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Sören Henning

Software Engineering Group

Kiel University

24098 Kiel, Germany

soeren.henning@email.uni-kiel.de

Wilhelm Hasselbring

Software Engineering Group

Kiel University

24098 Kiel, Germany

hasselbring@email.uni-kiel.de

Armin Möbius
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Abstract—Detailed knowledge about the electrical power con-
sumption in industrial production environments is a prerequisite
to reduce and optimize their power consumption. Today’s in-
dustrial production sites are equipped with a variety of sensors
that, inter alia, monitor electrical power consumption in detail.
However, these environments often lack an automated data
collation and analysis.

We present a system architecture that integrates different
sensors and analyzes and visualizes the power consumption of
devices, machines, and production plants. It is designed with
a focus on scalability to support production environments of
various sizes and to handle varying loads. We argue that a
scalable architecture in this context must meet requirements
for fault tolerance, extensibility, real-time data processing, and
resource efficiency. As a solution, we propose a microservice-
based architecture augmented by big data and stream processing
techniques. Applying the fog computing paradigm, parts of it
are deployed in an elastic, central cloud while other parts run
directly, decentralized in the production environment.

A prototype implementation of this architecture presents
solutions how different kinds of sensors can be integrated and
their measurements can be continuously aggregated. In order to
make analyzed data comprehensible, it features a single-page web
application that provides different forms of data visualization.
We deploy this pilot implementation in the data center of a
medium-sized enterprise, where we successfully monitor the
power consumption of 16 servers. Furthermore, we show the
scalability of our architecture with 20,000 simulated sensors.

Index Terms—Power Consumption Monitoring, Software Ar-
chitecture, Microservices, Big Data, Stream Processing

I. INTRODUCTION

Electrical power consumption is a relevant cost component

for manufacturing enterprises. Besides economic motives, also

legal as well as self-imposed regulations such as ISO 50001

[1] motivate enterprises to reduce and optimize their power

consumption. In particular, load peaks should be reduced as

those are significantly more expensive [2].

Due to the immense number of devices, machines, and

production plants in such environments, a key challenge is

to identify major consumers. Varying and simultaneous work-

loads on different machines complicate this identification. In

order to discover saving potential, it is necessary to monitor all

This research is funded by the Federal Ministry of Education and Research
(BMBF, Germany) in the Titan project (https://www.industrial-devops.org,
contract no. 01IS17084B).

consumers and to visualize and analyze their consumption. The

data should be monitored as detailed as possible in order to

analyze individual consumers or the consumption at particular

points in time intensively. However, also aggregated and pre-

configured analyses are necessary to make data comprehensi-

ble and to allow for an immediate reaction.

Current trends towards the Industrial Internet of Things

and Industry 4.0 bring devices that are increasingly able to

monitor their state and resource usage. Equipped with network

capabilities, they provide these data to other hardware or

software components [3]. Combining all sensors into one

distributed hardware and software system promises to provide

the necessary monitoring infrastructure to optimize power con-

sumption [4]. Also older devices that do not offer monitoring

mechanisms can be integrated using auxiliary devices such

as monitoring power sockets. The following features are of

particular relevance and should be provided by such a system:

1) Data Integration: Devices and machines in production

environments usually come from different manufactures lo-

cated in different business domains. Furthermore, they are

likely to differ in their ages and originate from different

generations of technological evolution [5]. This leads to the

situation that also the way they supply data varies widely.

Most notably, this is due to the protocols and data formats

they use but also to the way they measure. Parameters such

as precision, sampling rate, or measurement units may vary

from domain to domain. In order to compare data of different

sensors and to consider the data analysis from a higher level,

data first have to be brought into a common format. This also

includes converting measurement units or splitting up multiple

measurements that are sent together. Moreover, it is likely

that not all measurements are of interest and only specific

values have to be selected. As the amount of data may be too

large to be analyzed, it is often reasonable to first aggregate

measurements.

2) Data Analysis: The individual consumption values of

devices are often too detailed to draw conclusions about the

entire production. Instead, it may often be more reasonable to

evaluate data for an entire group of devices. This is even more

significant in cases, where devices have more than one power

supply, which are monitored individually. It is likely that in

such cases, only the aggregated data are of interest.
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3) Data Visualization: Visualization of monitored and ana-

lyzed data allows a user to draw conclusions about the current

state of the overall production. Based on this, a user should

be able to make decisions about the further operation.

