
A customizable and extensible
Tutorial Framework for improved

Usability in ExplorViz

Master’s Thesis

Helge Müller

June 22, 2019

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
Christian Zirkelbach, M.Sc.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 22. Juni 2019

iii

Abstract

Software development is rapidly increasing in importance and size. Open-source devel-
opment is more important than ever. More and more open-source software is used in
companies. This causes more people to use the software. Feature the users are not aware
about are not used, therefore software is only as good as the introduction of its features.
Providing instructions for features is therefore an essential part of every software.

ExplorViz is an open-source software which provides visualizations for live trace data.
We develop an extensible and customizable tutorial framework for ExplorViz. The frame-
work is developed for the current version of ExplorViz which is still under heavy devel-
opment. The framework is an extension to ExplorViz which allows for the tutorials to be
executed in the same context as the visualizations are used.

The focus of development for this framework is to provide a structure which will by
itself provide basic tutorial functionality. Considering extensibility has a large influence
in our decisions during the development process. We describe the overall structure of
ExplorViz and how the different components are relevant for the development of the tutorial
framework.

A tutorial framework which is customizable to suit automatic instructions during
experiments is valuable, since ExplorViz is also frequently used in research. These features
should however not intervene with the instruction of other users. We design the tutorial
framework as an extension for ExplorViz, therefore either an extension to the framework or a
customized variant could be created to exactly match the requirements for the experiments.
These extension capabilities are not limited to the use in experiments, other customizations
are possible.

The usability of the framework is evaluated by questionnaires answered by participants
after executing an example tutorial. This determines if the tutorials usability is as high as
expected. The tutorial editor is evaluated similarly with the same participants.

The work provides an overview about development of extensions with ExplorViz and
highlights the potential problems, solutions and principles to follow when developing
extensions for ExplorViz.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2

1.2.1 G1: Literature / Tool Research . 2
1.2.2 G2: Develop a Data Model for Tutorials 2
1.2.3 G3: Implement a Modular Tutorial Extension 2
1.2.4 G4: Implement a Tutorial-Management-Tool / Editor 2
1.2.5 G5: Evaluation . 3

1.3 Document Structure . 3

2 Foundations and Technology 5
2.1 JavaScript and JQuery . 5
2.2 Ember . 5

2.2.1 Ember Data . 6
2.2.2 Ember Templates . 6
2.2.3 Ember Addons . 7

2.3 Java . 7
2.4 Mongo DB . 8
2.5 Morphia . 8
2.6 JSON . 9
2.7 JSON:API . 9

3 Tutorials 11
3.1 Features . 13
3.2 Minimal Featureset . 14

3.2.1 Detecting User Input . 14
3.2.2 Tutorial Editor . 15

4 ExplorViz and Structure 17
4.1 Extensions for ExplorViz . 19
4.2 Structure and Services . 19
4.3 JSON:API . 21

5 Design Approach 23
5.1 Approach Overview . 23
5.2 Tutorial Framework Backend . 23

vii

Contents

5.2.1 Connecting Services and Deployment 24
5.2.2 Service Structure and Persistence . 24

5.3 Tutorial Framework Frontend . 25
5.3.1 Frontend Modularity . 25
5.3.2 Models and Connection to Backend . 25
5.3.3 User Interactions . 26

6 Implementation 29
6.1 Implementation Overview . 29
6.2 Tutorial Framework Backend . 29

6.2.1 Connecting Services and Deployment 30
6.2.2 Service Structure and Persistence . 31
6.2.3 Technical Limitations and Considerations 35

6.3 Tutorial Framework Frontend . 38
6.3.1 Models and Connection to Backend . 39
6.3.2 Frontend Modularity . 41
6.3.3 Technical Limitations and Considerations 47

7 Evaluation 49
7.1 Methodology . 49
7.2 Experiment . 49

7.2.1 Experiment Setup . 49
7.2.2 Questionnaire . 52
7.2.3 Execution of the Experiment . 54

7.3 Results . 55
7.4 Discussion . 57
7.5 Threats to Validity . 58

8 Related Work 61

9 Conclusions and Future Work 63
9.1 Conclusions . 63

9.1.1 Goals . 63
9.1.2 Extensibility . 64

9.2 Future Work . 65
9.2.1 Improving the Data Structure . 65
9.2.2 Navigation in Steps . 66
9.2.3 Referencing Other Elements . 66
9.2.4 Linking Elements . 66

Bibliography 69

viii

Chapter 1

Introduction

1.1 Motivation

ExplorViz is a monitoring and software visualization tool. To efficiently use the tool one
needs to be familiar with the functionalities which it provides. When first using the tool,
users have to familiarize themselves with the application. Depending on the method by
which they do this, different levels of knowledge will be achieved. It is desirable to have
users with good knowledge about the tool. That allows the users to use the software
efficiently for the intended purpose. Educated users are able to provide more constructive
feedback. This is especially helpful when the software is developed as an open-source
project, since feedback regarding misunderstood features is minimized. It will also allow
new developers on the project to get a overview of features provided by the software.

Achieving a high level of knowledge is possible by providing documentation. Depending
on what kind of documentation is provided it is time consuming to produce and consume.
We therefore propose to use tutorials to educate the users and developers. These tutorials
will be provided by a tutorial framework which was developed for ExplorViz. ExplorViz
does support extensions, and these extensions themselves have additional features, which
might require tutorials to be explained. Providing tutorials for new extensions is only
feasible if the provided tutorial framework is extensible and customizable. Due to the large
variation of extension which could possibly be developed and therefore features which
need to be demonstrated, a tutorial framework would not be useful without the possibility
to customize and extend it. A customizable framework however allows for the developers
of extensions to provide tutorials which explain its features.

It is possible to customize the framework to work in a virtual environment as described
by [Zirkelbach et al. 2019a]. Since the tutorial framework will allow to implement specific
tutorials for functionality in ExplorViz, a tutorial for the Application Discovery mechanism
[Krause et al. 2018] could be implemented. Furthermore ExplorViz is used to visualize
monitored software [Krause et al. 2018; Zirkelbach et al. 2015], we provide a framework to
create introductions for these visualizations.

The tutorial framework is an optional extension for ExplorViz and provides a system
to manage tutorials. The framework is developed for the latest version of ExplorViz which
ensures that the framework is compatible with new versions of ExplorViz. We are not
aiming to provide a suite of tutorials, we rather are providing the tools to construct and use

1

1. Introduction

tutorials. In this work we provide some insight to what is required to construct tutorials.
The general structure of and pitfalls to avoid when developing extensions for ExplorViz
are explained. We discuss our approach and in what cases we had to adjust it. A working
framework is developed and its usability evaluated using an example tutorial, which is
created in the developed tutorial editor. The usability of the tools developed for creation
of tutorials is also evaluated. The processes necessary to develop the framework and the
tutorial editor are outlined in this work.

1.2 Goals

In this section we describe the goals are set to be achieved in this work.

1.2.1 G1: Literature / Tool Research

An overview of literature concerning ExplorViz and tools used by ExplorViz is assembled
and analyzed. This serves as a foundation to what is implemented.

1.2.2 G2: Develop a Data Model for Tutorials

We first have to identify the relevant features to create a data structure for the tutorials.
This enables us to determine the necessary structures to ensure needed information can be
persisted using the data structure. Additional features might be added later but a minimal
set of features will help to decide on the right implementation for the data structure.

1.2.3 G3: Implement a Modular Tutorial Extension

The features identified in Section 1.2.2 will be implemented by creating two extensions
that will provide the tutorial framework. There will be a backend and a frontend extension.
The backend will provide the tutorial data and the frontend will display it to the user. The
frontend will also register when the user is executing the actions to proceed in the tutorial.

A data structure will be created that can be used to export and import tutorials from
and into a database. This will ensure that Tutorials can be transferred between ExplorViz
Instances and developed independently. This would also enable a selection of tutorials to
be provided for general use, for example as downloadable files on a website. It also allows
for tutorials to be managed via Source Code Management.

1.2.4 G4: Implement a Tutorial-Management-Tool / Editor

A tutorial editor will be provided that allows the user to create and edit tutorials. The
actions required to proceed in the tutorial will be defined using the editor. Instruction text
and titles can also be edited.

2

1.3. Document Structure

Different user roles exist in ExplorViz and the usable features differ between them,
therefore we have to supply the possibility to enable and disable, the relevant features. This
is also relevant if some extension will be later uninstalled, with the tutorials remaining
in the database. Therefore we will implement a tutorial-management-tool, integrated into
ExplorViz to enable and disable parts of the tutorial, and configure if a tutorial is required
for a given role.

1.2.5 G5: Evaluation

There will be a questionnaire to evaluate the usability of the implementation. Subjects
will test the example tutorial before answering the questionnaire. We aim to answer the
question if the tutorial is helpful and find parts where it could be improved. The results of
the questionnaire will be analyzed and suggested improvements might be implemented.

1.3 Document Structure

In Section 1.2 we listed the goals of this thesis. Then in Chapter 2 we introduce the
technologies used when implementing the tutorial framework. We discuss different aspects
of tutorials in Chapter 3.

ExplorViz recently switched from a monolithic structure to a service oriented approach.
The new structure and general information about ExplorViz can be found in Chapter 4. We
follow this new approach and implement a tutorial framework, which consists of a backend
and a frontend extension, we describe them in Section 6.2 and Section 6.3 respectively.
These extensions communicate using an REST API based on JSON:API, which is further
explained in Chapter 2.

Technical limitation and information about the implementation can be found in Sec-
tion 6.2 for the backend and Section 6.3 for the frontend.

The evaluation is explained in Chapter 7, here the example tutorial along with the
execution of the experiment and it results are described. Related work is discussed in
Chapter 8. Afterwards conclusions are drawn and future work is discussed in Chapter 9.

3

Chapter 2

Foundations and Technology

2.1 JavaScript and JQuery

JavaScript1 is a well-known programming language that is not only used for client side
scripts in browsers. It is also used as a programming language for servers and several
frameworks are implemented in JavaScript. JQuery2 is a library for JavaScript. It extends the
functionality and simplifies commonly required tasks. Most often JQuery is used as a client
side script in browsers. There it provides a method to select and interact with elements
in the DOM via CSS like rules, which also supports CSS Selectors. This allows for easier
adding and removing of CSS classes to achieve changes on a web page without reloading it.
Event-handling is also simplified, and helper function to execute AJAX calls are provided.

JavaScript and JQuery are heavily used by Ember which itself is used to program the
frontend of ExplorViz.

2.2 Ember

Ember.js3 (from hereon referred to as Ember) is a framework based on JavaScript and JQuery
for providing web applications. The commandline tool of Ember can be used to generate a file
structure containing a structure to develop the application. Components of the application
can be generated during development. This makes adding functionality to the application
simple since parts can be added by a single command.

The developed application is then deployed on a server and delivers the scripts to the
client. The rendering of the page and execution of the application will therefore happen
on the clients machine. This means that Ember is a client-side framework. Not the entire
application is send to the client at once, this would make it hard to provide security and
implement authentication, since the pages would already be delivered to the client. Instead
the application is using so called client-side rendering which means that the pages are
constructed on the client and only authentication and data is send between server and
client.

1https://www.javascript.com
2https://jquery.com
3https://www.emberjs.com

5

2. Foundations and Technology

This allows Ember to be scalable since the workload is shifted to the clients and only the
required communications are send to the server. This also allows for subsequent page calls
to be handled entirely on the client side if the data is already present on the client.

Ember itself structures the application in Routes, Templates, Models, Components, and
Services. There are more specific components in Ember that can be used to customize how
the application behaves, these are however the basic building blocks of an Ember application.
Routes map URLs to Controllers and are responsible to load a model, which is an object
that contains parts of the information shown on the page. Templates are the components
that generate the HTML presented to the user. Models provide data, which is then used
by the controllers to determine how the page will be rendered. The controllers therefore
provide the information needed by the templates to render the pages. Services are used to
store information without having to pass it between controllers. Services can be used in
controllers and if a service is defined every controller will use the same instance.

Ember is used in ExplorViz to provide the frontend. All user interactions are handled
through this application.

2.2.1 Ember Data

Ember Data enables the developer to define data structures, called models, which can then
be loaded via JSON:API and are automatically stored in the Ember Store. Ember therefore is
able to reuse the data without reloading it from the backend multiple times. Ember Data
also tracks if the model properties were changed and therefore would have to be saved.

Models are defined by extending the Ember Model Object and defining which properties
are contained in the extended model. These properties are typed. Ember Data is able to
connect to different APIs to exchange data with the backend. By default Ember is compatible
with JSON:API, for more information see Section 2.7. It is possible to customize Ember Data
to work with a very wide range of APIs. This is done by implementing an adapter which
specifies the endpoints of the API. Additionally a serializer can be implemented to affect
the data before it is exported from or imported into the application.

2.2.2 Ember Templates

Ember provides templates which define what is shown on any given page. These templates
could contain simple HTML. If the application is supposed to show data which is provided
by Ember Data, it can use handlebars syntax to include values from the controller in the
template.

Most applications will also reused certain components of a page. A prime example is
a navigation on a web page. The navigation is mostly the same on every page, since its
purpose is to provide an overview of possible pages. Ember does provide components to
implement sections of pages which are reused. Components can be included in templates
and will cause the component to execute their code and provide the data required to render
the component.

6

2.3. Java

Components also provide data for the view (which is created from templates), however
they do not automatically associate with a route and therefore need to be called by the
template. This appears as if it breaks the Model-View-Controller design pattern, since the
view would be calling the controller. However the component itself has a template. This
means the controller is not called by the template, the component is simply a subtemplate,
which will execute its controller to ensure that the needed data is provided.

In our example of a navigation component, we want to highlight the current page.
This can be achieved by binding a parameter to the component. Binding a variable to
a component will cause the component to refresh when the variable is changed. This
only occurs when the variable is changed via the setters provided by Ember, these should
however always be used for setting values. With the bound variable we can now set which
navigation component should be highlighted corresponding to the controller that was
executed.

Another option to achieve the same functionality would utilize a service. Since the
currently active page is an application wide state, we could implement a service that stores
which page is active. This would allow our component to check this variable to highlight
the corresponding navigation entry. This would not cause the component to update if the
variable is changed. This is desirable if the variable should not be configurable, since the
component itself needs to define which variable in which service is causing the effect. When
the variable is bound it is simple to just bind another variable while adding the component
to the template.

