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Parameter Optimization and Validation of a
Marine Biogeochemical Model using a Hybrid

Algorithm

J. Rückelt∗, V. Sauerland∗, T. Slawig∗, A. Srivastav∗, B. Ward†, C. Patvardhan‡

Abstract
Sensitivity computations, parameter identification and optimiza-

tion for an 1-D marine biogeochemical model of NPZD type are pre-
sented. For the optimization a hybrid algorithm combining quantum-
evolutionary and local gradient-based search methods is used. It turns
out to be an efficient and flexible tool for optimization and can be
easily adopted for other simulation models. For the model under in-
vestigation attainable data could be exactly identified. For realistic
measurement data we argue that a certain parameter set leading to
a non-optimal fit cannot be improved. Moreover we show that data
uncertainty leads to a significant parameter spread. Thus we conclude
that the NPZD model needs to be modified or extended, maybe in-
cluding a modification of external forcings and/or initial conditions.

1 Introduction

In this paper we present the results of sensitivity analysis and parameter
optimization for a time-dependent, spatial one-dimensional marine biogeo-
chemical model of NPZD type. We investigated the dependency of the
model output w.r.t. the choice of initial profiles and the length of the so-
called ’spin-up’ period, i.e. the time interval (in model time) that the model
is run before its output is compared to given measurement data. Moreover
we present the results of parameter optimization to fit given measurement
or model data in a weighted least-squares sense. Here we studied both self-
constructed ideal data that were computed by the model itself and realistic
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observational data. For the model under scrutiny it was repeatedly shown
(see e.g. [6]) that optimized parameter sets may be unreliable in the sense
that widely differing sets give equally reasonable results. We want to show
if this is due to the model itself or the used observational data, or, to be
more specific, to their (spatial and temporal) sparsity and/or their assumed
uncertainty.

For this purpose we present a powerful hybrid algorithm for parameter
optimization which for the first time combines a new parallel evolutionary
algorithm (EA) using quantum operators (randomized global search) and a
local optimization method (deterministic local search) using Algorithmic or
Automatic Differentiation (AD). The algorithm was used for the parameter
optimization in this work, but it is independent of the underlying biogeo-
chemical model and thus can serve as a tool for real parameter optimization
problems in marine science.

Our main results can be summarized as follows:

1. The model results may depend on the choice of the initial profiles and
on the chosen length of the spin-up.

2. The above mentioned hybrid algorithm is an efficient and useful tool
for parameter optimization.

3. In our test cases we experienced that, if the data to be met are attain-
able (e.g. if they were computed by the model itself) and are assumed
to be exact, the corresponding parameters can be uniquely identified
by the optimization.

4. If the data are attainable but are assumed to be uncertain or given only
with some error, the corresponding parameters can only be determined
in a certain interval.

5. In our test cases the last two properties were not severely influenced
by the sparsity of the data, if the latter was kept above or on the level
of realistic measurement data.

6. For realistic observational data, no exact fit could be performed. Based
on the above results and due to the many optimization runs with dis-
tributed starting values in the feasible parameter range, it seems quite
reasonable to argue that the model is not able to reproduce the used
data. Moreover it is very likely that the obtained cost function value
is a global minimum. Thus a modification or extension of the NPZD
model is needed.
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We want to emphasize that especially the results 3 and 5 refer to the large
number of simulation and optimization runs we performed. They are not
analytically proved. It can be the case that in some other special cases and
with different choices of the parameters, different results may show up.

In further research we attempt to prove mathematically the global opti-
mality of the obtained cost function value (see point 6 above).

The structure of the paper is as follows: We describe the model, the used
data and the cost function to be optimized in the next section. In the third
section we describe the hybrid optimization algorithm and its man parts,
namely the evolutionary algorithms and the local optimizer. Afterwards we
present our results and end the paper with some concluding and summarizing
remarks.

2 NPZD Model

A one-dimensional maritime biogeochemical model that simulates the inter-
action of dissolved inorganic nitrogen N , phytoplankton P , zooplankton Z
and detritus D was developed by Schartau and Oschlies [1] in 2003, with
the aim of simultaneously reproducing observations at three North Atlantic
locations by the optimization of free parameters within credible limits.
The FORTRAN implementation of their model is currently used within
the interdisciplinary research project ”Excellence Cluster Future Ocean” at
Christian-Albrechts-University, Kiel. The parameter optimization of ocean
models is one of the integral parts of the excellence cluster.
Here we give a rough description of the model and its implementation.

2.1 Mathematical model

The (mmol N m−3) concentrations of dissolved inorganic nitrogen, phyto-
plankton, zooplankton, and detritus, denoted by N, P, Z, and D, respectively,
are described by the following PDE system:

∂C

∂t
= −wC

∂C

∂z
+

∂

∂z
(Kρ

∂C

∂z
) + sms(C), (1)

where C ∈ {N, P, Z, D}, Kρ is the turbulent mixing coefficient and wC the
sinking velocity, which is nonzero only for D.
The biogeochemical source minus sink equations of the four tracers after
Oschlies and Garcon [2] are given by
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symbol equation meaning
z depth in water column
T temperature
VP = µm · (Cref )cT maximum growth rate of phyto-

plankton
u = N

kN+N factor for nutrient limited growth
rate of phytoplankton

µ̄(z) see Appendix light limited growth rate of phyto-
plankton, according to Evans and
Parslow [4]