Contribution: In this paper, we make the following con-

tributions: We define architectural requirements, which such a

monitoring infrastructure has to meet in order to be generically

applicable for different kinds and sizes of production environ-

ments (Section II). We present an architecture that meets these

requirements (Section III) and that allows for different ways to

deploy it (Section IV). In addition, with our open source pilot

implementation1 (Section V), we show how our approach can

be deployed in a real production environment (Section VI) and

we evaluate it in terms of scalability (Section VII). Finally, we

discuss related work in Section VIII and conclude this paper

in Section IX.

II. ARCHITECTURAL REQUIREMENTS

Infrastructures and requirements differ significantly among

enterprises and between business sectors. These may change

not only from business to business but also within the same

application scenario, for example, if after an initial test period

additional enterprise departments should be integrated. We

aim for an architecture that can be deployed in small-scale

production environments as well as in arbitrary large ones. In

the following, we describe four key requirements that are of

crucial importance for such an architecture.

A. Data Processing in Real-Time while Scaling

The data transmission, analysis, and visualization in our

approach should be performed as quickly as possible in order

to allow for an insight into the current infrastructure’s status at

any time. This is the only way to react to unexpected events or

to evaluate the current production process. This requirement

needs to be reflected in the architecture design such that, for

example, batch processing techniques are not an option for the

majority of the analyses.

With a larger production environment, the volume of sensor

data increases. This includes both the amount of data per

sensor as well as the total number of sensors in the production.

The requirement for real-time data processing should not be

sacrificed if the amount of data increases. In addition, the

architecture should also be able to handle varying loads during

ongoing operation to avoid downtimes in which the production

infrastructure would no longer have been monitored. Besides

an increasing load, also a decreasing load should be able to

be handled efficiently.

B. Scalability and Resource Efficiency

If the amount of sensor data grows, more computing power

is necessary. To a certain degree this can be achieved by

providing more powerful hardware (vertical scaling). However,

one quickly reaches a limit where additional computing power

can only be accomplished by adding further machines (hori-

zontal scaling). According to Abbott and Fisher’s Scale Cube

1https://github.com/cau-se/titan-ccp

[6], horizontal scaling can be obtained in three combinable

dimensions: duplicate instances of the software system, split

the managed and processed data, and decompose the software

by functionalities. Our architecture has to be designed in a

way that facilitates an operation on multiple machines and,

furthermore, utilizes them efficiently.

The amount of data that is recorded by a sensor is often

larger than actually needed for analyses. In order to reduce

network traffic and make optimal use of the existing hardware,

the sensors (or devices located close to the sensors) should

already process as much data as possible. However, those

edge devices typically operate on limited hardware resources,

which are usually not sufficient to execute complex analyses

directly on them. Moreover, the given resource capacities are

not or only limited extendable and, thus, impede scaling of

the software. Therefore, an architecture design has to find

a balance between optimal resource usage and respecting

resource constrains of the edge devices.

C. Scalability and Fault Tolerance

A horizontally scalable system is inevitably a distributed

system whose components communicate via the network. This

implies that parts may temporarily become unavailable or

fail. Therefore, the software architecture and a corresponding

implementation must be designed to tolerate faults and those

do not lead to a failure of the overall system. Supporting

horizontal scaling via duplicating instances also assists in

fault-tolerance as failed instances can be replaced by their

duplicates.

D. Scalability and Extensibility

As the number of sensors increases, more data formats and

protocols need to be integrated. Moreover, it is likely that

large production environments require support for additional

metrics. This also applies to analyses and visualizations. An

increasing volume of measurement data requires more com-

plex, automatic and, therefore, more domain-specific analyses

to make the data understandable. Therefore, the architecture

should be designed in an adaptable and extensible way.

III. MICROSERVICE ARCHITECTURE

Considering the architectural requirements described above,

we designed a microservice-based architecture [7] for the

desired monitoring infrastructure. Microservice architectures

are an approach to modularize software. It divides software

into small components, called microservices, that can be used

and deployed independently of each other. The separation into

microservices is based on business functions. Each service

maps to an own business area and provides a complete im-

plementation of it [8]. This makes it much easier to adapt the

component to changing requirements that typically arise from

the business area. Microservices are isolated from each other.

They run in separate processes and do not share any state.

Thus, they can independently be started, stopped, or replaced.