2.2.3 Ember Addons

Ember can be extended by Ember Addons. Addons are Ember Applications which are used in
conjunction with other applications, they are included in the dependency section of the
package.json. This will cause the addon to be installed and executed with the application.
For development the addon can be linked to an application. This causes the application
to run the addon from the source code, therefore changes are available to the application
without restarting it.

Developing an Ember Addon follows mostly the same principles as developing a stan-
dalone app. A folder which is called addon contains the source code. A folder called app
exist and contains files which are accessible to the application. To avoid that the entire
source code of the addon is accessible by the application, it is contained in the addon folder,
and the classes are then exported in the file contained in the app folder.

2.3 Java

The main programming language used in the ExplorViz backend is Java. The backend needs
to provide data to the frontend. This is achieved by creating Restful HTTP Endpoints which
accept requests for data and provide data in the JSON:API format. JSON:API is further

7

2. Foundations and Technology

explained in Section 2.7. These endpoints and the conversion from java classes to JSON:API
responses are provided by the Jersey framework. Jersey allow us to use annotations to specify
identifier and relationships inside the classes. This enables us to return a Java Object of the
class and Jersey will convert the object into the JSON:API response.

Where Jersey is used for converting java objects into JSON:API, Morphia4 is used to store
the JSON:API objects into a Mongo DB5. More information about Mongo DB can be found in
Section 2.4 and information about Morphia Section 2.5. We provide services that are used to
persist the data in the database.

Another principle that is used in the services is dependency injection. Services and
configuration files are defined in the DependencyInjectionBinder. The dependency injection
binds classes, mostly implementations of interfaces, onto the interfaces. This enables using
the interface as field in classes, without either specifying the implementation as type,
nor the need to provide a constructor which contains the field. It also allows to easily
exchange the implementation without the need to adjust the class. The only necessary step
would be to exchange the implementation in the binding class. The implementation is
then injected into the interface inside the classes. The injected fields are specified using
the Inject-annotation. This annotation ensures that the field will be considered when the
injection is executed. It is also possible to always inject the same instance of a class as a
singleton. We utilize this in the backend services among other things to only instantiate
one class to establish a database connection.

2.4 Mongo DB

Mongo DB is a highly compatible database system. It uses a JSON-like structure to persist
the data as strings. Since it is text based and has a simple structure, it can be converted into
constructs in most programming languages. Therefore it is often used in APIs to provide
program language independent interfaces. JSON:API can be used to transfer data via text
based APIs, it can however also be used to save data in a human readable and editable
format.

2.5 Morphia

We utilize Morphia to persist the objects in the Mongo DB. Morphia allows to annotate
relationships between classes and the id of a class. This is very similar to the annotations
mentioned in Section 2.3. These classes are then used to insert the objects into the database.
Morphia is using a datastore which is a singleton that contains functions to persist different
types of objects. The datastore is injected into the database service which is used by the
resource to persist the objects.

4https://github.com/MorphiaOrg/morphia
5https://www.mongodb.com/

8

2.6. JSON

Morphia does allow us to use annotations for other purposes. The transient-annotation
can be used to specify fields that are supposed to be ignored when persisting the object.
This is useful if the JSON:API object contains data that Jersey should parse but which should
not be persisted into the database.

2.6 JSON

JavaScript Object Notation (JSON)6 is a text based format to store JavaScript Objects. Since
JSON is a string base dataformat it is also highly compatible with most programming
languages. It is also widely used in web applications since, as the name implies, it works
well with JavaScript.

2.7 JSON:API

JSON:API is a specification which was designed to simplify communication between servers.
It is compatible with JSON since it uses the format, it however defines stricter rules on
how data should be structured, among other it requires objects to have an id and a type.
Another requirement is to split the type and id from relationships and attributes. The
objects referenced via relationships can be included inside of the request.

6https://www.json.org

9

Chapter 3

Tutorials

There exist several methods to familiarize a user with software. One method would be
a manual. The manual would contain all of the information needed to use the software.
This would however cause a large overhead since the user would have to read the manual
to receive the information before using the software. Even if the user just skips through
the manual to get basic information, he then has to use the read information to find the
right actions. Another problem would be to familiarize the user with the user interface, this
would require the manual to have pictures of the software. Depending on the distribution
of the manual, many pictures cause higher printing costs or larger file sizes. These pictures
would also need to be updated when changes are made to the software.

Explanation by Peer

Another possible method for instructing a new user would be an explanation by a co-
worker, this has similar problems as the manual. The overhead before the software could
be used would be high, if the co-worker does not explain it while using the software. It
would also cause two users to be involved in the process, this would also use the time of
an experienced user in addition to the time of the inexperienced user. Not only is the time
requirement higher than the manual, the quality of explanations could also vary depending
on the explaining user. The knowledge of the software differs between users. This method
would even increase the difference if users with different knowledge about the software
are instructing new users.

Video Instructions

An instruction video could be used to avoid a difference in instruction quality. The video
option would also address most of the problems explained earlier. An experienced user
would only have to produce the video once, which would eliminate the need to spend
more time, every time a new user is introduced. Since the software would be shown in the
video, the need for additional pictures does not exists. The size of the file is however higher
than the manuals, this could be a problem if disk space is limited. It is possible to stream
video files, however this would require an internet connection or further infrastructure. If
the video is streamed from a central server this would also allow for the instructions to be
updated and therefore all new users would automatically receive the updated information.

11

3. Tutorials

The production of a video might be time consuming and if the quality is below average, it
might not help the users in understanding the software.

Another problem with video as a medium is that updating parts of the video, if for
example one functionality was changed, is complicated. This is due to the screen being
visible at all time. If the UI of components change which might be visible even when
another functionality is explained. This could cause confusion. Therefore the section of the
video for the other functionality would have to be redone as well. This causes overhead in
production and updating which is not desirable.

Learning by Example

All these methods are missing one essential part. [Charney et al. 1988] found that giving
the user opportunity to practice the learned material will have an improved learning effect.
Therefore it is more effective to learn while using the software, since the user is practicing
what he is taught immediately. This allows to learn how the software behaves and while
learning the features the user can get used to the functions commonly used. These functions
include navigation and authenticating. It also trains to use functionalities that might not be
intuitive. Learning while using the application can be achieved with an interactive tutorial.

Integration into Software

An interactive tutorial could be implemented separate of the actual software, this would
however not allow for the tutorial to use features directly from the application. The
navigation of the software would not be learned since the tutorial would be executed in
another software.

Instead the tutorial can be integrated into the software, which does allow the tutorial to
use and reference features of the application. It would also eliminate problems that might
occur when installing or logging into the tutorial software, since the user is authenticating
with the actual software.

Exploration of the software would also be possible when the tutorial is integrated into
the software and explain feature by using popups. This could however hinder experienced
users because of popups and notices regarding features they already use or know how to
use. Allowing experienced users to disable the tutorials could avoid this problem.

The tutorial could also be a more separate feature, having it’s own menu entry and
therefore requiring action from the user to be activated. This would allow new users to
specifically request to execute the tutorial. The possibility to chose not only to execute
the tutorials but chose which tutorial will be run, enables a focused retrieval of informa-
tion. This means that even experienced users could chose which tutorial might contain
information they are not aware of, without forcing them to consume the already known
information via popups, notices or otherwise forced tutorials.

The opportunity to force users to complete a tutorial is useful in a more corporate
setting where it is required for all users to have at least basic knowledge of the program.

12

3.1. Features

This feature would be even more useful in research applications at university since it
ensures that the participants all execute the tutorial. This would ensure that the participant
are not missing the tutorial or accidentally closing or skipping it. This is important because
the result would otherwise be skewed by the fact that participant did not know how to
use program. If the participant chooses to not continue the tutorial it will be visible when
determining what was achieved during the experiment.

The application needs to track more data when forcing users to complete the tutorial.
Since it would need to keep track of how far the user completed the tutorial, this progress
would need to be persisted. At least the status if the user did complete the tutorial would
need to be saved.

3.1 Features

There are several possible features for the tutorial presentation, which can enable the
creation of effective instructions and explanations. We discuss these features and possible
benefits and problems.

A basic feature of tutorials is text which contains the information that should be
conveyed to the user. This text could include some of the other features described later.
The text is used to deliver information and instructions to the users. The length of the text
should not be limited, however if the instructions are too long they might not be readable.
The implementation of other discussed features might require to save more data than is
visible, this could cause the text to truncate if the text length is limited.

Formatting options for the text are useful to highlight and emphasize the important
sections. Highlighting parts of text does support the providing structure in text. It allows
the user to identify the information necessary to complete the task as also mentioned by
[van der Meij 2008]. This could be done in several ways. One option would be line breaks.
This would enable the writer to structure the text into paragraphs and highlight sentences
by separating them from the other text.

It should be considered that special characters could also be used to mark and emphasis
words. A more sophisticated variation would be to enable bold, italic and underlined text.
This would allow highlighting of words inside sentences. It could also be used to highlight
important parts or mark specific words more effectively than with special characters. This
could however introduce more complexity, since a syntax would have to be used to define
these text variations.

Another possible feature would be to enable linking of elements, this feature is further
explained in Chapter 9.

Apart from the features regarding the text, the framework should be able to detect if the
user has executed the expected action and then proceed to the next instruction. Detecting a
wrong actions could also be possible, however the feedback would have to be situational.
Since general feedback would not be as helpful as situational feedback. There are also more
possible incorrect actions than correct actions since the user could even execute actions that

13

3. Tutorials

never have an effect. These would have to be detected to show the notice, it might not even
be possible to detect certain actions. It would be possible to disable all action except for the
correct action. This might prevent the user from executing wrong actions, it could however
also cause the user to simply randomly executing arbitrary actions in the hope of executing
the required action. This could cause the user to execute the expected action and without
what he did to achieve the result.

3.2 Minimal Featureset

We focus on the development of a framework, it’s extensibility and integration into the
existing software, and therefore we are only including a minimal feature set. The minimal
features we deem necessary to manage and run tutorials for ExplorViz. A structure which
contains instructions is required to implement the presentation of tutorials. Since multiple
instructions should be provided, multiple of those items are required. A relationship
between the instructions and the tutorial is also required. A transition between those
instructions would need to be triggered when an instruction is completed. This could be
triggered by a button. However this would not provide the means to demonstrate a feature,
it would instead just be segmented text, which is more similar to a manual. When the user
misunderstands such instructions, since they are not verified, he might not notice that the
instructions have an other intention, therefore the user might continue with the tutorial
without understanding the information presented. A system should try to verify that the
user did understand the information presented to them.

3.2.1 Detecting User Input

A system that is trying to verify that some presented information was understood, will
have to rely on the data which it has access to. There are different methods on how to
obtain this data. A simple approach would be to assume that a user only clicks a button if
he read and understood all information presented. Therefore the system would assume
that the user has all knowledge that was presented earlier. This would be a very optimistic
assumption.

Another option would be a question and answer system, which is posing questions
that require knowledge which was presented during the tutorial. If the questions are
answered correctly the system assumes that the knowledge was obtained. This would not
guarantee an understanding since the answers, or positions of them, could be remembered
without considering the content of the questions. If we assume there is no way to perfectly
determine if the knowledge was obtained, we have to ask ourselves what we are able to
verify.

A system that can verify that an action was performed, could assume that the user
understood the instruction. Therefore if the instruction are worded in a way that the
information has to be understood to understand the instruction, we can assume that the

14

3.2. Minimal Featureset

information was extracted and understood if the instruction is executed. This would give
us verification that the information was processed, which is more than assuming it was. A
system which recognizes actions performed is needed to use this assumption.

We also need a method to specify these actions and targets, to acknowledge the execution
of the action on the target specified in the instruction. These references need to be able to
be persisted. In a 3D environment they also need to be independent of the camera angle,
since it would not be possible for a user to judge the degree of camera rotation by eye.

3.2.2 Tutorial Editor

We could assume that an editor is not required since tutorials could be programmed or
scripted. This could however be more time consuming than creating a tutorial from an
editor. The tutorial framework would need a compiler or other way to verify correctness of
the code. Additionally not every user would be able to create a tutorial since programming
skill is required to program a tutorial. This would mean that not every users with specific
knowledge of the software would be able to provide tutorials for other users. Therefore an
editor is a basic feature for the tutorial framework. The functionalities of the editor should
however be simple and intuitive as to enable more users to provide tutorials.

15

Chapter 4

ExplorViz and Structure

We develop the tutorial framework for ExplorViz1. ExplorViz is a software landscape vi-
sualization and monitoring tool, that is developed by the Software Engineering Group
at the Christian-Albrechts-University of Kiel. It uses live trace data generated by Kieker 2

and visualizations created by Kieler3 to visualize the software landscape, instances and the
interactions between them.

There are two different visualizations, the landscape perspective and the application
perspective. The landscape perspective shows a 2D representation of the entire software
landscape. This view includes all systems, node groups, nodes and applications running
inside the environment, this can be seen in Figure 4.1. The grey boxes represent systems,

1https://www.explorviz.net
2http://kieker-monitoring.net/
3https://www.rtsys.informatik.uni-kiel.de/en/research/kieler/welcome-to-the-kieler-project

Figure 4.1. 2D landscape view

17

4. ExplorViz and Structure

Figure 4.2. 3D view of communications

nodes groups are visualized in a dark green. Blue boxes represent the applications and
the primary programming language is represented as a small icon next to the application
name. Orange lines represent connections between applications. Systems can be toggled,
which will cause all contained node groups, nodes and applications to be hidden.

In the application perspective which can be seen in Figure 4.2 only the selected appli-
cation is shown, however in greater detail. This perspective shows a 3D representation
of the software following the [Shneiderman 2003] mantra of ’Overview first, zoom and
filter, then details-on-demand’. The application is shown as a hierarchical structure based
on the modules of the programming language. In the case of a Java application these
modules are packages. These packages, represented as green boxes, can be opened to show
contained packages. When classes, which are represented by blue boxes, are contained in
the packages they are visualized, their height determined by the number of calls inside
them. When a package is closed it still retains the height of the highest class contained in
the package. Classes are connected by orange trace lines which represent calls between
classes. These traces are also shown when the packages containing the classes are closed.
Packages, classes and trace lines can be selected which cause non connected classes to
become transparent. The trace lines also have indicator for the direction of the call.

18

4.1. Extensions for ExplorViz

4.1 Extensions for ExplorViz

ExplorViz consists of a frontend and a backend. It supports extensions on the server and
client side. The frontend extensions can be build into the application and provide additional
functionalities. The backend consists of mostly independent services. Therefore the backend
is extended by developing a new service which provides additional functionalities. The Core
functionalities of ExplorViz is provided by the Ember Application and a suite of services in
the backend, we call these the Core of ExplorViz.

