt) Genbank acc. no. Next related type strain Similarity %
SN25 508.1 1342 MH299482 Streptomyces marinus DSM 41968" 97
SN27_3.1 1299 MH299487 Streptomyces deserti KACC 154257 97
SN28_222.1 1336 MH299490 Streptomyces marinus DSM 41968" 97
SN28_52.1 1351 MH299494 Streptomyces macrosporus NBRC 14748" 97
SN25_200.1 1289 MH299438 Nocardioides iriomotensis JCM 17985" 96
SN27_500.1 1478 MH299448 Ornithinimicrobium kibberense DSM 17687" 96
SN7 3.1 1336 MH299427 Aeromicrobium erythreum DSM 85997 94
SN6_7.1 1437 MH299439 Nocardioides exalbidus JCM 23199" 94

nt nucleotides

additionally formed a separate branch related to clusters of the
genera Ornithinimicrobium and Serinicoccus in the phyloge-
netic tree (Fig. 5) which indicates that this isolate may repre-
sent a new genus of the Actinobacteria.

One of the two Blastococcus phylotypes obtained
from Easter Island (isolate SN27 51.1) shared 98% of

similarity with B. saxobsidens DSM 44509" and did not
show close affinity to this reference strain in the phylo-
genetic tree, suggesting novelty. Similarly, one
Arthrobacter isolate SN26_6.1 showed divergence from
the related type strain, A. protophormiae DSM 20168,
in the phylogenetic tree, as well as in the BLAST
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Fig. 3 Phylogenetic analysis of Micromonospora sp. isolates and
Micromonospora sp. type strains by maximum likelihood method based
on the Kimura 2-parameter model. Bootstrap: 1000 replicates. Red letters:
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Easter Island Micromonospora sp. phylotypes. Black letters:
Micromonospora sp. type strains. Scale bar: length is a function of nu-
cleotide difference. 7 type strain
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Fig. 4 Phylogenetic analysis of Streptomyces sp. isolates by maximum
likelihood method based on the Tamura-Nei model. Bootstrap: 1000 rep-
licates. Green letters: Easter Island Streptomyces sp. phylotypes. Black

analysis. Dactylosporangium isolates also (SN3_2.1,
SN3 3.1) showed poor association with related type
strains. Nonomuraea isolate SN8 2.1 did not match the
branch of its reference strain, N. maritima NBRC
1066877, suggesting phylogenetic differentiation. The
16S rRNA sequence similarity of 98% may support this
statement. Furthermore, two Aeromicrobium isolates
(SN7_3.1 and SN27 _135A.1) showed poor association
to the type strains of A. choanae CCM 8650 and
A. erythreum DSM 8599". The sequence of Dietzia iso-
late SN27 100.1 was separated from D. schimae DSM
11117 in the tree despite having 99% of similarity,
evidencing a disagreement with the phylogenetic evalua-
tion and the BLAST analysis. Similarly, Verrucosispora
sp. SN26_15.1 showed divergence from the next related
type strain in the phylogenetic tree, despite close simi-
larity of 16S rRNA sequence to Verrucosispora maris
DSM 45365", by which it may represent a new species.
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Discussion

The coastal zone of Easter Island presented a high
Actinobacteria diversity with Micromonospora and
Streptomyces as the most abundant genera dwelling in this ter-
ritory. The predominance of these 2 genera is in accordance with
other studies in marine (Maldonado et al. 2009) and terrestrial
environments (Nimaichand et al. 2015). The diversity of Easter
Island Actinobacteria at the genus level (18 different genera at
one hot spot location) was higher compared to examples from
other studies, with 9 genera of a terrestrial habitat (Nimaichand
etal. 2015), 12 genera from a marine source (Maldonado et al.
2009), 5 genera from marine invertebrates (Jiang et al. 2007;
Schneemann et al. 2010), 1 genus from insects (Arango et al.
2016), and 12 genera from plants (Nimaichand et al. 2015).
Culture media was an inflection point for the success in
the number of isolates, phylotypes, and genera. Our data
indicated that complex sugars as well as reduced
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Fig. 5 Phylogenetic analysis of 16S rRNA gene sequences from
Actinobacteria isolates by the maximum likelihood method based on
the Kimura 2-parameter model. Bootstrap: 1000 replicates. Blue letters:

concentrations of nitrogen sources were optimal for a high
actinobacterial recovery. The optimal concentrations of car-
bohydrates were in the range of 1-3 g/L of carbon source

_abyssalis_DSM_25875_

Easter Island actinobacterial phylotypes excluding Micromonospora and
Streptomyces. Black letters: Actinobacteria type strains. Scale Bar:
Length is a function of nucleotide difference. 7 type strain

and 0.1-1.0 g/L of nitrogen sources. The data suggest that
there was not a single optimal medium, rather it was found
that the usage of a wide variety of media compositions was
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the most relevant point to capture a really high diversity
overall.

Salinity played a key role for the isolation of strains affili-
ating to marine-derived Actinobacteria, although a significant
number of previously described soil-dwelling Actinobacteria
was also obtained. Despite the fact that the media differed in
kind of nutrients and nutrient concentrations, the data suggest
that the salinity may have a specific effect on the isolation of
kind and number of different phylotypes. For example, medi-
um SIMA1 with 25 g/L of tropic marine salt produced 25
phylotypes distributed in 14 genera, medium BCM with
15 g/L tropic marine salt produced 20 phylotypes, distributed
in 8 genera, medium BTM with 15 g/L tropic marine salt
produced 18 phylotypes distributed in 8 genera, medium HA
without salt added produced 8 phylotypes distributed in 8
genera, medium OLI with 25 g/LL of NaCl and addition of
other salts produced 8 phylotypes distributed in 6 genera, me-
dium BSEM with 15 g/L (Baltic Sea salinity) produced 7
phylotypes distributed in 5 genera, and NSEM with 35 g/L
(North Sea salinity) did not produce any isolate.

Oligotrophic media showed a different result, where an arti-
ficially prepared medium (medium OLI) was able to recover 6
different actinobacterial genera. Baltic Sea oligotrophic media
(BSEM) was also able to recover actinobacterial representatives
but in a relative minor level, since it yielded only representatives
of 5 genera. Contrasting with these two prior oligotrophic me-
dia, the North Sea oligotrophic medium was unable to recover
any actinobacterial representative. BSEM and NSEM were
equally enriched with tyrosine and galactose. The main differ-
ence was based on natural components of the different sea water
sources as well as salinity. It could be possible that a high degree
of salinity (35 g/L) and a low level of nutrients resulted in a
detrimental condition for Actinobacteria.

It should be noted that Easter Island represents an abun-
dant Actinobacteria niche only through the evaluation of
multiples samples from a different marine origin, and by
the use of multiple culture media. These two conditions
were quite important for a successful recovery of
actinobacterial diversity. Nevertheless, a few exceptions
can also be named, like the case of zone 6 with samples
SN25, SN26, SN27, and SN28, which represented the
highest abundance and diversity among the sample sites.

Among the isolates obtained from the genera
Aeromicrobium, Arthrobacter, Blastococcus, Dietzia,
Dactylosporangium, Nonomuraea, Ornithinimicrobium, and
Verrucosispora, 1 or 2 phylotypes of each may possibly rep-
resent new species or even genera, if their genetic relationship
(16S rRNA gene sequences) to the related type strains is con-
sidered (Figs. 3, 4, and 5). In the case of Streptomyces, 6 out of
17 Streptomyces phylotypes, and in the case of
Micromonospora, 17 out of 29 phylotypes might be candi-
dates of new species. On the other hand, 55% of our isolates
were affiliated to known actinobacterial taxa, thus indicating

that Actinobacteria may have a wide global distribution at the
species level.

Finally, we have to state that most likely the actual diversity
is much higher than found in the present work. Due to the low
abundance of some of the Actinobacteria, due to the specific
nutrient requirement of some of them and the limited basis of
conditions given by the selected culture conditions some spe-
cialists and Actinobacteria with very low abundance may not
have been detected by this approach. However, the specific
pretreatment of the samples acts as a kind of enrichment and
preselection for Actinobacteria and quite likely increases the
detection limit of those present in very low abundance. In
addition, other selection procedures, such as the use of com-
plex sugar-based media, low nutrient concentrations, variation
of salinity, and addition of specific antibiotics can improve the
selectivity for Actinobacteria, as this and other studies have
demonstrated (Dorador et al. 2008). In contrast, metagenomic
studies face several limitations which may not be prevented,
and that can underestimate the actinobacterial diversity, such
as non-suitable primers (Farris and Olson 2007), high G-C
content (Varadaraj and Skinner 1994), poor lysis of cells and
limited DNA extraction (Yang et al. 2015), disproportional
bacterial abundance (Lynch and Neufeld 2015; Sahl et al.
2015), short 16S rRNA sequences (Yuan et al. 2015), lack of
reference sequences for appropriate assignment (Menzel et al.
2016), and computational limitations and script specificity
(Poussin et al. 2018). Although several of these limitations
may be overcome by metagenomic genome analysis, the very
low abundance of some of the Actinobacteria and the prob-
lems with DNA extraction from environmental samples give a
clear disadvantage to the metagenomic approach compared to
the culture approach. Therefore, the culture approach remains
a valuable way to analyze the diversity of Actinobacteria in
environmental samples, though these may be complemented
by metagenomic data.

Conclusion

This first comprehensive study on the cultured diversity of
Actinobacteria from Easter Island and Polynesia demonstrat-
ed an outstanding high diversity with apparently low abun-
dance and high specificity in community composition of dif-
ferent sampling sites along the shoreline of the island. One
hundred sixty-three isolates were grouped into 72 phylotypes
within 20 different actinobacterial genera. According to 16S
rRNA sequence data, 32 phylotypes quite likely represent new
species, including 1 potential new genus (isolate
SN27_500.1). The overall high diversity found is explained
as the result of the wide array of media and nutritive sources
used for isolation, and also by the number of samples taken all
around the island. In terms of geographical distribution of
Actinobacteria on Easter Island, it was observed that it varies
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from hot spots in which 18 different genera coexist to other
sites in which only 1 or 2 genera were found. The genera with
the highest frequency among the samples were
Micromonospora, Streptomyces, and Salinispora, while other
genera were sample specific. The cultivation procedure and
media were an inflection point between a high and poor
Actinobacteria recovery, where medium SIMAL (starch, yeast
extract, peptone, 25 g/L salinity) yielded the highest number
and diversity of isolates. Remarkable, we found that salinity
played a key role for the isolation of marine-derived
actinobacterial diversity. Finally, Easter Island showed to be
an exceptional place to investigate microbial diversity due to
the geographic isolation and outstanding degree of
actinobacterial novelty.
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Abstract: The presence of two known anthraquinones, Lupinacidin A and Galvaquinone B, which
have antitumor activity, has been identified in the sea anemone (Gyractis sesere) from Easter Island.
So far, these anthraquinones have been characterized from terrestrial and marine Actinobacteria only.
In order to identify the anthraquinones producer, we isolated Actinobacteria associated with the sea
anemone and obtained representatives of seven actinobacterial genera. Studies of cultures of these
bacteria by HPLC, NMR, and HRLCMS analyses showed that the producer of Lupinacidin A and
Galvaquinone B indeed was one of the isolated Actinobacteria. The producer strain, SN26_14.1, was
identified as a representative of the genus Verrucosispora. Genome analysis supported the biosynthetic
potential to the production of these compounds by this strain. This study adds Verrucosispora as
a new genus to the anthraquinone producers, in addition to well-known species of Streptomyces
and Micromonospora. By a cultivation-based approach, the responsibility of symbionts of a marine
invertebrate for the production of complex natural products found within the animal’s extracts could
be demonstrated. This finding re-opens the debate about the producers of secondary metabolites in
sea animals. Finally, it provides valuable information about the chemistry of bacteria harbored in the
geographically-isolated and almost unstudied, Easter Island.

Keywords: Easter Island; Actinobacteria; anthraquinones; symbionts; sea anemone; marine
invertebrates; spectroscopy; chromatography

1. Introduction

Since the discovery of Easter Island, compelling explorations have characterized the flora [1]
and fauna [2—4] of this geographically isolated location. However, little has been done to understand
the chemistry harbored in this territory. The best-known finding is the discovery of rapamycin in
a soil dwelling actinobacterial representative, which serves as an immunosuppressive drug [5,6].
Beyond that, little progress has been made in exploiting the chemical diversity harbored by marine
invertebrates and microorganisms dwelling in this territory, despite the high degree of endemism
found [7].

Marine invertebrates are immensely diverse, well distributed in the world oceans [8], and widely
known to contain medicinally relevant molecules [9-11]. While these metabolites play different roles in
nature, e.g., they act as chemical defense, chemical communication or reproductive signaling molecules,
they also find application as human medicines [12]. During the last decades, much effort has been
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made to identify and characterize the chemicals contained in marine invertebrates. This has resulted in
the discovery of astonishing chemicals with novel biological activities and chemical scaffolds [12-14].

Further, the immense progress in DNA sequencing technologies, the development of
bioinformatics, and an improvement in analytical techniques enables the identification of the source of
the chemicals. Thus, several molecules contained in marine invertebrates have now been shown to
actually be of microbial origin [15,16]. It is expected that with the increasing availability of metagenomic
information more identifications of the real producers of these metabolites will be made and will
establish the metabolite relevance for the interaction of host, symbiont, and the environment.

Marine sponges represent a classic example of marine invertebrates that harbor microbes
producing secondary metabolites. They have been studied in detail to determine the origin of the
metabolites [17,18]. Another example is the producer of the approved anticancer drug Yondelis
(Ecteinascidin-743). This compound was first assigned to the tunicate Ecteinascidia turbinata, but later
identified as the product of a microbe, Candidatus Endoecteinascidia frumentensis [16].

Anthraquinones have been characterized in different marine invertebrates, for example
crinoids [19] and sponges [20]. Anthraquinones have broad biological activity and are substances of
pharmaceutical relevance for revealing antitumor [21], antibacterial [22], antifungal [23] and epigenetic
modulator activities [24]. Two recently isolated anthraquinones, Lupinacidin A (1) and Galvaquinone
B (2), have been reported to be produced by Actinobacteria belonging to the genera Streptonyces and
Micromonospora. Lupinacidin A (1) was firstly reported as a specific inhibitor on murine colon 26-L5
carcinoma cells [25], and Galvaquinone B (2) showed moderate cytotoxicity against non-small-cell
lung cancer cells Calu-3 and H2887, in addition of epigenetic modulatory activity [24].

Herein, we report the identification of two known anthraquinone molecules, Lupinacidin A (1)
and Galvaquinone B (2), contained in an Easter Island sea anemone, Gyractis sesere. Interestingly,
so far these molecules have been only characterized from microbial origin. Therefore, we undertook
the isolation and culture of the Actinobacteria associated with this marine invertebrate. The culture,
chemical and genomic evaluation of these bacteria showed that the real producer of the metabolites
was an Actinobacterium belonging to the genus Verrucosispora and not the sea anemone.

2. Results and Discussion

2.1. Sea Anemone Dereplication

Samples of the sea anemone Gyractis sesere [26], also known as Actiniogeton rapanuiensis [27],
were collected in the intertidal zone of Easter Island, South Pacific Ocean, and extracted with
chloroform to give 8 mg of a yellowish residue. The HRLCMS analysis of this crude extract showed
the presence of two previously identified antitumor anthraquinones (Figure 1) [24,25], Lupinacidin A
(1) (M + H]* m/z 341.1378) and Galvaquinone B (2) ([M + H]* m/z 369.3510), which were confirmed
by complete NMR-spectroscopic characterization.

6

Lupinacidin A Galvaquinone B

Figure 1. Identified molecules from the Easter Island sea anemone Gyractis sesere.
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Interestingly, the crude extract of the sea anemone (Figure 2) shows five resonances above 10 ppm;
a region which is characteristic for hydroxyl protons. The resonances at 6 14.18 and 12.96 ppm are
assigned to the groups at C-1 and C-6 of Lupinacidin A (1), as their vicinity and consequential hydrogen
bonding to the ketogroups slows down their exchange. Similarly, the resonances at § 13.49, 12.50,
and 12.14 ppm originate from the three hydroxylprotons in Galvaquinone B (2).
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Figure 2. Chemical analysis of the crude extract of the sea anemone Gyractis sesere. (A) 'H NMR spectra
of the crude extract of marine anemone Gyractis sesere acquired in CDCl3, 600 MHz. Highlighted in the
zoomed area are the frequencies of characteristic resonances originating from hydroxyl exchangeable
protons in vicinity to ketogroups. (B) UV chromatogram (254 nm) of the crude extract of the sea
anemone Gyractis sesere highlighting the specific peaks for MRT: 24.3 min, and A: RT: 25.2 min. (C)
High resolution mass for B (m/z [M + H]* 341.1378) and (D) high resolution mass for A (2) (m/z
[M + H]* 369.3510). *RT: Retention Time.

Other main peaks found in the sea anemone crude extract were peaks at RT 14.2 min with a
HRMS [M + H]* m/z 295.19009 and at RT 23 min with a HRMS [M + H]* m/z 256.26312. Both exact
masses were evaluated using the MarinLit database, however their HRMS did not match any known
compound to-date.
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2.2. Bacterial Metabolites and Harbored Bacteria

Lupinacidin A (1) and Galvaquinone B (2) have so far only been characterized in actinobacterial
representatives, specifically from the genera Streptomyces [24,28] and Micromonospora [25], raising
the question of the origin of these compounds in the sea anemone extract. Thus, we cultivated the
Actinobacteria harbored by this sea anemone to determine if the anthraquinone producer was a
bacterium or the sea anemone. Isolation media and the respective obtained strains are specified in
Supplementary Table S1. Ten strains were identified through analysis of the 165 rRNA gene sequences
as members of the genera Micromonospora, Streptomyces, Verrucosispora, Dietzia, Arthrobacter, Rhodococcus,
and Cellulosimicrobium (Figure 3). Remarkably, Gyractis sesere harbors a high number of Actinobacteria
genera, in total seven; the most abundant genus being Micromonospora with three different species,
followed by Arthrobacter with two different species. Other actinobacterial genera were present with
only one species each. Outstandingly, the only isolate belonging to the Verrucosispora genus was the
most abundant single Actinobacterium in the sea anemone.
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Figure 3. Genera and number of Actinobacteria species strains isolated from the sea anemone Gyractis

sesere.