In particular, microservices can be independently released to

production so that a new version of one microservice does
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Fig. 1. Microservice-based architecture

not require to update the others. Furthermore, they do not

share any implementation or database schema but communi-

cate via transaction-less protocols such as REST. This also

facilitates an individual choice of programming language,

database system and technology stack for each service. Loose

coupling between microservices enables individual scaling

of them and allows the system as a whole to scale more

fine-grained [9]. This avoids wasting computing resources as

only those components need to be scaled for which it is

necessary. Since the individual services only require normal

network connections between them, they can be deployed

in different contexts. This offers a lot of flexibility in the

operation of the software. The main drivers for microservice

adoption are, depending on application domain, scalability and

maintainability [10]. Furthermore, microservice architectures

support agile architecture work [11].

Fig. 1 shows a graphical representation of our architecture.

It contains the three microservices Record Bridge, which

integrates sensors, History, which aggregates and stores sensor

data for the long term, and Configuration, which manages

the system’s state. Whereas the Record Bridge solely con-

tains application logic, the services History and Configuration

additionally contain a data storage subcomponent. The Visual-

ization component is not a typical microservice as it does not

represent an own business function but instead serves as an

integration of different business functions. It consists of two

parts, a server-sided backend and a client-sided frontend.

The services in our architecture communicate with each

other in two different ways: first, synchronously using a

request-reply API paradigm such as REST to read or modify

the other services’ states; second, via a messaging bus or sys-

tem to publish events that may be asynchronously consumed

by other services. Using both communication approaches to-

gether is a common pattern when designing microservices [8].

The major task of our approach is stream processing of sensor

measurement data. Fig. 2 shows the flow of measurement data

among components starting from their integration via a Record

Bridge to their visualization in a web browser.

A. Record Bridge

Sensors use different schemata, technologies, and transport

mechanisms. Transportation can take place with high-level

techniques such as HTTP but also on a low-level, for example,

via serial data buses. Data can be encoded in text formats

such as JSON or XML but also binary. And besides several

standardized data schemata, there are also numerous propri-

etary ones. This requires to convert sensor measurements to a

common format that is used inside our whole approach, before

they will be further processed and analyzed.

The Record Bridge fulfills this task. It receives the sensor

data, transforms them, and then publishes them for other

components by sending them to the messaging system. In our

architecture design, it functions as a placeholder for arbitrary

concrete Bridges, where each Record Bridge integrates a

specific sensor type. As a sensor type, we consider a set of

sensors that use the same schemata, formats, and transport

mechanisms.

Record Bridge services are primarily supposed to convert

data from one format into another. They do not need to have

any or only little knowledge about previous transformations.

Therefore, they should be designed as stateless as possible

since stateless components enable an arbitrary scaling.

B. History

The History service manages past sensor data and provides

access to them. This includes real sensor measurements as

well as aggregated data for groups of sensors. Thus, one task

this component has to fulfill is the hierarchical aggregation of

data. This should be done in realtime, which means: Whenever

a sensor supplies a new measurement, all aggregated sensor

groups that contain this sensor should obtain an update as well.

Like for real sensors, this component creates a new record with

the aggregated values and publishes it via the asynchronous

event exchange system (bottom Fig. 1) for other services.

In order to access past measurements, they first need to be

permanently stored. Therefore, the History service has access

to a database and when it receives new records (aggregated

or not) it writes them to that database. For other services, the

History service provides access to the database in the form

of an API, which has various endpoints that return records or

statistics on them.

The application logic is separated from the actual data

storage. Thus both parts can be scaled independently. When

choosing a database management system (DBMS), it should

also be considered how well it can be scaled—both in terms

of accessibility and storage. Even if the data retention is

segregated into a DBMS, the application logic still cannot be

considered entirely stateless. This is due to the fact that multi-

ple instances need to coordinate themselves when consuming

data from the messaging system or aggregating them.
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Fig. 2. Data flow between the different components when processing new measurements. The Record Bridge receives monitoring data from physical sensors
and queues them into a messaging system. From there, the History service aggregates the data and stores them into a database. The visualization’s backend
queries that database and forwards the monitoring data to the frontend.

C. Configuration

The Configuration microservice manages the system-wide

settings, such as a hierarchical model that specifies what

sensors exist and how they could be aggregated. However,

the Configuration service does not serve as a central place for

all configurations of individual services. Settings that clearly

belong to a specific service should be configurable directly

in that service. An essential requirement of this service is the

ability to handle reconfigurations during the execution. In other

words, no restart should be needed whenever the configuration

changes and other services will receive notifications about

those changes. Therefore, the Configuration service provides

an API to update or request the current configuration and

propagates updates via the messaging system.