Extensions are programs independent of each other which extend the functionality of
ExplorViz. They are optional, therefore they might be used but are not required. They might
not be able to run independently of the Core software. However they should be able to be
combined with each other provided the Core application is available.

4.2 Structure and Services

The frontend is responsible for rendering the pages and providing methods for user
interaction. It is an Ember application. The backend is responsible for persisting, collecting
and providing data to the frontend. As further explained in [Zirkelbach et al. 2018] the
ExplorViz Backend structure was recently changed from a monolithic software Figure 4.3
to a service based structure Figure 4.4. This service structure was extended during the
development of the tutorial framework. Several new systems where introduced into the
structure, which are providing a good inter-service connectivity, while also ensuring a
good separation of dependencies.

Even though the services are separated, a Core suite of services is required for the basic
functionality of ExplorViz. We call these services Core Services. The Core is combined in a
git repository which contains the repositories of the services as submodules. This allows for
checking out all or just the a subset of services for development. The Core contains the
following services:

Ź Analysis

Ź Broadcast

Ź History

Ź Authentication

Ź User

Ź User settings

In the case of some services missing functionalities that require these services will
not be available in the frontend. Without the authentication and user service it would
not be possible to login into the application. When the services providing landscape data

19

4. ExplorViz and Structure

Figure 4.3. Monolithic Structure of ExplorViz taken from [Zirkelbach et al. 2019b]

are not running, nothing can be visualized. If a user is already authenticated and the
authentication service is disabled, the visualization would not be affected until the user
needs to be reauthenticated.

This also means that if all Core Services are running the Core functionality will be
available. This also implies that if any extensions are missing, the Core functions are still
available. Keeping the Core free of dependencies will therefore be necessary, especially
regarding dependencies towards extensions. It cannot be guaranteed that the extensions
are available or that their backend services are running.

The trace data is collected by Kieker4 and then send to the analysis-service. We list and
explain the functions of the Core Services.

The analysis-service receives the trace data from Kieker, this is done by a class called
KiekerAdapter which receives the data and translates it into data usable by other ExplorViz
services. It then transfers the data to the landscape-service.

The landscape-service accumulates this data and constructs a snapshot every ten seconds.
We call this snapshot a landscape. Generating landscapes every ten seconds ensures that
enough data has accumulated and the resulting landscape does contains meaningful data.
The classes contained in the data for each landscape are grouped into their respective
packages and classes. Afterwards objects are created to represent theses classes and
packages as well as systems, machines and applications. The landscape is the send to
the broadcast- and history-service . This is done via TeeTime5.

The broadcast-service is receiving the landscape and delivers it to the frontend where it is
displayed. This only happens if the live landscape visualization is active. This visualization
will then always show the most recent landscape. This is achieved by providing a resource
which can be used by the frontend to register as an observer. The request causes the

4http://kieker-monitoring.net
5http://teetime-framework.github.io

20

4.3. JSON:API

Figure 4.4. Service Oriented Structure of ExplorViz taken from [Zirkelbach et al. 2019b]

broadcast service to establish a connection to the frontend and provide new landscapes
directly to the frontend connected to it.

The landscape is also transmitted to the history-service which will persist all received
landscapes and allows to retrieve them by providing either an id or a timestamp. This service
is used to provide landscapes that are requested. Another service is the authentication-service
which is used to authenticate a user and check his roles. The users and roles are also saved
in a Mongo DB. The authentication-service also provides the ability to login and produces a
token which can then be used to authenticate and authorize all requests between backend
and frontend. The roles and users are managed by the user-service, it also creates users
and assigns passwords to them. The users can also be assigned user-settings, these are
managed by the user-settings-service. This service provides settings for ExplorViz on a by
user basis. This allows ExplorViz to provide customized settings for users.

4.3 JSON:API

JSON:API is used to communicate and transfer objects between services. This ensure clean
separation between services. It also ensures that there is a clear definition of how the
transferred data should be structured. Using JSON:API does also allow the services to
use Jersey to serialize and deserialize the transmitted data directly to java objects. The

21

4. ExplorViz and Structure

services are not required to implement all specifications belonging to the standard, since
the communication is mostly restricted to services interacting with ExplorViz. Therefore
it is possible to only implement the interfaces required by other connected services. If
for example an object will never be saved it is not necessary to implement the service
providing the functionality, even though JSON:API specifies the interface. This requires
developers to possibly implement the functionalities, if the interface becomes relevant.
Since the interfaces are clearly defined if implemented the interface will adhere to the
specification.

Relationships of objects can also be transmitted via JSON:API. When fewer requests are
desired the objects can be included in the response. This requires the backend to provide
the referenced objects inside the response. Otherwise the objects are only referenced via
their id and not included. When the id is provided it is be possible to request the referenced
objects. This allows for fewer objects to be transmitted since they are only loaded on
demand, it would however cause more requests to be processed. Either might be desirable
depending on the amount of overhead for a request and the objects used by the other
service.

22

Chapter 5

Design Approach

5.1 Approach Overview

This chapter contains the design approach we took for the development of the tutorial
framework. As mentioned before ExplorViz can be extended by creation of an Ember addon
for changes regarding the frontend and it can be extended via development of a service for
the backend.

We considered if both where necessary. We found there were several reasons why a
frontend and backend extension would be necessary. We now discuss these reasons and
also highlight the design approach that was taken and revised during the development of
the tutorial framework.

The goal is to develop a tutorial framework which is able to create tutorials and execute
them. We are developing a service which will be able to receive tutorials, persists them
in a database and deliver them to the frontend. As described in Chapter 4 the services
are connected via Kafka. This was however not the case when we started to develop
the framework. First the principles of a service oriented structures where applied to the
structure of ExplorViz. We therefore discuss which dependencies exist and how we are
avoiding unwanted dependencies to the Core application. We will then go into detail how
the services are connected and which parts of the ExplorViz infrastructure must be used or
reconfigured. We then highlight the inner structure of already existing services, to apply
this knowledge for the development of our own tutorial service.

Afterwards we will discuss what should be considered when developing an Ember
Addon for ExplorViz. We therefore discuss compatibility issues with other extensions, how
the extension is connected to the backend and finally we explore options we considered
when designing the tutorial execution and tutorial editor.

5.2 Tutorial Framework Backend

Developing a backend service for managing the data required was necessary because the
tutorial data needs to be persisted in a database. This data could have been integrated
into one of the existing services this would however introduce dependencies between this
service and the tutorial mode. Avoiding these dependencies was one of the principles we
were following when designing the backend.

23

5. Design Approach

Minimizing Dependencies

The Core of ExplorViz should not have any dependencies towards the tutorial framework.
This would cause the base functionalities to be unavailable if there is a problem with
the tutorials. We decided to implement a separate service to manage the tutorial data.
Dependencies in the tutorial-service towards the Core are less of a problem since the Core
Services are required for the basic functions of ExplorViz. If they are not available the tutorial
framework could not be started and therefore the dependency is not critical.

Dependencies would be introduced if for example the discovery service would use
any of the tutorial-services functionalities. We therefore aim to introduce as little change as
possible to the Core. This also solidifies the decision of implementing a separate service,
since this does not require the Core Services to be modified.

5.2.1 Connecting Services and Deployment

We are aiming to integrate the new services into the environment ExplorViz runs in, we will
therefore develop dockerfiles which will create the service and enable it to run in conjunction
with the other services. To achieve a uniform URL as also mentioned by [Zirkelbach et al.
2019b] a reverse proxy is used, we are therefore including the tutorial service into this
reverse proxy. The proxies configuration needs to be adjusted and therefore the docker
image needs to be rebuild.

The landscape-service could be used to persist the landscapes, this would allow the tutorial-
service to only reference landscapes, which could then be loaded from the landscape-service.
This would cause the tutorial-service to be dependent on the landscape-service. Missing
landscapes would need to be considered and error handling for this case need to be
implemented. The most detrimental impact however would be, that if landscapes are
imported to be used by the tutorial, they could not be distinguished from live landscapes.
We therefore decide that landscapes should be managed by the tutorial-service.

5.2.2 Service Structure and Persistence

We also decide to use the same technologies already utilized in the development of
ExplorViz, this allows developers to familiarize themselves with the service. When most
services use the same technologies, developers are not restricted to develop on one service.
A similar structure allows for faster familiarization with any given service, since the
developer already knows which components are responsible for which functions of the
service.

This also allows for all services to be configured the same way, which allows for devel-
opers to customize their development systems. Adjusting ports and specifying dockerfiles
become simpler when the structure of all services is similar.

We therefore aim to use the same technologies in a similar structure as the other services.
Even though not many services existed when the development started, we investigated the

24

5.3. Tutorial Framework Frontend

few services that did exist, and determined the technologies and structure of the services.
We therefore implement a backend service which uses Jersey to provide a JSON:API.

It should persist the received objects with Morphia and utilize a Mongo DB for storage.
The service needs to provide JSON:APIs for all objects the tutorial framework is using. It
should also persist the relationships between objects, which is possible when using Morphia.
Editing and deletion of persisted objects should also be possible.

The ports of the backend should be configurable. This is necessary as mentioned earlier
to avoid collisions on ports, and to enable developers and users to customize the installation
of ExplorViz.

5.3 Tutorial Framework Frontend

Developing the frontend requires another approach since the method by which the frontend
of ExplorViz can be extended is vastly different. The principle of minimizing dependencies
is still valid, however since the Ember Addons are installed into the ExplorViz frontend, it is
not possible to decouple the frontend from the extension. Therefore dependencies with
the Core are less problematic than in the backend. In practice the principle however does
still apply, it is for example possible to override functions in the frontend, which might
introduce dependencies to the extensions backend. The developer should still consider that
the overridden components might not be available if overridden.

5.3.1 Frontend Modularity

Considering that backend services might not be available and that overriding functional-
ities in that case might disable base functions, we decided to integrate the tutorial into
ExplorViz. We decide against integrating the tutorial into the existing visualization, since
it would disable the Core functionality. Another factor in this decision is that it would be
difficult to convey to the user if the visualization is used or a tutorial is executed. A clear
separation of features is preferred. Overriding code in Core components would also require
to reimplement changes in the visualization if they were overridden.

Additionally problems might occur when multiple extensions inject and override code
in the Core application, we therefore decided the extension should provide a separated
section for it’s functionalities.

If extensions are not injecting their code into the default visualization, the Core visual-
ization will remain available.

5.3.2 Models and Connection to Backend

The frontend extension should be able to connect to the backend and exchange data with
it. We rely on the Ember Data to serialize and deserialize the frontend models. It uses the
JSON:API provided by the backend since Ember is compatible with JSON:API.

25

5. Design Approach

The Ember Model should therefore be identical to the java classes in the backend, this
will allow Ember Data to serialize and deserialize the JSON:API requests and use the models
when presenting the data to the user.

5.3.3 User Interactions

The frontend does not only exchange data it also provides the user with information and
allows the user to interact with the tutorial. We therefore implement a feature to execute
the tutorials. Additionally we implement an editor to create and edit tutorials.

Designing the visuals for tutorial execution, we consider a popup similar to what was
implemented in the earlier version implemented by [Finke 2014]. This design however was
able to obstruct the view onto the visualization. We therefore decide to create a sidebar.
This causes the visualization to render in a smaller area, however the information cannot
obstruct the view onto the visualization.

We determine which problems might occur when creating tutorials. We find if the editor
vastly differs from the visualization, the creator might not be able to determine how the
text would be displayed in the sidebar. A preview window would constrict the room for
the visualization even more. Therefore we use a design the resembled the structure shown
when executing tutorials.

To visualize the look of the final application we construct a picture from existing
components (see Figure 5.1).

26

5.3. Tutorial Framework Frontend

Figure 5.1. Constructed picture of tutorial editor UI.

27

Chapter 6

Implementation

This chapter features descriptions of the features we implement as well as problems which
cause us to adjust our design during development. We implement two extensions, the
backend which is managing the data required for the tutorials, and the frontend which
handles user interactions and presentation.

6.1 Implementation Overview

We discussed our approach towards developing the tutorial framework in Chapter 5, we
now describe the specific problems and how we resolve them. We follow the same order as
in the approach. Therefore we first discuss how the Service is connected to the frontend
and how we avoid problems with other services. We focus especially on the configuration
of the development system and how it is affected by the components of ExplorViz. We
then describe the classes which store the tutorial data. Problems regarding Jersey and how
the landscapes are persisted are described. This leads us to highlight which options were
available to manage communication between services. The last part regarding the backend
is dedicated to a problem that occurred regarding identifiers.

We then follow by discussing the development of the frontend. We specify how the
models correspond to the classes in the backend, this includes adapters and serializers.
We discuss problems regarding landscape serialization in the frontend before explaining
which options for mapping routes to functionality where can be considered. We then give
an overview of how variables can be bound to templates. Then interaction components
are explained and we explain how these can be utilized to select targets inside of the
visualizations. A structure to transmit information between interaction components and
form components is described. We also explain how services can be used to avoid binding
variables and why we cannot utilize this for the visualizations. At last we describe a
problem with serialization in the frontend.

6.2 Tutorial Framework Backend

The tutorial backend is providing data for the frontend. We mentioned our design approach
in Chapter 5 and will now report how we implement the extensions. We also highlight
which problems cause us to adjust our approach.

29

6. Implementation

6.2.1 Connecting Services and Deployment

The tutorial-service will be deployed using Docker1, to ensure that the service is embedded
into the environment we need to create the infrastructure which allows us to connect the
tutorial-service to the frontend.

Docker and Reverse Proxy

As mentioned before Docker is used to run the services. The started service needs to be able
to communicate with the other services and the frontend. Communication between services
was not possible at the time development started, since Kafka was not yet integrated into
ExplorViz.

The frontend sends requests to either the URL specified by JSON:API unless another
URL is specified in the adapter for the model. Adapters will be discussed more in Section 6.3.
As mentioned in Chapter 5 a reverse-proxy maps the path of a request to the corresponding
server or port and then redirects the request to the determined location. Therefore in the
development environment the reverse-proxy is mapping the request URL to the port where
the service is running. We edited the configuration for the reverse-proxy to map a URL to
the tutorial-service. The path chose the path tutorials.

Even though Docker is supposed to enable simple deployment on different architectures
there still is a discrepancy between Docker running under Linux and Docker running under
Windows. This means there exist two different docker-compose files. The configuration files of
the reverse-proxy are also different. This is mostly due to a difference in how networking
is managed by the two operating systems. The Linux docker-compose file has to specifically
define that the host network structure should be used.