J(µ, u) = min(µ̄(z), Vp) growth rate of phytoplankton af-
ter Liebig’s Law of the Minimum

G(ε, g) = gεP 2

g+εP 2 zooplankton grazing function

Table 1: Auxiliary variables

sms(N) = −J(µ, u)P + γmD + Φz
mZ,

sms(P ) = J(µ, u)P − Φp
mP −G(ε, g) · Z,

sms(Z) = βG(ε, g)Z − Φz
mZ − Φ∗

zZ
2,

sms(D) = (1− β)G(ε, g)Z + Φ∗
zZ

2 + Φp
mP − γmD,

(2)

see tables 1,2.
Here, the original model was simplified by substituting the temperature de-
pendent variables γ(T ) = γm · (Cref )cT , Φz(T ) = Φz

m · (Cref )cT , Φp(T ) =
Φp

m · (Cref )cT by constants, again named γm, Φz
m, Φp

m , respectively.

2.2 Data

Assimilated data are from the Bermuda Atlantic Time-Series Study (BATS;
31N 64W).
Measured ecological BATS data corresponding to the biogeochemical
model are available for dissolved inorganic nitrogen (DIN) (mmol N m−3),
chlorophyll a (Chl a) (mg (Chl a) m−3), zooplankton biomass (ZOO)
(mmol N m−3), particulate organic nitrogen (PON) (mmol N m−3), and
carbon fixation (or primary production as carbon uptake, CPP)
(mmol C m−3 day−1). Except for zooplankton biomass, the tracer value is
its concentration at the corresponding depth. For zooplankton biomass, the
tracer value is the integrated concentration in the water column from the
given depth (approximately 200 meters) up to the ocean surface (zooplank-
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parameter symbol value unit
index

Cref 1.066 1 growth coefficient
c 1 ◦C−1 growth coefficient
R 6.625 1 molar carbon

to nitrogen ratio
kw 25 m−1 PAR extinction length

fPAR 0.43 1 short-wave PAR fraction
1 β [0, 1] 1 assimilation efficiency

of zooplankton
2 µm R+

0 d−1 phytoplankton growth
rate parameter

3 α R+
0 m2W−1d−1 slope of photosynthesis

vs light intensity
4 Φz

m R+
0 d−1 zooplankton loss rate

parameter
5 κ R+

0 m2(mmol N)−1 light attenuation
by phytoplankton

6 ε R+
0 m6(mmol N)−2d−1 grazing encounter rate

7 g R+
0 d−1 maximum grazing rate

8 Φp
m R+

0 d−1 phytoplankton
linear mortality

9 Φ∗
z R+

0 m3(mmol N)−1d−1 zooplankton
quadratic mortality

10 γm R+
0 d−1 detritus remineralization

rate
11 kN R+

0 mmol Nm−3 half saturation
for NO3 uptake

12 ws R+
0 m d−1 detritus sinking velocity

13 Φ∗
m R+

0 m3(mmol N)−1d−1 phytoplankton
quadratic mortality

Table 2: Model parameters. Parameters with a number in the first column were
optimized.
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ton is measured by dragging a 200µm net to the surface).
The state variable N corresponds to DIN, P to Chl, Z to ZOO, P +Z +D to
PON and PP = J(µ, u) · P · R to CPP. The zooplankton conversion is from
mesozooplankton to total zooplankton. The original data came from [7]. The
observed zooplankton ZOO is transformed to Zobs = 1.23 ·ZOO + 0.097, see
also [6].

2.2.1 Initial profiles

An initial vertical concentration profile for N is calculated as the mean depth
profile derived from the DIN observations, the components of the other pro-
files (P, Z, D, PP ) are set following [3].

2.3 Forcing

The BGC model is forced by output from the OCCAM global circula-
tion model (http://www.noc.soton.ac.uk/JRD/OCCAM/ ). This output es-
timates the hourly vertical profiles of temperature T (in ◦C) and vertical
diffusivity wc (in m2s−1), respectively.

2.4 Integration

The time resolution is one hour, the vertical grid consists of 66 layers with
thickness increasing with depth. The source minus sink equations (2) are
integrated using a Eulerian scheme four times per hour after which the drift
and diffusion equation (1) is solved.

2.5 Cost function

Let j ∈ {N, P, Z, D, PP} be a tracer, a be a runtime year and N (j, a) denote
the number of measurements of tracer j in the year a. For any i ∈ N (j, a)
the i-th measurement of tracer j in the year a is written as y(j, a, i) and the
associated time and depth as t(j, a, i) and z(j, a, i), respectively.

The depth of the middle of the k-th model layer, 1 ≤ k ≤ 66, is denoted
by zm(k). We further set zm(0) = 0. The nearest upper and lower layers to
z(j, a, i) (with respect to their centers) are determined as

k̄j,a,i = max{0 ≤ k ≤ 66 | zm(k) ≤ z(j, a, i)}
kj,a,i = min{1 ≤ k ≤ 66 | zm(k) ≥ z(j, a, i)}

We define f̃(PP, a, h, k) as the modeled carbon-primary production in the
24 hours time interval [h− 12, h + 11] around the h-th hour of the year a in
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layer k, whereas f̃(j, a, h, k) is only the associated single model output value,
if j %= PP . We further set f̃(j, a, h, 0) = f̃(j, a, h, 1) for every j, a and h.