2.3. Bacterial Growth

To evaluate the production of the anthraquinones by the isolated bacteria, we selected the
actinobacterial representatives for growth experiments that were most closely related to known
producers of the genera Streptomyces, Micromonospora and Verrucosispora. In addition, we also grew the
Dietzia representative due to the lack of comprehensive information about its secondary metabolite
production. On the other hand, Rhodococcus, Arthrobacter, and Cellulosimicrobium were omitted here
because of their known poor production of secondary metabolites.

The growth yield of the selected Actinobacteria was in the range of 20 to 100 mg crude extract.
The chromatograms of HPLC analyses of the crude extracts were compared in order to facilitate the
metabolic comparison between grown bacteria, the sea anemone and the pure substances (Figure 4).

Results



Mar. Drugs 2019, 17, 154

Lupinacidin A
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Figure 4. HPLC chromatograms of the crude extracts of the sea anemone Gyractis sesere, its respective
actinobacterial isolates, and the purified anthraquinones, Lupinacidin A (1) and Galvaquinone B (2).
Approximate retention times of Lupinacidin A (1) and Galvaquinone B (2) are highlighted by boxes.

By comparison of chromatograms and retention times, we observed that Lupinacidin A (1) and
Galvaquinone B (2) were only present in the crude extract of the sea anemone Gyractis sesere and
Verrucosispora sp. SN26_14.1, and not in the other actinobacterial representatives. Clearly, Verrucosispora
must be the producer of the anthraquinones. Further, it is obvious that the metabolites of Verrucosispora
sp. strain SN26_14.1 are dominant in the marine invertebrate. The chromatograms of Verrucosispora
and sea anemone extracts are nearly identical and differ only slightly in the region of retention time
20-23 min. Notably the chromatogram of the sea anemone extract also does not show any peaks that
suggest the presence of metabolites of any other of the cultivated bacteria. Together, this strongly
suggests Verricosispora appeared to be the most abundant microbe in the sea anemone biomass during
the collection.

The subtle difference in the metabolite profiles between Verrucosispora and sea anemone extract in
the retention time region 20-23 min appears to be to metabolites produced by the sea anemone itself.
Opverall, the amount appears to be surprisingly small. This may however be caused by the isolation
methodology (chloroform extraction), that prioritizes lipophilic substances and selects against the
isolation of polar compounds such as peptides.

2.4. Actinobacterial Producer

To confirm and replicate the production of these metabolites, we undertook a scale up culture of
Verrucosispora sp. SN26_14.1. Thus, 10 L of the Actinobacterium culture were grown, and extracted
through the use of amberlite XAD-16 resin, yielding 1 g of crude extract with a brownish coloration.
This extract was subjected to stepwise flash chromatography using iso-octane and ethyl acetate
gradients, which produced a total of ten fractions. The fractions were evaluated through HPLC to find
the fractions containing Lupinacidin A (1) and Galvaquinone B (2). The chromatogram evaluation
showed that only the orange colored fraction two, which was eluted with 90% iso-octane and 10%
ethyl acetate, contained 78 mg of metabolites enriched with Lupinacidin A (1) and Galvaquinone B
(2). The purification of Lupinacidin A (1) and Galvaquinone B (2) was achieved through HPLC using
normal and reverse phase chromatography.
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Lupinacidin A (1) was isolated as a yellow powder, with a yield of 11 mg from a 10 L culture,
which suggested to be an intermediate yield compared with Streptomyces and Micromonospora
producers [24,25,28]. High resolution APCI-MS gave an [M + H]* adduct of m/z 341.1378, which
results in a molecular formula of Co9H0Os. The calculation of the degree of unsaturation indicated
11 degrees. "H NMR showed the characteristic exchangeable protons of (1) at § at 14.18 and 12.96 ppm,
in addition to the three neighboring aromatic proton signals 8 7.26, 7.62, and 7.79 ppm that showed
the expected coupling pattern for three neighboring aromatic protons in a para-ortho, ortho-meta
relationship (two duplets, and one duplet of duplets). The '*C NMR experiment showed 20 carbons of
which two represented ketone signals (5 190.2 and 186.9 ppm), 12 aromatic carbons, and six aliphatic
carbons (see Table 1). Two-dimensional NMR experiments, Homonuclear COrrelated SpectroscopY
(COSY), Heteronuclear Single Quantum Correlation (HSQC), and Heteronuclear Multiple Bond
Correlation (HMBC), helped to confirm the identity of the molecules. These data were in agreement
with the published information [24,25,28].

Table 1. Spectroscopic NMR data of Lupinacidin A (1) and Galvaquinone B (2).

Lupinacidin Galvaquinone
A B
s Sy Mult Sy Mult
Position Sc § in Hz) HMBC COSsYy 8¢ ( in Hz) HMBC COosy
1 162.5 157.5
2 117.5 137.1
3 159.6 141.1
4 130.4 153.8
4a 127.9 116.2
5 190.2 190.7
5a 117.1 116.2
6 162.6 162.7
7.26,d 7.32,d
7 124.3 82) 5a,6,9 H-8 124.8 85,13) 5a,6,9 H-8
7.62,dd 7.72,dd
8 136 82,7.5) 6,9 H-7, H-9 137.1 85,7.6) 6,9,9 H-7, H-9
7.79,d 7.90,d
9 118.3 75) 5a,7,10 H-8 119.7 76,13) 5a,7,10, H-9
9a 133 133.4
10 186.9 186.5
10a 110.8 111.7
11 8.4 227,s 12,3 13.2 225,s 1;2,3
321, m 3,4a,13, :
12 24.8 6.6) 14 H-13 204.9
146,m  4a, 12,14, H-12,
13 37.7 6.6) 15 H-14 424 285 m  12,14,15 H-14
1.80, 12,13,15 T 14,15, 16,
14 284 A(6 é)m 7 16’ § H-15, 319 1.63, m ¥ 17’ d H-15
' H-16
H-13,
15 225 Tl 13,14, 16 H-14 27.6 1.63, m 14,1516, H-16,
(6.6) 17
H-17
1.04,d 0.93,d,
16 225 ©6.6) 13,14,15 H-14 224 ©62) 14,15,17 H-15
0.93,d,
17 224 62) 14,15, 16 H-15
1-OH 14.18 1,2,10a, 13.49,s 1,2,10a
3-OH 5.62 2,4a,3
4-OH 12.50, s 3,4,10a
6-OH 12.96 5a,6,7 12.14,s 5a,6,8

**1H NMR (600 MHz) Solvent: CDCl (5'H, mult, ] in Hz), *** 13C NMR (125 MHz), Solvent: CDCl5,

Galvaquinone B (2) was isolated as a red powder, with a yield of 7 mg from a 10 L culture, which
is an intermediate yield compared with Streptomyces and Micromonospora producers [24,28]. High
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resolution APCI-MS gave an [M + H]* adduct of m/z 369.3510 and a molecular formula of C21H0Og.
The calculation of the degree of unsaturation indicated 12 degrees. Galvaquinone B (2) showed
characteristic exchangeable proton signals at 6 13.49, 12.50, and 12.14 ppm, respectively. Aromatic
signals were similar to those found in compound (1), showing three neighboring aromatic protons
in a para-ortho, ortho-meta relationship (two duplets, and one duplet of duplets), but with a higher
frequency (see Table 1). The 3C NMR experiment showed 21 carbons of which three represented
ketone signals (8 205, 190.2 and 186.9 ppm), 12 aromatic carbons, and six aliphatic carbons (see Table 1).
Two dimensional experiments (COSY, HSQC, HMBC) confirmed the identity of the molecules and
were in agreement with the published data [24,28].

2.5. Phylogeny of the Producer

To determine whether the present isolate was a new species and to evaluate its evolutionary
relationship, we performed a phylogenetic evaluation of the strain based of the 16S rRNA gene
sequence (Figure 5). The evaluation of the 165 gene showed a high similarity (99%) to the next related
type strain, Verrucosispora maris DSM 453657, However, analysis of the gyrase subunit B taxonomic
marker (gyrB) showed 94.4% similarity to Verrucosispora maris DSM 45365". The construction of
the phylogenetic tree with the closest relatives in terms of the 16S rRNA gene sequence as well as
known producers of (1) and (2) confirmed that the producer strain SN26_14.1 belongs to the genus
Verrucosispora, and that quite likely it represents a new species within the genus. This result represents
the first report of anthraquinone production for the Verrucosispora genus. Interestingly, it appears
that anthraquinones are more widespread metabolites in the Actinobacteria phylum, since compounds
(1) and (2) have now been found in three actinobacterial genera, Micromonospora, Streptomyces, and
Verrucosispora producers [24,25,28].
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Figure 5. Phylogenetic tree based on 165 rRNA gene sequence of Verrucosispora sp. SN26_14.1. The
tree was calculated using a neighbor-joining statistical method and Jukes—Cantor model. e Red dots

highlight Lupinacidin A (1) and Galvaquinone B producers (2).
Results



2.6. Biosynthesis

Recently, the biosynthetic machinery for the production of compound (1) and (2) was described
as a type II polyketide synthase (PKS) that features a special Baeyer— Villiger type rearrangement, and
was allocated to an Rsd gene cluster in Streptomyces olivaceus SCSIO T05 [28]. The Rsd biosynthetic gene
cluster (BGC) showed great similarity to the Rsl BGC reported for the production of rishirilide A and B
in Streptomyces bottropensis (also known as Streptomyces. sp. G¢ C4/4) [29]. The BGC Rsd is responsible
for the production of six molecules (rishirilide B, rishirilide C, Lupinacidin A (1), Lupinacidin D,
Galvaquinone A and Galvaquinone B (2)), and among them compound (1) and (2) [28]. This raised the
question of whether in Verrucosispora, compounds (1) and (2) follow the same biochemical assembly
line as described for Streptomyces. Thus, the genome of Verrucosispora sp. SN26_14.1 was sequenced
using Illumina MiSeq. Although the obtained short reads were not complemented with a long read
sequencing technology as PacBio, we were still able to obtain a 6.9 Mb draft genome (NCBI Bioproject
Access # PRINA522941). This data was annotated with Prokka and analyzed with the Antismash
online platform [30] to identify the secondary metabolite biosynthesis gene clusters. As shown in
Figure 6, the draft genome of Verrucosispora sp. SN26_14.1 shared 60% of the genes of the Rsd gene
cluster, as well as to an important percentage of the genes of the Rsl BGC. The similarity of the found
genes ranged from 49% to 81%. The genetic architecture found in Vex BGC was quite similar to that of
the Rsd and Rsl BGC. Remarkably, we could not detect any cyclase/aromatase and amidohydrolase
sequences in our draft genome. Likely, this relates to the incompleteness of our sequence. Finally, it
appears reasonable that Verrucosispora sp. SN26_14.1 follows the same biosynthetic machinery for the
production of Lupinacidin A (1) and Galvaquinone B (2) as found for Streptomyces species (Figure 6).
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Figure 6. Biosynthetic gene cluster of anthraquinones producers. Rsd: Streptomyces olivaceus SCSIO
TO05 gene cluster [28], Rsl: Streptomyces bottropensis (Streptomyces. sp. Gec C4/4) gene cluster [29],
Vex: Verrucosispora sp. SN26_14.1. C1: aromatase, Ky: acyl carrier protein, Kj: ketosynthase (beta),
K3: ketosynthase (alpha), A: acyl transferase, Ky: 3-oxoacyl-ACP synthase III, T1: ABC-transporter
(substrate binding), T2: ABC-transporter (ATP binding), T3: ABC-transporter trans-membrane,
Oy: luciferase-like monooxygenase, O;: flavin reductase, P: phosphotransferase, Ry: SARP family
regulator, Cy: second ring cyclase, O3: 3-oxoacyl-ACP reductase, O4: anthrone monooxygenase, Os:
NADH: flavin oxidoreductase, C3: cyclase, R: SARP regulatory protein, R3: LAL-family regulator,
Og: luciferase-like monooxygenase, Rq: MarR family transcriptional regulator, T4: drug resistance
transporter, O7: putative NADPH quinone reductase, Og: putative NADPH: quinone oxidoreductase,
Og: FAD-dependent oxidoreductase, O19: C9-keto reductase, H: amidohydrolase, -3: unknown
function, -2: major facilitator superfamily protein, -1: Transcriptional regulatory protein, 1: cupin, 2:
citrate/H™" symporter, 3: transcriptional regulator.

2.7. Antibiotic Activity Test

We performed a disc diffusion antibiotic test as a preliminary evaluation to determine if
Lupinacidin A (1) and Galvaquinone B (2) have an inhibition effect on bacteria. As a positive control,
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we used streptomycin at a concentration of 25 pg/disc. The results showed that Lupinacidin A (1)
and Galvaquinone B (2) did not produce any growth inhibition against the Gram-positive bacterium
Staphylococcus lentus DSM 203527, and neither against the Gram-negative bacterium Escherichia coli
DSM 4987, In contrast, the positive control, streptomycin produced an inhibition halo of 22 mm for
Gram-negative and 18 mm for Gram-positive bacteria.

3. Materials and Methods

3.1. Sample Collection

The sea anemone Gyractis sesere (also known as Actiniogeton rapanuiensis) was sampled from
the coastal zone of Easter Island (27°08'45.1”S, 109°25'50.0”W) by the first author (Chilean citizen),
in March 2016. The sampling site was outside the Isla de Pascua national park, and the sample was
taken in agreement with regulations by the Chilean government. The sample was stored at 0 °C one
hour after the sampling process.

3.2. Sea Anemone Dereplication

10 g of the sea anemone Gyractis sesere (wet weight) were thawed and homogenized with a mortar
and pestle. When a creamy consistency was obtained, the tissue was transferred to a 250 mL beaker
and 50 mL of chloroform was added. This extraction procedure was repeated three times. The obtained
chloroform extract was concentrated until dryness under reduced pressure in a rotatory evaporator.
The dried extract was resuspended in 1 L deionized water and transferred to a separation funnel,
where it was partitioned with chloroform (3 x 300 mL). This process produced 8 mg of crude extract
with a brownish coloration. Part of the crude extract (0.5 mg) was resuspended in methanol (HPLC
grade) and injected in a HPLC (Merck Hitachi LaChrom Elite, Darmstadt, Germany) and in a HRLCMS
Thermo Scientific™ Q Exactive™ Hybrid-Quadrupol-Orbitrap (Bremen, Germany), positive mode,
and a 30 minute gradient of H,O and acetonitrile supplemented with 0.1% of formic acid. The gradient
developed as following: 0 min: 90% water, 10% acetonitrile, 25 min: 0% water, 100% acetonitrile,
28 min: 0% water, 100% acetonitrile, 30 min: 90% water, 10% acetonitrile. Mass spectroscopic data was
evaluated with Xcalibur® (Thermo Fisher Scientific, San Jose, CA, USA), and compared with online
databases (MarinLit, and Scifinder), and literature. The entire remaining sample was dissolved in
deuterated chloroform (Eurisotop™, Saint-Aubin, France) and analyzed by 1H NMR using a Bruker
(Rheinstetten, Germany) Avance 600 MHz NMR spectrometer.

3.3. Bacterial Isolation

Approximately 1 cm® (2 g) of the sea anemone Gyractis sesere (wet weight) were thawed and
homogenized with a sterile mortar and pestle. Subsequently, the homogenized tissue was mixed
with 9 mL of Ringer’s buffer % strength [31] to produce a final solution of 1:10. This solution was
incubated at 56 °C for 10 min with the aim of reducing the viability of non-actinobacterial microbes.
After the incubation, 1 min of vortex was applied. The inoculation of the culture media was done by
adding 50 uL of the dilution into 15 cm diameter Petri dishes containing the media. The inoculum was
spread out on the plate with a triangular cell spreader made of glass. Finally, plates were incubated
at 25 °C in darkness. Darkness was chosen as a filtering factor to eliminate potential microalgae
contamination. Four different media were prepared for the isolation of Actinobacteria from the sea
anemone Gyractis sesere. Medium SIMAT1 (Salinispora isolation media A1) was selected from literature
and slightly modified as follows: 2.5 g starch, 1 g yeast extract, 0.5 g peptone, 1 L deionized water, and
25 g Tropic Marin™ salt (Wartenberg, Germany), 15 g/L agar [32]. The other media (BCM, BTM, and
BSEM) were generated for this study as follows: BCM, 3 g chitin, 0.5 g N-acetyl glucosamine, 0.2 g
KHPOy, 0.25 g KNOg, 0.25 g casein, 5 mL of mineral solution, 4 mL vitamin solution, 1 L deionized
water, 15 g/L Tropic Marin™ salt (Wartenberg, Germany), 12 g/L Gellan gum, pH =7.35; BTM, 1 g
trehalose, 0.25 g histidine, 0,25 g proline, 0.2 g MgCl+6H,0O, 4 mL vitamin solution, 12 g/L Gellan
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gum, 1 L deionized water, 15 g Tropic Marin™ salt (Wartenberg, Germany), pH = 7.2; and BSEM,
0.1 g tyrosine, 0.1 g D-galactose, 4 mL vitamin solution, 5 mL mineral solution, 1 L Baltic Sea water,
16 g/L agar, pH = 7.4. Mineral salt solution contained 1 L distillated water, 50 mg FeSO47H,0, 50 mg
ZnCl,, and 50 mg CuSOy. Vitamin solution contained 1 L distillated water, 5 mg thiamine-HCI, 5 mg
riboflavin, 5 mg niacin, 5 mg pyrodoxine HCl, 5 mg inositol, 5 mg Ca-pantothenate, 5 mg p-amino
benzoic acid, and 2.5 mg biotin.

