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Loss of fixed nitrogen causes net oxygen gain
in a warmer future ocean
Andreas Oschlies 1,2, Wolfgang Koeve 1, Angela Landolfi 1 & Paul Kähler1

Oceanic anoxic events have been associated with warm climates in Earth history, and there

are concerns that current ocean deoxygenation may eventually lead to anoxia. Here we show

results of a multi-millennial global-warming simulation that reveal, after a transitory deox-

ygenation, a marine oxygen inventory 6% higher than preindustrial despite an average 3 °C

ocean warming. An interior-ocean oxygen source unaccounted for in previous studies

explains two thirds of the oxygen excess reached after a few thousand years. It results from

enhanced denitrification replacing part of today’s ocean’s aerobic respiration in expanding

oxygen-deficient regions: The resulting loss of fixed nitrogen is equivalent to an oceanic

oxygen gain and depends on an incomplete compensation of denitrification by nitrogen

fixation. Elevated total oxygen in a warmer ocean with larger oxygen-deficient regions poses a

new challenge for explaining global oceanic anoxic events and calls for an improved under-

standing of environmental controls on nitrogen fixation.
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Among the effects of climate change on the ocean, deox-
ygenation has relatively recently been identified as a
potential threat to marine ecosystems and biogeochemical

cycles, in addition to warming and acidification1–4. There is
ample observational evidence for ongoing deoxygenation5–7, and
concerns have been raised that this may eventually lead to
widespread anoxia8, such as inferred for major mass extinctions
associated with warm climate excursions in Earth history9.

Circulation-biogeochemistry models simulate an accelerating
decline in the 21st century marine oxygen inventory for all CO2

emission scenarios used in the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change10. Extending the
simulations to timescales of millennia and longer, however, different
models generate qualitatively different projections of oceanic oxygen
levels in the far future: A box model predicts a continuous 10–20%
decline in the oceanic oxygen inventory over the next few thousand
years until it recovers to pre-industrial levels along with atmospheric
CO2 and global temperatures on timescales of a hundred thousand
years11. Three-dimensional biogeochemistry-circulation models12–14

predict a more rapid recovery of meridional overturning and oxygen
within several hundred to a few thousand years.

Until now, the oxygen recovery has been attributed to circu-
lation changes, in particular to a flushing of the deep ocean by
enhanced deep-water formation in the Southern Ocean13,14. Our
complete analysis accounting for all physical and biotic oxygen
sources and sinks and their interlinkages with the nitrogen cycle
reveals, however, that this alone cannot explain the simulated
oxygen gain. We show here that most of the net oxygen gain
results from a climate-driven substitution of oxygen-consuming
respiration by denitrification and an incomplete compensation by
nitrogen fixation, associated with a net loss of fixed nitrogen.

Results
Solubility effects. Due to the temperature control of gas solubi-
lity, a future warmer ocean will, on average, dissolve less oxygen.
Our numerical model employing a business-as-usual emissions
scenario with the emission peak in 2100 and a linear decline of
emissions to zero in year 2300 (see “Methods”), simulates a rise in
global-mean ocean temperatures by 3.1 °C above pre-industrial
until year 3380 (Fig. 1a). The associated solubility changes explain
an oxygen decline by 27 Pmol (or 9%), as shown by the abiotic
oxygen tracer (Fig. 1b). This amounts to about half the simulated
total oxygen loss at the time of the O2-inventory minimum
(Fig. 1c) and persists until the end of our experiment.

Changes in overturning. Consistent with earlier studies12,14–16,
our model simulates an initial reduction in the meridional
overturning circulation, which recovers after several centuries and
reaches a maximum near year 3080 to eventually level off at an
intensity slightly higher than preindustrial (Fig. 2a). Explanations
for such a recovery include a shift to enhanced deep-water for-
mation in the southern hemisphere and an associated shoaling of
the overturning circulation associated with North Atlantic Deep
Water by about 1000 m. This shoaling also explains the increase
in globally-averaged ideal age in spite of more vigorous over-
turning (Fig. 2a). Ideal age increases by a few hundred years at
mid-depth in the North Atlantic and Pacific Ocean (Fig. 3c, d).
Changes in simulated oxygen in year 8000 relative to year 2000
reveal, on average, elevated oxygen concentrations below about
1000 m (Fig. 3b), located mostly in the Southern Ocean and the
Indo-Pacific region, whereas oxygen levels tend to decrease in the
Atlantic and the Arctic Ocean (Fig. 3a).