Now, for every measurement y(j, a, i) a corresponding value f(j, a, i) can
be derived from the model output. Both values are scaled with respect to
the same measuring unit. For j %= Z, the linear interpolation

f(j, a, i) = α · f̃(j, a, hj,a,i, k̄j,a,i) + (1− α) · f̃(j, a, hj,a,i, kj,a,i),

with hj,a,i = &t(j, a, i)' and

α =
zm(k2)− z(j, a, i)

zm(k2)− zm(k1)

is taken, whereas f(Z, a, i) is 1
z(j,a,i) times the integral of the accordant piece-

wise linear function over the water column [0, z(j, a, i)].
Now, the over all cost function is calculated as

F =
1

ν

∑

a∈A

5∑

j=1

1

σ2
j · N (j, a)

N (j,a)∑

i=1

(f(j, a, i)− y(j, a, i))2, (3)

where A is the set of model runtime years except for the first year (spin-up
year), ν is the cardinality of {(j, a) | 1 ≤ j ≤ 5, a ∈ A,N (j, a) %= 0} and σ
weights the different tracers and is currently set to 0.1 for N , 0.01 for P , 0.01
for Z, 0.0357 for D and 0.025 for PP .

3 Optimization

In this section we formalize the minimization problem we studied and give
some details on the used software.

The optimization problem is of least-squares type with box constraints
and can be written as

min
x∈Xad

F (x) := ‖y(x)− yd‖2 s.t. l ≤ x ≤ u, f : RN )→ R, (4)

i.e. the minimization of the composition of the NPZD model and the cost
function w.r.t. the parameters, summarized in the vector x ∈ Xad ⊂ Rn.
The norm in F is a weighted Euclidean norm. The vector y denotes the
discrete values of the four tracers N, P, Z, D on the space-time grid supplied
by the model, and yd are given data. Usually the model produces output
on much more discrete grid points than data are available, so in fact y in
the cost function first has to be restricted (and maybe also interpolated)
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to the grid points were the data yd are given. For simplicity we omit the
restriction and/or interpolation operator here. The parameters are given in
table 2. The vectors l,u ∈ Rn represent the parameter bounds, where also
l,u ∈ (R ∪ {±∞})n is possible.

To this end we combined two optimization strategies, namely a evolu-
tionary algorithm (or randomized direct search) and a sequential quadratic
programming (SQP) algorithm as a gradient based one. Gradient based algo-
rithms are supposed to find local minima but to also get stuck there, whereas
evolutionary algorithms are expected to search more globally, having a hard
time to actually compute a (global) minimum to a given precision. In the
next two subsections we describe this two methods, thereafter we turn to our
hybrid algorithm which combines the two in a very promising and flexible
way.

3.1 Quantum Evolutionary Computing

We briefly describe the framework of standard evolutionary computing and
give an overview of our enhanced quantum evolutionary algorithm.

3.1.1 Evolutionary Algorithm

One iteration of an evolutionary algorithm is referred to as a generation, one
parameter set to be tested as an individual, the parameters as genes and a set
of parameter sets as a population of size N2. Figure 1 is a row schematic of
the basic principles of a classical evolutionary algorithm. The EA framework
we use works as follows: After using a randomized method to choose an
initial population, in each iteration a best (’fittest’) individual is determined
(lowest costfunction, N3 = 1) and tried to improve upon. After that a so
called crossover operator (BLX-α) tries to improve upon each individual of
the population.
The mutation operator firstly perturbs a subset of the parameters by random
jumps. After perturbation, the new parameter set is optionally sent to an
Armijo-type search routine. By that we mean a line search which yields
a ’large’ stepsize. The direction is that of a randomly chosen parameter.
Perturbations generally improve the search space exploration, whereas the
Armijo-type search provides faster convergence and higher accuracy but also
higher probability to get stuck in local optima.
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Figure 1: schematic of a single population EA (according to 3.(a) – 3.(c) of the
hybrid outline)

3.1.2 Real-parameter QEA (RQEA)

A quantum evolutionary algorithm (QEA) is a population based probabilistic
evolutionary algorithm that integrates concepts from quantum computing for
higher representation power and robust search. It maintains a population of
individuals in so called quantum bits or qubits, which are pairs of complex
numbers (α, β)T that satisfy |α|2 + |β|2 = 1 representing probabilities to
generate corresponding solution vectors of a given problem: QEAs usually
deal with binary problems using the concept of observation (randomized
rounding) to generate candidate binary solutions from qubit strings. RQEAs
variate the concept of quantum evolutionary algorithms (QEAs) [10] to be
applicable to problems with continuous parameter domains. One has to use
adapted quantum evolution operators to generate candidate solution strings
that comprise real parameters. The idea introduced in [9] is to maintain pairs
of qubit strings and real solution strings as individuals. There are essentially
two operations for the evolution of the population:

a) Update of Qubits - Quantum Gates A quantum gate acting on Cn

is a unitary matrix C ∈ Cn×n. We use 2-dimensional rotation gates, which
are 2× 2-matrices representing rotation in C2, where

Cθ =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
,
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and θ is the rotation angle.
Suppose we were given a qubit q = (α, β) and a real parameter x. Suppose
further that the fitness value of x is good. In the next step, where we want
to generate new individuals, we would like to generate parameters, which are
close to the good one x on the one hand, but which are also diverse on the
other hand. We capture both aims by updating the qubit q = (α, β) to a
qubit q′ = (α′, β′) which is close to q. This is mathematically accomplished
by rotating q with a small angle θ, so

q′ =

(
α′

β′

)
= Cθ

(
α
β

)
= Cθ q.