Furthermore, this service contains a database to store the

current configuration. It is the database’s responsibility to store

data in a reliable and perhaps redundant manner. Separating

the database from the API logic also allows to scale both of

them independently.

D. Visualization

Besides monitoring and analysis, our approach also includes

an interactive, web-based visualization. Our architecture con-

tains a Visualization component following the Backends for

Frontends pattern [7]. As the name suggests, it consists of

two parts: a frontend and a backend.

The frontend is a single-page application running in the

user’s web browser. After compilation, it is a set of static

files that are interpreted by the web browser. The actual data

are dynamically requested and loaded at runtime from the

corresponding microservices.

The backend fulfills two purposes. Firstly, it acts as a static

file server that delivers the single-page application. Secondly,

it functions as an API gateway that provides all required

interfaces for the frontend. When the frontend makes a request,

it addresses it to the backend, which then forwards the request

to the corresponding microservices. In this way, the backend

abstracts and hides the internal division into microservices.

IV. DISTRIBUTED DEPLOYMENT

The proposed software architecture is designed to allow

for an individual scaling of its components. In particular,

this implies that multiple instances of components can be

deployed and that the load is balanced among them. In this

way, we expect that our approach is feasible for different

sized production environments and, furthermore, we can react

flexibly to changing loads and requirements. In addition to

the software architecture and a corresponding implementation,

however, the system must also be deployed in such a way that

it can take advantage of the possibilities for scaling.

For these reasons, large parts of the architecture are sup-

posed to be deployed in a cloud environment. This does not

necessarily have to be a public cloud of an external provider, a

private cloud can also offer this. Cloud environments provide

the infrastructure and platform demanded by the current load

dynamically and as a service. This is sensible as hardware in

the production is often not powerful enough and provision of

additional hardware is time-consuming and costly. Therefore,

architecture components that perform intensive computations,

store data, or operate on the stored data are deployed in the

cloud.

However, it may also be reasonable to run particular parts

directly in the production environment. Applying the ideas of

fog computing [12] and edge computing [13], we can already

reduce the monitoring data where it is recorded. That can be

achieved by using appropriate filter or aggregate functions.

In our architecture design, the Record Bridge can fulfill such

tasks but the production environment may also already feature

a dedicated edge controller for this. Thus, the following four

deployment combinations are conceivable (see Fig. 3):

(a) There exists no separate edge component and the Record

Bridge is deployed along with the other microservices

in a computing center or cloud infrastructure. This de-

ployment is reasonable if the Record Bridge needs to be

scaled dynamically or if there is no appropriate hardware

or software infrastructure available in the production

environment. Also, this approach is likely to be simpler

to realize as its deployment would not differ from the

deployment of the other services.

(b) There is a separate edge component and the Record

Bridge is deployed in a computing center or cloud in-

frastructure. This option is reasonable for the same cases

as the first one. However, it takes advantage of an existing

edge component.

(c) There is no separate edge component but the Record

Bridge is deployed in the production environment. In this

case, the Record Bridge acts as a kind of edge component

that already filters and aggregates monitoring data.

(d) Both an edge component and the Record Bridge are

deployed in the production environment. This is perhaps

20
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Fig. 3. Deployment architecture showing all possibilities how the Record Bridge and an additional edge component can be deployed.

the most future-oriented alternative if hardware gets more

powerful and data transmission becomes the limiting

factor. Depending on the edge controller, it may even

be possible to execute both components on the same

machine. As data are usually aggregated by the edge

component, the Record Bridge solely serves for convert-

ing the measurements into a more efficient data format.

Only if the aggregation is not configurable enough and an

additional filtering of data is necessary, it is reasonable

to perform further aggregations by the Record Bridge.

These approaches can also be arbitrarily combined to adapt

to the situation of the existing infrastructure, instead of adapt-

ing the production to our approach. Fig. 3 presents all four ap-

proaches within a hypothetical deployment. Containerization

and orchestration techniques allow to virtualize the execution

environment to flexibly assign components to machines.

V. PILOT IMPLEMENTATION

Based on the presented architecture, we developed a pilot

implementation of it in the context of our Titan project on

Industrial DevOps [14]. It covers all parts of the architecture

including implementations for the individual services as well

as the selection of suitable technologies, e.g., databases. In

the following, we describe the most important implementation

decisions.

A. Communication between Services

Most services offer REST interfaces, which can be used by

other services to request information or to execute operations

on them. In particular, the visualization in the web browser

requests its data via these REST interfaces.