Changes in biological production. Net community production
(NCP) describes the surplus of primary production over all

respiratory processes in the euphotic zone, which, on annual and
longer time scales and global space scales corresponds to the
organic matter exported from surface water. NCP initially
declines by 12% until year 2145, then recovers, and eventually
exceeds pre-industrial levels by about 3% (Fig. 2b). The minimum
in NCP occurs just when the strength of the meridional over-
turning circulation is at its minimum (Fig. 2a). Once NCP
increases again, the suboxic (O2 < 5 μM) volume starts to expand
almost threefold within a few centuries (black curve, Fig. 2c).
Consequently, pelagic denitrification and, with a time lag of about
25 years, nitrogen fixation both increase and eventually level off at
global rates about twice the pre-industrial rates (green and blue
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curves, Fig. 2b). At the end of the simulation, nitrogen fixation
accounts for about 20% of the global NCP, compared to about
10% in year 2000.

Changes in respiratory oxygen consumption. At first sight,
increases in global-mean ocean temperature (Fig. 1a), ideal age
(Fig. 2a) and NCP (Fig. 2b) all suggest a declining global ocean
oxygen inventory, as also put forward to explain past oceanic
anoxic events17. The actually modelled oxygen increase (Fig. 1c)
can only arise from spatially inhomogeneous changes of tem-
perature, ventilation, respiration, or other processes not yet
considered. Indeed, changes in respiratory oxygen consumption
via aerobic remineralisation of detritus show a systematic shift of
enhanced export and subsequent remineralisation towards high
latitudes (Fig. 3g, h) linked to more efficient nutrient utilisation

via improved light conditions due to disappearing summer sea-ice
and more stable stratification. Interestingly, particle export and
subsequent remineralisation are also enhanced in the upper
hundred metres of the subtropical gyres, while there is a general
decline of respiration in less well ventilated deeper waters
(Fig. 3h). In the model, this results from faster—and hence
shallower—remineralisation at higher temperatures, leading to
enhanced nutrient recycling in the upper ocean.

Accumulation of oxygen deficits. Although total respiration
shows a slight increase, the oceanic storage of the respiratory
oxygen deficit, measured here as true oxygen utilization (TOU18),
is decreased considerably in the simulated future ocean. For the
first few hundred years of our simulation, TOU increases ((−1)
*TOU decreases, green line in Fig. 1b). This is because of the
longer residence time of upwelled waters in the more stratified
surface waters allowing for a more complete biotic utilisation of
surface nutrients, and elevated oxygen consumption during
subsequent remineralisation in the ocean interior. TOU decreases
((−1)*TOU increases) after year 2630 and eventually the global
TOU inventory becomes lower than the pre-industrial one. The
total reduction in TOU amounts to an oxygen gain of 29 Pmol by
the end of the simulation. This more than compensates the
warming-driven oxygen loss from solubility changes of 24 Pmol,
yielding a net oxygen surplus of 4.6 Pmol. This extra oxygen
must enter the ocean via air-sea exchange. Indeed, the cumulative
air-sea oxygen flux into the ocean by the end of the simulation
(5.1 Pmol, Fig. 1b, black line) very closely matches the combined
oxygen loss via warming-induced solubility change and the
oxygen gain by the decrease of TOU (Fig. 1b, dashed cyan line).

Effects of nitrogen imbalances. The oxygen gained via air-sea
gas exchange explains, however, only about one third of the total
increase in the oceanic oxygen inventory (13.4 Pmol, i.e. 6% of
today’s ocean O2 inventory Fig. 1c, blue line). Almost two thirds
of it must therefore be from an oxygen source located in the
ocean interior. Interior-ocean oxygen sources are photosynthesis,
specifically, the net balance of oxygenic photosynthesis minus
respiration, and processes reducing the oxidation state of nitrogen
and other compounds. For everything else unchanged, a switch
from aerobic to anaerobic respiration will cause a left-over of, and
hence increase in, dissolved oxygen. Total marine oxygen may
thus be saved by the utilization of an oxidant other than oxygen,
like in denitrification, or it may be spent by oxidising an external
source of reduced nitrogen, like in N2-fixation and subsequent
nitrification of the newly added N. In our simulation the strong
increase in pelagic denitrification together with the time-lagged
increase in N2-fixation cause a net loss of the ocean’s fixed
nitrogen (Fig. 2c). Any net conversion, and loss, of nitrate to N2