Since we adjust the dockerfiles in our repository, which is not part of the Core reposito-
ries, we have to adjust the ports dedicated to the tutorial-service when new services are
introduced in the Core. This means also updating those ports in the configuration of the
reverse proxy.

Usually the image of the reverse-proxy corresponding to the operating system is specified
in the docker file. This would eliminate the need to edit the configuration file for the reverse-
proxy, for Core services, however since the tutorial-service is not part of the Core, there is no
configuration for this service in the prebuilt images.

We therefore need to build the image on our machine after editing the proxies con-
figuration file to include the service. This is done via docker-compose, the repository
for the reverse-proxy is checked out and the configuration is adapted. We are then using
docker-compose to build the docker image, this requires us to specify which docker file
should be used. We have to specify the path of the checked out reverse-proxy repository to
build the image.

This causes the tutorial-service to be included in the built image, however since the
changes are not committed to the reverse-proxy repository, the tutorial-service will not be

1https://www.docker.com

30

6.2. Tutorial Framework Backend

included by default. In the future there will probably be a git branch of the proxy that
includes the tutorial-service. Even if this is not the case and the tutorial is never included
in the reverse-proxy, we have to assume that the production environment will be adjusted
if additional extensions are loaded. If this would not be the case, other extensions could
not be referenced and they would also not work. These settings are highly dependent on
the structure and configuration in which ExplorViz is deployed. There might not even be
the need for a reverse-proxy since every service might be running on a single server. In that
case the URLs would not have to be matched to a port since the URL already uniquely
identifies the server and therefore the service running on the server. The service provides a
configuration file which can be used to customize ports and server locations to enable the
service to work with different configurations.

Avoiding the ’next free port’ collision

Since we are deploying the ExplorViz services on the same host, we have to manage the ports
for the different services. This has to also be done in the configuration of the reverse-proxy
and in the configuration of the specific service. It has to be assured that no two services are
running on the same port. If two services would run on the same port the service started
first would block the port and the later service would not be able to start properly. The Core
services use different ports. When new Core services are added to the environment the next
’free port’ is used, which is also the port the tutorial-service uses. Therefore the port would
need to be adjusted. This causes us to change the port if new services are introduced. We
use a port which is not subsequent to the highest used port, to avoid having to change the
port in the Nginx2 and service configuration every time a service is added to the Core.

Gradle

During development Gradle is used to build the Java applications of the services, this allows
for a more seamless integration into the developers IDE. The classpath is set and libraries
which are necessary are automatically downloaded and included. It also serves to include
the Core repositories if classes are required. Gradle works by reading the Gradle configuration
file, which specifies the dependencies. This causes Gradle to retrieve the dependencies and
to configure the IDE. The dependencies can contain a version, which allows to use a specific
version of the dependency.

6.2.2 Service Structure and Persistence

Adhering to the general structure of ExplorViz consisting of a REST API provided by
Jersey which is connected to a Mongo DB we also utilize Morphia to persist objects with
their relationships into the Mongo DB. The JSON:API provided by Jersey is used by the
frontend to communicate with the backend and makes persisting objects possible. The

2https://www.nginx.com

31

6. Implementation

services implement resources which are listening for HTTPS requests. These JSON:API
conform requests contain the objects that should be persisted. They are then parsed and the
corresponding objects are created by Jersey. These objects can then be used to either load the
requested objects from the database or persist the changes the received objects contain. This
method can also be used to create new objects. The endpoints which are listening for the
requests are called resources and they are configured using annotations. The annotations
are defining the path, the type of requests and whether objects are consumed or produced
by the resource.

The classes introduced by tutorial-service are the following:

Ź Tutorial
Tutorials are the main object they contain the references to sequences and a TutorialLandscape.

Ź Sequence
Sequences can be used to structure tutorials, they reference an optional TutorialLandscape.

Ź Step
Steps contain the instructions, target and action to be performed on the target.

Ź TutorialLandscape
TutorialLandscape contains the id, timestamp reference and a serialized version of a
landscape.

Ź TutorialTimestamp
TutorialTimestamps extend timestamps and are used to be referenced by TutorialLandscapes.

The frontend uses Ember Data Models corresponding to the backend classes, those are
explained in further detail in Section 6.3. The classes contain fields which are annotated to
enable Jersey and Morphia to identify the fields used to create identifiers and relationships.
Listing 6.1 shows the source-code of the tutorial class and how the annotations are used
to specify ids and relationships. Also seen in the figure Listing 6.1, the tutorial class has a
relationship to multiple sequences.

The tutorial class is used to specify the landscape which will be displayed when
executing the tutorial. It also contains a title for easier identification by users. Most
importantly however the tutorial contains a list of sequences. Sequences are used to
further subdivide a tutorial into sections. Sequences therefore also contain a title which
can be used to specify what the sequence will teach. Sequences can also refer to a landscape,
this allows for sequences inside the tutorial to use a different landscape than specified in
the tutorial. This allows for sequences of the tutorial to visualize landscapes and explain
how they can give different information.

Sequences contain a list of steps. Steps are used to deliver instructions to the user, they
contain a title and instruction text. They also contain the target for the expected action.
The target is composed of three fields, a targetType, a targetId and an actionType. The

32

6.2. Tutorial Framework Backend

Listing 6.1. Annotations and fields in Tutorial class

1 @Type("tutorial")

2 @Entity("tutorial")

3 public class Tutorial implements Serializable {

4 @Id

5 @com.github.jasminb.jsonapi.annotations.Id

6 private String id;

7
8 private String title;

9
10 private String landscapeTimestamp;

11
12 @Reference

13 @Relationship("sequences")

14 private List<Sequence> sequences = new ArrayList<>();

targetType is required since ids are not guaranteed to be unique across types. The class
diagram of the tutorial class in relation to sequences and steps can be seen in Figure 6.1.

The other two classes, TutorialTimestamp and TutorialLandscape, are classes that rep-
resent classes which exist in the Core of ExplorViz, due to technical limitations described
in Section 6.2.3 it is however not desirable to use these classes. The TutorialLandscape

contains an id, a reference to a TutorialTimestamp and a string containing the landscape.
Landscapes and the objects contained in them are not instantiated, instead they are stored
as a JSON:API string. TutorialTimestamps and TutorialLandscapes use the same ids as the
corresponding timestamps and landscapes, this allows to retrieve the landscape by id with-
out the need for a parser to extract the id from the string while inserting it. The referenced
TutorialTimestamp id referenced in the landscape will still be a valid reference since the
TutorialTimestamp will also be inserted with the same id as the timestamp. This works due
to reusing the already generated ids. Tutorials, sequences and steps are inserted with
newly generated ids since they do not have corresponding counterparts in the Core.

We generate ids by using the id generator, which is provided by the shared repository.
The backend is providing the functionality to load tutorials with all sequences and steps

included in one response. It also allows to load sequences and steps via their ids. However
since the inverse of the relationship between sequences and step, and tutorials and
sequences is not modeled, this would not result in the parent objects to be included. An
extensive list of which endpoints are provided by the tutorial-service and used by the
fronend can be found in Figure 6.2

Object creation does require a complete object which does not have an id set. The object
is then inserted into the database. Ember stores all objects in its Store, therefore when the
object is inserted into the database and an id is generated, Ember needs to assign the new

33

6. Implementation

systems

totalApplicationCommunications

events

Tutorial

-title: string
-landscapeTimestamp:
string

Sequence

-title: string
-landscapeTimestamp:
string

Step

-title: string
-text: string
-targetId: string
-targetType: string
-actionType: string

1

0..*

1

0..*

TutorialLandscape

- landscape: string

TutorialTimestamp

-title: string
-landscapeTimestamp:
string

1

1

LandscapeTimestamp

-timestamp: long
-totalRequests: int

1

1

uses same idsuses same ids

0..*

by landscapeTimestamp

0..*

1

Figure 6.1. Class diagram of tutorial

Request type Endpoint Landscapes Timestamps Tutorials Sequences Steps
POST / n/a n/a used used used
GET /<id> n/a used used used used

DELETE /<id> n/a used used used used
PATCH /<id> n/a n/a used used used

GET / n/a n/a used used used
GET /by-timestamp used n/a n/a n/a n/a

POST /import used used n/a n/a n/a

Figure 6.2. Table of provided and used endpoints by tutorial-service

34

6.2. Tutorial Framework Backend

id to the object in the Store. This is done in such a way that the service will respond to the
insert request with the object, including the id just generated.

A request containing the object which the changes were performed on is send to the
service to save these changes. The object with the corresponding id is loaded the changes
are made to the object and the object is then saved to the database again.

A simple way to request an object is to call the service with a GET-HTTPS-request
containing the id of the desired object. In the tutorial-service the id is included in the URL.
Usually the URL pattern is similar to /v1/<servicename or objecttype>/<id>. The object
with the id is then loaded from database and returned to the frontend.

Another way to request objects from the backend is to filter by a property. The properties
are usually also contained in the URL, however they are included as GET-parameters. From
the properties given in the filter a database request is constructed which will then fetch the
required object, and deliver it to the frontend. We use the filer method to allow requesting
TutorialLandscape by timestamp.

6.2.3 Technical Limitations and Considerations

Landscapes contain events and systems and a list of information about application com-
munications and a reference to a timestamp. The events, systems and communication data
are hierarchical objects that can contain a lot of data. Landscapes are transferred to the
tutorial-service therefore they need to be serialize and deserialized. Since a landscape can
contain a large amount of data we need to be careful in how they are retrieved considering
which information the backend is required to process.

Saving Serialized Landscapes

The landscapes contain a lot of data represented in multiple objects which are referencing
each other. If the landscape is instantiated as an object all hierarchical objects contained
in the landscape would also need to be instantiated. Furthermore the objects inside the
landscape are not changed or rearranged by the backend, and therefore the landscapes can
be handled as a single object. We therefore were decide to store the serialized string in the
database, this allows for all included objects to always be present in the stored string, since
it is not changed.

We are not able to receive a landscape as a request and store it directly into the database.
Jersey expects a serialized object. This means that if the landscape is send to the service
Jersey will try to instantiate the objects transmitted. However since we do not want to
instantiate the objects that are contained inside the landscape, we need to circumvent the
automatic deserialization by Jersey.

The only information necessary for storing and retrieving of the landscapes, that are
contained in the string are the id and the timestamp. This means that the serialized string
can be saved in the database and then retrieved by either requesting it via timestamp or
id. Even if Jersey is circumvented and the raw string could be persisted into the database,

35

6. Implementation

the id and timestamp would still be unavailable without parsing it from the string. We
therefore introduce a class that contains the id and a reference to the timestamp of the
landscape as well as the entire serialized string. This class can be saved into the database
using Morphia, since the object persisted does have and id and timestamp to query for. We
created a corresponding class called TutorialTimestamp. When the TutorialTimestamp is
received the id and timestamp reference are already separated from the string, making a
parsing of this information unnecessary. The landscape does not contain the timestamp but
a reference to an object which contains the timestamp. These classes are also saved into the
database and linked to the TutorialLandscapes.

This allows us to not instantiate all objects in the landscapes and still allows to query
for ids and timestamps in the database. Instantiating those objects would not only require a
lot of memory, it would also require the objects to be persisted into the database as separate
objects. By doing this we would have to ensure that the relationships are preserved. This
would be prone to errors because the deleting of one object that is referenced could cause
the landscape to not load. A separate persisting of the objects would also require to use the
given ids for the objects, it could however occur that two different objects are transmitted
using the same id. This would cause similar problems to the ones explained in Section 6.2.3.
Additionally we do not want to implement new classes for these. We then need to import
a repository which includes a lot of classes. The ExplorViz project has a shared repository
for exactly this purpose. In this case some of the classes were missing from the repository,
which could have been fixed by including them. This would however mean that the Core
needed to be changed. Since at the time it was discussed which classes should be included
in the shared repository, we decide to not use the shared classes. Including all classes that
could be used by other services is generally a good idea, there is however the problem
of including all classes from every service in the Core causing the repository to create a
dependency.

Shared Repository

Integrating classes from the shared repository also poses a problem since the technologies
used in the service are not identical. For example the broadcast-service is not using Morphia, it
instead is creating Mongo DB records without using a datastore. The tutorial-service however
uses Morphia to save objects to the Mongo DB. This means that a datastore factory is used
which creates a datastore for each object. This would include the landscapes, which would
be imported from the shared repository. Morphia then expects the given class to determine
which field is used as the primary key, and creates the datastore which then can be used to
store and load objects of this type. The problem is that if the landscape is imported from
the shared repository only the annotation that specifies the ids for Jersey are present in the
file. This means that Morphia cannot save the object since no key, according to Morphias
annotations is found.

An approach to resolve that is to include the annotation for Morphia into the shared
repository, this however causes problems since in other services Morphia might not be used.

36

6.2. Tutorial Framework Backend

Due to Gradle (see Gradle paragraph in 6.2.1) being used to build the services this would
cause Morphia to be included in every service that uses any of the classes in the shared
repository. The inclusion of Morphia by itself is not desirable because it inflates the size of
the shared repository and version conflicts could be caused if different services use different
versions of Morphia.

Since including Morphia into the shared repository is not feasible, another approach is
considered. We extend the landscape class which is included in the shared library. This
would allow to import Morphia only in the subclass, and therefore in the extension instead
of the shared repository. The id field would be overridden and the annotations would be
placed at the appropriate positions inside the new file. This however does not work since
Morphia does not support inheritance when checking for annotations. Therefore it only
checks for annotations in the subclass, which means it will not find the other fields in the
superclass. This would require us to override all fields present in the landscape, which
would in turn defy the purpose of the class being imported from the shared repository.
This in accordance with the problems regarding Jersey instantiating the object described
earlier leads us to the approach which is implemented. We do not instantiate the class
in the backend, but instead use the data as a string, and only include the data necessary
to retrieve the desired landscapes later. The persisted object, called TutorialLandscape, is
therefore a class that does not extend the landscape class however contains the serialized
landscape as string.

Interservice Communication

We consider which channels can be used to transfer the landscapes. An option would be
for services to communicate with each other.

At the time ExplorViz did not yet utilize Kafka for communication between services,
therefore the implementation of another communication channel would have been required.
Many questions needed to be answered regarding how communication could be imple-
mented. Among others the question of how the backend services would authenticate each
other was not answered.

Since the development of a backend communication framework which later could
be used by all services, is outside of the scope of this work, we decide to take another
approach. A system to authenticate frontend connections to the backend was already exists,
so we decide to use the frontend for this communication.