For the asynchronous communication, our implementation

uses the messaging system Apache Kafka [15]. Kafka can

be operated in a distributed cluster of several brokers. Kafka

messages consist of a key and a value and are written and

read from topics. Topics can be partitioned and the individual

partitions are then assigned to one (or, for redundancy, more)

brokers. The key of a message is used to assign the message

to a partition, which means, messages with the same key are

always stored and transferred by the same partition.

Primarily, we use Kafka to transfer sensor measurements.

While the message’s value is the actual measurement record,

we use the identifying name of the corresponding sensor as

key. This guarantees that records for the same sensor are

always processed by the same Kafka instance, which enhances

the scalability for further processing of measurements.

For this prototype, we restrict our implementation to only

integrate active power sensor data. Active power records,

which we exchange between components, are defined in a data

format consisting of an identifier of the sensor, a timestamp,

and the measured active power in Watts. Furthermore, we

allow to exchange aggregated active power records containing

aggregation statistics (e.g., the sum) for a set of records.
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The software performance monitoring framework Kieker [16]

offers a domain-specific language (DSL) [17] to define such

records [18]. An associated generator creates program code

and means to serialize and deserialize records for different

programming languages and technologies. We apply Kieker’s

DSL to define the records.

B. Integration of Physical Sensors

The Record Bridge microservices integrate physical sen-

sors by translating the data output of the sensors into the

common internal data format. Hence, the architecture envis-

ages a separate Record Bridge microservice for each sensor

type. However, the tasks that are fulfilled by those services

are largely equal. They have to start the application, load

configuration parameters, run continuously, and write records

into Kafka topics. They only differ in the way how they

receive or request data and how they convert those into Kieker

records. Therefore, we provide a Record Bridge framework

that eliminates repetitive tasks as much as possible.

The Record Bridge framework considers sensor data as

continuous data streams and provides methods to filter and

transform these data. A data stream and the operations on it

are declaratively described in a Java-based internal domain-

specific language (DSL) [17]. Using this DSL, one solely has

to implement the individual steps that are specific for data

formats and technologies. Internally, the stream processing

declaration is mapped to a Pipe-and-Filter pipeline, which is

interpreted and executed by the framework TeeTime [19].

Similar to other stream processing approaches or functional

programming techniques, the source of a stream is a function

that generates the elements of it. For example, this can be a

web server that creates a stream element for each received

HTTP message. A stream can be modified with the following

higher-order functions: filter retains only specific elements,

map maps each element of the stream to a new one, and

flatMap maps each element to multiple new ones. Each of

these functions returns a new stream, so that the functions can

be concatenated as desired.

C. Continuous Hierarchical Aggregation

The History service uses the column-oriented database

Apache Cassandra [20] to store records persistently. A web

server provides the required REST interface to retrieve the

stored data. Besides storing and reading, we also require to

aggregate measurements of different sensors. One possibility

would be to do this when reading records from the database.

However, this would be highly computational intensive for

frequent queries, in particular, if the records are stored dis-

tributed on several nodes. Therefore, we decided to aggregate

the data continuously and store the aggregated consumption

value along with the real, measured ones. In the following,

we describe how the aggregation is computed and how we

implemented it in a scalable manner.

1) Calculation Methodology: For an aggregated sensor ŝ

that should aggregate the sensor group S = {s1, . . . , sn}, its

value vŝ(t) at time t is given by the sum of its child sensors’

values at that time:

vŝ(t) =
∑

s∈S

vs(t)

However, since measured data are only present for discrete

points in time, vs(t) for s ∈ S is not known for many

points in times. Furthermore, vs(t
′) with t′ > t is not known

since the value should be computed in real-time and thus

t′ would be in the future. Therefore, it is not possible to

perform a simple linear interpolation between the precedent

and successive value. This means in effect, to compute vs(t)
we can only rely on previous values.

For our approach, we equate vs(t) to the latest measured

value. For the interpretation of those data, this means that the

time series of the single sensors are shifted towards the future,

whereby the shifting interval is at most the temporal distance

between measurements. If the data sources are measured

frequently enough and the values do not fluctuate too much,

this procedure should not influence the result notably.

2) Realization with Kafka Streams: In order to implement

the calculation methodology described above, we designed a

stream processing pipeline using Kafka Streams [21]. Kafka

Streams is a stream processing framework build on top of

Kafka. In Kafka Streams, processing steps are described in a

MapReduce-like manner [22] to facilitate scalability and fault

tolerance. In contrast to MapReduce however, Kafka Streams

operates on continuous data streams. Fig. 4 illustrates this

pipeline and pictures the individual steps, which we describe

in detail below.