The media were autoclaved for 35 min at 121 °C. Subsequently, the culture media were
supplemented with 50 mg/L of nalidixic acid (Sigma-Aldrich, St. Louis, MO, USA) and 100 mg/L of
cycloheximide (Carl Roth GmbH, Karlsruhe, Germany) [33], and poured into petri dishes. Once the
sample was inoculated onto the petri dish, they were incubated for six weeks. When bacterial colonies
were visually evident, we proceeded with the purification of the bacteria until obtaining an axenic
culture. The isolated bacteria were conserved using Cryobank™ (Mast Diagnostica GmbH, Reinfeld,
Germany) bacterial storage system.

3.4. Molecular Characterization and Phylogenetic Analysis

DNA was extracted from bacterial cells by use of a DNA isolation kit, DNeasy™ (Qiagen, Hilden,
Germany), following the manufacturer instructions. Subsequently, the 16S rRNA gene sequence was
amplified with PCR and the use of general bacterial primers in a concentration of 10 pmol/uL, i.e., 27f
and 1492r [34], 342f and 534r [35], 1387r [36] as well as 1525r [37]. PCR reagents were obtained from GE
Healthcare Illustra™ PuReTaq Ready-To-Go™ PCR Beads (GE Healthcare, Glattbrugg, Switzerland)
containing DNA polymerase, MgCly, and dNTPs. The PCR conditions were the same as reported by
Staufenberger et al. [35]. Once the PCR amplification process was terminated, a quality check of the
PCR products was performed by gel electrophoresis. The sequencing process was run at the Centre for
Molecular Biology at Kiel University (IKMB). The 165 rRNA gene sequences were manually curated
using Chromas pro software, version 1.7.6 (Technelysium Pty Ltd., Tewantin QLD, Australia), and
saved in FASTA format. Sequences were aligned with nucleotide BLAST [38] and EZbiocloud [39].
Phylogenetic analysis involved the alignment of the sequences with related reference strains in the web
platform SILVA-SINA [40]. MEGA was used to delete gap sites and to run bootstrapped phylogenetic
trees using a neighbor-joining model [41].

3.5. Bacterial Growth for Secondary Metabolites Production

For the evaluation of the secondary metabolites production, we grew the Easter Island isolated
strain Verrucosispora sp. SN26_14.1in 10 x 2.5 L Thomson Ultra Yield® flasks (Thomson Instrument,
Oceanside, CA, USA), which contained 1 L each of a modified starch-glucose-glycerol (SGG) liquid
medium [31]. The composition of the production medium was: 5 g glucose, 5 g soluble starch, 5 g
glycerol, 1.25 g cornsteep powder, 2.5 g peptone, 1 g yeast extract, 1.5 CaCO3, and 1 L deionized water.
The medium was also supplemented with 15 g/L Tropic Marin™ salt (Wartenberg, Germany). The pH
was adjusted to 7.7 using 1 M HCI and NaOH. The culture was kept in orbital agitation at 240 RPM,
28 °C, for 14 days in darkness.

3.6. Chemical Extraction, Purification and Structure Elucidation

After the growth period, 20 g/L amberlite XAD-16 (Sigma-Aldrich, St. Louis, MO, USA) was
added to each culture medium flask and mixed for one hour using orbital agitation with 120 rpm.
Subsequently, the resin was separated through cheesecloth filtration [42], and the liquid was discarded.
Afterwards, amberlite plus cheesecloth was mounted on a glass funnel, washed with 3 L of deionized
water, and eluted with 1 L of acetone [42]. Acetone was then concentrated under reduced pressure
until an aqueous residue was obtained. One liter of deionized water was added to the acetone residue,
and it was brought to a separation funnel. The organic molecules were extracted using 3 x 1 L of ethyl
acetate. The organic phase was concentrated under reduced pressure until dryness.

Results



Mar. Drugs 2019, 17, 154

For the evaluation of the produced metabolites, we used HPLC-DAD (Merck Hitachi LaChrom
Elite, Darmstadt, Germany) and a 30 min gradient of HyO-acetonitrile supplemented with 0.1% of
formic acid. The gradient was developed as following: 0 min: 90% water, 10% acetonitrile, 25 min:
0% water, 100% acetonitrile, 28 min: 0% water, 100% acetonitrile, 30 min: 90% water, 10% acetonitrile.
The gravity SB™ C-18 column was obtained from Macherey-Nagel (Diiren, Germany).

The purification of chemicals involved three different steps: 1) Flash chromatography using
standard silica gel 60, pore size ~ 60 A (Macherey-Nagel, Diiren, Germany) as a stationary phase,
mounted in a glass Buchner funnel (D = 70 mm, H = 180 mm). The mobile phase solvents were
iso-octane and ethyl acetate. The chromatographic process was developed in a stepwise increase of
polarity (10% each), starting with 100% iso-octane, and 0% of ethyl acetate, and ending in 0% iso-octane
and 100% ethyl acetate, resulting in 10 different fractions. 2) The fraction that contained compound (1)
and (2) was selected and worked in HPLC (Merck Hitachi LaChrom Elite, Darmstadt, Germany) using a
normal phase NUCLEODUR® 100-5 column (4.6 x 250 mm) from Macherey-Nagel (Diiren, Germany).
The method used for the purification was a combination of isocratic and gradient solvent mix, with a
flow rate of 1 mL/min, where A: iso-octane, B: ethyl acetate, and C: dichloromethane /methanol (50:50).
The method was developed as following: 0 min: 100% A and 0% B, 3 min: 100% A and 0% B, 5 min:
95% A and 5% B, 9 min: 95% A and 5% B, 11 min: 0% A and 100% B, 13 min: 0% A and 100% B, 14 min:
10% A, 50% B, and 40% C, 16 min: 10% A, 50% B, and 40% C, 18 min: 50% A and 50% B, 19 min: 100%
A and 0% B, 21 min: 100% A and 0% B. 3) The semi-purified compounds were purified through HPLC
(Merck Hitachi LaChrom Elite, Darmstadt, Germany using a reverse phase C-18 column, 10 x 250 mm
(YMC, Kyoto, Japan). The method used for the purification was a combination of isocratic and gradient
solvent mix, with a flow rate of 2.5 mL/min. The method was developed as following: 0 min: 90% A
and 10% B, 5 min: 20% A and 80% B, 9 min: 20% A and 80% B, 13 min: 0% A and 100% B, 19 min: 0%
A and 100% B, 23 min: 90% A and 10% B, 25 min: 90% A, 10% B (A. water, B: acetonitrile).

After these purification steps, Lupinacidin A (1) and Galvaquinone B (2) were obtained with
high purity to perform structural elucidation experiments. HRLCMS was performed with a Thermo
Scientific™ Q Exactive™ Hybrid-Quadrupol-Orbitrap (Thermo Scientific, Bremen, Germany), positive
mode, and a 30 min gradient of H,O and acetonitrile supplemented with 0.1% of formic acid.
The gradient was developed as follows: 0 min: 90% water, 10% acetonitrile, 25 min: 0% water,
100% acetonitrile, 28 min: 0% water, 100% acetonitrile, 30 min: 90% water, 10% acetonitrile. Mass
spectroscopic data was evaluated with Xcalibur® (Thermo Fisher Scientific, San Jose, CA, USA), and
the compared with online databases (MarinLit, and Scifinder), and literature.

Additionally, 1H and ¥C NMR and two-dimensional NMR experiments (HMBC, HSQC, COSY)
were acquired to characterize the main components of crude extract, and their chemical functionality.
For this, compound (1) and (2) were redissolved in CDCl3 (Eurisotop™, Saint-Aubin, France), and
transferred to NMR tubes (178 x 5.0 mm). Experiments were acquired on a Bruker (Rheinstetten,
Germany) Avance spectrometer operating at 600 MHz proton frequency equipped with a cryogenically
cooled triple resonance z-gradient probe head using stand pulse sequences from the Bruker experiment
library. Spectra were referenced against tetramethylsilane (Sigma-Aldrich, St. Louis, MO, USA) as
internal standard.

3.7. Genome Sequencing

The samples were prepared with the Nextera® XT DNA sample preparation kit from Illumina
(Ilumina, San Diego, CA, USA) following the manufacturer’s protocol. Afterwards the samples
were pooled and sequenced on the Illumina MiSeq using the MiSeq® (Illumina, San Diego, CA, USA)
Reagent Kit v3 600 cycles sequencing chemistry. The library was clustered to a density of approximately
1200 K/mm?.
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3.8. Genome Assembly

The quality control of reads was checked with FASTQC software [43] to evaluate the GC%,
number of k-mers, sequence length, and total reads. Trimmomatic v0.36 [44] was used to filter low
quality sequences and adapters. Filtered reads were assembled with SPAdes v3.11.0 [45] using default
k-mer lengths. The obtained contigs were evaluated with QUAST tool [46] to select the best quality
contig. Finally, Prokka [47] was used to annotate the draft genome.

3.9. Secondary Metabolites Gene Clusters Search

The online platform of Antismash [30] was used to detect the secondary metabolites gene clusters
present in the draft genome.

3.10. Antibiotic Activity Test

To test the antibiotic activity, we used the disc diffusion method [48] as a primary indicator. Thus,
compound (1) and (2) were tested to determine their activity on Staphylococcus lentus DSM 203527,
and Escherichia coli DSM 498". These bacteria were cultured in GYM medium (4 g glucose, 4 g yeast
extract, 10 g malt extract, 2 g CaCO;3, 1 L deionized water, pH = 7.2, and 12 g agar). Lupinacidin A
(1), and Galvaquinone B (2) were transferred to a paper disc to reach a final concentration of 25 g
and 50 pg each in triplicate. Additionally, we used an antibiotic susceptibility disc of streptomycin
(Ox0id®, Columbia, MD, USA) as a positive indicator of antibiotic activity. The plates were inoculated
with fresh culture of Staphylococcus lentus DSM 20352", and Escherichia coli DSM 498", and incubated at
37 °C for 24 h. After the incubation period, the inhibition zone was measured and registered.

4. Conclusions

We established that the Easter Island sea anemone Gyractis sesere contained two anthraquinones,
Lupinacidin A (1) and Galvaquinone B (2), which were ultimately found to be produced by one of the
Actinobacteria associated with this marine invertebrate, Verrucosispora sp. SN26_14.1. The production
of the identified metabolites by the bacterial isolate apparently follows a recently characterized PKS
type II pathway with a Baeyer—Villiger type rearrangement assembly line. Our finding adds a new
actinobacterial genus to the producers of these anthraquinones, implying that these metabolites are
not exclusive to the genera Streptomyces and Micromonospora. It was demonstrated, that culture-based
approaches remain as effective tools for the isolation of polyketide producing Actinobacteria as sources
for secondary metabolites of potential use in drug discovery. Our study confirms that cnidarians, and
in specific sea anemones, can be a source of such pharmacologically relevant microorganisms. Finally,
these findings re-open the debate about the real producers of secondary metabolites in sea animals
and add another example of associated bacteria as producers of substances present in sea animals. In
addition, the study provides information on the chemistry harbored in biota of the geographically
isolated and almost unstudied, Easter Island.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1660-3397/17/3/154/s1.
Information on NMR spectra, HRLCMS data, and secondary metabolite gene cluster.
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Abstract: As Streptomyces have shown an outstanding capacity for drug production, different
campaigns in geographically distant locations currently aim to isolate new antibiotic producers.
However, many of these newly isolated Streptomyces strains are classified as identical to already
described species. Nevertheless, as discrepancies in terms of secondary metabolites and morphology
are possible, we compared two Streptomyces strains with identical 165 rRNA gene sequences but
geographically distant origins. Chosen were an Easter Island Streptomyces isolate (Streptomyces sp.
SN25_8.1) and the next related type strain, which is Streptomyces griseus subsp. griseus DSM 40236"
isolated from Russian garden soil. Compared traits included phylogenetic relatedness based on
16S rRNA gene sequences, macro and microscopic morphology, antibiotic activity and secondary
metabolite profiles. Both Streptomyces strains shared several common features, such as morphology
and core secondary metabolite production. They revealed differences in pigmentation and in the
production of accessory secondary metabolites which appear to be strain-specific. In conclusion,
despite identical 16S rRNA classification Streptomyces strains can present different secondary metabolite
profiles and may well be valuable for consideration in processes for drug discovery.

Keywords: Streptomyces; geographical isolation; Easter Island; secondary metabolites; 165 rRNA;
morphology; High Resolution Mass Spectroscopy (HRMS); Nuclear Magnetic Resonance (NMR);
horizontal gene transfer

1. Introduction

The increasing number of pathogens that show antibiotic resistance has triggered the
bioprospection of new antibiotics [1]. Actinobacteria have shown to be an exceptional source of
new antibiotics and pharmaceuticals in general [2]. Within the Actinobacteria phylum, Streptomyces is
the most prolific drug producing genus [3]. Streptomyces species have shown an outstanding capacity
for the production of secondary metabolites, many of which effectively can treat human diseases.
Secondary metabolites of Streptomyces species belong to different classes of compounds, such as:
polyketides [4], peptides [5] and polyketide-peptides hybrids [6], and have been characterized with
different biological activities, such as: antibacterial [7] antifungal [8], anticancer [9] and immune
suppression [10].

Microorganisms 2019, 7, 166; doi:10.3390/microorganisms7060166 www.mdpi.com/journal/microorganisms
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Biogeographically, Streptomyces species have a wide distribution, since they can be found in
the most diverse habitats, like polar territories [11], deserts [12], highlands [13], insects [14], marine
invertebrates [15] and marine sediments [16,17].

As a result of the current drug bioprospection, multiple Streptomyces strains are isolated every
year, however only a limited percentage of these bacteria represent new species [18]. Most of them
represent already characterized species displaying similar or even identical phylogenetic features [19].
The most widely used method of bacterial characterization is the analysis of the 165 rRNA gene
sequence which despite its utility and quickness, has shown ambiguity when discriminating closely
related Streptomyces strains (>99% of similarity) [20]. Often known Streptomyces species are considered
to be of little significance for drug discovery due to their lack of novelty in terms of phylogeny and
physiology. In consequence, drug discovery may overlook new metabolites produced from Streptonyces
strains which are closely related to already known strains since they are assumed to be producers of
identical secondary metabolites [21]. However, investigations have shown that in addition to the core
secondary metabolites, many Streptomyces strains have an accessory chemical arsenal which has not
been completely studied [22]. Moreover, diverse experiments have demonstrated that changing culture
conditions of Streptomyces strains may activate cryptic biosynthetic pathways, producing uncommon
or unknown strain-specific metabolites [23,24].

The advancement in genome sequencing and the reduction of its cost has allowed the differentiation
of closely related Streptonmyces species at the genomic level [25] and has shed light about the unexploited
cryptic biosynthetic pathways harbored by Streptomyces strains, or bacteria in general [26]. Despite the
genomic advancement, we still lack the understanding of expression and regulation of biosynthetic
pathways [26]. This makes it necessary to perform an in vitro characterization of Streptomyces strains
to obtain specific information of their secondary metabolite features.

To date, few efforts have been made to thoroughly evaluate the differences in secondary metabolite
production between two Streptonyces strains that are identical according to 16S rRNA phylogeny but
originate from different geographic regions [19].

Therefore, we compared two phylogenetically identical Streptomyces strains, an isolate from a
marine sediment sample from Easter Island, a remote location in the middle of the South Pacific Ocean,
and as counterpart a reference strain isolated from Russian garden-soil. Our data showed that the
phylogenetically almost identical Streptomyces strains shared a number of morphological and chemical
features as widely recognized and also expected. However, we also found striking differences in the
accessory metabolites produced, which appear to be strain specific. We suggest that these chemical
differences may have risen through niche specialization, as well as horizontal gene transfer.

2. Materials and Methods

2.1. Streptomyces Strains

Streptonmyces sp. SN25_8.1 was obtained from a marine sediment sample which was collected
from the coastal zone of the Easter Island, Chile (27°08’45.0” S, 109°25’49.8” W), by the first author
(Chilean citizen), in March 2016. The sampling site was outside of the Isla de Pascua national park,
and the sample was taken in agreement with regulations by the Chilean government. Streptomyces
griseus subsp. griseus DSM 40236" was obtained from the German Collection of Microorganisms and
Cell Cultures GmbH (DSMZ). This strain was isolated by Krainsky from a garden soil sample from
Russia [27,28].

2.2. Culture Conditions

Cultivation and morphological comparison of the of Streptomyces strains were made using solid
Glucose-Yeast extract-Malt extract medium (GYM), 4 g glucose X HO, 4 g yeast extract, 10 g malt
extract, 2 g CaCQOg, 15 g agar, 1 L deionized water, and pH 7.2 [29].
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For the evaluation of the secondary metabolites production, the Streptomyces strains were grown
in Ultra Yield®flasks 2.5 L (Thomson, Oceanside, CA, USA), which contained 1 L of slightly modified
Starch-Glucose-Glycerol (SGG) liquid medium [30]. The composition of the production medium was:
5 g soluble starch, 5 g glucose x H,O, 5 g glycerol, 1.25 g cornsteep powder, 2.5 g peptone from soymeal,
1 g yeast extract, 1.5 CaCOg, and 1 L deionized water. The medium was also supplemented with 15 g/L
Tropic Marin™ salt (Wartenberg, Germany). The pH was adjusted to 7.7 using 1 M of HCI and NaOH.
The culture was kept in orbital agitation at 240 rpm, 28 °C, for 14 days in darkness.

2.3. Molecular Characterization and Phylogenetic Analysis

DNA was extracted from the bacterial cells through the use of DNA isolation kit, DNeasy™
(Qiagen, Hilden, Germany), following the manufacturer instructions. Subsequently, the amplification
of the 165 rRNA gene sequence was performed with PCR and the use of general bacterial primers in a
concentration of 10 pmol/uL, i.e. 27f, 1492r [31,32], 1387r [33] and 1525r [34].