Identifiers

Using the already generated ids for the TutorialLandscapes causes a problem if the ids are
not unique. At first we assume that this is not be likely to happen. The hypothesis is that
only when a landscape is exported and imported into another instance of ExplorViz an id
collision could occur. This could then however been avoided, by reassigning an new id if

37

6. Implementation

there was a collision. A direct insertion into the database is not possible since the id is the
primary key. Therefore only an import function can cause a collision.

Landscapes are generated in the landscape-service. The landscapes are generated by
adding the systems, applications classes and traces into a landscape object which is stored
in memory. When the collection time elapses the timestamp is created and the landscape is
send to the broadcast-service. This however causes the landscape object not to update its id.
Instead the id stays the same.

This problem is fixed in newer versions of ExplorViz by not only updating the elements
in the landscape but also creating a new id.

6.3 Tutorial Framework Frontend

The ExplorViz frontend provides a login page when the user is not authenticated. After
logging in, as long as no other page was requested by the entered URL, the user is
redirected to the visualization page. There is also a discovery entry in the menu, it is used
for the monitoring setup. As mentioned before the visualization is the main feature of
ExplorViz, and therefore most of the features are centered around the visualization. When
no application is selected a landscape of the observed applications and machines is shown.

In the visualization we have to implement a system that recognizes user inputs and
matches it to the specified action. When the specified action is executed on the target
the step is completed and the next step in the sequence is loaded. When a sequence is
completed, by completing the last step in the sequence, the first step of the next sequence.
When a tutorial is completed the next tutorial will not automatically be loaded, instead
a message is shown that the last step was completed.

Detecting User Input

Since most of the features of ExplorViz are based on the visualization, the referencing of
elements inside the visualization needs to be implemented. The detection of scrolling and
moving inside the visualization does however require a more in depth analysis of how
the movements correlates to camera movements. The detection of simple movements like
zoom in and zoom out could be achieved by implementing a listeners for these events.
However more complex examples, like scrolling to specified part of the application would
be considerably more complex. It would also require a system for referencing specific
parameters for these actions, for example the amount of zoom required or the distance
panned inside the tutorial. There also might be complications if the visualization is already
zoomed in and the required zooming is not possible without zooming out first. Since the
only benefit at the moment for implementing a simple detection would be one tutorial

which tracks if the user moves the camera. This detection would only check if zoom or
panning was executed and not track the amount zoomed. We decide this feature does not
provide enough benefit and therefore we are not including this functionality in this version.

38

6.3. Tutorial Framework Frontend

6.3.1 Models and Connection to Backend

The tutorial model, similar to the backend classes, consists of three hierarchically ordered
objects. The topmost object is also called tutorial. A tutorial is connected to a landscape

which will be loaded if no other landscape is defined. It also contains a hasMany relationship
to sequences, a landscape can be connected to each sequence. If a landscape is referenced
it will be loaded upon starting the sequence. Sequences contain a hasMany relationship to
steps. A step consists of a text for instructions and a target composed of the id and type of
the target and an action (e.g. double click).

Appart from the tutorial, sequences and steps there are two other models defined
for the frontend. These are the TutorialLandscape and TutorialTimestamp, they are the
corresponding models to the classes with the same name in the backend. However the
model of TutorialLandscape does not contain a serialized landscape, instead it contains the
deserialized version of the landscape. This allows ember do manage the TutorialLandscape

as if it is alandscape. The model objects are managed by Ember Data.
Already existing ids, from the corresponding landscape, are used for the TutorialLandscape.

This means that the TutorialLandscape which reference landscapes can be referred to by
the id of the included landscape. We also include a reference to the TutorialTimestamp in
the TutorialLandscape, the id will also be the same as the timestamp. This allows for the
TutorialLandscape to be requested via timestamp.

Adapters

Ember provides adapters for the Ember Data Framework to be compatible with arbitrary APIs.
An adapter can be used to modify the URLs for requests made by Ember Data. This is used
to set the URL to which requests are send to. There are different methods on how to load
data, if the data was requested via the queryAll or findAll command the urlForFindAll or
urlForQueryAll method is used to determine the URL. There are also methods for updates
and creating objects. There are adapters defined for most of the objects in ExplorViz. The
objects which have an explicitly defined adapter can be loaded in Ember and are instantiated
from data provided by the backend. We therefore are providing adapters for the tutorial,
sequence, step, TutorialTimstamp and TutorialLandscape model. Objects without an adapter
would be loaded via the default JSON:API URL. These URLs might not be part of the
reverse-proxy and therefore the service would not be reached and the object cannot loaded.

The adapters are also used to define how the frontend will authenticate with the backend.
The authentication method is configured through the authorize method. In this case the
authentication method sets a Bearer-header which contains the authentication token to
which can be validated by the backend.

Serializer

The only model that does not use the default adapter is the TutorialLandscape. The
TutorialLandscape is special since we include a string which contains the JSON:API string.

39

6. Implementation

This means that the adapter is serializing the objects contained in the landscape.

Serializers are used to serialize and deserialize the data received by Ember Data. This also
enables Ember to be used with a variety of APIs. There are several methods in the serializer
that can be overridden to enable customizing of the API. The normalizeResponse and other
normalize methods are called after the response for a request is received. They are used
to modify the received data to match what Ember Data is expecting. The default serializer
uses the JSON:API specification for well formed data, therefore these methods need to
convert the received data to match this specification. Usually this includes renaming of
properties and class names, to ensure that the properties are names correctly and the
classes are loaded. To achieve this a JSON object is parsed and passed to the method, along
with the Ember Store, the primaryModelClass, the requested id and the requestType. This
allows to make changes the JSON object and load objects to the Ember Store. We however
utilize the serializer to serialize the landscape and embed the serialized landscape into the
TutorialLandscape. Since the JSON object is passed to the function, we can make changes to
the object and then pass it to the normalizeResponse function of Ember Data, and therefore
calling the super function with the modified JSON object.

For data send from the frontend to the backend we are overriding the serialize

method, this method is called for all outgoing data of this model. The serialize functions
parameters are a snapshot of the object to be serialized and an option parameter. The option
parameter can used to include an id in the serialized object or omit it. When the serialize

function is called the passed snapshot is serialized, if the object does not represent the
expected object an error is thrown. No constructor is available for snapshots of an object.
Therefore we cannot change the type of object since the snapshot would not match the
new type and since there is no constructor we cannot create a matching snapshot. We
first serialize the object by calling the super serialize function. This function returns the
JSON object which will then be send in a request. We can however edit this JSON object
before returning it in our overridden function. This would cause the request to include our
changes.

To save a landscape we could call the serialize function and send the result to the
backend, however Ember does not include child objects in these requests. This does make
sense for the normal mode of operation where Ember loads only object or group of the same
type per request. In this case it sends another request for further objects that are referenced
via relationships. This behavior can be changed either by marking the relationship as
synchronous (async:false), which means that the objects which would otherwise be loaded
via the relationship are included in the request. This causes Ember to load all included
objects it does not however cause Ember to save all relationships.

To mitigate this a mixin called ember-data-save-relationships can be used. This mixin
can find and serialize objects which are connected via relationships and include them in a
single request. This is especially useful if objects are supposed to be created and referenced
using a single request. To achieve this the mixin does collect the referenced objects. The
mixin then checks if the object is missing an id, it is therefore not yet inserted into the

40

6.3. Tutorial Framework Frontend

database. It will then create a temporary id, which has to be returned by the backend, and
will then be used by the mixin to insert the returned id into the corresponding object.

This seems like it would be a solution: All objects referenced via relationship are
included in the request which means that we can simply serialize the request and insert it
via the tutoriallandscape into the database as string. The mixin however only serializes the
first layer of these relationships.

This means if we only have a parent and a child model, and the child class is referenced
in a relationship from the parent model, we could serialize the parent which would then
include the child. However in this case there are more than two layers, therefore we would
serialize the landscape, the systems would be referenced, however no elements referenced
by the system would be included.

This means that the mixin does not solve our problem and another solution has
to be found. We therefore write a method that iterates through all relationships and
collects all objects referenced. These objects are then serialized and stored in an array
in the TutorialLandscape JSON object. This method however also poses some difficulties.
When we implement a recursive function which is able to collect all referenced Objects.
This function has to check for two types of relationships, belongsTo and hasMany. This is
necessary since a hasMany-relationship contains many objects and therefore a loop is needed,
a belongsTo-relationship does not need this loop.

There is however a problem with the threeJSModel object contained in the landscape,
it contains a circular reference therefore creating an infinite loop. When removing the
threeJSModel when serializing errors appear when the loaded landscape is visualized. This
defect could not be resolved, therefore persisting landscapes is currently not possible.
Another possibility why this error occurs could be that the system implemented to check
if a type of object is already serialized is preventing some objects to be serialized. If this
system is not in place however the same error occurs. It is also possible that the hierarchical
depth of the landscapes is exhausting the stack space of JavaScript in the browser.

Since we want the TutorialLandscapes to be deserialized with every request we override
the normalizeResponse and serialize methods. We only need to collect the objects when
serializing. When the JSON is loaded back into the Ember Store any referenced and included
objects are loaded by Ember Data. This means that all previously loaded elements will be
included and therefore loaded and correctly referenced by Ember.

6.3.2 Frontend Modularity

As mentioned in Section 2.2 an Ember Application is constructed from routes, components
and templates. To ensure better integration with other Ember Addons we register a main
route called tutorial. All other routes we introduce are subroutes of the tutorial route.
This causes our routes to be longer than necessary, it ensures however that we do not have
collisions with other addons using a similar approach. Otherwise there might be multiple
routes that are registered to the same URLs, for example add or edit. These collisions could
cause that the application might not work as intended.

41

6. Implementation

First we introduce a subroute for each of our defined models, which are supposed to
have subroutes for each action possible on the given type.

This however leads to very unintuitive URLs. The URL for editing a tutorial with the
id tutorial-1 would be /tutorial/tutorial/edit/tutorial-1. The doubling of tutorial

is caused by the main route. The possible actions are edit, create, list and delete. The
list route requires an additional parameter for sequences and steps, to reference which
parent object had to be loaded. This causes an unintuitive URL for lists. To list the
sequences of tutorial-1 either the URL references the type to be loaded, causing it to
be /tutorial/tutorial/list/tutorial-1 or the type to be listed which causes the URL
to be /tutorial/sequence/list/tutorial-1. To avoid this another keyword is considered,
however /tutorial/list/sequences/for/tutorial/tutorial-1 is to long and it suggests
that other possible function could be available instead of for. This could cause confusion.
Additionally the tutorial and sequence have a selectTarget action and the tutorial has the
run action. This means that fifteen routes would have to be implemented. The purpose of
these routes is to utilize Ember Data to load the data for the given ids and to provide the
opportunity to share links as references to specific objects. The editing URL of the previous
example would allow users to directly access and edit tutorial-1. It also allows for links
to be saved as bookmarks. This is however only necessary in some cases.

To reduce the complexity of implementing fifteen routes, we consider which routes
need the ability to be shared between users or used as bookmarks. Providing a link
that specifically created or deletes parts of a tutorial could even be considered a secu-
rity risk. A disguised link could then be used to delete or alter tutorials unwillingly.
Therefore we decide to only implement the edit routes, the run route for the tutorial

and one list route which is modified to show all types in a hierarchical table. All other
routes are unnecessary to provide direct links to. This decision reduces the number of
routes from fifteen to five. This also allowes us to simplify the naming convention of
the routes, since every type only has one route, it is sufficient to reference the type and
id. We can also drop one occurrence of tutorial for the routes regarding the tutorial

type. The new list route does not require an parameter since all tutorials are loaded.
These changes cause the previous example /tutorial/tutorial/edit/tutorial-1 to com-
press into tutorial/tutorial-1. /tutorial/list/sequences/for/tutorial/tutorial-1 was
compressed to /tutorial/list. Having only one route per type means that the loading of
types have to be implemented less frequently. This reduces redundancies and simplifies
the development. This resultes in implementing the following routes:

Ź /tutorial
redirects to /tutorial/list

Ź /tutorial/list
lists all tutorials

Ź /tutorial/<tutorial-id>
editing page for tutorial with id <tutorial-id>

42

6.3. Tutorial Framework Frontend

1 Router.map(function() {

2 this.route("tutorial", function(){

3 this.route("list", { path: ’/list’ });

4 this.route(’tutorial’, { path: ’/:tutorial_id’ });

5 this.route(’sequence’, { path: ’/sequence/:sequence_id’ });

6 this.route(’step’, { path: ’/step/:step_id’ });

7 this.route(’run’, { path: ’/run/:tutorial_id’ });

8 });

9 });

Figure 6.3. Injection of routes into the router of ExplorViz

Ź /tutorial/sequence/<sequence-id>
editing page for sequence with id <sequence-id>

Ź /tutorial/step/<step-id>
editing page for step with id <step-id>

Ź /tutorial/run/<tutorial-id>
executes tutorial with id <tutorial-id>

The code for injecting these routes into the router of ExplorViz can be seen in Figure 6.3.
The editing, creation and selection of targets is now contained in these routes and

implemented via actions that are passing the value as parameter and applying it to the
model. This means the routes are fetching the model, which are retrieved from the backend
or stored in memory via the Ember Store.

With these routes defined the controllers are implemented next. The controllers contain
the logic which is used to control the actions and provide the functions which are called
via interaction with templates. The objects retrieved by the routes are passed to the controller
which will modify the object, managing variables that are determining the state of the
application and executes actions called by the templates. The edit routes need to save
changes made to the model which requires an action.

Controllers are linked with the route that has the same name as them. This means the
/tutorial/run-route will execute the tutorial/run-controller. This ensures that there can
only be one controller per route, and each controller can also only be associated with one
route. It is technically possible to call a controller from another, but this is not done by Ember
per default.

Binding Variables in Templates

Next we tried to avoid duplicate code for our templates. Embedding components into templates
does not only allow to minimize duplicate code, Ember also automatically registers which

43

6. Implementation

components need to be executed and does so. When a component is used in a template,
parameters can be defined. These parameters are bound to the given values. If the value is
a variable, both the variable from the used component and the passed variable are linked.
Values of bound variables are synchronized as long as the Ember getters and setters are
used. If we define a template callerTemplate with the variable foo which is set to bar and a
component sampleComponent with the variable bindMe, we can use the component and bind
the variable by using the following code:

1 {{sampleComponent bindMe=foo}}

This would cause bindMe and foo to bind, therefore bindMe will have the value bar.
This binding is bi-directional, therefore if we change bindMe to affectedFoo via the setter
(this.set(’bindMe’,’affectedFoo’))) the change would propagate to foo in sampleComponent.
This can be used to propagate changes from one component into all other components that
use the bound variable.