The initial data source is the Kafka topic records (top left of

Fig. 4). As described above, it contains key-value pairs with

a normal active power record as value and its corresponding

sensor identifier as key. This topic serves as an interface to

the outside of this microservice since it gets its records form

other services, namely the Record Bridge services.

Our Kafka Streams configuration consumes the elements

of this topic and then forwards them to a flatMap processing

step. In this step, every record is copied for each aggregated

sensor that should consider values of this record’s sensor. This

means, if a new record is processed, the tree of sensor groups

is traversed bottom-up and all parents of the corresponding

sensor (parent, grandparent, etc.) are collected in a list. For

each entry of this list, the flatMap step emits a new key-value

pair with the according parent as key and the active power

record as value.

Those key-value pairs are then forwarded to a groupByKey

step, which groups records belonging together by serializing

them to an internal Kafka topic. Thus, it ensures that all

records with the same key are published to the same topic

partition and, hence, are processed by the same processing

instance in a following step.

The subsequent aggregate step maintains an internal aggre-

gation history for each aggregated sensor that is processed in

the course of time. An aggregation history is a map belonging

to an aggregated sensor that holds the last monitoring value

22
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Fig. 4. Graphical visualization of our implemented Kafka Streams topology. Horizontal cylinders represent Kafka topics, the vertical one a database. Grayed-out
elements are implicitly created by the framework.

for each of its child sensors. It only stores the value for its

real child sensors, not for the aggregated ones. Whenever a

record arrives with a key for which no aggregation history

exists so far, a new one is created. For all successive records

the aggregation history is updated by either replacing the last

value to this sensor or by adding it if no value for this sensor

exists so far. Finally, it is, firstly, stored to an internal key-value

store to be used in the next aggregation step and, secondly,

forwarded to the next processing step.

Afterwards, the aggregation history is transformed to an

aggregated active power record in a map step. This is done

by calculating different statistics, such as average or sum, of

the set of single monitoring values. These aggregated records

are then written to the Kafka topic aggregated-records. This

topic is again designed as an interface such that other services

can consume those data, for instance, to perform data analyses

on them.

Besides these steps for the hierarchical aggregation, the

pipeline also contains two forEach steps that asynchronously

store the records from both topics records and aggregated-

records to the Cassandra database.

Whereas we declare the single steps of this data processing

pipeline, the connection between the steps as well as the

serialization to internal topics or databases is handled by

Kafka Streams. If multiple instances of this application are

started, Kafka Streams manages to balance the data processing

subtasks appropriately. A fundamental principle of Kafka

Streams is that partitions are always processed by the same

instance since in this way no synchronization between reading

instances is necessary. Thus, using this approach, we can create

as many instances as there are partitions for the records and

the aggregated-records topics. As the number of partitions

is bounded by the number of different keys and the keys

correspond to the connected sensors, we can start as many

instances as there are different sensors and aggregated sensors.

This sets a very high limit since the number of sensors will

probably be much larger than the degree of parallelization with

which the data is processed.

D. Web-based Visualization

The user interface of the visualization frontend2 is divided

into four views (dashboard, sensor details, comparison, and

configuration), which can be accessed via the navigation bar

on the left side.

The dashboard contains various visualizations of the overall

power consumption. In the upper area, it shows three arrows

that indicate the trend of consumption in the last hour, 24

hours, or 7 days, respectively. Below them, a large time series

chart spans over the entire width. It shows the measured

consumption in relation to the point in time it was recorded.

When new data arrives, the displayed time interval automat-

ically moves forwards. The user can zoom into the chart or

move the displayed interval forward and back. Below the time

series chart, a histogram shows the frequency distribution of

measured values. It serves for recognizing load peaks. Next to

the histogram, a pie chart shows the contribution of each sub-

consumer. All visualizations update themselves continuously

and automatically when new data are available.

The sensor details views is similar to the dashboard view

but provides navigation through all consumer and consumer

groups so that the consumption of these can be observed in

detail. The comparison view allows to compare multiple time

series interactively. A user can select several time series to

be displayed in one chart and, additionally, display multiple

charts above each other. The configuration view provides a

graphical user interface for the Configuration microservice. It

allows to add, remove, or rearrange sensors in the hierarchical

model via drag and drop.