In the next step, individuals according to q′ are generated. This process
generalizes to n dimensions in a natural way. Given a n-dimensional qubit

Q =

(
α1 · · · αn

β1 · · · βn

)
,

we choose rotation matrices Cθ1 , · · · , Cθn , and update Q to

Q′ =

(
α′1 · · · α′n
β′1 · · · β′n

)
,

where (
α′i
β′i

)
= Cθi

(
αi

βi

)

for all i. With pi = |α′i|2, p = (p1, · · · , pn) gives relative step sizes from a
given solution toward a selected solution.
In evolutionary computing, the angles θi are crucial and have to be chosen
in a careful way.

b) Evolution Operators RQEA generates candidate states during the
search process in the following way. A population of Np n-dimensional qubits,
Qi

t, i = 1, 2, · · · , Np, is maintained in the tth iteration where Np = N1 ·
N2 is the population size chosen as per requirement. Higher values of Np

enable a wider exploration of the search space with correspondingly greater
computational effort. From each of the Np n-dimensional qubits, No offspring

qubits P (i,j)
t , j = 1, 2, · · · , No, are generated using the rotation gate operator.

The rotation operation is done such that the probability distributions p(i,j)
t

according to the offspring qubits P (i,j)
t provide higher probability to generate

either the best so far real-parameter solution (neighborhood operator 1 (NO1))
or a solution with parameters that are closer to its lower or upper constraint
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(neighborhood operator 2 (NO2). Each P (i,j)
t is transformed to solution space

by setting
y(i,j,l) = |α(i,j,l)|2(ymax − ymin) + ymin, l ∈ [n]

with ymin, ymax being the box constraints of the lth parameter (NO2) or the

minimum (maximum) of x(i,j,l)
t and the accordant gene in the very best so-

lution, xl
best (NO1). The fitness of each of these is determined and the best of

them is identified according to the fitness criterion. Let the qubit P (i,k)
t be

the one from which the best solution was obtained. If this solution is better
than the solution obtained from Qi

t, P (i,k)
t replaces Qi

t to become Qi
t+1 and

y(i,k) replaces xi
t to become xi

t+1.

3.1.3 Inherent Parallelization

As well as a standard EA the RQEA can easily be parallized using subpop-
ulations as described in the outline of the hybrid algorithm.

3.2 Local optimization method

For the local optimization we used the software CFSQP, see [12], which is
based on sequential quadratic programming (SQP) and is well suited to the
problem on hand. It can moreover treat general nonlinear constraints. It
was our intention to use an off-the-shelf local optimization routine and not
one that was specifically designed for the model under investigation. The
above mentioned code can be easily replaced by another local optimizer that
takes into account the box constraints. It was already mentioned in [6] that
a local method that does not can lead to infeasible (i.e. negative) parameters
and/or model output for N, P, Z or D.

If the coded mathematical function of interest is smooth enough, efficient
code for exact derivatives can be generated automatically by the technology
of Algorithmic or Automatic Differentiation (AD), see e.g. [5]. This was
the case here, the only non differentiable term being J(µ, u), see table 1.
We used the proprietary AD software TAF, see [11], in the forward mode.
The combined effort of a function evaluation and its 12-dimensional gradient
was roughly 5 times that of a function evaluation alone. A finite differences
approximation to the gradient would cost at least 13 function evaluations.
Moreover, the use of AD-generated gradients avoids approximation errors and
instabilities which are well-known for numerically approximated derivatives.
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3.3 Hybrid optimization algorithm

The general setting of a hybrid optimization method can be summarized in
the following
Hybrid evolutionary-deterministic algorithm:

1. Choose the number N1 of available or desired processors (if the method
is used in parallel version).

2. Choose randomly a population of N1 · N2 individuals, i.e. a set of
different parameter vectors x(ij) ∈ Xad, i = 1 . . . , N1, j = 1, . . . , N2,
and distribute them among the processors.

3. On each processor i = 1, . . . , N1:

(a) Evaluate the cost function for every individual, i.e. compute
F (x(ij)) for all corresponding x(ij), j = 1, . . . , N2.

(b) Choose the N3 ≤ N2 best individuals, i.e. those with the lowest
cost function value.

(c) For each of these best individuals x(ijk), k = 1, . . . , N3:

i. Do N4 times repeatedly:

A. Perform a mutation step, i.e. change randomly some com-
ponents of the parameter vector x(ijk) to obtain x̃(ijk).

B. Perform a cross-over step, i.e. combine the parameters
of two individuals x̃(ijk), x̃(ijk′ ), k, k′ ∈ {1, . . . , N3}, to get
new ones x̄(ijk), x̄(ijk′ ).

C. If a ’new’ individual x̄(ijk) is better than the original one
(in this iteration), x(ijk), replace the old by the new one,
i.e. set x(ijk) := x̄(ijk).

ii. Compute N5 steps of a local optimization method to obtain
individuals x̂(ijk).

(d) Determine the best individual

x(ij∗) := arg min
j

F (x(ij))

on the processor.

4. (a) Gather the best individuals from all processors, i.e. determine

x̂ = arg min
i

F (x(ij∗)).
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(b) Distribute it among all processors to replace the best, i.e. set

x(ij∗) := x̂ for all i = 1, . . . , N1.