We consider using only one component to implement most functions, this causes the
component to contain a lot of actions and therefore code. It also causes the template to be
divided into sections which were displayed when specific conditions apply, e.g. the tutorial
edit page when the tutorial model is loaded. If a tutorial is supposed to be edited the
component would detect which type the model is. To view the corresponding fields, a
variable is used to signal to the template that a tutorial is loaded and therefore the tutorial
form should be shown. When changes are made to the input fields the component reads
these changed properties and compares them to the object, if changes are present the
properties are transferred into the object and persisted. This is however not necessary if
the changes are directly executed into the properties of the model. We therefore create the
forms in such a fashion that they include the model and changes are directly made to the
model.

Therefore changes in the form automatically propagate into the model, which then
only have to be persisted. The different models however require different fields inside the
form. Therefore it is not possible to use the same component for all types. Therefore a form
component is created for every type (tutorial-form, sequence-form and step-form).

Interaction Components

We introduce multiple other components, the landscape-visualization, landscape-interaction and
the timeline component inherit the functionality of the corresponding rendering components
(landscape-rendering and application-rendering) from the ExplorViz-frontend. This enables us
to adjust their templates by overriding them. It also allows to extend the components to
implement additional features. In this extension of the components we are also able to insert
services which are needed to access the data we are trying to visualize.

We are using the interaction to select elements inside the landscape. We extend the
ExplorViz frontend interaction components, which are used for interaction with the landscape-
visualization and application-visualization. The timeline component is extending the timeline

44

6.3. Tutorial Framework Frontend

component and overrides the action that is called when a timestamp is selected, this causes
the timeline to select the clicked timestamp. We are however also calling the super function

which enabled us to execute code which enables us to import the landscape to our tutorial-
service. Calling the super function causes the timeline to still retain the basic functionality,
to select a landscape and request the loading of it, and allows the new code to then import
it into the tutorial-service.

Another component is the landscapelist, this component requests all TutorialTimestamps
that have available TutorialLandscapes in the tutorial-service and provide a list. It dis-
plays the names of the TutorialTimestamps. It also marks the selected TutorialTimestamps

as such. When clicking on an unselected TutorialTimestamps the component selects the
TutorialTimestamps, and inserts the timestamps value into the currently edited model. To
mark a timestamp as selected, we are comparing the timestamp value in the list against the
timestamp value of the selected landscape, if it matches the timestamp in the list is marked
as selected.

Structuring Components

In Figure 6.4 the structure of the frontend components can be found. Bold names define the
part of our application. Services, routes and components each have a different color. Smaller
boxes inside these parts are variables. The big green arrows show bound variables, the
names in the boxes of these arrow show one of the variables names. Dotted lines inside of
a grey box, represent different possible states of the component. These different states do
cause different templates to load. The variable is only bound to one component if the arrow
points to the specific component. It is bound to all components if an arrow touches the outside
of the grey box. The big orange arrow, represents a variable which is only bound in some
constellations. The active step is only bound to the model of step-form if the application is
either in runmode or runmode is triggered by a missing role.

As mentioned before we have to use different forms for the models since the properties
are different, most of the structure around the form however is the same for all forms. We
want to avoid a template that has to rely on variables to determine which kind of model is
loaded. We do however have a route for each type. This means that in the template of these
routes we know which model will be loaded. This allows us to include the corresponding
form. The structure around the form is the same for all models. We therefore introduce a
component called side-form-layout, which provides the surrounding structure. But since
we need to call the right form component for the corresponding model defined by the route,
we define a parameter as seen in Figure 6.5 which contains the name of the form are
including. Inside side-form-layout we now use this name to include the correct component
for our model. This is visualized in Figure 6.4 by dotted lines between the form components,
only one of which will be loaded at once.

This code also shows that we are not only passing the model as model but also as
a runmode variable, which is set to false in this case, since it is the edit routes of the
tutorial. The runmode variable specifies if the tutorial is being edited or executed. We

45

6. Implementation

side-form-layout

landscape-visualization application-visualization tutorial-form sequence-form step-form

route

landscape-service

application

landscapeinteraction

applicationinteraction

nextStep

tutorial-service

se
le

ct
Ta

rg
et

landscapeinteraction
applicationinteractionapplication

model
runmode

open/close
Application selectTarget

activeStep

Figure 6.4. Structure of frontend components

1 {{side-form-layout form="tutorial-form" model=model runmode=false}}

Figure 6.5. Binding of the form parameter to determine form loaded by side-form-layout.

are also able to load the step-form in runmode, by binding another value to the variable,
even though the model referenced is a tutorial, instead steps should be displayed when in
runmode. Therefore we can use the side-form-layout in conjunction with the tutorial-form,
sequence-form and step-form to edit and display the properties of the model.

The component responsible for displaying the landscape is called landscape-visualization.
The component responsible for displaying an application is called application-visualization.
These use interaction components to manage interactions with object which are visualized.

The extended interaction components are named landscape-interaction and application-
interaction respectively. These components are providing the functions that are used when
certain interactions are executed by the the user inside of the visualization.

46

6.3. Tutorial Framework Frontend

Selecting the target for steps is initialized in the step-form, therefore we need to pass the
selected target and the executed action from the interaction to the form. The interaction need
to pass the selected target back to the form. It would be possible to access the interaction
by accessing the landscape-visualization and getting the interaction from the component, this
would however cause the landscape- and application-visualization to be bound to the form.

Services

Ember does provide the means to bind parameters between components, however this means
that for all variables needed in multiple components the parameters would need to be
passed to many components. If a new component would be added which is higher in the
template hierarchy, a common ancestor would have to be found, to pass the variable from
already existing components to the new component. Instead of binding these variables to all
components a service can be used. This allows for variables to be stored in the service and read
from every component which contains the service. Additionally actions can be implemented
inside the service which allows all components to call these functions. It is possible to bind
functions to parameters of components. This however does cause the context in which it is
executed to be different. Therefore if the function uses a service which is not present in
the component the function will not be able to access this service. The tutorial framework
uses two services, one for the functionalities related to tutorials and one service for the
landscapes. The landscape-service is responsible for loading the landscape referenced in the
tutorial (or sequence) and provides the loaded landscape for the visualization components.
It is also responsible for importing landscapes into the tutorial-service. This also includes
loading the landscape when selected from the landscapelist. The import and load functions
are interconnected in such a way that when a tutorial, which is not already imported, is
loaded by the landscape-service the import will automatically occur, in this case the landscape

will be named new landscape.
The tutorial-service is responsible for determining the current step in a running tutorial

and contains functions to determine parent objects. The interactions for application and
landscape are instantiated inside of the landscape-service, this allows us to reference then an
inject them into the visualizations. It is also used to switch the behavior of the interaction
depending on if a target should be selected. It also enables us to set the model variable
which is used to determine which model is updated when a target is selected.

6.3.3 Technical Limitations and Considerations

We assume that a system to persist landscapes already exists, since it seems as if landscapes
could be requested by the frontend. This assumption however is wrong. The landscapes

are only saved by in the landscape-service and requested from the same service that created
the landscape. This is due to the structure of the backend. The data is only broadcast once
which transmits a landscape to the frontend. This landscape contains a timestamp, which
can be send to the landscape-service to retrieve the same landscape. Since (previous to the

47

6. Implementation

implementation of Kafka) the landscape is not send to any service, instead the timestamp

was recorded and used to request the landscape from the backend again. This means there
is no need to serialize the landscape except for the service which is creating the landscape

and therefore is already storing the objects of the landscape in memory.
Usually it is possible to use Embers generate function to generate files which contain a

minimal example. So generating the files will construct files and links the files in the app

folder of the addon to the addon folder. However the Ember generate model function does
not work for addons, instead it will cause the error blueprint not found. It will work for a
standalone app. This means that the files had to be created by hand. Creating those files
per hand is error prone and if the wrong file is referenced by mistake, the addon will still
start. It will however give errors like action not found since another component is imported
instead. Debugging these errors is very time consuming and frustrating, especially if the
other component does have an action with the same name.

48

Chapter 7

Evaluation

The developed tutorial framework was evaluated by an experiment for which a example
tutorial was created. The experiment consisted of participants following the tutorial and
answering a questionnaire with questions regarding the usability of the tutorial.

7.1 Methodology

We are executing a usability experiment, in order to verify that the implemented solution
is usable. We therefore select participants which are following a tutorial and answering a
questionnaire. The questionnaire was used to ensure that the participants answer the same
questions.

7.2 Experiment

As mentioned before the experiment is executed to verify usability,we now further explain
the setup, execution and how the results are obtained. We also discus what can be deducted
from the results and list threats to validity of our results.

7.2.1 Experiment Setup

An example tutorial was created to give an overview of the visualization of ExplorViz. It was
also designed to use multiple sequences and both visualizations, to ensure that all features
of the tutorial framework is being used. The tutorial was separated into three sequences.
The first sequence was dedicated to introducing ExplorViz and the visualization. The second
sequence was dedicated to the landscape-visualization and the third sequence is dedicated to
the application perspective.

The provided landscape and therefore applications are the same for all participants. It is
a landscape containing a sampleApplication1. Since this application is only providing one
application, there are no connections between machines in the landscape perspective. This
can be seen in Figure 7.1. The landscape was created by executing the sampleApplication

and retrieving the landscape generated by ExplorViz.

1https://github.com/czirkelbach/kiekerSampleApplication

49

7. Evaluation

Figure 7.1. The landscape provided for the example tutorial.

The application included in this landscape contains some Java packages. The main part
of the application is situated inside the net.explorviz.sampleApplication package. The
main class in this package however is only called once and therefore has a low height. This
causes the class to not be visible when the package is opened without moving the camera
from default position. The application with opened packages can be seen in Figure 7.2.

The introduction only contains one step which explains how the navigation bar is used,
and explains the camera controls. This step does not have a selected target which causes a
next-button to be displayed. This was done so that the user does not accidentally click on
the target when starting the tutorial.

The second sequence introduces the landscape-visualization, at first landscapes, machines
and applications are explained. A click on the machine lab-6 is used to verify that the user
did understand which elements represent machines. This was done even though a single
click on a machine does not have an action associated in the visualization. We therfore
veryfied that actions that do not yield a result in the visualization could still be used for
instructing the user. Then the maximizing and minimizing of systems is introduced.

The third sequence then introduces the application perspective. The packages and how
to open and close them is explained. The user is then prompted to find a package which is
not visible without opening other packages. The java package name is provided, so the

50

7.2. Experiment

Figure 7.2. The application perspective of provided landscape for the example tutorial.

user can assume that the sampleApplication package in net.explorviz.sampleApplication

can be found by opening subsequently opening the net and ExplorViz packages. Then
selection of classes is introduced. The class that is supposed to be selected is only visible if
the camera is moved, this ensures that the user is required to move the camera and verifies
the the user remembered the camera controls from an earlier step. Next the class should
then be deselected. The last step that requires an action from the user, does explain that
packages do determine their height by the contained classes. It also explains that the classes
are higher if they are called more often. The instruction is to find the larges class inside of
the sampleApplication package. The instruction requires the user to recognize that another
package has to be opened and then the class can be selected. This was therefore ’mixed
practice’ as introduced by [Chamey and Reder 1986].

51

7. Evaluation

7.2.2 Questionnaire

The questionnaire consists of three parts, the first part asked for general information from
the participants. The second part was centered around the execution of the example tutorial.
The final and third part contains questions about the tutorial editor.

General Information Questions

The general information part covers the following questions:

Ź Name
The name only served administrative purposes.

Ź Whats your gender?
Possible answers where female, male and other.

Ź How old are you?
The age in accordance with the other personal data is used to categorize the participant
group.

Ź Are you currently a student at the ’Christian-Albrechts-Universität zu Kiel’?
This data is used to establish if the participants where students.

Ź Are you currently studying ’Informatik’ at the ’Christian-Albrechts-Universität zu
Kiel’?
This question is used to establish if the participants might have an interest in ExplorViz.

Ź If the previous answer was yes in what semester are you currently studying?
This question has the options master and bachelor and is asking for the semester.

Ź Do you have experience with ExplorViz in general?
This question has five possible answers: not experienced, somewhat experienced, very
experienced, i’m an expert.

Ź Do you have experience with the ExplorViz frontend / UI?
This question has the same five possible answers as the previous question.

Ź Are you currently developing ExplorViz or software related to ExplorViz?
This question is used to distinguish if the participant are familiar with the backend, and
therefore might draw non obvious conclusions during the tutorial.

Tutorial Execution Questions

The next part is the tutorial execution part the questions in this part were the following:

Ź Did the tutorial execute properly?
This question distinguishes if he tutorial execution did have any technical problems.

52

7.2. Experiment

Ź How intuitive was the tutorial UI ?
This question had five possible answers: very unintuitive, somewhat intuitive, average
intuitive, very intuitive, it was perfect.

Ź Did the tutorial teach you (or would it have taught you, if not already known) the
basic controls of ExplorViz?
This questions purpose was to determine if the participant felt like anything was missing
from the tutorial.

Ź Was the goal of the tutorial unclear at any point?
We want to determine if the participant was able to understand the instructions presented
by the tutorial.

Ź Would you have preferred any additional feedback, apart from showing the next
instruction?
This question allowed the user to provide information about which feedback, visual or
otherwise, might improve the experience.

Ź Do you have any other suggestions?
The participant were able to suggest changes, to determine how the tutorial execution
might be improved.

Tutorial Editor Instructions

The instructions for tasks to be executed in the editor:

Ź Create a new tutorial, name it and select a live landscape.
This task tests the intuitiveness of the editor in regards to creation and editing of
tutorials.

Ź Create at least 1 sequence with at least 2 steps.
This task ensures that the tutorial can proceed from the first to the second step in
execution mode.

Ź Select targets for the steps.
This enables the participant to execute the tutorial, without using the next button only.

Ź Execute the tutorial.
This enables the participants to see the created tutorial in the same mode the tutorial
was executed, possible errors in the execution of earlier tasks would be visible here.

Tutorial Editor Questions

The last part is the tutorial editor part and the question are the following:

53

7. Evaluation

OS Windows 10 (64 Bit)
CPU Intel Core i5 6500 @ 3.20GHz
GPU 2047MB NVIDIA GeForce GTX 950
RAM 16,0GB @ 1063MHz

Monitor 24" @ 1920x1200 pixels

Figure 7.3. Specifications of machine used for example tutorial

Ź Were you able to execute the tasks in the editor?
We want to determine if the participants found all function they needed to execute the
tasks.