PCR reagents were obtained from GE Healthcare illustra™ PuReTaq Ready-To-Go™ PCR Beads
(GE Healthcare, Glattbrugg, Switzerland) containing DNA polymerase, MgCl,, and dNTPs. The PCR
conditions were the same as reported by Staufenberger et al. [32]. The 16S rRNA genes were sequenced
at the Center for Molecular Biosciences (ZMB) at Kiel University using the primers 27f [31], 342f [32],
534r [32] and 1525r [34]. The 165 rRNA gene sequences were manually curated using Chromas
pro software, version 1.7.6 (Technelysium Pty Ltd, Tewantin QLD, Australia) and saved in FASTA
format. Primary phylogenetic characterization of the Streptomyces strains was achieved using nucleotide
NCBI-BLAST and EZbioCloud [35]. Subsequently, the obtained sequences were standardized according
to the global SILVA alignment for rRNA genes [36]. This primary alignment was visually compared
using ExPASy (SIB bioinformatics resource portal) [37] to determine the level or similarity or divergence
of both Streptomyces 165 rRNA gene sequences. For the construction of a Streptomyces phylogenetic
tree, we retrieved the next related type strains 16S rRNA gene sequences from NCBI. All the 165 rRNA
gene sequences were gathered in a single FASTA file and aligned in SINA-SILVA web platform [36].
The outcome of SINA gave a multi-aligned Streptonyces sequences FASTA file which was processed
with MEGA [38] to delete gap sites, and subsequently to run bootstrapped phylogenetic trees, using
neighbor joining model.

2.4. Morphological Analysis

Three week-old plates of Streptomyces cultures on solid GYM medium were inspected and recorded
under a stereo microscope (SZX16, Olympus, Japan), using a visual increase of 0.7-fold. Additionally,
cells and spores of both Streptomyces strains were inspected under an Axiophot microscope using a
100x lens and recorded with Axio Cam MRm (Zeiss, Gottingen, Germany).

2.5. Chemical Analysis

After the growth period, 20 g/L of amberlite XAD-16 (Sigma-Aldrich, St. Louis, MO. USA) were
added to each culture flask and mixed for one hour using orbital agitation in 120 rpm. Subsequently,
the resin was separated through cheesecloth filtration [39], and the liquid was discarded. Amberlite
was mounted on a glass funnel, and washed with 3 L of deionized water, and eluted with 1 L of
acetone [39]. Acetone was then concentrated under reduced pressure until obtaining an aqueous
residue. Subsequently, 1 L of deionized water was added to the acetone residue and brought to a
separation funnel. To extract the organic molecules, 3 X 300 mL of ethyl acetate was used. The organic
phase was concentrated under reduced pressure until dryness.

Streptomyces secondary metabolite profiles were acquired through high pressure liquid
chromatography (HPLC, Merck-Hitachi, Darmstadt, Germany) coupled with evaporative light
scattering detector (ELSD, Sedere, Olivet, France). The secondary metabolites profiling was developed
primarily as screening strategy, using 30 min gradient. The gradient developed was as following:
0 min: 90% water, 10% acetonitrile, 20 min: 0% water, 100% acetonitrile, 23 min: 0% water, 100%
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acetonitrile, 28 min: 90% water, 10% acetonitrile, 30 min: 90% water, 10% acetonitrile. The used column
was reverse phase C18 gravity SB™ (Macherey-Nagel, Diiren, Germany). The wavelengths recorded
were 210 and 254 nm. Dereplication process and 254 nm HPLC profiling were made with a High
Resolution Liquid Chromatography coupled with Mass Spectroscopy (HRLCMS), Thermo Scientific™
UltiMate 3000 RS UHPLC coupled to a Thermo Scientific™ Q Exactive™ Hybrid-Quadrupol-Orbitrap
MS (Thermo, Bremen, Germany), positive mode, and a 35 minutes gradient of HyO and acetonitrile
supplemented with 0.1% of formic acid. The gradient developed was as following: 0 min: 90% water,
10% acetonitrile, 25 min: 0% water, 100% acetonitrile, 28 min: 0% water, 100% acetonitrile, 30 min: 90%
water, 10% acetonitrile, 35 min: 90% water, 10% acetonitrile. The used column was reverse phase C18
gravity SB™ (Macherey-Nagel, Diiren, Germany). The wavelength recorded was 254 nm. Mass and
spectral data were evaluated with Xcalibur®(Thermo Scientific, San Jose, CA, USA), and compared
with online databases (MarinLit, and Scifinder), and literature.

'H Nuclear Magnetic Resonance (NMR) experiments of the crude extracts were acquired to
characterize the main components. The samples were dissolved in deuterated chloroform (Eurisotop™,
Saint-Aubin, France), and transferred to NMR tubes (178 X 5.0 mm). Experiments were acquired on
a Bruker Avance III spectrometer (Rheinstetten, Germany) operating at 600 MHz proton frequency
equipped with a cryogenically cooled triple resonance z-gradient probe head using stand pulse
sequences from the Bruker experiment library. Spectra were referenced against tetramethylsilane (TMS)
as internal standard. NMR data was analyzed with TopSpin (version 3.5.b.91 pl 7, Bruker BioSpin Ltd.,
Karlsruhe, Germany).

2.6. Antibiotic Activity

The disc diffusion method was used to determine the antibiotic activity [40]. Thus, crude extracts
obtained from the Streptomyces strains were tested to determine their activity on Gram-positive and
Gram-negative bacteria. For this purpose, we chose Staphylococcus lentus DSM 20352, and Escherichia coli
DSM 498. These bacteria were cultured in TSB medium (17 g of peptone from casein, 3 g peptone
from soymeal, 2.5 g glucose X H,O, 5 g NaCl, 2.5 g K;HPOy, 1 L deionized water and pH to 7.3) at
37 °C for 24 h. Crude extracts were dissolved in MeOH to be subsequently transferred to a paper
disc to reach a final concentration of 50 ug per disc. Additionally, we used an antibiotic susceptibility
disc of streptomycin (Oxo0id®, Columbia, MD, USA) as a positive indicator of antibiotic activity in a
concentration of 25 ug per disc. All the used paper discs had a diameter of 6 mm. The plates were
inoculated with fresh culture of S. lentus DSM 20352, and E. coli DSM 498, and incubated at 37 °C for
24 h. After the incubation period, the inhibition zone was measured and registered.

3. Results

3.1. Phylogenetic Analysis

Molecular characterization of both Streptomyces strains was performed with the sequence of the
16S rRNA gene as a genetic marker. The amplification and subsequent characterization resulted in
nearly complete 16S rRNA sequences, whereby the Easter Island strain, Streptomyces sp. SN25_8.1,
revealed a sequence with 1477 nucleotides (NCBI access# MK734066) compared to the sequence of
the laboratory grown type strain of Streptomyces griseus subsp. griseus DSM 402367, with a sequence
of 1476 nucleotides (NCBI access# MK734067). We used the new sequence of the 16S rRNA gene of
the type strain, Streptomyces griseus subsp. griseus DSM 40236, for detailed sequence comparison,
since the publicly available sequence dates to 2003 (NCBI access# AY207604). Both the new and old
sequences are identical.

The alignment of the 16S rRNA gene sequences of strains DSM 40236 (from a Russian garden
soil sample) and SN25_8.1 (from Easter Island) showed that the strains shared identical sequences of
the 16S rRNA gene (Supplementary Figure S1). The phylogenetic tree (Figure 1) revealed, that both
strains affiliate to one cluster, which is separated from the other Streptomyces spp. strains.
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Figure 1. Phylogenetic characterization of the Streptomyces strains using a neighbor joining model.
Light blue: experimentally compared Streptoniyces strains. Bootstrap = 1000; Bootstrap values are
shown on the branch, where 100 is maximum; T: type strain; NCBI access number is within parenthesis.
* Streptomyces griseus subsp. griseus DSM 40236" LAB COLL: Sequence experimentally obtained
from fresh cultures and deposited in NCBI (MK734067). ** Streptomyces griseus subsp. griseus DSM
40236": Sequence retrieved from NCBI (M76388). The evolutionary distances were computed using
the Jukes-Cantor method and are in the units of the number of base substitutions per site (scale).
The analysis involved 31 nucleotide sequences. All positions containing gaps and missing data were
eliminated. There were a total of 1338 positions in the final dataset.

3.2. Morphological Comparison

After cultivation of the strains in solid GYM medium for three weeks, we continued with
a morphological comparison of the Easter Island Streptomyces sp. SN25_8.1 and the type strain,
Streptomyces griseus subsp. griseus DSM 40236" (Figure 2). The visual comparison showed evident
macroscopic differences between the strains, such as; spore pigmentation, amount of spore formation,
and aerial hyphae distribution on the colony. Light microscopic examination of the cells and spores
of both strains showed no differences. Nevertheless, a detailed characterization of the spores and
spore-bearing hyphae would require scanning electron microscopy.
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Streptomyces sp. strain SN25_8.1 Streptomyces griseus subsp. griseus
DSM 402367

Figure 2. Comparison of cell and colony morphology of the two Streptomyces strains after growth on
GYM medium for three weeks. Photos were recorded using a stereo microscope (upper figures) and
microscope with a 100x lens (bottom figures).

3.3. Secondary Metabolites Production

Both Streptomyces strains produced different metabolites patterns and quantities after growth in
a Starch-Glucose-Glycerol medium (slightly modified SGG). Streptomyces sp. SN25_8.1 produced a
total of 60.9 mg of crude extract, while the type strain Streptomyces griseus subsp. griseus DSM 402367
produced almost the double amount, 108.1 mg. The HPLC chromatograms of the crude extracts showed
differences and similarities between the two Streptomyces strains (Figure 3A,B). The similarities found in
the chromatograms (taking the Easter Island representative as a point of comparison, Figure 3B) were
observed in the following retention time (RT): 5.8, 8.5, 9.33, 9.54, 11.0, 11.5, 12.0, 12.4, 13.1, 15.3, 16.0 and
18.8 min. The observed peak at RT 27.3 min is a methodic artifact and should not be considered in the
comparison of the chromatograms. Differences were found between the chromatograms at RT 3.1, 4.5,
5.3,7.2,11.3,11.6,13.7, and 18.46. Considering this information, it is fair to state that these Streptonyces
strains differ significantly, because they share some metabolites but differ in the production of others.
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A) Streptomyces griseus
254 nm

B) Streptomycessp. SN25_8.1
254 nm

C) Streptomyces griseus
1H NMR

D) Streptomycessp. SN25_8.1
1H NMR

Figure 3. HPLC metabolite profile comparison of Streptomyces sp. SN25_8.1 from Easter Island,
and Streptomyces griseus subsp. griseus DSM 40236 from Russia, measured at 254 nm (A,B), and
"H NMR comparison of the crude extract of both strains (C,D). CDCls: deuterated chloroform;
TMS: tetramethylsilane.

In order to extend the previous HPLC data, 'H NMR experiments were performed to again display
similarities as well as differences among the most abundant chemical groups present in both samples
(Figure 3C,D). For example, remarkable similarities were found in the aromatic proton zone (7-8 ppm),
in the olefinic proton zone (of 4-6, ppm), and in the low frequency region (1.0-3.5 ppm), where
aliphatic methyl, methylenes and methines are commonly found. However, abundant differences
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between the two spectra are apparent for example in the high frequency protons around 12.2-12.4 ppm,
the broad peaks close to 8 ppm, olefinic signals around 5.5 ppm, and the methyl protons around
0.65 ppm. Further, in particular the strongly differing intensities in the mentioned regions suggest also
the presence of large differences in the relative metabolite contributions in these mixtures.

As simple one-dimensional 'H NMR profiles do not allow for a compound identification,
attempts to identify some of the mixture components by high resolution LC-MS techniques (HRLCMS)
were undertaken. Several molecules could be identified in both Streptomyces representatives based
on their exact masses and a chemical database search (Supplementary Materials). We observed
that the two Streptomyces strains had a core chemical arsenal that is shared by both strains and
an accessory chemical arsenal which seems to be strain specific (Figure 4). The identified core
chemicals comprised gancidin W, YF-0200-R-B, emycin E, phenatic acid, netropsin, actiphenol,
6-beta-deoxy-5-hydroxy-tetracycline and TMC-86B. From the analysis of the accessory metabolites,
we observed that the Easter Island representative, Streptomyces sp. SN25_8.1, produced seven
detectable chemicals, which were: albidopyrone, cyclizidine, epithienamycin C, cycloheximide,
SE-733C, protomycin and N-Valyldihidroxyhomoproline, as accessory metabolites. In contrast, we
could detect only four chemicals in the reference strain Streptomyces griseus subsp. griseus DSM 402367
as accessory metabolites, which were: fortimicin KK1, capromycin, YO-7625 and halstoctacosanolide B.

Itis evident that the identified metabolites may be only a fraction of the total chemical components
in the crude extracts. However, HRLCMS allowed us to have a depiction of the chemical diversity of
both Streptomyces strains under the same analytical conditions.

The major components were determined through the use of HPLC-ELSD. The reference strain,
Streptomyces griseus subsp. griseus DSM 402367, showed two main components: phenatic acid (RT 12.3
min), and a second one with RT 3.8 min, which could not be identified due to the lack of ionization in
HRLCMS measurement. The major components in the Easter Island strain, Streptomyces sp. SN25_8.1,
were determined as cycloheximide (RT 11.33 min) and actiphenol (RT 15.3 min).

Interestingly, Streptomyces griseus strains are well known for producing the antibiotic streptomycin,
but this molecule was not produced by the strains under our experimental condition. In both
Streptomyces strains, we found chemicals which did not show any match to known Streptomyces
metabolites, suggesting potentially novel molecules. In the case of the Easter Island Streptomyces
strain, we observed that the unknown chemical had a molecular weight of [M+H]* m/z 579.53381.
This chemical showed a polyprotonation pattern, which points towards a peptide structure. The
reference strain, Streptomyces griseus subsp. griseus DSM 40236 showed an unknown metabolite
with a molecular weight of [M+H]* m/z 813.59229. The isolation of these compounds from the crude
extracts and chemical analyses would be necessary for structure elucidation.
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samples (Figure 4C-D). For example, remarkable similarities were found in the aromatic proton zone
(7-8 ppm), in the olefinic proton zone (of 4-6, ppm), and in the low frequency region (1.0-3.5 ppm),
where aliphatic methyl, methylenes and methines are commonly found. However, abundant
differences between the two spectra are apparent for example in the high frequency protons around
12.2-12-4 ppm, the broad peaks close to 8 ppm, olefinic signals around 5.5 ppm, and the methyl
protons around 0.65 ppm. Further, in particular the strongly differing intensities in the mentioned
regions suggest also the presence of large differences in the relative metabolite contributions in these
mixtures.

As simple one-dimensional 'H NMR profiles do not allow for a compound identification,
attempts to identify some of the mixture components by high resolution LC-MS techniques
(HRLCMS) were undertaken. Several molecules could be identified in both Streptomyces
representatives based on their exact masses and a chemical database search. We observed that the
two Streptomyces strains had a core chemical arsenal that is shared by both strains and an accessory
chemical arsenal which seems to be strain specific (Figure 5). The identified core chemicals
comprised gancidin W, YF-0200-R-B, emycin E, phenatic acid, netropsin, actiphenol,
6-beta-deoxy-5-hydroxy-tetracycline and TMC-86B. From the analysis of the accessory metabolites,
we observed that the Easter Island representative, Streptomyces sp. SN25_8.1, produced seven
detectable chemicals, which were: albidopyrone, cyclizidine, epithienamycin C, cycloheximide,
SF-733C, protomycin and N-Valyldihidroxyhomoproline, as accessory metabolites. In contrast, we
could detect only four chemicals in the reference strain Streptomyces griseus subsp. griseus DSM
40236T as accessory metabolites, which were: fortimicin KKI1, capromycin, YO-7625 and
halstoctacosanolide B.

It is evident that the identified metabolites may be only a fraction of the total chemical
components in the crude extracts. However, HRLCMS allowed us to have a depiction of the
chemical diversity of both Streptomyces strains under the same analytical conditions.

The major components were determined through the use of HPLC-ELSD. The reference
strain, Streptomyces griseus subsp. griseus DSM 402367, showed two main components: phenatic acid
(RT 12.3 min), and a second one with RT 3.8 min, which could not be identified due to the lack of
ionization in HRLCMS measurement. The major components in the Easter Island strain, Streptomyces
sp. SN25_8.1, were determined as cycloheximide (RT 11.33 min) and actiphenol (RT 15.3 min).

Interestingly, Streptomyces griseus strains are well known for producing the antibiotic
streptomycin, but this molecule was not produced by the strains under our experimental condition.

In both Streptomyces strains, we found chemicals which did not show any match to known
Streptomyces metabolites, suggesting potentially novel molecules. In the case of the Easter Island
Streptomyces strain, we observed that the unknown chemical had a molecular weight of [M+H]* m/z
579.53381. This chemical showed a polyprotonation pattern, which points towards a peptide
structure. The reference strain, Streptomyces griseus subsp. griseus DSM 40236 showed an unknown
metabolite with a molecular weight of [M+H]* m/z 813.59229.
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3.4. Antibiotic Activity

Antibiotic activity of the two Streptomyces crude extracts (Table 1) were evaluated through
disc diffusion assay, using Gram-positive and Gram-negative bacteria. For the assay, we selected
Staphylococcus lentus DSM 20352 and Escherichia coli DSM 498.

Table 1. Antibiotic activity of crude extracts.

Inhibition Zone (mm)

Sample Tested
S. lentus DSM 20352 E. coli DSM 498
Streptomyces sp. SN25_8.1 8 15
Streptomyces griseus subsp. griseus DSM 402367 8 20
Streptomycin 18 20

As shown in Table 1, the antibiotic activities of the crude extracts of both Streptomyces strains
were quite similar as both produced an inhibition zone with the Gram-positive and the Gram-negative
bacterium. Importantly, the crude extract of the reference strain, Streptomyces griseus subsp. griseus
DSM 40236", had a stronger inhibitory effect against the Gram-negative bacterium, E. coli, which may
be related to the higher concentrations of its components. The dereplication experiment suggested
the presence of several metabolites with antibiotic activity like 6-beta-deoxy-5-hydroxy-tetracycline,
gancidin W, phenatic acid and netropsin, which may be responsible for the observed antibiotic activity
to both Gram-positive and Gram-negative bacteria. Streptomycin was used as a positive control.