5. If no improvement in F or no significant change in x̂ is made, stop.
Else: go to 3.

The algorithm has several parameters that allow to steer it either into a more
(or purely) stochastic or deterministic direction:

(1) Omitting the local method (N5 = 0) in step 3(c)ii gives a quantum-
evolutionary algorithm, in this case with a mutation operator that in-
cludes a line search.

(2) On the other hand a local optimization method with randomly dis-
tributed starting values is obtained when omitting the evolutionary-
type mutation and cross-over operations, or, more formally, setting
N2 = N3 = 1, N4 = 0, and N5 large. Steps 3d and 4b are obsolete then.

Clearly a single-processor version is obtained for N1 = 1, and the order of
the evolutionary and the local minimizations theoretically can be exchanged
(steps 3(c)i and 3(c)ii).

3.4 Implementation and experiments

The hybrid algorithm was essentially implemented as described in the for-
mer subsections. But our implementation of the mutation operator contains
a very simple realization of the ’neighbourhood operators’ described in sub-
section 3.1.2. A full implementation of the RQEA using qubits is in work.

Using MPI, the implementation was parallized on the linux cluster of the
computing center of the Christian-Albrecht-University of Kiel (CAU). The
used batch class is reserved for researchers of the Cluster of Excellence The
Future Ocean and consists of 24 8-core barcelona nodes. For the experiments
with the hybrid algorithm dominated by the evolutionary operators (version
(1) avbove) and a simple coordinate-oriented line search, we used N1 = 64
processes, each process dealing with one subpopulation of size N2 = 11,
migration of clones of the very best individual to each population being per-
formed in each generation (according to 4. in the outline). For the version
which was dominated by the gradient-based local SQP method (version (2)
above) we in most cases used 16 processors, and on each of them a stochas-
tically generated starting value was used for the optimization. Thus also in
this version the algorithm is easy parallizable.

13



4 Model sensitivity with respect to initial
profile and spin-up

In this section we present sensitivity computations of the model output and
cost function w.r.t initial profiles and the choice and duration of the spin-up.

A typically run of the optimization is performed as follows. After deciding
on initial profiles for the tracers N, P, Z and D, a so-called ’spin-up year’ is
performed and then the model output of the years 1991-1995 is evaluated
against model-generated ideal or observational data via the cost function as
explained in the first section. Only the upper 20 depth levels (the euphotic
zone) are evaluated, and so only the upper 32 levels (of the total 66) of the
model are used. Using more levels doesn’t affect the result (using the cost
function F as indicator) but increases the computational cost.

4.1 Dependency on the initial N-profile

Technically, the spin-up year is a model year the output of which does not
enter into the cost function F . The term spin-up implies, that after that
period the state is ’independent’ of the initial state, i.e. the differences for
different initial values are neglectable.

As a first point of validation, we checked upon that. We take

• some fixed initial profile for N – meaning to represent an ’initial NO3
inventory’ – for the spin-up (the other initial profiles are always kept
constant in the model),

• and a fixed parameter vector, called ’target’, (same as for reconstruction
test, see next section).

For these we used 1990 as spin-up year and computed the model output y
for the years ’91-’98. This output was used as data yd. Now other initial
profiles were used and the cost function was calculated. The other three
initial profiles stayed fixed.

We now replaced the original profile

1. by the mean of the spin-up year 1990. The result (see table 3), shows
a difference in the cost in all following years, compared to the zero cost
function value when the original spin-up profile was used.

2. and then by the mean of January of the spin-up year 1990,

Thus model output and the cost function are not independent of the initial
profile. The different profiles can be seen in figure 2.

14



contribution to cost F in year
initial ’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 all
profile
original * 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

’90 mean * 7.79 6.77 1.72 2.41 3.26 1.73 1.19 0.49 3.17
Jan ’90 * 0.117 0.108 0.033 0.045 0.059 0.036 0.025 0.013 0.055
mean

Table 3: Initial N -Profile: Yearly and overall cost using one-year spin-up.
Model output used as data. Zero if original profile used (first row),* =
spin-up year. In the last column ’all’ means all years after the spin-up.
Cost function values are weighted Euclidean norms, thus the sum over

the years does not equal the total cost over all years.
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Figure 2: Initial N profiles
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4.2 Additional dependency on the choice of the spin-
up year

Secondly, we tested the dependency of the model output for the different
choices of the initial profiles as in the last subsection, but now additionally
for different spin-up years. Ideally the model should reproduce the same
output after the spin-up whatever year is taken as for the spin-up year.
Tables 4, 5. and 6 show the results when taking either

1. the original profile (see table 4)

2. the mean of the corresponding spin-up year (see table 5),

3. and again as in the last subsection the mean of January of the corre-
sponding spin-up year (table 6).

Choice 1 can obviously lead to large errors. Choice 2 seems to improve the
situation, and choice 3 mostly gives good accuracy.

contribution to cost F in year
initial ’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 all
profile
original * 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
original * 7.79 6.77 1.72 2.41 3.26 1.73 1.19 0.49 3.17
original * 8.25 1.83 2.58 3.48 1.84 1.27 0.52 2.83
original * 5.97 8.79 11.16 6.27 4.74 1.86 6.47
original * 9.43 9.94 3.21 1.76 0.68 5.00
original * 15.71 1.45 0.21 0.07 4.36
original * 5.04 2.00 0.47 2.50
original * 6.40 1.54 3.97
original * 2.72 2.72

Table 4: As table 3, but now the spin-up and thus the evaluation of the cost was
started at different times. Here the original initial profile that produces
F = 0 (see first row), when 1990 was taken as spin-up year, was used.