Research on how to efficiently visualize large data sets was

conducted by Johanson et al. [23]. In order to provide this

visualization, we utilized their library CanvasPlot [24], which

we extended to include real-time functionalities, for our time

series charts. Like our other visualizations, CanvasPlot is based

on the data-visualization framework D3 [25].

2http://samoa.se.informatik.uni-kiel.de:8185

23



Fig. 5. Power consumption of one of the monitored servers in our pilot deployment.

VI. PILOT DEPLOYMENT

In a pilot deployment, we show that our architecture can

be applied to a real industrial environment. For this pur-

pose, we deployed the described prototype in a medium-

sized enterprise3, where we monitored the power consumption

of a part of the data center. The deployment includes all

parts of our architecture and, thus, covers all aspects of our

approach involving data collection, integration, analysis and

visualization.

The monitored part of the data center provides 16 servers

that are power supplied by three power distribution units

(PDUs). The PDUs have built-in control and monitoring

capabilities and can be accessed via the network. Using their

embedded web server, we configured them to record the power

consumption of each server and push it to a Record Bridge

every minute via HTTP.

We developed an appropriate Record Bridge that integrates

the PDU data using the presented Record Bridge framework.

This Record Bridge features an embedded web server that

accepts the push messages. A message is encoded in JSON

and contains measurements for each PDU outlet, possibly also

for several points in time. After receiving the message, the

Record Bridge extracts the individual measured values and

forwards them as separate records. Furthermore, it only filters

the measurements for active power and discards others such

as voltage. An aggregation of measurements is not required

by this Record Bridge as it is already done by the PDU itself,

in our deployment once per minute.

We run this deployment over a period of three weeks and

were able to observe that the measurement data successfully

passed through all parts of our approach, from the recording

of the PDUs to the visualization in the web browser. Also the

operations on the data, such as the continuous aggregation,

work as desired.

3IBAK Helmut Hunger GmbH & Co. KG

Fig. 5 shows the course of power consumption for one

of the 16 servers in a selected time interval of 8 days. The

course shows significant nightly peaks at 3 o’clock. Moreover,

whereas the power consumption stays at a fairly constant level

at weekends, it fluctuates strongly during the day on weekdays

and is in average significantly higher than at weekends.

This server is used for desktop virtualization (VDI) for

the employees. They mainly work from Monday to Friday,

which means that the virtual desktops are used primarily then

and remain idle during the weekend. This correlates with

the server’s power consumption. Every night at 3 o’clock a

virus scanner runs on the virtual desktops, which explains the

nightly increase in power consumption.

VII. EXPERIMENTAL SCALABILITY EVALUATION

In order to evaluate if the requirement for scalability is met,

we examine whether our approach can handle an increasing

amount of sensor data with more computing instances. For

this scalability evaluation, we simulate a large number of

sensors and process their measurements with our prototype

implementation. Simultaneously, we measure the number of

sensor records processed per second and test this for different

numbers of instances. Thus, we determine how many records

per second a certain number of service instances can process.

As a result, we can determine how many instances are neces-

sary to process the generated load.

We perform this evaluation in a Kubernetes cluster operated

in a private cloud infrastructure. It consists of four node servers

each featuring 128 GB RAM and 2×8 CPU cores that provide

32 threads. The high degree of parallelism allows us to deploy

numerous largely independent instances. The nodes and also

the experiment are controlled by a dedicated cloud controller.

We developed a simulating Record Bridge that does not

integrate external sensors, but generates data itself. For the

evaluation, we deployed 20 instances of these Record Bridges.

Each of them simulates 1000 sensors that generate one mea-

surement every second so that in total 20,000 records are
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Fig. 6. Amount of processed records per second in relation to the number
of processing instances. The median of 100 repetitions is displayed in black.
The interquartile range of theses repetitions is highlighted in gray.

generated per second. Since the History service is the com-

ponent that is primarily involved in real-time data processing,

we focus on deploying different numbers of History service

instances. In order to better test parallization characteristics,

we limit the computing capacity of each instance to half a

CPU core. The Kafka and the Cassandra cluster each consist

of three instances. The Kafka topic for the normal active

power records contains 20 partitions. For each tested number

of History service instances, we determine the average number

of processed records per second, repeat this 100 times, and

calculate the median as well as the interquartile range of all

repetitions.