4. Discussion

Much effort is being made for the isolation of new biologically active Streptomyces strains [41],
since this genus has been found to be a reliable source of chemicals with human health application [42].
However, a significant number of new Streptomyces isolates are affiliated through the 165 rRNA
molecular marker to already described species [43], a reason why they are also considered to be
identical in secondary metabolite production.

Recent studies have proposed alternative analyses to determine the dissimilarity of closely related
Streptomyces strains, such as: polyphasic characterization, multilocus sequence typing and full genome
sequencing [19,44], which have shown to be a more precise tool for phylogenic clarification and
secondary metabolite dereplication [45-48]. None of these studies have dealt with the aspect of the
large-scale geographic separation of the Streptomyces strains, which was investigated.

Alternatively, a direct comparison through the laboratory growth of Streptonyces still remains a
more affordable and rapid way of determining how similar the metabolite profiles of the two strains
are. Once grown, the studied Streptomyces can be compared using HRLCMS and 'H NMR techniques,
which vastly help in the dereplication process, since they are quite informative about the chemical
identities and functionalities of the crude extracts.

Our results showed that Streptomyces closely related through the 165 rRNA gene marker presented
differences in macroscopic features (pigmentation, aerial hyphae distribution, colony morphology),
but kept similarities in cell morphology. In terms of secondary metabolite production, we found that
closely related Streptonmyces species kept a common set of chemicals, which has been addressed as core
secondary metabolites [49]. This fact is in agreement with the common knowledge that Streptomyces
strains with similar 165 rRNA gene sequences produce identical chemicals [44]. However, our finding
also indicated that Streptomyces strains have a set of accessory secondary metabolites that are unique
for each isolate, despite of the identical 165 rRNA gene sequences. These findings have also been
observed in other Streptomyces species. For example, Antony-Babu et al. [19], developed a polyphasic
analysis of 10 different Streptomyces strains with identical 16S rRNA gene sequences and they found,
that by evaluating characteristic features like halotolerance, optimal pH growth, coloration and GC
content at least 5 out 10 clearly diverged as new species. These results were further supported with a
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multilocus sequence analysis and phylogenetic tree. This study also showed the production of a core
set of secondary metabolites and an accessory chemical diversity.

Another example was provided by Vicente et al. [44], who performed a similar study, but evaluated
the genomes of six closely related Streptomyces strains. The evaluation of the biosynthetic gene clusters
showed that the analyzed Streptomyces strains kept a core set of secondary metabolites and in addition,
a set of strain-specific metabolites. Interestingly, Vicente et al. [44] also reported a set of chemicals
with wide presence in Streptomyces, such as melanin, desferrioxamine B, hopene, isorenieratene and
geosmin. However, none of them could be detected in our experimental work. This observation might
be related with the evolutionary distance between S. griseus strains and the Streptomyces strains used
by Vincente et al. [44]. This last finding may also be an indication of species-specific metabolites.
Interestingly, Vicente et al. [44] also reported chromosome reorganization events (pericentral inversion)
and suggested horizontal gene transfer for the acquisition of biosynthetic gene clusters for strain-specific
secondary metabolites. Finally, this study also conveyed the finding of unknown biosynthetic gene
clusters, suggesting potential for novel chemistry production.

Our data indicated that Streptomyces strains of the same species, isolated from geographical distant
locations, can show important differences in the metabolite profiles. These may be overlooked if
solely a genetic marker such 165 rRNA gene sequence is used as an indicator of secondary metabolite
diversity. As described previously, genome sequencing and comparison, multilocus gene analysis or
growth experiments associated with chemical analysis are three suitable alternatives to dereplicate
closely related Streptomyces strains. This strategy can represent a valuable source of metabolites with
biomedical and industrial application, by preventing the discard of unstudied Streptomyces.

Secondary metabolite production in Streptomyces is not essential for their life cycle, however these
metabolites confer an evolutionary advantage over competitors, since these molecules can be used as a
chemical weapon to control other bacterial and fungal competitors (deterrence, inhibition, decease).
Since Streptomyces can profit from these molecules, Streptonyces might adapt their chemical arsenal in
function of their habitat and their competitors to succeed in new environments.

It remains an open but interesting question, how genes necessary for the production of a particular
secondary metabolite have been gained by individual Streptomyces strains. Different researchers
have discussed this process in other actinobacterial genera, and the most widely accepted hypothesis
is the horizontal transfer of genes (HGT) of entire biosynthetic pathways [50], which may have
direct relation to the environment in which the Streptomyces strains are dwelling. However, gene
duplication, mutation and genetic rearrangement should also not be discarded in the process of
modifying secondary metabolite biosynthetic pathways. The gain and loss of secondary metabolites
may be considered as a biochemical evolution of Streptomyces strains, since the process of selecting
and discarding genes for the production of secondary metabolites may have direct relation to the
environmental competition and survival needs of the strain. It seems reasonable to assume that
phylogenetic almost identical Streptomyces strains may have diverged from a common ancestor because
of their genetic and chemical similarities. Within a sufficient timeframe, Streptomyces strains may have
acquired new biosynthetic abilities to produce different secondary metabolites, because of the need to
adapt and specialize in their particular ecological niche. Environmental pressure may be a driving
force for the retention/discarding/acquisition of the secondary metabolite genes. It has been shown that
Streptomyces strains are capable of spontaneous combination of genetic information [21,51], generating
previously unknown chemical hybrids [52]. However, it is not known for how long these naturally
occurring Streptomyces hybrids have existed in the environment since many factors may influence the
success of the new ecotypes.

5. Conclusions

We established that 16S rRNA gene sequences do not provide information reliable enough to
evaluate the chemodiversity of Streptonyces strains since our analyses of the metabolite profiles showed
differences in the production of secondary metabolites of strains identical on the basis of this genetic
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marker. While we found a core set of secondary metabolites that is identical in both strains, a set of even
more diverse accessory metabolites appear to be strain specific. Based on the phylogenetic closeness
and the similarity of the metabolites, it is suggested that both Streptomyces had a common origin which
went through a subsequent specialization in function of their habitat. In conclusion, this study has
demonstrated that Streptomyces strains, with an identical phylogenetic classification to already known
strains, still represent a diverse and putative source of novel secondary metabolites with potential for
drug discovery; therefore, they should not be discarded in screening processes for bioprospection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/7/6/166/s1,
Figure S1: 16S rRNA gene sequence alignment of the Streptomyces strains. Supplementary materials also contains
dereplication overview, the individual identification of the molecules, their structures and chemical data, as well
as antibiotic activity of the crude extracts.
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VII. Discussion

The performed investigation showed a high diversity and novelty of Actinobacteria from
the coastal zone of Easter Island, a total of 163 pure cultures were obtained, which represented 72
phylotypes distributed in 20 different genera. From the sequencing and analysis of the 16S rRNA
gene, we determined that at least 45% of the obtained strains may represent new species, which
confirmed the observation that unexplored habitats still remain as a valuable source of novel
bacterial taxa (Villalobos et al. 2018; Viver et al. 2015). Streptomyces and Micromonospora genera
have been shown to be the most commonly reported Actinobacteria genera in terrestrial and marine
samples (Maldonado et al. 2009; Nimaichand et al. 2015). This observation was also valid for the
coastal zone actinobacterial diversity at Easter Island. Furthermore, we found one representative of
the genus Salinispora, S. arenicola, a strict marine actinobacterium that has only been reported
once in Fiji in the South Pacific Ocean (Millan-Aguifiaga et al. 2017), thus extending its distribution

to Easter Island.

The richest sources of Actinobacteria found in this study were; marine sediment, a marine
invertebrate, and a submerged marine stone. These findings agreed with other studies, in which
marine invertebrates, like sponges, and marine sediment hold high actinobacterial richness (Jensen
et al. 2005; Schneemann et al. 2010b). Interestingly, marine stones are rarely studied, despite their
capacity to harbor remarkable actinobacterial diversity, as shown in this study. The influence of the
culture medium was also analyzed and showed great relevance, since we observed that there was
specificity in some actinobacterial genera for determined culture media. For example, the genus
Yimella was only obtained in the medium BCM. Similarly, the genera Ornithinimicrobium and
Geodermatophilus were only isolated with the medium SIMAL. These observations may facilitate
the isolation of these actinobacterial groups, since they may specifically be isolated using these

media in future efforts.

Considering previous studies developed in Easter Island, which were focused in
Actinobacteria isolation, we observed that Vezina et al. (1975), isolated a single actinobacterial
representative, Streptomyces hygroscopicus (rapamycin producer), which was not found in our
investigation. This observation made clear the distribution of Streptomyces hygroscopicus at Easter

Island was limited to terrestrial niches and not marine ones. Furthermore, Cumsille et al. (2017)
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reported the isolation of sponge derived Actinobacteria from the offshore of Easter Island, where a
total of 14 different genera were obtained. Remarkably, most of them belong to the commonly
considered rare Actinobacteria. Some of the obtained rare actinobacterial representatives belong to
the following genera; Brachybacterium, Micrococcus, Brevibacterium, Janibacter, Knoellia,
Kytococcus, Nesterenkonia, Gordonia, Serinococcus and Kocuria. Interestingly, none of these rare
actinobacterial genera were obtained in our study. However, there was a minor overlap between
Cumsille et al. (2017) study and our results, these were the genera Streptomyces, Arthrobacter,
Rhodococcus, and Nocardioides. Additionally, Cumsille et al. (2017) reported Micrococcus,
Kocuria and Streptomyces as the most abundant actinobacterial genera. In contrast, our
investigation determined that the most abundant genera in our marine-derived samples were
Micromonospora, Streptomyces and Dietzia. Inconveniently, they did not pursue the investigation

in the species level, which hindered a deeper understanding of the actinobacterial distribution.

When the Actinobacteria genera were evaluated in function of their geographical
distribution on the coastal zone of Easter Island, we found that there was an Actinobacteria hotspot,
Zone 6, from this single sample zone we obtained 18 different actinobacterial genera. In contrast,
other sampling zones produced only 2-9 actinobacterial genera. The reason of this large difference
is not clear, but it may be hypothesized that it has relation with the nutrient availability in Zone 6,
which receives the rain runoff through a small watercourse. This input may bring plant exudates,
minerals and other nutritive sources that affect positively the actinobacterial development. Further

research needs to be made in order to clarify this speculation.

Because Easter Island is an isolated location in the Southern Pacific ocean, we wondered
if our isolates were related with a specific zone of the world. To answer this question, we made a
connection map between our isolates and the closest isolates worldwide using the 16S rRNA gene
sequence as a reference marker. The comparison is presented in Figure 14, which is a world map
with the connections between Easter Island actinobacterial representatives and their closest
relatives worldwide, represented in function of their geographical origin. The depiction of the map
revealed that Easter Island Actinobacteria are more closely associated to Asia than other

geographical areas. Remarkably, no correlation was found with Hawaii, which has a similar
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(oceanic volcano) origin than Easter Island. A weak point of our correlation may be the lack of data
for Hawaii and Latin America.

Figure 14 Connection map of Easter Island actinobacterial isolates and their closest relatives
worldwide. Closeness determined in base of the 16S rRNA gene sequence. Yellow diamond: Origin
(Easter Island). White circle: Closest actinobacterial relative.

The dereplication of the Easter Island sea anemone, Gyractis sesere, reported the
identification of two known anthraquinones, Lupinacidin A and Galvaquinone B, which have also
been identified in terrestrial and marine actinobacterial representatives belonging to the
Micromonospora and Streptomyces genera (Hu et al. 2012; Igarashi et al. 2007). This finding
motivated the cultivation and chemical characterization of the sea anemone actinobacterial
symbionts resulting in the clarification that an actinobacterial strain, Verrucosispora sp. SN26_14.1

was the actual producer of the chemicals.

A few years ago, this finding would have been controversial since it has extensible been
assumed that marine invertebrates are producers of a large chemical diversity (Blunt et al. 2016).
However it has been shown more recently that marine invertebrate symbionts are the real producers
of many of these chemicals. A well-known example are marine sponges, which have shown an

impressive chemical richness (Blunt et al. 2016), but it has progressively been revealed that the real
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producers of the chemicals are microbial symbionts (Tianero et al. 2019). This observation is not
limited to marine sponges, since other invertebrates like tunicates have shown the same pattern, in
which the chemicals stored by the invertebrate were ultimately produced by microbes (Schofield
et al. 2015). Although, this clarification tendency is growing, there are also cases in which the real
producer of the secondary metabolites are the marine invertebrates and not the microbes, as is the
case of sea cucumbers, which produced triterpenic saponins in specialized organs called Cuvier
glands (Bahrami and Franco 2016; Kerr and Chen 1995). Sea anemones have not been extensively
studied in microbiological and chemical terms, but the studies dealing with their chemistry have
indicated the production of alkaloids (Cachet et al. 2009), peptides (Honma and Shiomi 2006),
terpene derivatives (Yu et al. 2014) and toxins (Schweitz et al. 1981). The microbiology associated
to sea anemones has not been developed comprehensively, but there are a few examples (Du et al.
2010; Schuett et al. 2007). For instance, a recent study of a sea anemone associated fungus,
Nigrospora sp., revealed the production of nine anthraquinones, however the researchers did not
analyze the sea anemone tissue to test the presence of the anthraquinones (Yang et al. 2012). Since
sea anemones hold symbionts that produced anthraquinones, it is interesting to speculate what
function these chemicals may play. It has been shown that anthraquinones can chelate metals ions
like calcium, magnesium and zinc (Lee et al. 2016; Suemitsu 1963; Yeap et al. 2015) and in
addition, have also shown activity to inhibit biofilm formation (Lee et al. 2016). More research is
needed to clarify the function of these chemicals in sea anemones, due to their importance for

harboring microorganisms that produce anthraquinones.

Finally, today there is lack of understanding in how marine invertebrates and
microorganisms can co-evolve and generate interdependent relationships. Furthermore, there is
almost no research involving how marine invertebrates can recruit bacteria or other
microorganisms, which in turn may produce chemicals with a functional benefit for a given
invertebrate that can be used as mechanism of defense (deterrent), sexual reproduction cue
(pheromone) or even as a chemical modulator (chelator). In the coming future, it should be expected
that microbiology and chemical ecology fused to be able to answer this chemical-evolutionary

questions which would help to understand how a microbiome is generated and shaped.
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The isolation of Streptomyces strains is frequently reported in microbiological diversity
studies, since they are one of the most abundant actinobacterial representatives (Jiang et al. 2007;
Zhang et al. 2006). Despite their large diversity, it is common to find Streptomyces strains which
have a very similar 16S rRNA gene sequence and therefore, are assumed as the same species
(Antony-Babu et al. 2017). This observation undermines the real chemical capacity of Streptomyces
strains. Therefore, we have evaluated two phylogenetically almost identical Streptomyces, which
were isolated from geographically distant locations. Our data showed that despite the > 99% of
similarity of the 16S rRNA, the compared Streptomyces griseus strains showed evident differences
in morphology, pigmentation and spore formation. The analysis of the secondary metabolites
showed a core set of metabolites which was identical in both strains. In addition, we found an
accessory set of the metabolites which seemed to be strain specific. Both strains showed indications
of chemical novelty, thus confirming the chemical potential of Streptomyces, even after several
decades of drug research studies. Our results indicated that the 16S rRNA gene is not an appropriate
marker to determine chemodiversity and novelty. Recently, Antony-Babu et. al (2017) has
proposed that multilocus gene analysis is a more suitable and sensitive phylogenetic classification
alternative to dereplicate closely related Streptomyces strains. Specifically, they suggest the use of
a set of protein-coding housekeeping genes, such as atpD, gyrB, recA, rpoB and trpB for the
construction of phylogenetic trees. This new strategy can facilitate the discerning process on drug

research for a given Streptomyces strain.

Vicente et al. (2018) performed a similar study using closely related Streptomyces through
comparative genomics and evaluated the different biosynthetic gene clusters contained in six
different strains. The study also determined that there was a core set of secondary metabolites in
the Streptomyces genomes, which was represented by melanin, ectoine, desferrioxamine B,
Ibaflavenone, hopene, isorenieratene and geosmin. Remarkably, none of these chemical were found
in our analysis suggesting that there is not secondary metabolites generalism among different
Streptomyces species. Vicente et al. (2018) also observed an accessory strain specific chemical
diversity for each Streptomyces strain evaluated, however the evaluation was only made in the

genetic level with no chemical analysis of the accessory metabolites.

Nowadays, different approaches of elicitation have been developed in order to obtain a
larger chemical diversity of microorganisms that have been used extensively, like Streptomyces.

Examples of elicitation strategies are, one strain many chemicals (Romano et al. 2018) and co-
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cultivation procedures (Wu et al. 2018). It would be quite interesting to see the performance of two
phylogenically identical, but geographical distant Streptomyces, under elicitation conditions. This
would contribute to the understanding of the secondary metabolite expression.

It may be reasonable to think that secondary metabolites may vary depending of the
geographical location, as it has been shown in this study. Geographically distant Streptomyces
strains showed a core set of secondary metabolites which was shared by the studied Streptomyces
griseus strains. Concurrently, Streptomyces griseus strains also showed an accessory set of
secondary metabolites, which was strain specific. This finding may be evidence that both strains
may have shared a common origin and that from the point of rift, they have been acquiring new
secondary metabolites biosynthetic potentials. It has been postulate that horizontal gene
transference may play a role in the exchange and recruit of secondary metabolites genes (Ziemert
et al. 2014). Secondary metabolites, specially antibiotic and antifungal molecules can confer
advantage for competition in the environment, thus confining the nutritive resources to the
organisms with the biochemical weapons to restrict the area or with the evolutionary tools for
antibiotic tolerance. How Streptomyces recruit specific genes for secondary metabolites production,
remains as an open question. It is interesting to speculate how the transference of genes occurs in
the ocean, if there is a certain degree of control on what genes to acquire and for how long these
genes may be held, if they are not beneficial. We think that our results may be applied to other
actinobacterial genera, under the premise that accessory secondary metabolites are strain and
geographically specific. Therefore, phylogenetically almost identical actinobacterial
representatives should not be discarded for chemical investigation, even when they show very high

similarity on the 16S rRNA marker.
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VI1II. Concluding remarks

The investigation of samples from the coastal zone of Easter Island showed a high
actinobacterial diversity and novelty, providing 72 phylotypes distributed in 20 different
actinobacterial genera. Furthermore, 32 out of 72 phylotypes were associated to novel species in
the genera Micromonospora, Streptomyces, Nocardioides, Aeromicrobium, Dactylosporangium
and Nonomuraea. Interestingly, our data suggested the isolation of a new actinobacterial genus,
isolate SN27_500, which didn’t associated with its next related reference genera (Serinicoccus and
Ornithinimicrobium) in the phylogenetic tree analysis. Micromonospora, Streptomyces, and
Salinispora had the widest distribution in the Easter Island sample locations. Easter Island showed
dissimilar actinobacterial diversity depending on the geographical origin, revealing a high degree
of niche specialization. Finally, our data showed that Easter Island was indeed a rich source of

novel Actinobacteria.