Ź How intuitive was the tutorial editor UI ?
This question has five possible answers: very unintuitive, somewhat intuitive, average
intuitive, very intuitive, it was perfect.

Ź Would you have preferred any additional feedback from the editor UI?
This question allows the user to provide information about which feedback, visual or
otherwise, might improve the experience.

Ź Do you have any other suggestions?
The participant are able to suggest changes, to determine how the tutorial editor might
be improved.

7.2.3 Execution of the Experiment

The Experiment was executed with 8 participants over two days in the rooms of the ’Soft-
ware Engineering Group’ on a development computer, specifications as seen in Figure 7.3.
The participants where selected either because they where working at the ’Software Engi-
neering Group’ as student assistants and therefore where likely to be students. Since this
did not result in enough participants some ’Informatik’ and a former ’Informatik’ student
where invited to participate. The goal was to get participants with a mixture of experience
with ExplorViz, but having good familiarity which software.

After arrival of a participant the general information questions where answered in a text
file on the same computer and monitor as the tutorial was executed. After answering the
general information questions the tutorial was executed without further instructions. The
participant was supervised, to prevent the tutorial to be accidentally deleted or modified.
Questions regarding the execution of the tutorial were not answered instead it was referred
to the text in the tutorial.

When the last step was completed by the participant, they where instructed to answer
the tutorial execution part of the questionnaire. The first participant made remarks that the
tutorial was intuitive but mistakenly marked the very unintuitive-option, we recognized
that this option might be understood as very intuitive. This caused us to notify every

54

7.3. Results

Student at CAU ’Informatik’ student ExplorViz developer
yes 87.5% 87.5% 37.5%
no 12.5% 12.5% 62.5%

Figure 7.4. Participant educational background and connection to ExplorViz

participant that the first option was the not the very intuitive-option. This was possible
since it was noticed when the first participant was answering, and therefore all participants
received the notice.

After answering the tutorial part of the questionnaire the participants where asked
to perform the actions noted in the tutorial editor part. The instructions for the tutorial
editor where designed to test how intuitive the controls are. Therefore simple tasks where
chosen and initially no further instructions where given, the only additional information
the participants were given was how to select the landscape on the timeline and to save the
tutorial after selecting the landscape. They did not receive instruction on how to achieve
the requested tasks we therefore used ’Pure Problem Solving Practice’ as introduced by
[Chamey and Reder 1986]. Upon completion of the tasks the participant was asked to
answer the remaining tutorial editor part in the questionnaire.

7.3 Results

The information gathered in the general information part enables us to categorize our
participants, we were aiming for a group that might have an interest in using ExplorViz
and therefore might be likely to use the tutorial. We also tried to have some variation
in experience with ExplorViz to ensure that the tutorial will be useful for beginners and
experienced users. 37.5% of participants rated their experience with ExplorViz as very

experienced or higher, as can be seen in Figure 7.5. Therefore 62.5% of the participants are
not familiar with ExplorViz. Experience with the ExplorViz UI was even less with 50% not
having any experience with it.

37.5% of the participants where currently developing ExplorViz or software related to
it. Of the currently studying participants 42.86% were master’s students, the rest were
bachelor’s students. The average age of participants was 26.29 years. We did not receive an
age of one participant and the current semester was not submitted by two participants, one
of these was not currently studying.

It was recognized that the question for the current semester was phrased in such a
way that the answers varied. Some master students where answering with the semesters
they where studying including their bachelor’s degree and some answered excluding
it. Therefore the absolute value cannot be used, however it is still possible to divide the
participants into groups of master and bachelor students. There were 50% were master
students and 37.5% were bachelor students.

In some cases the transition to the application perspective did not trigger the next step,

55

7. Evaluation

Figure 7.5. Experience of participants in ExplorViz and ExplorViz UI

the participant was then instructed to restart the tutorial. This was the case with 37.5% of
the participants as seen in Figure 7.7. Even though the tutorial got stuck in these cases,
after restarting the tutorial it was then completed by the participants. This was the only
error preventing the execution of the tutorial. Despite of this error the tutorial was mostly
rated as intuitive, as can be seen in Figure 7.6.

The participants did answer the question if they would have preferred more feedback
from the tutorial and editor. In the case that they would have preferred more feedback
they wrote down what exactly they wanted.

Regarding the tutorial most (75% of the participants) would not prefer more feedback.
25% of the participants would have preferred some feedback, they suggested that they
might miss when the instruction text changes and would prefer a more visual feedback
when the correct task was executed.

All the participants currently developing software related to ExplorViz found the
tutorial at least very intuitive. The tasks in the tutorial were clear to most of the
participants, however 25% of them did have problems with the last task.

The editor was perceived as less intuitive than the tutorial as seen in Figure 7.6,
however both were rates as at least somewhat intuitive. The participants were requesting
more feedback for the editor, 75% of the participants wanted more feedback.

All participants where able to perform the tasks in the editor and 87.5% of them felt
like they learned the basic skills needed to use ExplorViz as also shown in Figure 7.7.

56

7.4. Discussion

0.00%

20.00%

40.00%

60.00%

80.00%

it was perfect very intuitive average intuitive somewhat
intuitive

not intuitive

tutorial editor

Figure 7.6. Feedback to Editor and Tutorial UI

7.4 Discussion

There were also some remarks about the visualization in general, the class size was criticized.
Even though it is possible to change the visualization only for the tutorial framework,
this would introduce a difference between the default visualization and tutorial. A better
solution to solve a problem like that would be to allow customization for the visualizations.

The last step was phrased without a specific instruction, since the goal was to teach the
participants that packages can convey information about the classes inside of them even
when closed. Therefore it was expected that the last step might not be clear to everyone.
The clarity of the step might have also been misjudged since the last step was the only
step that required thought and did not provide a direct instruction on what to do. This
might have caught the participants by surprise. They where not told in advance what was
expected, instead the instruction was only to run the tutorial.

If it would have been mentioned in the introduction that the task might not always
be clear and some combination of knowledge might be require, it might have caused the
participants to consider even the last task as clear. The task did specify what the participant
had to achieve it was however not stated which steps were required to achieve the task.

Regarding the editor the most requested additional feedback was to show the selected
target in the step editor. This would not only make it easier for experienced users to identify

57

7. Evaluation

the target selected, it would also make the editor more intuitive which allows new users to
learn creating tutorials faster. It is possible that this request was made so often since there
was note shown which said ’no target selected’ if no target was selected. This might have
caused the participants to assume that the information about the target would be shown in
the same spot. The expectation in combination with the unexpected disappearing of the
information might have caused additional feedback. Especially in the last steps before the
part of the questionnaire regarding the tutorial editor might have caused more participants
to make that remark.

Another request was to automatically open the hierarchy in the list, when adding a
step or sequence. This was probably due to the confusion caused by the buttons, which are
used to expand the view for sequences and steps, being shown even when no objects were
contained. This confusion has probably also an impact on the perceived intuitiveness of
the editor.

We also received the feedback that the possibility to navigate back to already completed
steps would be helpful. A participant executed a step before completely reading the
instruction. This could cause information to be missed.

It was also requested to add a button to to directly add a step or sequence from the
list without opening the menu. This remark only occurred once and even though it would
make the interface contain more buttons and therefore make it more confusing, there could
be a problem if a user creates multiple tutorials. This user would have to click twice for
each object created, this could get tiring when creating a large amount of tutorials. This
could be resolved by adding a customization option for these extra buttons.

It was observed that the participants tried to add an element by clicking on the plus
sign which are used to expand the hierarchy. This could be prevented by either hiding the
button if there are no sub elements, or changing the symbol from a plus to an arrow.

The higher percentage of requests and suggestions for the editor, are indicative of the
editor being less refined than the tutorial. We however also determined several factors
which might have negative influence on the perception of the editor. As mentioned before
the timing of some problems discovered might have had an influence on the requested
improvements. Additionally the tutorial editor does also have more features therefore it
might have been easier for the participants to decide on a feature they wanted to improve.

The instruction on how to select a landscape was given since the tutorial backend was
not serializing the landscapes and therefore the list of available landscapes where empty,
which does make the process convoluted. Another reason was that a bug was discovered
and later fixed that caused the editor to get stuck when the timeline was clicked next to a
dot representing a landscape.

7.5 Threats to Validity

The evaluation for the editor did contain less instructions than the tutorial itself, it is
therefore possible that this had an effect on how intuitive the editor was perceived.

58

7.5. Threats to Validity

62.50%

75.00%

87.50%

25.00%

25.00%

100.00%

37.50%

25.00%

12.50%

75.00%

75.00%

0.00%

Tutorial executed
properly

Additional feedback
missing (Editor)

Basic skills taught

Any task unclear

Additional feedback
missing (Tutorial)

Tasks could be
completed

0% 25% 50% 75% 100%

Yes No

Answers to Usability Questions

Figure 7.7. Answers to Usability Questions

The tutorial was designed to be an instruction to the basics of ExplorViz, more advanced
tutorials might yield other results, since the users would be more experienced. The tools
provided in the editor might not be suited for more complex tutorials. Since the tutorial

framework is designed to be extended the main purpose for the framework would be to
introduce the basic functionality. Therefore the questions asked and features introduced
are representative of an actual tutorial.

The used landscape was very limited, both on regards of machines and systems in the
landscape perspective as well as in regards to packages and classes. This might have an
effect on the simplicity of the tutorial. We however did not evaluate the effectiveness of
the tutorial itself, but instead the usability of the framework. We therefore recommend
more research on how effective constructed tutorials can be .

The participants did not have a reason to learn how to use ExplorViz. The participants
that were not familiar with ExplorViz, which were 37.5% of the participants, might not have
any other reason than the evaluation to do the tutorial. Therefore they might not have
been invested into learning the information presented. Tutorials should however also be
useful if the user is less interested, and since 87.5% of the participants felt educated about
the basic skills, and all where able to complete the tasks in the editor it can be assumed
that the motivation through the participation in the evaluation was representative of users
interested in ExplorViz.

59

7. Evaluation

Having 8 participants does qualify for a small project [Nielsen and Landauer 1993]
since we are however evaluating the usability and further development will be needed for
the tutorials, we determined that the number of participants is sufficient.

The instructions did not require the participants to create sensible steps for the tutorial,
we therefore evaluated if the editor is sensible, not if it is optimized for professional use.
More research is required to determine if the editor would be feasible for a large amount
of tutorial or in a professional setting.

60

Chapter 8

Related Work

In this chapter we presents related work and explains the differences between them and
this thesis. We are working with ExplorViz which was recently modernized redefining its
structure, which was discussed by [Zirkelbach et al. 2018]. They also mention ExplorViz
Legacy, which is no longer supported for the development of extensions, differences in struc-
ture are highlighted. This information is valuable, especially when trying to understand
the principles relevant for development on ExplorViz and therefore also for development
on extensions of ExplorViz. A general overview of strategies used in the development of
ExplorViz and other currently developed software can be found in [Hasselbring 2018].

[Eichhorst 2017] did research the usability of the visualizations, this was however
focused around understanding the software which was visualized, not the usability of
ExplorViz. The insights can however be useful when developing new tutorials. Features
required to achieve this also need to be considered when developing a tutorial framework.

[Krause et al. 2018] present the Application Discovery of ExplorViz, since this is an essential
part of the application, it is also essential to be presented to potential users. Especially since
the setup process of ExplorViz has to be done before it can be used. Also inexperienced
users are more likely to use the feature without prior knowledge of the application. We
therefore need to consider the information provided by [Krause et al. 2018].

Legacy Tutorial

In ExplorViz Legacy a tutorial system did already exist. It was however not suitable to be
converted into the new structure. As [Finke 2014] mentions a modular system is preferred
when developing extensions for a software which is in active development. The goal of
[Finke 2014] however was to provide a tutorial mainly used in experiments. These functions
where considered when designing the tutorial framework. Not implementing the specific
functionality developed by [Finke 2014] allowed us to provide a more extensible framework.
Time measuring might be useful for experiments it would however provide unnecessary
workload for a tutorial outside of experiments.

Converting an extension to the new structure was done by [Häsemeyer 2017], some
parts of the virtual reality implementation could be converted. We also considered this,
however the technologies used to implement the old tutorial mode where not used in the
new frontend. This was different for the virtual reality extension.

In the area of tracking user actions the work [Kosche 2013] does provide some insight.

61

8. Related Work

Logging user actions could be used to track if an action was performed, however this
would need and integration of the logging software. The frontend would need to process
the logs, this would eliminate the independence of logging and user actions, and therefore
not processing user action and instead only comparing the action to the expected value
was chosen.

62

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this chapter we are drawing conclusions about our work and if the goals we defined
where reached, we also discuss possible future work.

9.1.1 Goals

Our first goal G1 as mentioned in Section 1.2.1 was a Literature research and tool overview.
An overview over tools used in ExplorViz can be found in Chapter 2. An overview over
literature regarding ExplorViz can be found in Chapter 8. Most notable here are the
references to the infrastructure papers about ExplorViz, which are elaborating upon the
changes in structure of ExplorViz.

The second goal G2 which we specified in Section 1.2.2 was to determine the needed
features and develop a data structure which can support those features. The most prevalent
feature of the tutorial is the detection of executed actions. For the detection a target needs
to be determined and saved inside the structure. To avoid problems with types a string
based solution was chosen. The target is a combination of and id, a type and the action
to be performed. These three values, each stored as a string, can than be used to identify
the target. Listeners for the expected action can then be used, upon detection the next
instruction is shown. Instructions and the targeting values are stored in a structure we call
a step. Multiple steps can be combined in a sequence. Since the tutorials are referencing
objects in the landscapes, a landscape needs to be referenced. This is achieved by storing
the timestamp, identifying the landscape, in the tutorial. Since a tutorial might contain
steps referencing different landscapes, we decided to include the same kind of references
in the sequence structure. This allows for a more diverse construction of tutorials without
the need to create multiple tutorials for the same topic to change the landscape.