As a consequence one could argue that one spin-up year is too short, at
least to generate model output that is independent from initial profile and
the choice of the spin-up year. Our guess based on tables 4, 5, and 6 would
be, that the required time, depending on the required accuracy, should be
well above eight years. A good estimate for the initial profiles would probably
be more worthwhile. For this end, the model could be started at a point with
sufficient observational data in a neighborhood.
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contribution to cost F in year
initial ’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 all
profile
original * 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

mean ’90 * 0.364 0.072 0.099 0.142 0.111 0.103 0.070 0.138
mean ’91 * 0.105 0.141 0.197 0.140 0.121 0.076 0.130
mean ’92 * 1.380 1.710 0.580 0.280 0.104 0.810
mean ’93 * 0.280 0.770 0.670 0.23 0.490
mean ’94 * 0.364 0.405 0.141 0.305
mean ’95 * 0.454 0.121 0.288
mean ’96 * 0.261 0.261

Table 5: As table 4, but mean of previous year taken as initial profile.

contribution to cost F in year
initial ’90 ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 all
profile:
mean of
Jan ’90 * 0.117 0.108 0.033 0.045 0.059 0.036 0.025 0.013 0.055
Jan ’91 * 0.394 0.097 0.131 0.179 0.107 0.076 0.038 0.146
Jan ’92 * 0.089 0.117 0.157 0.089 0.060 0.028 0.090
Jan ’93 * 1.590 1.585 0.516 0.266 0.107 0.813
Jan ’94 * 0.169 0.025 0.009 0.004 0.051
Jan ’95 * 0.001 0.000 0.000 0.004
Jan ’96 * 0.118 0.021 0.070
Jan ’97 * 0.038 0.038

Table 6: As table 4, but mean of January taken as initial profile.

Incidentally, our ’best fit’ (see respective section) is obtained using inter-
polated observational data of January,15,1991.

4.3 Choosing longer spin-up periods

A common way to spin up a model is to repeat one year with fixed forcing and
parameters until a steady stationary or periodic model output is achieved.
We performed this extended spin-up to check if in this case the dependency
w.r.t to the initial profile changes.

After roughly 50 repetitions of one year a fixed point (i.e. a periodic solu-
tion) is found. As can be seen in table 7, this fixed point is not independent
of the initial profile and does not necessarily yield a low cost F , table 7. The
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contribution to cost F in year
initial spin-up ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 all
profile period

Jan ’90 2x ’90 6.15 5.95 1.51 2.10 2.81 1.38 0.87 0.30 2.60
Jan ’90 6x ’90 73.7 51.3 16.8 24.7 26.6 14.2 10.2 2.9 27.6
Jan ’90 20x ’90 126.2 94.2 45.2 51.0 53.0 32.5 27.3 7.1 54.6
Jan ’90 50x ’90 132.5 103.6 50.5 54.6 57.1 35.9 30.8 7.9 59.1
Jan ’90 100x ’90 132.7 103.9 50.6 54.7 57.3 36.0 30.9 7.9 59.3

’90 100x ’90 134.2 107.5 52.8 56.1 59.0 38.1 33.5 8.9 61.3
’91 100x ’90 134.2 107.3 52.7 56.1 59.0 38.0 33.4 8.9 61.1
’92 100x ’90 134.8 109.0 53.6 56.7 59.7 38.9 34.5 9.3 62.1
’94 100x ’90 133.3 105.3 51.5 55.3 58.0 36.8 31.9 8.3 60.0

orig. 50x ’90 132.1 102.7 49.9 54.2 56.6 35.3 30.1 7.6 58.6
orig. 100x ’90 132.3 103.0 50.0 54.3 56.8 35.4 30.2 7.7 58.7

Table 7: Repeated spin-up (over year 1990) with different initial N -profiles:
Mean of January, 1990, mean of ’90 and profile used originally.

contribution to cost F in year
spin-up ’91 ’92 ’93 ’94 ’95 ’96 ’97 ’98 all
’90-’98 70.70 77.86 46.76 53.03 56.29 40.58 39.68 12.56 49.68

5x ’90-’98 118.2 129.1 81.5 75.1 81.6 79.0 72.2 21.4 82.3
10x ’90-’98 118.3 129.3 81.6 75.2 81.7 79.2 72.4 21.5 82.4

Table 8: Repeated spin-up over longer time period (1990-1998) with so far best
initial N -profile (mean of January, 1990).

same goes for longer spin-up periods, e.g. ’90-’98, see table 8. Note that
some coefficients dependent on the actual date and year (temperature and
mixing coefficient). Therefore a spin-up ’90-’98 is different from one using
e.g. 9x’90 etc.
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5 Optimization results

In this section we present the results of parameter optimization, first for
ideal, model-generated data, and then for realistic observational data. In
both cases we investigate the obtained parameter spread, i.e. the intervals of
parameters that lead to similar values of the cost (up to a given tolerance).