The chemical investigation of an Easter Island sea anemone, Gyractis sesere, revealed the
presence of two antitumoral anthraquinones, Lupinacidin A and Galvaquinone B, which were
ultimately found to be produced by an actinobacterial symbiont, Verrucosispora sp. SN26_14.1.
Our finding showed that Verrucosispora was the most abundant actinobacterial species co-habiting
with the sea anemone, among other actinobacterial species belonging to the genus Streptomyces,
Micromonospora, Arthrobacter, Dietzia, Rhodococcus and Cellulosimicrobium. In addition, the
sea anemone revealed a chloroform metabolic profile which was dominated by the Verrucosispora
SN26_14.1 metabolites, in concordance with the microbiological data. This finding re-opens the
debate about secondary metabolites in marine invertebrates and adds evidence that microbes are
the real source of the chemicals. We predict that the coming years will deliver growing evidence

that microbes are the ultimate chemical producer in most of the marine invertebrates.
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The comparison of two closely related Streptomyces griseus strains showed that the 16S
rRNA gene is not a suitable marker to evaluate chemical diversity. Despite Streptomyces griseus
strains keep a core secondary metabolites which is identical in the studied representatives, they also
have an accessory and strain specific set of secondary metabolites, which is suitable for novel drug
discovery. Morphological features also reassured our observations on the differences of the S.
griseus strains. Therefore, Streptomyces strains with almost identical phylogenetic classification to
already known strains still represent a diverse and novel source of secondary metabolites with

potential for drug research.

Finally, and after having explored microbiologically the unstudied Easter Island, its
actinobacterial and chemical diversity, we hope that our studies may contribute to the scientific
community, as well as to the general public to shape a better understanding of the microbial world,

its role in the environment and our dependence in the microbial existence.
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IX. Future directions

In this thesis three main topics were studied to contribute with the advancement of drug
oriented microbiology and natural products research. Thus, this study dealt with actinobacterial
diversity of the unexplored location, Easter Island, the potential of marine invertebrates as source
of drug producing Actinobacteria and the secondary metabolites comparison of two closely related
Actinobacteria. These studies were developed with culture based microbiology techniques,
analytical chemistry, genome sequencing and bioinformatics. Further studies in actinobacterial
systematics, natural products and genomics should be considered to amplify and refine the current
knowledge that we have of remote location Actinobacteria.

The perspectives of my doctoral thesis are:

Characterization of new actinobacterial species and genus. Further studies need to be conducted
in order to characterize the novel actinobacterial species obtained from Easter Island. For instance,
multiples Micromonospora isolates presented a phylogenetic placement which is not close to
known representatives in the genus, this strongly suggested that these isolates are new species that
need to be investigated and classified. Additionally, isolate SN25_500 showed inconsistences in
classification in the genus level, adding evidence that it may represent a new actinobacterial genus.
Therefore, further investigation should be done in order to characterize and compare the physiology
and genomic traits of these actinobacterial representatives. The development of this data will allow

reaffirming the potential of unexplored locations as a source of microbiological novelty.

The further chemical investigation of selected Easter Island actinobacterial isolates. Further
work should be focused in the dereplication, isolation and structural elucidation of new secondary
metabolites from Easter Island representatives. An interesting target can be found in the obtained
Streptomyces isolates with low association to known species, as the case of SN28 94.1,
SN20 12.1, SN25 508.1 and SN28 222.1. Other isolates, like Salinispora, Micromonospora,
Rhodococcus and Verrucosispora showed diverse secondary metabolites profiles what suggested
potential for further investigation. The work on this project should be undertaken primarily through

'H NMR and HRLCMS to characterize and target the novel molecules in an early stage.
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The genome sequencing of the Easter Island isolates for novel enzymatic abilities. The wide
range of abilities of Actinobacteria should be scanned through genome sequencing and annotation,
in order to find new enzymatic capabilities. Actinobacteria are known for their abilities to
biotransform chemicals and to catabolize organic pollutants. The genome capabilities of the isolates
should be closely associated to experimental evaluations for persistent organic molecules

degradation, plastic consumption and heavy metal immobilization.

The further comparison between Easter Island representatives and geographical distant
equivalents. Taking advantage of the genome sequencing of the Easter Island isolates, comparative
genomics should be performed to rationalize the geographical differences of two closely related,
but geographically separated actinobacterial representatives. This would help to understand the
metabolic specialization of a particular environment, for instance Easter Island, an oceanic and
isolated island in the South Pacific against an actinobacterial counterpart from an urban area with

high anthropogenic influence.
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Different secondary metabolite profiles of phylogenetically
almost identical Streptomyces griseus strains originating from
geographically remote locations
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Easter_Island
Russia

e

uj Uy ICAGGACGAACGCUGGCGGCG WUAACACAUGCAAGUCGAACGAUGAAGC CUICGGGG) GGCG
- Uy ICAGGACGAACGCHGGCGGCG AR CACABGCAAGUHCGAACGANIGAAGC CIRNCGGGG) U} GCG
Easter_Island ERRIAACGGG AACACGUGGGCAA U GGACAAGCCCUGGAAACGGGG AAACCGGAAACAC ICCCGCA]
Russia EIAACGGG AACACGUGGGCAA vl GGACAAGCCCUGGAAACGGGG A ACCGGAWUAACAC CCCGCA]
Easter_Island 181 UFEYEELaU ULV VYIS IGAAGGAJGAGCCCGCGGCC) UEUUEEUE AAJGGCCUACCAAGGCGACGACGG)
Russia B RYGGGACGGGGUUAAAAGC) IGAAGGAGAGCCCGCGGCC) uguu] AAJIGGCCACCAAGGCGACGACGG
Easter_Island 271 AGCCGGCCUGAGAGGGCGACCGGCCACACHGGGACHGAGACACGGCCCAGAC IACGGGAGGCAGCAGUGGGGAAWAMIGCACAA|
Russia 270 AGCCGGCCUGAGAGGGCGACCGGCCACACHGGGACHGAGACACGGCCCAGAC IACGGGAGGCAGCAGHGGGGAAUAMNGCACAA
Easter_Island 361 IUFVVYIas IGCAGCGACGCCGCGYUGAGGGAWGACGGCCll LUGUA RLUCAGCAGGGAAGAAGCGAGAGUGACGG)
Russia EIIMGGGCGAAAGCC IGCAGCGACGCCGCGUGAGGGANGACGGC Y ugul MUCAGCAGGGAAGAAGCGAGAGHGACGG)
Easter_Island 451 Uf CAGAAGAAGCGCCGGCUAACIUA IGCCAGCAGCCGCGGUAAA AGGGCGCAAGCGUGCCGGAAMUAIIGGGCGUAAAGH
Russia 450 U} IGCAGAAGAAGCGCCGGCHAACHA IGCCAGCAGCCGCGGUAANA AGGGCGCAAGCGHIGHCCGGAAMUAINGGGCGUAAAGH
Easter_Island 541 IAGGCGGCVUGICACG IGAAAGCCCGGGGCIIAACCCCGGG| | ACGGGCJA AGG|
Russia 540 AGGCcGGCGHICACG AAAGCCCGGGGCHUAACCCCGGG) | ACGGGCUA i AGG)
Easter_Island 631 [EXFWHIFVIU] A GAAAGCGCAGAWANCAGGAGGAACACCGGUGGCGAAGGCGGA IGGGCCA[VACGACG
Russia 630 HIXFluIFuu] A GAAANGCGCAGABANCAGGAGGAACACCGGIGGCGAAGGCGGA iGgccalaclicaca
Easter_Island 721 AGGAGCGAAAGCGUGGGGAGCGAACAGGAUVA : AGUCCACGCCGAAACGIUGGGAAC[UA QUGGCGACARICC
Russia 720 AGGAGCGAAAGCGUGGGGAGCGAACAGGATA 5 AGHCCACGCCGUAAACGHIIGGGAACHA fccceacaiiiice
Easter_Island 811 J IGCCGCAGCJAACGCA[UA QUCCCCGCC ACGGCCGCAAGGCAAAACWCAAAGGAAMIGACGGGGGCCCG
Russia 810 iGcCcGCAGCHAACGCATTA flccceeec ACGGCCGCAAGGCHUAAAACHCAAAGGAAMUGACGGGGGCCCG
Easter_Island 901 [RXEVYFYIIFYIF JUAAJUCGACGCAACGCGAAGAACC|IUACCAAGGC Y AUACCGGAAAGCAWCAGAGA C
Russia ELTCACAAGCAGCGGAGCA UAARTCGACGCAACGCGAAGAACCIIACCAAGGCTY AACCGGAAAGCATCAGAGA C
Easter_Island 991 SEEEIUU| AA ICAGC JGAGA] U] LA ICCCGCAACGAGCGCAACCC
Russia 990 esuu; ARIA CAGC AGAIGHEY g [CCCGCAACGAGCGCAACCC
Easter_Island 1081 UGUU| QUGCCAGCA| QCGGGG) GGGACPCACAGGAGACUGCCGGGGCAACHCGGAGGAAGGUGGGGACGACGCAA
Russia 1080 uguyl (UGCCAGCA] (UCGGGG GGGACHCACAGGAGACHGCCGGGGUCAACHCGGAGGAAGGUGGGGACGACGHCAA)
Easter_Island 1171 [GCCCClyy WGGGCHGCACACG ACAAGGCCGG{UA [GAGCUGCGAJGCCGCGAGGCGGAGCGAA] ICAAA
Russia 1170 [GCCCCUUA MUGGGCIGCACACG ACAAGGCCGG{UA IGAGCIUGCGAWGCCGCGAGGCGGAGCGAA CAAA)
Easter_Island 1261 LNXEEAUEU] LUCGGAY IGCAACCGACCCCA CGGAGY AAICGCAGACAGCARMVGCGC GGUGAA
Russia 1260 VX vgdluy IGCAACHCGACCCCA CGGAGHY AGAANIcGCAGANCAGCARNGCHGCGGIIGAA
Easter_Island 1351 U JUGJACACACCGCCCG) ICACGAAAG) AACACCCGAAGCCGGUGGCCCAACCCCGHGGGAGGGAGC
Russia 1350 JUGIUACACACCGCCCG) ICACGAAAG AACACCCGAAGCCGGEHGGCCCAACCCCIUGHGGGAGGGAGT
Easter_Island 1441 CGAAGG[JGGGAC L/GGACGAAG AAC|

Russia 1440 CGAAGGUGGGAC JUGGACGAAG) AAC]

Supplementary Figure 1 Alignment of the 165 rRNA gene sequences of two Streptomyces strains. Easter
Island: Streptomyces sp. SN25_8.1 (NCBI access# MK734066), Russia: Streptomyces griseus subsp. griseus
DSM 40236™ (NCBI access# MK734067)
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Dereplication - HRLCMS

Table 1 Dereplication overview

griseus subsp. griseus DSM 40236 T

Gancidin W i 211.14388
YF-0200-R-B . 245.12811
Emycin E . 311.13843

1239 294.13306 Phenatic acid 294.13306
13.12 431.20593 Netropsin 431.20593

15.3 276.12268 Actiphenol | 276.12268
17.26 415.21118 TMC-86B 415.21118

Gancidin W
YF-0200-R-B
Emycin E

Phenatic acid
Netropsin

Actiphenol
TMC-86B
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Streptomyces sp. SN25_8.1
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Albidopyrone

Chemical Formula: C4H;3NO,4
Exact Mass: 259.08

Albidopyrone
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Cyclizidine
Chemical Formula: C7H,5NO4
Exact Mass: 291.18
Cyclizidine
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Gancidin W

Chemical Formula: C;;HgN,O,
Exact Mass: 210.14
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YF-0200-R-B

Exact Mass: 244.13
Molecular Weight: 244.29

YF-0200-R-B

OH
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Emycin-E

Chemical Formula: C;gHgOy4
Exact Mass: 310.12

Emycin E
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6-beta-deoxy-5-hydroxy-tetracycline

Chemical Formula: Cy,H,4N,Og
Exact Mass: 444.15

6-beta-deoxy-5-hydroxy-tetracycline
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Epithienamycin C
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Epithienamycin-C
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Chemical Formula:
Exact Mass:
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SF-733C

Chemical Formula: C,,H,5sN3Og
Exact Mass: 339.16

SF-733.C
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Cycloheximide
Chemical Formula: C;sH,3NOy4
Exact Mass: 281.16
Cycloheximide
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Phenatic acid

Chemical Formula: C;sH;gNOs
Exact Mass: 293.13

Phenatic acid
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Netropsin
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Netropsin

Chemical Formula: C;gH,4N (O3
Exact Mass: 430.22
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N-Valyldihydroxyhomoproline

Chemical Formula: C;;H,(N,Os5
Exact Mass: 260.14

N-Valyldihidroxyhomoproline
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Actiphenol

Chemical Formula: C;sH{7NOy4
Exact Mass: 275.12

Actiphenol
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TMC-86B

Chemical Formula: C,qH34N,0,
Exact Mass: 414.24

OH
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Protomycin
Chemical Formula: C9gH,9NOs
Exact Mass: 351.20
Protomycin

Appendix JEHE



vuu-azuil

704

~ 2 » o
S s & 2
TN ST TR S

Relatve Abundance
s

=

<

e

NL

317E7
Base Peak
m/z=
579.03-
§80.03
MS 06

L e T S S T B T R s SRS
0 2 4 6 8 12 14 18 18 20 22 4 2 28 30 32
Time (min)
06 #6073 RT 2662 AV 1 NL 553E6
T FTMS +p APCI corona Full ms[150 0000-2000.0000]
200
g
€
S 150
<
S
2
< 579 53381
= 100
=
> 56551813 SN
« 50 577 51807 58053723 594 54510 60554926
s 566 52167 = 59153363 | 595 54761 606 55
ssasosor 56350281 | ™ 5g carge | 58154016 T °| T Siresie
0
570 575 580 585 590 600 605 610 615 620 625 630 635 6840 645 650
miz
Unknown

(G7A Appendix



Streptomyces griseus subsp. griseus DSM 402367
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Gancidin W

Chemical Formula: C;;H,gN,0,
Exact Mass: 210.14

Gancidin W
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Exact Mass: 244.13
Molecular Weight: 244.29
YF-0200-R-B
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Emycin-E

Chemical Formula: CgH;gOy4
Exact Mass: 310.12

Emycin E

IGISM Appendix



100 9.9 NL
&l 2738
Base Peak
80 987 mi=

B 444 73-
4573
NS 07

T

w
~
=

s
N
w
on
@

Relative Abundance

~
3

1093 11 c i
030 145 239 307 543 636 705 826 N2 435 1432 1607 1757 1860 1926 2111 2316 2399 2590 2729 2817 2968 3133
R T L L L L L LI UL L L FON AL JNLINEL A O N R N (N R NN e e S R By [ N A e [ A S T
0 2 4 6 8 10 12 1" 16 18 20 2 24 26 28 30 32

Time (min

0742275 RT- 997 AV 1 NL 179E8
T: FTMS + p APCI corona Full ms[150 0000-2000.0000]

2504

20 Dé

Relative Abundance
T

138124777 39620000 41522208 44130502 (/447 23907 47121185 48533151 50027576 51529071 534 22333 573.38397
L R R R RN R ERE SRR RN
380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590

OH O OH O O

6-beta-deoxy-5-hydroxy-tetracycline

Chemical Formula: C5,H,4N,Og
Exact Mass: 444.15

6-beta-deoxy-5-hydroxy-tetracycline
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Fortimicin-KK1

Chemical Formula: C;4H;oN40O-
Exact Mass: 366.21

Fortimicin KK1
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Phenatic acid
Chemical Formula: C;sH;9NOs
Exact Mass: 293.13

Phenatic acid
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Netropsin
Chemical Formula: C;gH,¢N;9O3
Exact Mass: 430.22
Netropsin
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Chemical Formula: C;5H7NO4
Exact Mass: 275.12

Actiphenol
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Capromycin
Chemical Formula: C,5sH44N{40¢
Exact Mass: 668.35
Capromycin
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Halstoctacosanolide B

Chemical Formula: C4gH-301;
Exact Mass: 830.55

Halstoctacosanolide B
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Chemical Formula: C44H7,3NO5
Exact Mass: 887.49

YO-7625
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Streptomyces griseus 16S rRNA comparison

3_1525: Streptomyces sp. SN25_8.1 from Easter Island marine sediment.