The next goal G3 which is outlined in Section 1.2.3, was to develop a tutorial extension
which includes the features determined in the earlier goals. This goal mentioned that
tutorials will be able to exported and imported from and into the database. Even though
tutorials can technically be exported from the Mongo DB, no feature was implemented
to allow this from the frontend. This was decided with respect to the difficulties which
prevented us from implementing the saving of landscapes. Not being able to persist the
landscapes in combination with the tutorials would not allow for the landscape to be

63

9. Conclusions and Future Work

exported along with the tutorial. This would also cause all references to targets to be valid
only if the landscape could be obtained in another way. Even though this feature was not
implemented, the other parts of this goal where met. Two extensions where created which
are using the service and addon structure of ExplorViz. The frontend is providing the user
interface which is detecting the actions of the user and triggering the next step when the
action was performed.

The next goal G4 which is defined in Section 1.2.4 was reached by implementing the
tutorial editor. When the tutorial editor is used by a user without the admin role, editing
the tutorial is not possible instead it can only be started. Since the role system is currently
very limited even in the development version of ExplorViz, we could not implement a more
sophisticated integration with roles. This was also due to no relation existing between users
and tutorials, which could be implemented into another service.

The goal G5 mentioned in Section 1.2.5 was achieved as described in Chapter 7, the
usability of the tutorial framework including the tutorial execution and editor was evaluated.
The usability was tested by a usability experiment, where an example T was executed and a
questionnaire regarding the steps executed was answered by the participants. The answers
and additional feedback was collected via the questionnaire and later analyzed. Most of
the participants rated the tutorial execution as ’very intuitive’.

9.1.2 Extensibility

Enabling other developers to extend the software is similarly important to the implemented
features, we therefore provide a framework does fit into the general structure of ExplorViz
and does not require the inclusion of technologies which are not already used in ExplorViz.

A tutorial framework inherently is connected to all of the features of an application.
This is caused by the framework being able introduce all features. Providing an extensible
framework therefore requires to consider the features of the tutorial framework separately
from the features of its application. This allows to notice necessary features. For these
features possible extensions have to be considered. Only a distinction can be made for how
extensible a framework is. We then concentrated on developing a tutorial execution for
the main feature of ExplorViz. Still considering how other tutorials would be implemented.
This resulted in a framework that provides a solid foundation for providing many different
customized and extended versions, which are all using the base functionality of the
framework. Therefore we took essential steps in developing a rich tutorial environment for
ExplorViz. This further enriches the extensions which already exist, are currently developed
or will be developed in the future. For most extensions the implemented tutorial editor can
be used, this allows for a central and uniform interface to manage tutorials for ExplorViz.

Even more complex extensions could profit from the tutorial execution and editor, since
extending the backend and frontend does not render the extended framework incompatible
to the basic framework. Therefore tutorials designed for the visualization could still be
used even using an extended framework. The framework also supports the development
version of ExplorViz which implies that it does not have to be reimplemented when

64

9.2. Future Work

ExplorViz evolves. Instead it can be adjusted and improve by taking advantage of the newest
improvements to ExplorViz.

Our evaluation determined the framework to be useful in executing and creating
tutorials, which provides the basis for more tutorials being created by and for users of
ExplorViz. New tutorials being created will create incentive for developers to support the
framework with their extension. This in turn will enable users to learn what new extensions
have to offer.

Even though the tutorial framework provides a solid foundation there are some aspects
that could be improved upon, these are discussed in the next.

9.2 Future Work

Future improvements to the tutorial service are described in this chapter. These include
visual improvements on features as well as structural improvements that could improve
and extend the tutorial framework.

9.2.1 Improving the Data Structure

Improve JSON:API between Backend and Frontend

An improvement to the framework would be to improve the encapsulation of the interface
between the frontend and backend. We are serializing the landscape in the frontend and
sending the serialized string to the backend. This introduces a dependency since every
backend would need to extract the objects from the string. A better variation would be to
send a valid JSON:API object which could then be interpreted as by every service without
further logic. This would also remove the need for the complicated serializing function
since all elements could be loaded and saved via the interface and automatic serialization
of Ember Data could be used. It might also be possible to achieve this by utilizing Kafka.

Referencing Landscapes by Id

Another aspect that could be improved upon is that the tutorials are referencing the
landscape by timestamp instead of by id. Changing this would enable the frontend to
directly reference the TutorialLandscape. This would however require some effort since the
frontend also references landscapes by timestamp and not via id. Changing the references
to id in the frontend would not eliminate the need for timestamps, however it would be
easier to detect duplicate entries.

By referencing the landscape via timestamp, multiple timestamp entries with different
ids and the same value can exist in a database. This causes all of the entries to be retrieved
when the timestamp is used for the request to load landscape. Using ids as reference would
eliminate this possibility. It would still be possible to insert multiple timestamps with

65

9. Conclusions and Future Work

the same timestamp value, however due to different ids only one could be referenced by
landscapes.

Inverse References for Sequence and Tutorial

Another improvement could be done by including inverse references in sequences and
steps, this would allow the frontend to load the parent object on demand. This could retire
a function of the tutorial-service which determines the parent object via searching. This will
improve the performance and would significantly reduce the amount of tutorial objects
that are loaded when executing a tutorial.

9.2.2 Navigation in Steps

A feature that would be desirable and was also mentioned in the feedback of the evaluation
was the ability to navigate in the steps after they are completed. This gives the user the
ability to revise information already consumed. The feature could be implemented by
showing a button that causes the previous steps to be selected. This would already be
possible, however after reverting to the previous step the action would have to be executed
again. Since this might cause confusion a better implementation would be to track the steps
already executed by the user and allow skipping of already executed steps. This could be
implemented in correlation with the tracking of user progress in a tutorial.

9.2.3 Referencing Other Elements

Another possible extension of the framework would be to select elements which are not part
of the visualization. This would allow for the tutorial to reference buttons that affect the
visualization without being part of it. This effect could be achieved by adding a new type to
the target parameter. Additionally the id could be replaced by the id of a another element,
e.g. DOM object. This could cause the frontend to instead of passing the parameters to the
visualization, select the given id and register a JavaScript listener for the given action. The
listener would then trigger the next step to be activated. This would also allow for the id to
contain a CSS selector for the selection of multiple elements. This would cause the next
step to be triggered if any of the selected elements would be executed. This feature would
immensely expand the capabilities of the framework to identify targets, and therefore better
tutorial could be written. It is important to consider what would happen if another entry
in the navigation was targeted, since the tutorial might not be able to continue when the
transition to the new page is completed.

9.2.4 Linking Elements

The linking of elements in the text of a step would allow editors of tutorials to reference
elements visible to the user. This could be done by highlighting the element when the

66

9.2. Future Work

reference in the text is hovered or clicked. One possible variant of visualization would
be a simple coloring of the element. This could be done by calling a function for the
visualization, passing an id and type to the visualization. The visualization could then find
the element based on the passed information and edit the element in such a way the it
is highlighted. There are however aspects that need to be considered e.g. zoom , camera
position and unopened classes.

Outside of the visualization elements could be referenced. This would enable to add a
highlighting CSS-class to the element, and therefore highlighting it. If the element would
not be visible it could also be made visible via JavaScript. It has to be considered what
happens if the element does not exist in the current perspective, this would cause no
element to be highlighted, messages could be shown if the selected element is not available
in the current perspective.

67

Bibliography

[Chamey and Reder 1986] D. Chamey and L. Reder. Designing interactive tutorials for
computer users. Human-Computer Interaction 2 (1986), pages 287–317. (Cited on pages 51,
55)

[Charney et al. 1988] D. H. Charney, L. M. Reder, and G. W. Wells. “Studies of elaboration
in instructional texts”. In: Effective documentation: What we have learned from research.
Volume 1. The MIT Press, 1988, pages 47–72. (Cited on page 12)

[Eichhorst 2017] F. Eichhorst. Analyse der microservices eines digitalen marktplatzes mittels
explorviz. Master thesis. Kiel University, Oct. 2017. url: http://eprints.uni-kiel.de/39982/.
(Cited on page 61)

[Finke 2014] S. Finke. Automatische anleitung einer versuchsperson während eines
kontrollierten experiments in explorviz. Masterarbeit. Kiel University, Sept. 2014. url:
http://eprints.uni-kiel.de/25632. (Cited on pages 26, 61)

[Häsemeyer 2017] T. Häsemeyer. Kollaboratives erkunden von software mithilfe virtueller
realität in explorviz. Bachelor thesis. Kiel University, Sept. 2017. url: http://eprints.uni-
kiel.de/39670/. (Cited on page 61)

[Hasselbring 2018] W. Hasselbring. “Software architecture: past, present, future”. In: The
Essence of Software Engineering. Edited by V. Gruhn and R. Striemer. Cham: Springer
International Publishing, June 2018, pages 169–184. url: http://eprints.uni-kiel.de/43455/.
(Cited on page 61)

[Kosche 2013] M. Kosche. Tracking user actions for the web-based front end of explorviz.
PhD thesis. Kiel University, 2013. (Cited on page 61)

[Krause et al. 2018] A. Krause, C. Zirkelbach, and W. Hasselbring. Simplifying software
system monitoring through application discovery with explorviz. In: Symposium on Soft-
ware Performance 2018: Joint Developer and Community Meeting of Descartes/Kieker/Palladio.
Nov. 2018. url: http://eprints.uni-kiel.de/44502. (Cited on pages 1, 61)

[Nielsen and Landauer 1993] J. Nielsen and T. K. Landauer. A mathematical model of the
finding of usability problems. In: Proceedings of the INTERACT ’93 and CHI ’93 Conference
on Human Factors in Computing Systems. CHI ’93. Amsterdam, The Netherlands: ACM,
1993, pages 206–213. url: http://doi.acm.org/10.1145/169059.169166. (Cited on page 60)

[Shneiderman 2003] B. Shneiderman. “The eyes have it: a task by data type taxonomy
for information visualizations”. In: The craft of information visualization. Elsevier, 2003,
pages 364–371. (Cited on page 18)

69

http://eprints.uni-kiel.de/39982/
http://eprints.uni-kiel.de/25632
http://eprints.uni-kiel.de/39670/
http://eprints.uni-kiel.de/39670/
http://eprints.uni-kiel.de/43455/
http://eprints.uni-kiel.de/44502
http://doi.acm.org/10.1145/169059.169166

Bibliography

[Van der Meij 2008] H. van der Meij. Designing for user cognition and affect in software
instructions. Learning and Instruction 18.1 (2008), pages 18–29. url: http://www.sciencedirect.
com/science/article/pii/S0959475206000776. (Cited on page 13)

[Zirkelbach et al. 2015] C. Zirkelbach, W. Hasselbring, and L. Carr. Combining kieker with
gephi for performance analysis and interactive trace visualization. In: Symposium on
Software Performance 2015: Joint Developer and Community Meeting of Descartes/Kieker/Palla-
dio. Volume 35. 3. Softwaretechnik-Trends, 2015, pages 26–28. url: http://eprints.uni-

kiel.de/30101/. (Cited on page 1)

[Zirkelbach et al. 2018] C. Zirkelbach, A. Krause, and W. Hasselbring. On the modern-
ization of explorviz towards a microservice architecture. In: Combined Proceedings of
the Workshops of the German Software Engineering Conference 2018. Volume Online Pro-
ceedings for Scientific Conferences and Workshops. Ulm, Germany: CEUR Workshop
Proceedings, Feb. 2018. url: http://eprints.uni-kiel.de/42119/. (Cited on pages 19, 61)

[Zirkelbach et al. 2019a] C. Zirkelbach, A. Krause, and W. Hasselbring. Hands-on: experienc-
ing software architecture in virtual reality. Research Report. Kiel University, Jan. 2019. url:
http://eprints.uni-kiel.de/45728/. (Cited on page 1)

[Zirkelbach et al. 2019b] C. Zirkelbach, A. Krause, and W. Hasselbring. Modularization of
research software for collaborative open source development. In: The Ninth International
Conference on Advanced Collaborative Networks, Systems and Applications (COLLA 2019).
June 2019. url: http://eprints.uni-kiel.de/46777/. (Cited on pages 20, 21, 24)

70

http://www.sciencedirect.com/science/article/pii/S0959475206000776
http://www.sciencedirect.com/science/article/pii/S0959475206000776
http://eprints.uni-kiel.de/30101/
http://eprints.uni-kiel.de/30101/
http://eprints.uni-kiel.de/42119/
http://eprints.uni-kiel.de/45728/
http://eprints.uni-kiel.de/46777/

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 G1: Literature / Tool Research
	1.2.2 G2: Develop a Data Model for Tutorials
	1.2.3 G3: Implement a Modular Tutorial Extension
	1.2.4 G4: Implement a Tutorial-Management-Tool / Editor
	1.2.5 G5: Evaluation

	1.3 Document Structure

	2 Foundations and Technology
	2.1 JavaScript and JQuery
	2.2 Ember
	2.2.1 Ember Data
	2.2.2 Ember Templates
	2.2.3 Ember Addons

	2.3 Java
	2.4 Mongo DB
	2.5 Morphia
	2.6 JSON
	2.7 JSON:API

	3 Tutorials
	3.1 Features
	3.2 Minimal Featureset
	3.2.1 Detecting User Input
	3.2.2 Tutorial Editor

	4 ExplorViz and Structure
	4.1 Extensions for ExplorViz
	4.2 Structure and Services
	4.3 JSON:API

	5 Design Approach
	5.1 Approach Overview
	5.2 Tutorial Framework Backend
	5.2.1 Connecting Services and Deployment
	5.2.2 Service Structure and Persistence

	5.3 Tutorial Framework Frontend
	5.3.1 Frontend Modularity
	5.3.2 Models and Connection to Backend
	5.3.3 User Interactions

	6 Implementation
	6.1 Implementation Overview
	6.2 Tutorial Framework Backend
	6.2.1 Connecting Services and Deployment
	Docker and Reverse Proxy
	Avoiding the 'next free port' collision

	6.2.2 Service Structure and Persistence
	6.2.3 Technical Limitations and Considerations
	Shared Repository

	6.3 Tutorial Framework Frontend
	6.3.1 Models and Connection to Backend
	6.3.2 Frontend Modularity
	6.3.3 Technical Limitations and Considerations

	7 Evaluation
	7.1 Methodology
	7.2 Experiment
	7.2.1 Experiment Setup
	7.2.2 Questionnaire
	7.2.3 Execution of the Experiment

	7.3 Results
	7.4 Discussion
	7.5 Threats to Validity

	8 Related Work
	9 Conclusions and Future Work
	9.1 Conclusions
	9.1.1 Goals
	9.1.2 Extensibility

	9.2 Future Work
	9.2.1 Improving the Data Structure
	9.2.2 Navigation in Steps
	9.2.3 Referencing Other Elements
	9.2.4 Linking Elements

	Bibliography