Fig. 6 shows the amount of processed records per second in

relation to the number of processing instances. The amount of

processed records scales approximately linear with the number

of History service instances. When deploying 12 instances, all

measurements that are generated can be processed. Note, as

we start the simulation before the processing, values greater

than 20,000 are possible. Without the restriction to half a CPU

core, significantly higher values would probably be possible

since records can be processed faster. During the evaluation

we periodically retrieved the CPU and memory utilization of

the Kafka and Cassandra instances and verified that the load

among instances is balanced evenly. Furthermore, we noticed

that API queries (e.g., performed by the visualization) are

evenly spread over the History services.

VIII. RELATED WORK

Power consumption monitoring in production environments

is studied by different research disciplines, by industry as well

as by academia.

Shrouf and Miragliotta [4] report on different approaches for

energy management enabled by Internet of Things (IoT) tech-

nologies. Based on literature, expert interviews, and reports

of manufactures, they summarize different IoT architectures

for power monitoring and present a general abstraction of

them. The resulting architecture primarily focuses on network

interconnections and integration of other systems. As in our

approach, it respects real-time data processing and the chal-

lenge of integrating data of different sensors and data formats.

However, data is only processed in a cloud or local server

infrastructure and does not follow fog computing paradigms.

The architecture represents a general approach and is therefore

too abstract to offer a reference implementation.

A concrete architecture complemented by a prototypical

implementation called Green Cockpit is presented by Rackow

et al. [26]. As our architecture, it provides data integration,

analysis, and visualization. However, this approach does not

consider scalability and real-time data processing to be nec-

essary. Instead, data is integrated by importing text files.

Green Cockpit allows for energy planning and other forms

of analysis.

Sequeira et al. [27] present an energy management system

designed for running in the cloud. On the one hand this is,

as in our approach, motivated by scalability requirements. On

the other hand this approach allows to integrate data of geo-

distributed production environments. Whereas our approach

relies on fog computing for a decentralized deployment in

the production, this approach only supports a centralized

deployment in the cloud. The energy management system is

based on a Lambda architecture and uses a messaging system

to distribute monitoring records. That is, it performs part of

the data analyses in real time, while other data are processed

in batches. Whereas we designed dedicated isolated microser-

vices for processing, in this approach data is processed in jobs

within data processing frameworks.

A comprehensive Industry 4.0 analytics platform is devel-

oped at Bosch [28]. It integrates different kinds of production

and business data occurring in an industrial production envi-

ronment. This platform is also based on a Lambda architecture

consisting of a batch, a speed, and a serving layer. As in our

approach, scalability is seen as an important requirement and

different deployment scenarios are supported. In contrast to

our approach, the Bosch approach does not solely rely on open

source software but also on commercial ones.

We did not find any monitoring approaches for produc-

tion environments designed in a microservices architecture.

However, microservice-based approaches exist for other ap-

plications of the Internet of Things, such as smart buildings

[29] and smart cities [30]. As we propose in our architecture,

these approaches intend to deploy microservices decentralized

for flexibility and extendibility. Moreover, they use an asyn-

chronous messaging bus for the exchange of sensor data as

in our approach. Both approaches do not focus on scalability

and, therefore, do not evaluate this.

IX. CONCLUSIONS AND FUTURE WORK

Modern industrial production environments offer a number

of means to measure resource consumption, such as electrical

power, in detail. However, in order to gain knowledge from

these data, it is necessary to integrate, analyze and visualize

the raw data of the sensors. A software and hardware system

that provides this in a scalable manner must be designed to
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a large extent for fault tolerance, extensibility, and efficient

resource usage. For useful analyses, data processing should

furthermore be carried out in real time.

In this paper, we presented an architecture for such a system

that meets these requirements. We apply the microservice

architectural pattern that provides solutions to similar chal-

lenges in the field of Internet-scale systems. The architecture is

intended for a distributed deployment with parts deployed in a

cloud environment and parts directly running in the production

environment.

For a pilot implementation, we use common technologies

for microservices and complement them by techniques and

tools for big data processing. We successfully deployed this

implementation in the computing center of a medium-sized

enterprise and, moreover, were able to show its scalability by

simulating 20,000 sensors.

As future work, we plan to supplement our architecture by

further microservices. These should primarily provide further

and more complex analyses and visualizations, for instance, to

automatically detect anomalies in the consumption. In order to

provide deeper insights into the power consumption of indi-

vidual production processes, we also work on integrating other

consumption metrics as well as production and enterprise data,

which can be correlated with electrical power consumption.

Furthermore, we plan to conduct extensive evaluations, where

we monitor larger production environments with different

kinds of devices and machines.
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