5.1 Parameter identification

We applied the hybrid optimization algorithm on the following parameter
identification or reconstruction problem:

We used the parameter vector given in [6] as default parameters, i.e. using
these parameters, model output y =: yd for the years 1991-1995 at the times
and locations of the 2469 actual observations was generated.

Then we applied the optimization using the parameter bounds [l,u] (to be
understood component-wise for the parameters in x) of table 9. The initial
profiles and the forcings are fixed. Thus a successful optimization should give
F ≈ 0. The interesting question is if the original parameters corresponding
to yd can be obtained.

The hybrid algorithm at its one extremum, i.e. just using stochastically
chosen initial values for the parameters and then taking the local optimizer
CFSQP with AD generated gradients runs up a cost of roughly 600 − 1000
function evaluations per optimization. For the chosen target parameter vec-
tor about a third of all optimizations starting from randomly chosen pa-
rameter vectors (with a value of the cost function at the order of F ≈ 102)
succeeded in reconstructing the target parameter vector with F ≈ 10−6.
These numbers were also obtained for other choices of targets, but of course
it can not be guaranteed that they can not be worse for special targets. The
other trials terminate in local minima or due to ’failure’ of the algorithm.

Dealing with real world data in the same way, best data-fits are also
found in about a third of the optimizations, which gives rise to the assump-
tion that the found local optima are global. Evolutionary algorithms are
generally more costly but have higher search space exploration abilities. The
computational performance of our hybrid algorithm was best when it was ap-
plied in the form that no mutation and cross-over operators were used, but
the local SQP method was started from equally-distributed randomly chosen
starting points. The performance of this variant during a typical success-
ful reconstruction is seen in figure 3. This and the many experiments with
the hybrid algorithm run in a more ’evolutionary- dominated’ variation with
several populations and just a coordinate-wise (also known as Hooke-Jeeves
method) local minimization in every step support our assumption of global

19



optimality.
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Figure 3: Typical successful optimization with CFSQP.

5.2 Parameter Spread

In this section we show how the optimized parameter values depend on a given
accuracy of the cost function F . Due to observational error or uncertainty,
parameter vectors yielding a cost above a found minimum for a given set
of observations are considered as equally valid, see [6],[8]. For the NPZD
model and the used data set, we used a threshold of ∆F = 1.165, see [6].

We first investigated the dependency on the optimized parameters our
algorithm gives when the stopping criterion was released, i.e. the threshold
∆F was increased . For the ideal data taken from a model run with given
target parameter vector xd, we expect that the value F < ∆F can be reached
for small ∆F .

We first show how the range or spread of parameters is for a ’realistic’
value of ∆F . When the threshold ∆F suggested for the observational data
is used, the parameter spread is quite big, see table 9. The parameters with
F ≤ ∆F = 1.165 found in the [min, max] ranges are not necessarily local
minima, and ranges might prove wider after a more thorough search.
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∆F = 1.165
i xi xdi li ui min(xi) max(xi) % outlier

F = 121.9
1 β 0.7500 0.0 1.0 0.6764 0.9995 33.3 0.7498
2 µm 0.6000 0.01 1.46 0.5437 0.9423 57.1 0.81
3 α 0.0250 0.0 0.253 0.0206 0.0340 35.9 0.0242
4 Φz

m 0.0100 0.0 0.63 0.0005 0.0170 94.5 0.0100
5 κ 0.0300 0.0 0.073 0.0115 0.0332 61.5 0.0145
6 ε 1.0000 0.01 4.0 0.8560 2.0000 100.0 0.9747
7 g 2.0000 0.01 4.0 1.4370 3.9660 98.3 2.0000
8 Φp

m 0.0100 0.001 0.63 0.0015 0.0119 84.9 0.0111
9 Φ∗

z 0.2050 0.0 1.0 0.0354 0.2640 82.7 0.2460
10 γm 0.0200 0.0 0.15 0.0001 0.0225 99.4 0.0010
11 kN 0.5000 0.01 1.0 0.4487 0.7623 52.5 0.4554
12 ws 6.0000 0.1 128.0 2.8650 6.6180 52.3 5.7490

Table 9: Parameter spread: Reconstruction of target parameter vector xd in
bounds [l,u] (component-wise) from model output yd = y(xd) at same

points (2469) as observed data. For xi ∈ [min, max] sets with cost
below ∆F = 1.165, the value also suggested in [6], are found. % is

maximal found deviation from target parameter xdi in percent. Outlier
is a set found in [min, max].

5.3 Dependency on data sparsity

To see if too sparse observations might cause the problem, we repeat the
reconstruction with model output for the first hour of every day for the years
1991-1995 for the upper twenty spatial grid points for N, P, D, PP and one
per hour for Z (177025 points) and obtained the same parameter vector as
before. A spread of the same magnitude is found, as seen in the left half of
table 10.

5.4 Parameter spread with respect to data uncertain-
ties

To lower the error in the parameters, the accepted accuracy in the cost must
be tightened, see tables 10,11. Figure 5 shows the trajectories of the target
parameter vector and some other parameter vector giving a cost within the
accepted margin (F = 1.04).