4_1525: Streptomyces griseus subsp. griseus DSM 40236' from a Russian garden soil.
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BLAST @ » blastn suite » RID-TYT6T7XZ01R

BLAST Results
Questions/comments

Job title: 3_1525

RID TYT6T7XZ01R (Expires on 09-18 16:24 pm)

Query ID Icl|Query_122625 Database Name nr
Description 3_1525 Description Nucleotide collection (nt)
Molecule type nucleic acid Program BLASTN 2.8.0+

Query Length 1477

Graphic Summary

Distribution of the top 190 Blast Hits on 100 subject sequences

Color key for alignment scores

W <40 W 40-50 W 50-80 W 80-200 W >=200
1 250 500 750 1000 1250
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Descriptions

Sequences producing significant alignments:

Description

Streptomyces griseus subsp. griseus
NBRC 13350 DNA, complete genome

Streptomyces pratensis ATCC 33331,
complete genome

Streptomyces globisporus strain
TFH56 chromosome, complete
genome

Streptomyces fulvissimus strain DSM
40593 16S ribosomal RNA, partial
sequence

Streptomyces fulvissimus DSM 40593,
complete genome

Streptomyces sp. PAMC26508,
complete genome

Streptomyces pratensis strain ch24
16S ribosomal RNA, partial sequence

Streptomyces globisporus C-1027,
complete genome

Streptomyces luridiscabiei strain S63
16S ribosomal RNA, partial sequence

Streptomyces flavolimosus strain
CGMCC 2027 16S ribosomal RNA
gene, partial sequence

Streptomyces praecox strain CGMCC
4.1782 clone 3 16S ribosomal RNA
gene, complete sequence

Streptomyces pratensis strain ch24
16S ribosomal RNA, partial sequence

Streptomyces sp. SM18 chromosome,
complete genome

Streptomyces flavofuscus strain
CGMCC 4.1938 clone 3 16S ribosomal
RNA gene, complete sequence

Streptomyces griseus strain NRRL
B-8030 16S ribosomal RNA gene,
partial sequence

Streptomyces sp. Tue6075, complete
genome

Streptomyces praecox strain CGMCC
4.1782 clone 2 16S ribosomal RNA
gene, complete sequence

Streptomyces pratensis strain ch24
16S ribosomal RNA, partial sequence

Streptomyces violaceoruber strain
S21, complete genome

Streptomyces flavofuscus strain
CGMCC 4.1938 clone 2 16S ribosomal
RNA gene, complete sequence

Streptomyces flavofuscus strain
CGMCC 4.1938 clone 1 16S ribosomal
RNA gene, complete sequence

Streptomyces sp. SirexAA-E, complete
genome

Streptomyces flavofuscus strain NRRL
B-2594 16S ribosomal RNA gene,
partial sequence

Max
score

2721

2715

2710

2710

2710

2710

2706

2704

2704

2702

2700

2700

2699

2699

2699

2695

2695

2695

2693

2693

2693

2693

2693

Tota
score

16327

16238

16238

2710

16260

16257

2706

16227

2704

2702

2700

2700

16183

2699

2699

16157

2695

2695

16161

2693

2693

16133

2693

Query
cover

99%

99%

99%

99%

99%
99%
99%
99%

99%

99%

99%

99%

99%

99%

99%
99%
99%

99%

99%
99%

99%

99%

100%

E
value

00

0.0

00

0.0

0.0

0.0

0.0

0.0

0.0

00

00

0.0

0.0

00

00

00

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Ident

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

Accession

AP009493.1

CP002475.1

CP029361.1

NR_103947.1

CP005080.1

CP003990.1

NR_125621.1

CP013738.1

NR_025155.1

EF688620.1

JQ924404.1

NR_125619.1

CP029342.1

JQ924409.1

DQ026671.1

CP010833.1

JQ924403.1

NR 125618.1

CP020570.1

JQ924408.1

JQ924407 .1

CP002993.1

EF178690.1
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Description

Streptomyces microflavus strain NRRL
B-2156 168 ribosomal RNA gene,
partial sequence

Streptomyces praecox strain CGMCC
4.1782 clone 5 16S ribosomal RNA
gene, complete sequence

Streptomyces praecox strain CGMCC
4.1782 clone 4 16S ribosomal RNA
gene, complete sequence

Streptomyces praecox strain CGMCC
4.1782 clone 1 16S ribosomal RNA
gene, complete sequence

Streptomyces pratensis strain ch24
16S ribosomal RNA, partial sequence

Streptomyces anulatus strain NRRL
B-2000 16S ribosomal RNA gene,
partial sequence

Streptomyces baarnensis strain NRRL
B-1902 16S ribosomal RNA gene,
partial sequence

Streptomyces flavogriseus partial 16S
rRNA gene, type strain CBS 101.34T

Streptomyces sp. CFMR 7 strain
CFMR-7, complete genome

Streptomyces flavovirens strain
CGMCC 4.575 clone 1 16S ribosomal
RNA gene, complete sequence

Streptomyces griseus subsp. griseus
gene for 16S rRNA, partial sequence,
strain: NBRC 15744

Streptomyces argenteolus strain JCM
4623 16S ribosomal RNA, partial
sequence

Streptomyces flavovirens strain
CGMCC 4.575 clone 2 16S ribosomal
RNA gene, complete sequence

Streptomyces sp. YM5-799 gene for
16S rRNA, partial sequence

Streptomyces flavovirens strain
CGMCC 4.575 clone 5 16S ribosomal
RNA gene, complete sequence

Streptomyces flavovirens strain
CGMCC 4.575 clone 4 16S ribosomal
RNA gene, complete sequence

Streptomyces microflavus strain NRRL
B-1332 16S ribosomal RNA gene,
partial sequence

Streptomyces paresii 16S rRNA gene,
type strain LMG 23704T

Streptomyces anulatus gene for 16S
rRNA, partial sequence, strain: NBRC
13369

Streptomyces cavourensis subsp.
washingtonensis gene for 16S rRNA,
partial sequence, strain: NBRC 15391

Streptomyces acidoresistans gene for
16S rRNA, partial sequence, strain:
NBRC 13442

Streptomyces praecox gene for 16S
rRNA, partial sequence, strain: NBRC
13073

Streptomyces alboviridis gene for 16S
rRNA, partial sequence, strain: NBRC

Max
score

2691

2689

2689

2689

2689

2689

2687

2687

2682

2682

2680

2680

2678

2678

2676

2676

2675

2675

2673

2673

2673

2673

2673

Total
score

2691

2689

2689

2689

2689

2689

2687

2687

15924

2682

2680

2680

2678

2678

2676

2676

2675

2675

2673

2673

2673

2673

2673

Query
cover

99%

99%

99%

99%
99%

99%

100%

99%

99%

99%

98%

99%

99%
98%

99%

99%

98%
98%

98%

98%

98%

98%

98%

E
value

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Ident

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

Accession

DQ445795.1

JQ924406.1

JQ924405.1

JQ924402.1

NR_125620.1

DQ026637.1

EF178688.1

AJ494864.1

CP011522.1

JQ924386.1

AB184699.1

NR 112120.1

JQ924387.1

AB534176.1

JQ924389.1

JQ924388.1

EF178673.1

AJ969177.1

AB184875.1

AB184642.1

AB184406.1

AB184293.1

AB184256.1
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Description

Streptomyces argenteolus gene for
16S rRNA, partial sequence, strain:
NBRC 12841

Streptomyces finlayi strain CGMCC
4.1436 clone 1 16S ribosomal RNA
gene, complete sequence

Streptomyces rubiginosohelvolus gene
for 16S rRNA, partial sequence, strain:
NBRC 12912

Streptomyces microflavus gene for
16S rRNA, partial sequence, strain:
NBRC 13062

Streptomyces fulvorobeus gene for
16S rRNA, partial sequence, strain:
NBRC 15897

Streptomyces griseus subsp. griseus
gene for 16S rRNA, partial sequence,
strain: NBRC 12875

Streptomyces griseinus gene for 16S
rRNA, partial sequence, strain: NBRC
12869

Streptomyces sp. S8, complete
genome

Streptomyces flavofuscus gene for 16S
rRNA, partial sequence, strain: NBRC
100768

Streptomyces clavifer strain NRRL
B-2557 16S ribosomal RNA gene,
partial sequence

Streptomyces albovinaceus gene for
16S rRNA, partial sequence, strain:
NBRC 12739

Streptomyces erumpens gene for 16S
rRNA, partial sequence, strain: NBRC
15403

Streptomyces baarnensis gene for 16S
rRNA, partial sequence, strain: NBRC
14727

Streptomyces fimicarius gene for 16S
rRNA, partial sequence, strain: NBRC
13037

Streptomyces globisporus subsp.
globisporus gene for 16S rRNA, partial
sequence, strain: NBRC 12867

Streptomyces cavourensis strain
TJ430 chromosome, complete genome

Streptomyces bacillaris strain ATCC
15855 chromosome, complete genome

Streptomyces cavourensis strain
1AS2a chromosome, complete
genome

Streptomyces globisporus subsp.
globisporus strain NRRL B-2872 16S
ribosomal RNA gene, partial sequence

Streptomyces griseolus gene for 16S
rRNA, partial sequence, strain: NBRC
3415

Streptomyces puniceus gene for 16S
rRNA, partial sequence, strain: NBRC
12811

Streptomyces halstedii gene for 16S
rRNA, partial sequence, strain: NBRC
12783

Max
score

2673

2669

2669

2669

2667

2667

2667

2665

2665

2663

2663

2663

2663

2663

2663

2662

2662

2662

2662

2662

2662

2662

Total
score

2673

2669

2669

2669

2667

2667

2667

15950

2665

2663

2663

2663

2663

2663

2663

15856

15972

15928

2662

2662

2662

2662

Query
cover

98%

99%

98%

98%

98%

97%

98%
99%

98%

99%

98%

97%

98%

98%

98%

99%

99%

99%

98%

98%

98%

98%

E
value

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Ident

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

Accession

AB184187.1

JQ924390.1

AB184240.2

AB184284.1

AB184711.1

AB184211.1

AB184205.1

CP015362.1

AB249935.1

DQ026670.1

AB249958.1

AB184654.1

AB184615.1

AB184269.1

AB184203.1

CP030930.1

CP029378.1

CP024957.1

EF178686.1

AB184768.1

AB184163.1

AB184142.1
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Description Max Total Query E Ident Accession
score score cover value

Streptomyces atratus strain
SCSIO_ZH16 chromosome, complete 2660 15961 99% 0.0 99% CP027306.1
genome

Streptomyces flavovirens strain NRRL
B-2685 16S ribosomal RNA gene, 2660 2660 99% 0.0 99% DQ026635.1
partial sequence

Streptomyces pluricolorescens gene
for 16S rRNA, partial sequence, strain: 2660 2660 98% 0.0 99% AB184162.1
NBRC 12808

Streptomyces olivoviridis strain
CGMCC 4.1739 clone 2 16S ribosomal 2658 2658 99% 0.0 99% JQ924394.1
RNA gene, complete sequence

Streptomyces finlayi strain CGMCC
4.1436 clone 2 16S ribosomal RNA 2658 2658 99% 0.0 99% JQ924391.1
gene, complete sequence

Streptomyces californicus gene for 16S

rRNA, partial sequence, strain: NBRC 2658 2658 98% 0.0 99% AB184116.2
12750

Streptomyces cinereorectus gene for

16S rRNA, partial sequence, strain: 2658 2658 98% 0.0 99% AB184646.1
NBRC 15395

Streptomyces mutomycini strain
CGMCC 4.1747 clone 3 16S ribosomal 2656 2656 99% 0.0 99% JQ924399.1
RNA gene, complete sequence

Streptomyces halstedii strain NRRL
B-1238 16S ribosomal RNA gene, 2656 2656 98% 0.0 99% EF178695.1
partial sequence

Streptomyces parvus gene for 16S
rRNA, partial sequence, strain: NBRC 2656 2656 98% 0.0 99% AB184756.1
3388

Streptomyces californicus gene for 16S
rRNA, partial sequence, strain: NBRC 2656 2656 98% 0.0 99% AB184755.1
3386

Streptomyces badius gene for 16S
rRNA, partial sequence, strain: NBRC 2656 2656 98% 0.0 99% AB184114.1
12745

Streptomyces lunaelactis strain
MM109 chromosome, complete 2654 15660 99% 0.0 99% CP026304.1
genome

Streptomyces nitrosporeus strain
CGMCC 4.1973 clone 4 16S ribosomal 2654 2654 99% 00 99% JQ924413.1
RNA gene, complete sequence

Streptomyces anulatus strain NRRL
B-2873 16S ribosomal RNA gene, 2654 2654 97% 00 99% DQ026639.1
partial sequence

Streptomyces sindenensis gene for

16S rRNA, partial sequence, strain: 2654 2654 98% 0.0 99% AB184759.1
NBRC 3399

Streptomyces mediolani gene for 16S

rRNA, partial sequence, strain: NBRC 2654 2654 98% 0.0 99% AB184674.1
15427

Streptomyces olivoviridis strain
CGMCC 4.1739 clone 5 16S ribosomal 2652 2652 99% 0.0 99% JQ924396.1
RNA gene, complete sequence

Streptomyces olivoviridis strain
CGMCC 4.1739 clone 4 16S ribosomal 2652 2652 99% 0.0 99% JQ924395.1
RNA gene, complete sequence

Kitasatospora albolonga strain YIM

0, 0,
101047, complete genome 2651 15858 99% 0.0 99% CP020563.1

Streptomyces mutomycini strain
CGMCC 4.1747 clone 1 16S ribosomal 2651 2651 99% 0.0 99% JQ924397.1
RNA gene, complete sequence
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Description Max Total Query E Ident Accession
score score cover value
Streptomyces flavovirens gene for 16S
rRNA, partial sequence, strain: NBRC 2651 2651 98% 0.0 99% AB184827.1
3197
Streptomyces ornatus gene for 16S
rRNA, partial sequence, strain: NBRC 2651 2651 97% 0.0 99% AB184290.1
13069
Streptomyces flavogriseus gene for
16S rRNA, partial sequence, strain: 2651 2651 98% 0.0 99% AB184271.1
NBRC 13040
Streptomyces flavovirens gene for 16S
rRNA, partial sequence, strain: NBRC 2651 2651 98% 0.0 99% AB184133.1
12771
Streptomyces nitrosporeus strain
CGMCC 4.1973 clone 3 16S ribosomal 2649 2649 99% 0.0 99% JQ924412.1
RNA gene, complete sequence
Streptomyces nitrosporeus strain
CGMCC 4.1973 clone 1 16S ribosomal 2649 2649 99% 0.0 99% JQ924411.1
RNA gene, complete sequence
Streptomyces olivoviridis strain
CGMCC 4.1739 clone 1 16S ribosomal 2647 2647 99% 0.0 99% JQ924393.1
RNA gene, complete sequence
Streptomyces naraensis gene for 16S
rRNA, partial sequence, strain: NBRC 2647 2647 98% 0.0 99% AB184391.2
13421
Streptomyces fulvorobeus 16S rRNA o o
gene, type strain LMG 19901 2647 2647 % 0.0 99% Ad781331.1,
Streptomyces parvus gene for 16S
rRNA, partial sequence, strain: NBRC 2643 2643 98% 0.0 99% AB184603.1
14599
Streptomyces setonii gene for 16S
rRNA, partial sequence, strain: NBRC 2643 2643 97% 0.0 99% AB184300.1
13085
Alignments
Streptomyces griseus subsp. griseus NBRC 13350 DNA, complete genome
Sequence |ID: AP009493.1 Length: 8545929 Number of Matches: 6
Range 1: 2102343 to 2103819
Score Expect Identities Gaps Strand Frame
2721 bits(1473) 0.0() 1476/1477(99%) 11477(0%) Plus/Plus
Features:
rRNA-16S ribosomal RNA
Query 1 GTTACGACTTCGT-CCAATCGCCAGTCCCACCTTCGACAGCTCCCTCCCACRAGGGGTTG 59
0 o | |11 ||
Sbjct 2102343 GTTACGACTTCC “CCACAAGGGGTTG 2102402
Query €0 CAC CTTCGGGTGTTACCGACTTTCGTGACGTGACG( GTGTGTACAAGGCCC 119
5 0 5 0 5 5 e 5 T L 0 5 s 6 0 4 B O [
Sbjct 2102403 GGCCACCGGCTTCGGGTGTTACCGACTTTCGTGACGTGACGGGCGGTGTGTACARGGCCC 2102462
Query 120 GGGAACGTATTCACCGCAGCAATGCTGATCTGCGATTACTAGCAACTCCGACTTCATGGG
I 5 1 1 0 0 0 0 0 |
Sbjct 2102463 GGGAACGTATTCACCGCAGCAATGCTGATCTGCGATTACTAGCAACTCCGACTTCATGGG

GTCGAGTTGCAGACCCCAATCCGAACTGAGACC
[LEELETE el [EENRNN! |

Query 180

GCTTTTTGAGATTCGCTCCGCCTCGC

Sbjct 2102523 GTCGAGTTGCAGACCCCAATCCGAACTGAGACCGGCTTTTTGAGATTCGCTCC
Query 240 GGCATCGCAGCTCATTGTACCGGCCATTGTAGCACGTGTGCAGCCCAAGACATAAGG

I 1 [INNERNENY [HNENNN [11 (RN SN |11 |
Sbjct 2102583 GGCATCGCAGCTCATTGTACCGGCCATTGTAGCACGTGTGCAGCCCARGACATARGGGGC

Query 300
PEEEEET TR E L et
ATGATGACTTGACGTCGTCCCCAC!