via denitrification corresponds to a net gain of oxygen (Fig. 1c)
because no oxygen is consumed in it. Anaerobic remineralization
via denitrification of organic matter containing one mole of
organic nitrogen avoids the consumption of 10.6 moles of oxygen
while removing 7.48 moles of NO3 (ref. 19). Thus, for each mole
of nitrate lost, about 1.4 moles of oxygen are gained. Deni-
trification is hence an implicit source of oxygen to the ocean. The
reverse applies to N2-fixation which is hence an oxygen sink for
the ocean. What matters globally is the cumulative balance of
denitrification and N2-fixation, that is the change in the global
nitrate inventory. The total simulated nitrate loss of 6.2 Pmol
NO3, i.e. about 17% of the present-day ocean’s nitrate inventory
(green curve Fig. 2c), corresponds to an oxygen gain of 8.8 Pmol
O2 (Fig. 1c), which is about 4% of the present ocean oxygen
inventory.
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Sulfate reduction to hydrogen sulfide, not considered in the
model, would save still more oxygen in the water column.
However, unless outgassing to the atmosphere, hydrogen sulfide
would most likely quickly be re-oxidised in the oxic waters
surrounding the respective anoxic region, cancelling the initial
oxygen gain. Not resolving the marine sulfur cycle, we cannot
quantify to what extent the reaction of H2S with NO3, the
formation of elemental sulfur, or the burial of FeS might modify
this picture. Other processes that may affect oxygen, but are not
explicitly accounted for in this model configuration, are burial
and denitrification in the sediments as well as the release of
sedimentary phosphate and iron under expanding oxygen-
deficient regions20.

Nitrogen fixation feedback. The enhanced loss of fixed nitrogen
via denitrification can only lead to a sustained net decline in the
ocean’s inventory of fixed nitrogen, because nitrogen fixation only
partly compensates the nitrogen loss. This, apparently, is contrary
to the geochemical view that, on long timescales, nitrogen
fixation feeds back on nitrogen losses and ‘nitrate gets topped up
when scarce relative to phosphate’ (ref. 21). In our simulation,
nitrogen fixation is performed by diazotrophs with a maximum
growth rate less than half of that of ordinary phytoplankton and
zero growth at temperatures lower than 15 °C, but not limited by
fixed nitrogen12. It starts to increase within 25 years after the
onset of the rise in denitrification, but does so at a slower rate
catching up with annual rates of nitrogen loss only well after year
5000 (Fig. 2b). The initial delay is consistent with the time it takes
for water to upwell from the oxygen minimum zones (with
denitrification) to the surface22. Simulated global nitrogen fixa-
tion more than doubles within a few hundred years (Fig. 2b). It

expands its range with the poleward migration of the 15 °C iso-
therm (Fig. 4a). Areas of enhanced denitrification, however,
remain located in the tropical oceans (Fig. 4b). As shown in
Figs. 4c, d, lowest values of N*=NO3 – 16 PO4 (ref. 23,24) that
measures the nitrate excess relative to the stoichiometric
equivalent of phosphate, are simulated in regions of ongoing
denitrification in the tropical oceans, whereas positive N* values
are found in the surface waters of the tropical and subtropical
oceans, roughly coinciding with areas of nitrogen fixation
(Fig. 4a). Surface waters at high latitudes, particularly in the
Southern Ocean, and almost all of the deep ocean waters, how-
ever, display negative N* values. This illustrates that part of the
denitrification signature is upwelled in the Southern Ocean,
where high nutrient levels and low surface temperatures and light
levels do not present favourable conditions for nitrogen fixation.
Deep-water formation south of the Southern Ocean biogeo-
chemical divide25 ensures that any upwelled low-N* waters can be
transported into the deep ocean without supporting nitrogen
fixation. It thereby acts as a loophole through which
denitrification-induced nitrogen deficits can escape the surface-
ocean nitrogen-fixation feedback and preserve significant oceanic
nitrate deficits in the ocean interior.

Decoupling of biological production and nutrient inventory.
An interesting finding is that global NCP is essentially unchanged
and even shows a slight increase (Fig. 2b) despite a 17% decline in
the ocean’s nitrate inventory (Fig. 2c). This decoupling of global
NCP and nutrient inventory can be explained by the spatial
pattern of the accumulated nitrate deficit, which very closely
corresponds to the pattern of N* (Fig. 4c, d): Nitrate concentra-
tions are lowered predominantly in the deep ocean and in
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high-latitude surface waters, whereas nitrate concentrations do
not change significantly or even increase in the tropical and
subtropical surface layers where phytoplankton growth is typi-
cally limited by nitrogen26.