[1]
CTTCCTCC

Sbjct 2102643

ATGATGACTTGACGTCGTCCCCACCTTCCTCCGAGTTGACCCCGGCAGTCTCCTGTGAGT
| ]
“CTGTGAGT

Query 360 CCCCATCACCCCGAAGGGCATGCTGGCAACACAGAACAAGGGTTGCGCTCGTTGCGGGAC

[LEELLL] [ 111 [ENEEAN! [ 1 [ 1] | | || [ 1]
Sbjct 2102703 CCCCATCACCCCGAAGGGCATGCTGGCAACACAGAACAAG CTCGTTGCGGGAC
Query 420 TTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCACCAC ATACCGACCA
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BLAST Results
Questions/comments

Job title: 4_1525

RID TYT8AOE301R (Expires on 09-18 16:25 pm)

Query ID Icl|Query_130761 Database Name nr
Description 4_1525 Description Nucleotide collection (nt)
Molecule type nucleic acid Program BLASTN 2.8.0+

Query Length 1476

Graphic Summary

Distribution of the top 190 Blast Hits on 100 subject sequences

Color key for alignment scores

W <40 W 40-50 [ 50-80 [ 80-200 W >=200
1 250 500 750 1000 1250
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Descriptions

Sequences producing significant alignments:

Description

Streptomyces griseus subsp. griseus
NBRC 13350 DNA, complete genome

Streptomyces pratensis ATCC 33331,
complete genome

Streptomyces globisporus strain
TFH56 chromosome, complete
genome

Streptomyces fulvissimus strain DSM
40593 16S ribosomal RNA, partial
sequence

Streptomyces fulvissimus DSM 40593,
complete genome

Streptomyces sp. PAMC26508,
complete genome

Streptomyces pratensis strain ch24
16S ribosomal RNA, partial sequence

Streptomyces globisporus C-1027,
complete genome

Streptomyces luridiscabiei strain S63
16S ribosomal RNA, partial sequence

Streptomyces flavolimosus strain
CGMCC 2027 16S ribosomal RNA
gene, partial sequence

Streptomyces praecox strain CGMCC
4.1782 clone 3 16S ribosomal RNA
gene, complete sequence

Streptomyces pratensis strain ch24
16S ribosomal RNA, partial sequence

Streptomyces sp. SM18 chromosome,
complete genome

Streptomyces flavofuscus strain
CGMCC 4.1938 clone 3 16S ribosomal
RNA gene, complete sequence

Streptomyces griseus strain NRRL
B-8030 16S ribosomal RNA gene,
partial sequence

Streptomyces sp. Tue6075, complete
genome

Streptomyces praecox strain CGMCC
4.1782 clone 2 16S ribosomal RNA
gene, complete sequence

Streptomyces pratensis strain ch24
168 ribosomal RNA, partial sequence

Streptomyces violaceoruber strain
S21, complete genome

Streptomyces flavofuscus strain
CGMCC 4.1938 clone 2 16S ribosomal
RNA gene, complete sequence

Streptomyces flavofuscus strain
CGMCC 4.1938 clone 1 16S ribosomal
RNA gene, complete sequence

Streptomyces sp. SirexAA-E, complete
genome

Streptomyces flavofuscus strain NRRL
B-2594 16S ribosomal RNA gene,
partial sequence

Max
score

2721

2715

2710

2710

2710

2710

2706

2704

2704

2702

2700

2700

2699

2699

2699

2695

2695

2695

2693

2693

2693

2693

2691

Total
score

16327

16238

16238

2710

16260

16257

2706

16227

2704

2702

2700

2700

16183

2699

2699

16157

2695

2695

16161

2693

2693

16133

2691

Query
cover

100%

100%

100%

100%

100%
100%
99%

100%

100%

99%

99%

99%

100%

99%

99%
100%
99%

99%

100%

99%

99%

100%

100%

E
value

0.0

0.0

0.0

00

0.0

0.0

00

00

0.0

00

0.0

00

0.0

00

0.0

00

00

0.0

00

0.0

0.0

0.0

0.0

Ident

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

Accession

AP009493.1

CP002475.1

CP029361.1

NR_103947.1

CP005080.1

CP003990.1

NR_125621.1

CP013738.1

NR_025155.1

EF688620.1

JQ924404.1

NR_125619.1

CP029342.1

JQ924409.1

DQ026671.1

CP010833.1

JQ924403.1

NR 125618.1

CP020570.1

JQ924408.1

JQ924407.1

CP002993.1

EF178690.1
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Description

Streptomyces microflavus strain NRRL
B-2156 16S ribosomal RNA gene,
partial sequence

Streptomyces praecox strain CGMCC
4.1782 clone 5 168 ribosomal RNA
gene, complete sequence

Streptomyces praecox strain CGMCC
4.1782 clone 4 16S ribosomal RNA
gene, complete sequence

Streptomyces praecox strain CGMCC
4.1782 clone 1 16S ribosomal RNA
gene, complete sequence

Streptomyces pratensis strain ch24
16S ribosomal RNA, partial sequence

Streptomyces anulatus strain NRRL
B-2000 16S ribosomal RNA gene,
partial sequence

Streptomyces flavogriseus partial 16S
rRNA gene, type strain CBS 101.34T

Streptomyces baarnensis strain NRRL
B-1902 16S ribosomal RNA gene,
partial sequence

Streptomyces sp. CFMR 7 strain
CFMR-7, complete genome

Streptomyces flavovirens strain
CGMCC 4.575 clone 1 16S ribosomal
RNA gene, complete sequence

Streptomyces griseus subsp. griseus
gene for 16S rRNA, partial sequence,
strain: NBRC 15744

Streptomyces argenteolus strain JCM
4623 16S ribosomal RNA, partial
sequence

Streptomyces flavovirens strain
CGMCC 4.575 clone 2 16S ribosomal
RNA gene, complete sequence

Streptomyces sp. YMS5-799 gene for
16S rRNA, partial sequence

Streptomyces flavovirens strain
CGMCC 4.575 clone 5 16S ribosomal
RNA gene, complete sequence

Streptomyces flavovirens strain
CGMCC 4.575 clone 4 16S ribosomal
RNA gene, complete sequence

Streptomyces microflavus strain NRRL
B-1332 16S ribosomal RNA gene,
partial sequence

Streptomyces paresii 16S rRNA gene,
type strain LMG 23704T

Streptomyces anulatus gene for 16S
rRNA, partial sequence, strain: NBRC
13369

Streptomyces cavourensis subsp.
washingtonensis gene for 16S rRNA,
partial sequence, strain: NBRC 15391

Streptomyces acidoresistans gene for
16S rRNA, partial sequence, strain:
NBRC 13442

Streptomyces praecox gene for 16S
rRNA, partial sequence, strain: NBRC
13073

Streptomyces alboviridis gene for 16S
rRNA, partial sequence, strain: NBRC

Max
score

2691

2689

2689

2689

2689

2689

2687

2686

2682

2682

2680

2680

2678

2678

2676

2676

2675

2675

2673

2673

2673

2673

2673

Total
score

2691

2689

2689

2689

2689

2689

2687

2686

15924

2682

2680

2680

2678

2678

2676

2676

2675

2675

2673

2673

2673

2673

2673

Query
cover

99%

99%

99%

99%

99%

99%

100%

100%

100%

99%

98%

99%

99%

99%

99%

99%

98%

98%

98%

98%

98%

98%

98%

E
value

00

00

0.0

0.0

0.0

0.0

0.0

0.0

0.0

00

0.0

0.0

00

0.0

0.0

0.0

00

0.0

0.0

0.0

00

00

00

Ident

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

Accession

DQ445795.1

JQ924406.1

JQ924405.1

JQ924402.1

NR_125620.1

DQ026637.1

AJ494864.1

EF178688.1

CP011522.1

JQ924386.1

AB184699.1

NR 112120.1

JQ924387.1

AB534176.1

JQ924389.1

JQ924388.1

EF178673.1

AJ969177.1

AB184875.1

AB184642.1

AB184406.1

AB184293.1

AB184256.1
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Description

Streptomyces argenteolus gene for
16S rRNA, partial sequence, strain:
NBRC 12841

Streptomyces finlayi strain CGMCC
4.1436 clone 1 16S ribosomal RNA
gene, complete sequence

Streptomyces rubiginosohelvolus gene
for 16S rRNA, partial sequence, strain:
NBRC 12912

Streptomyces microflavus gene for
16S rRNA, partial sequence, strain:
NBRC 13062

Streptomyces fulvorobeus gene for
16S rRNA, partial sequence, strain:
NBRC 15897

Streptomyces griseus subsp. griseus
gene for 16S rRNA, partial sequence,
strain: NBRC 12875

Streptomyces griseinus gene for 16S
rRNA, partial sequence, strain: NBRC
12869

Streptomyces sp. S8, complete
genome

Streptomyces flavofuscus gene for 16S
rRNA, partial sequence, strain: NBRC
100768

Streptomyces clavifer strain NRRL
B-2557 16S ribosomal RNA gene,
partial sequence

Streptomyces albovinaceus gene for
16S rRNA, partial sequence, strain:
NBRC 12739

Streptomyces erumpens gene for 16S
rRNA, partial sequence, strain: NBRC
15403

Streptomyces baarnensis gene for 16S
rRNA, partial sequence, strain: NBRC
14727

Streptomyces fimicarius gene for 16S
rRNA, partial sequence, strain: NBRC
13037

Streptomyces globisporus subsp.
globisporus gene for 16S rRNA, partial
sequence, strain: NBRC 12867

Streptomyces cavourensis strain
TJ430 chromosome, complete genome

Streptomyces bacillaris strain ATCC
15855 chromosome, complete genome

Streptomyces cavourensis strain
1AS2a chromosome, complete
genome

Streptomyces globisporus subsp.
globisporus strain NRRL B-2872 16S
ribosomal RNA gene, partial sequence

Streptomyces griseolus gene for 16S
rRNA, partial sequence, strain: NBRC
3415

Streptomyces puniceus gene for 16S
rRNA, partial sequence, strain: NBRC
12811

Streptomyces halstedii gene for 16S
rRNA, partial sequence, strain: NBRC
12783

Max
score

2673

2669

2669

2669

2667

2667

2667

2665

2665

2663

2663

2663

2663

2663

2663

2662

2662

2662

2662

2662

2662

2662

Total
score

2673

2669

2669

2669

2667

2667

2667

15950

2665

2663

2663

2663

2663

2663

2663

15856

15972

15928

2662

2662

2662

2662

Query
cover

98%

99%

98%

98%

98%

98%

98%

100%

98%

99%

98%

97%

98%

98%

98%

100%

100%

100%

98%

98%

98%

98%

E
value

0.0

0.0

0.0

0.0

0.0

0.0

0.0

00

0.0

0.0

0.0

00

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Ident

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

99%

Accession

AB184187.1

JQ924390.1

AB184240.2

AB184284.1

AB184711.1

AB184211.1

AB184205.1

CP015362.1

AB249935.1

DQ026670.1

AB249958.1

AB184654.1

AB184615.1

AB184269.1

AB184203.1

CP030930.1

CP029378.1

CP024957.1

EF178686.1

AB184768.1

AB184163.1

AB184142.1
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Description Max Total Query E Ident Accession
score score cover value

Streptomyces atratus strain
SCSIO_ZH16 chromosome, complete 2660 15961 100% 0.0 99% CP027306.1
genome

Streptomyces flavovirens strain NRRL
B-2685 16S ribosomal RNA gene, 2660 2660 99% 0.0 99% DQ026635.1
partial sequence

Streptomyces pluricolorescens gene
for 16S rRNA, partial sequence, strain: 2660 2660 98% 0.0 99% AB184162.1
NBRC 12808

Streptomyces olivoviridis strain
CGMCC 4.1739 clone 2 16S ribosomal 2658 2658 99% 0.0 99% JQ924394.1
RNA gene, complete sequence

Streptomyces finlayi strain CGMCC
4.1436 clone 2 16S ribosomal RNA 2658 2658 99% 0.0 99% JQ924391.1
gene, complete sequence

Streptomyces californicus gene for 16S

rRNA, partial sequence, strain: NBRC 2658 2658 98% 0.0 99% AB184116.2
12750

Streptomyces cinereorectus gene for

16S rRNA, partial sequence, strain: 2658 2658 98% 0.0 99% AB184646.1
NBRC 15395

Streptomyces mutomycini strain
CGMCC 4.1747 clone 3 16S ribosomal 2656 2656 99% 0.0 99% JQ924399.1
RNA gene, complete sequence

Streptomyces halstedii strain NRRL
B-1238 16S ribosomal RNA gene, 2656 2656 98% 0.0 99% EF178695.1
partial sequence

Streptomyces parvus gene for 16S
rRNA, partial sequence, strain: NBRC 2656 2656 98% 0.0 99% AB184756.1
3388

Streptomyces californicus gene for 16S
rRNA, partial sequence, strain: NBRC 2656 2656 98% 0.0 99% AB184755.1
3386

Streptomyces badius gene for 16S
rRNA, partial sequence, strain: NBRC 2656 2656 98% 0.0 99% AB184114.1
12745

Streptomyces lunaelactis strain
MM109 chromosome, complete 2654 15660 100% 0.0 99% CP026304.1
genome

Streptomyces nitrosporeus strain
CGMCC 4.1973 clone 4 16S ribosomal 2654 2654 99% 0.0 99% JQ924413.1
RNA gene, complete sequence

Streptomyces anulatus strain NRRL
B-2873 16S ribosomal RNA gene, 2654 2654 97% 00 99% DQ026639.1
partial sequence

Streptomyces sindenensis gene for

16S rRNA, partial sequence, strain: 2654 2654 98% 0.0 99% AB184759.1
NBRC 3399

Streptomyces mediolani gene for 16S

rRNA, partial sequence, strain: NBRC 2654 2654 98% 0.0 99% AB184674.1
15427

Streptomyces olivoviridis strain
CGMCC 4.1739 clone 5 16S ribosomal 2652 2652 99% 0.0 99% JQ924396.1
RNA gene, complete sequence

Streptomyces olivoviridis strain
CGMCC 4.1739 clone 4 16S ribosomal 2652 2652 99% 0.0 99% JQ924395.1
RNA gene, complete sequence

Kitasatospora albolonga strain YIM

% Ly
101047, complete genome 2651 15858 100% 0.0 99% CP020563.1

Streptomyces mutomycini strain
CGMCC 4.1747 clone 1 16S ribosomal 2651 2651 99% 0.0 99% JQ924397.1
RNA gene, complete sequence
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Description Max Total Query E Ident
score score cover value
Streptomyces flavovirens gene for 16S
rRNA, partial sequence, strain: NBRC 2651 2651 98% 0.0 99%
3197
Streptomyces ornatus gene for 16S
rRNA, partial sequence, strain: NBRC 2651 2651 97% 0.0 99%
13069
Streptomyces flavogriseus gene for
16S rRNA, partial sequence, strain: 2651 2651 98% 0.0 99%
NBRC 13040
Streptomyces flavovirens gene for 16S
rRNA, partial sequence, strain: NBRC 2651 2651 98% 0.0 99%
12771
Streptomyces nitrosporeus strain
CGMCC 4.1973 clone 3 16S ribosomal 2649 2649 99% 0.0 99%
RNA gene, complete sequence
Streptomyces nitrosporeus strain
CGMCC 4.1973 clone 1 16S ribosomal 2649 2649 99% 0.0 99%
RNA gene, complete sequence
Streptomyces olivoviridis strain
CGMCC 4.1739 clone 1 16S ribosomal 2647 2647 99% 00 99%
RNA gene, complete sequence
Streptomyces naraensis gene for 16S
rRNA, partial sequence, strain: NBRC 2647 2647 98% 0.0 99%
13421
Streptomyces fulvorobeus 16S rRNA o o
gene, type strain LMG 19901 2647 2647 7% 0.0 S9%
Streptomyces parvus gene for 16S
rRNA, partial sequence, strain: NBRC 2643 2643 98% 00 99%
14599
Streptomyces setonii gene for 16S
rRNA, partial sequence, strain: NBRC 2643 2643 97% 0.0 99%
13085
Alignments
Streptomyces griseus subsp. griseus NBRC 13350 DNA, complete genome
Sequence |D: AP009493.1 Length: 8545929 Number of Matches: 6
Range 1: 2102343 to 2103819
Score Expect Identities Gaps Strand Frame
2721 bits(1473) 0.0() 1476/1477(99%) 1/1477(0%) Plus/Plus
Features:
rRNA-16S ribosomal RNA
Query 1 GTTACGACTTCGT-CCAATCGCCAGTCCCACCTTCGACAGCTCCCTCCCACAAGGGGTTG 59
FELTLLL L DL L LT DL L]
Sbjct 2102343 GTTACGACTTCGTCCCAATCGCCAGTCCCACCTTCGACAGCTCCCTCCCACAAGGGGTTG 2102402
Query €0 GGCCACCGGCTTCGGGTGTTACCGACTTTCGTGACGTGAC GGTGTGTACAAGGCCC 119
6 0 0 e o A B I L 8 S 0 0 A o T B
Sbjct 2102403 GGCCACCGGCTTCGGGTGTTACCGACTTTCGTGACGTGACGGGCGGTGTGTACAAGGCCC 2102462
Query 120 GGGAACGTATTCACCGCAGCAATGCTGATCTGCGATTACTAGCAACTCCGACTTCATGGG 179
FILLEEE LTl |11
Sbjct 2102463 GCAGCAATGCTGATCTGCGATTACTAGCAACTCCGACTTCATGGG 2102522
Query 180 GTCGAGTTGCAGACCCCAATCCGAACTGAGACC TTTTTGAGATTCGCTCCGCCTCGC 239
[LLLEEL Lt PLLLD LR L]
Sbjct 2102523 GTCGAGTTGCAGACCCCAATCCGAACTGAGACCGGCTTTTTGAGATTCGCTCCGCCTCGC 2102582
Query 240 GGCATCGCAGCTCATTGTACCGGCCATTGTAGCACGTGTGCAGCCCARGACATAAGGGGC 299
EELTELLL L L L LD Ll
Sbjct 2102583 GGCATCGCAGCTCATTGTACCGGCCATTGTAGCACGTGTGCH CCAAGACATAAGGGGC 2102642
Query 300 ATGATGACTTGACGTCGTCCCCACCTTCCTCCGAGTTGACCCC CAGTCTCCTGTGAGT 359
FELTLL L et e et e e e e e e e el
Sbjct 2102643 ATGATGACTTGACGTCGTCCCCACCTTCCTCCGAGTTGACCCCGGCAGTCTCCTGTGAGT 2102702
Query 360 CCCCATCACCCCGAAGGGCATGCT GGCARCACAGARCAAGGGTTGCGCTCGTTGCGGGAC 419
FLEELEEEE el [ENEEEN |11 NN [ 11 11
Sbjct 2102703 CCCCATCACCCCGAAGGGCATGCTGGCAACACAGAACAAGGGTTGCGCTCGTTGCGGGAC 2102762
Query 420 TTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCACCACCTGTATACCGACCA 479

Accession

AB184827.1

AB184290.1

AB184271.1

AB184133.1

JQ924412.1

JQ924411.1

JQ924393.1

AB184391.2

AJ781331.1

AB184603.1

AB184300.1
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Antibiotic test

Antibiotic test

EI: Streptomyces sp. SN25_8.1

SG: Streptomyces griseus subsp. griseus DSM 40236"
ST: Streptomycin

Antibiotic test Left plate: £ coli DSM 498, Right Plate: S. lentus DSM 20352
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