Discussion
Our modelling study of global-warming effects over millennia
suggests expanding ocean anoxia (and the associated switch from
aerobic respiration to denitrification) to eventually result in a
counterintuitive net increase of marine oxygen levels. For each
mole nitrate consumed via denitrification, about 1.4 moles of O2

are saved. The same amount of oxygen is consumed when organic
nitrogen stemming from nitrogen fixation is oxidised to nitrate.
For a net oxygen gain it is essential that the commonly assumed
feedback between nitrogen fixation and denitrification operates
only with a temporal lag. The imbalance between nitrogen fixa-
tion and denitrification lasts for about 3000 years in our model
simulation (Fig. 2b). In our model this is by the entrainment of
nitrate-deficient waters into deep-water formation regions, par-
ticularly in the Southern Ocean. Via this loophole, nitrate deficits
can escape the topping-up action of nitrogen fixation and instead
remain stored in the deep ocean, effecting a net oxygen gain. A
major uncertainty (and on the agenda for future research) are the
environmental controls of nitrogen fixation. Sensitivity experi-
ments performed with a mechanistically different model of
nitrogen fixation that includes the ability to access dissolved
organic phosphorus and also allows diazotrophs to grow at low
temperatures27, yield similar results regarding the temporal lag of
the nitrogen fixation, but with only about half the simulated total
loss of nitrate and associated gain of oxygen. If current
assumptions about the environmental controls of nitrogen fixa-
tion are correct and properties of deep ocean waters can be set
relatively unaffected by nitrogen fixation, the process modelled
here leading to a net oceanic oxygen gain for a long-term global
warming scenario may well have operated also during the
development of whole-ocean anoxic events, e.g. in the Cretaceous.
It seems to be more difficult to develop marine anoxia than
thought until now.

Methods
Model configuration. The model used is the University of Victoria (UVic) Earth
System Climate Model28 in the configuration described by ref. 12. The ocean
component is a fully three-dimensional primitive-equation model with nineteen
levels in the vertical ranging from 50m near the surface to 500 m in the deep. It
contains a simple marine ecosystem model including the two major nutrients
nitrate and phosphate and two phytoplankton classes, nitrogen fixers and other
phytoplankton, the former being limited by phosphate only. As a caveat we note
that the micronutrient iron is not explicitly included in the model, which never-
theless achieves a reasonable fit to observed biogeochemical tracer distributions for
the tuned biological parameters and mixing parameterizations12,29. For the molar
stoichiometry of C:N:P:−O2= 112:16:1:169.6 assumed in the model19, organic
matter is degraded by aerobic remineralisation (−O2:PO4= 169.6) as long as
sufficient dissolved oxygen is available. In regions where oxygen concentrations are
below a threshold of 5 mmol O2 m−3, nitrate is used as electron acceptor (deni-
trification, −NO3:PO4= 119.68). No other electron acceptors are simulated and
remineralisation stops whenever nitrate runs out, which happens only occasionally
at very few grid points. A suite of idealised tracers is added comprising ideal age30,
an abiotic oxygen tracer affected only by air-sea gas exchange and surface-water
solubility31, and a tracer of preformed PO4 that is, at every model time step, set
identical to the model’s PO4 tracer in the surface layer, but otherwise a passive
tracer without sinks or sources32. TOU is computed as the stoichiometric oxygen
equivalent of regenerated PO4, i.e. total PO4 minus preformed PO4.

The ocean component is coupled to a single-level energy-moisture balance
model of the atmosphere and a dynamic-thermodynamic sea ice component and a
terrestrial vegetation and carbon-cycle component28. All model components use a
common horizontal resolution of 1.8° latitude times 3.6° longitude. The current
model version does not consider any fluxes across the water-sediment interface and
also does not account for fluxes related to weathering on land. Oceanic phosphorus
is thus strictly conserved. Because the atmosphere contains about a hundred times
as much oxygen as the ocean, any feedback of marine oxygen changes on
atmospheric oxygen is neglected as in earlier studies (e.g. ref. 11).

Global warming scenario. After a spin-up of more than 10,000 years under pre-
industrial atmospheric and astronomical boundary conditions, the model is run
under historical conditions from year 1850 to 2000 using fossil-fuel and land-use
carbon emissions as well as solar, volcanic and anthropogenic aerosol forcings.
From year 2000 to 2100, the model is forced by CO2 emissions following the
Special Report on Emissions A2 non-intervention scenario33 reaching maximum
emissions of about 29 PgC/year in the year 2100. Thereafter, CO2 emissions
decrease linearly to zero in year 2300. In this simulation, 2200 GtC are emitted
until year 2100 and a total of 5100 GtC until year 2300. Model simulations are
continued with zero CO2 emissions after year 2300 until year 8000.

Data availability
Model results generated as part of this study are available at https://data.geomar.de/
thredds/catalog/open_access/oschlies_et_al_2019_nc/catalog.html

Code availability
All code used to generate the results of this study is available at https://data.geomar.de/
thredds/catalog/open_access/oschlies_et_al_2019_nc/catalog.html
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