The parameter spread is significantly reduced when taking ∆F even
smaller, see table 11. The value of ∆F = 10−2 used there correspond to
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∆F = 1.165 ∆F = 0.5
i xi xdi min(xi) max(xi) % outlier min(xi) max(xi) % outlier

F = 112.4 F = 73.5
1 β 0.750 0.4924 1.0000 34.3 0.4924 0.5000 0.9609 33.3 0.50
2 µm 0.600 0.4694 1.0240 70.7 1.0240 0.4953 1.0100 68.3 1.0100
3 α 0.025 0.0181 0.0360 43.9 0.0360 0.0201 0.0310 23.8 0.0310
4 Φz

m 0.010 0.0044 0.0166 66.3 0.0166 0.0067 0.0141 40.7 0.0141
5 κ 0.030 0.0139 0.0522 74.1 0.0139 0.0226 0.0423 41.0 0.0226
6 ε 1.000 0.8397 1.4000 40.0 0.8397 0.8649 1.2260 22.6 0.8649
7 g 2.000 0.8994 4.0000 100.0 1.705 1.2220 3.8060 90.3 1.7050
8 Φp

m 0.010 0.0050 0.0144 50.0 0.0050 0.0079 0.0124 24.4 0.0079
9 Φ∗

z 0.205 0.1000 0.4000 95.1 0.4000 0.1534 0.2748 34.0 0.2748
10 γm 0.020 0.0127 0.0660 230.0 0.0127 0.0130 0.0333 66.5 0.0130
11 kN 0.500 0.2286 1.0000 100.0 1.0000 0.2722 1.0000 100.0 0.2722
12 ws 6.000 3.8320 20.4700 241.2 6.214 4.0000 10.0700 67.8 6.2140

Table 10: As table 9, but now for denser data. Model output at 177025 points
used as desired state yd.

a relative reduction of the cost of about four orders of magnitude, since a
typical value for the starting point of an optimization is around F ≈ 200.
The results shows that, assuming that the data are given with little error or
uncertainty, a successful parameter identification can be performed using the
applied hybrid optimization method.

A visualization of the parameter spread for the different ranges of ∆F for
one example can be seen in figure 4.
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Figure 4: Visual expression of the parameter spread. Plotted are minimal and
maximal values of ’optimal’ parameters for x4 as example. Vertically
between the two lines there are ’optimal’ parameters in the sense that

they give a cost function value F below the thresholds
∆F = 0.01, 0.1, 0.5, 1.165. Minimal and maximal values are taken

from tables 10, 11. Values of x4 on the vertical axis are scaled by 104.
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∆F = 0.1 ∆F = 0.01
i xi xdi min(xi) max(xi) % outlier min(xi) max(xi) % outlier

F = 11.5 F = 0.15
1 β 0.750 0.7029 0.8214 9.5 0.7029 0.7498 0.7600 1.3 0.76
2 µm 0.600 0.5499 0.6658 11.0 0.5499 0.5989 0.6100 1.7 0.598
3 α 0.025 0.0243 0.0291 16.6 0.0291 0.0250 0.0255 2.1 0.025
4 Φz

m 0.010 0.0089 0.0118 18.2 0.0118 0.0100 0.0101 0.8 0.010
5 κ 0.030 0.0284 0.0367 22.2 0.0284 0.0300 0.0312 3.9 0.0312
6 ε 1.000 0.9679 1.0560 5.6 0.9679 0.9994 1.0150 1.5 1.0150
7 g 2.000 1.7130 2.0000 14.4 1.7130 1.8100 2.0000 9.5 2.0000
8 Φp

m 0.010 0.0096 0.0112 12.2 0.0112 0.0100 0.0101 0.8 0.0101
9 Φ∗

z 0.205 0.1928 0.2252 9.9 0.2252 0.2050 0.2086 1.8 0.2050
10 γm 0.020 0.0195 0.0222 11.0 0.0195 0.0200 0.0201 0.6 0.0201
11 kN 0.500 0.4033 0.6175 23.5 0.6175 0.4999 0.5344 6.9 0.5344
12 ws 6.000 5.9950 6.5000 8.3 6.5000 6.0000 6.0080 0.1 6.0000

Table 11: As table 10, but with different values of ∆F .
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Figure 5: Trajectory of target parameter vector and hand-picked parameter
vector with F = 1.04
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σpp = 0.025 σpp = 0.3
i xi li ui x∗i ui x∗i ui x∗i ui x∗i
1 β 0 1 1.000 1 1.000 1 1.000 1 1.000
2 µm 0.01 1.46 1.200 2.5 2.500 2.5 0.946 2.5 1.076
3 α 0 0.253 0.105 0.5 0.500 0.5 0.500 0.5 0.107
4 Φz

m 0 0.63 0.051 0.63 0.170 0.63 0.034 0.63 0.025
5 κ 0 0.073 0.073 0.2 0.172 0.2 0.160 0.2 0.026
6 ε 0.01 4 4.000 20 18.60 5 5.000 20 5.446
7 g 0.01 4 4.000 20 20.00 5 5.000 20 20.00
8 Φp

m 0.001 0.63 0.004 0.63 0.001 0.63 0.001 0.63 0.001
9 Φ∗

z 0 1 0.040 1 0.049 1 0.083 1 0.202
10 γm 0 0.15 0.150 0.15 0.000 0.15 0.150 0.15 0.092
11 kN 0.01 1 0.100 2 1.760 2 2.000 2 1.827
12 ws 0.1 128 105.0 128 6.200 128 120.3 128 23.01

F 69.4 55.2 37.3 36.8

Table 12: Optimal parameters x∗i for lower bounds li and different upper
bounds ui and two different cost function weights σPP , see text.
Changed bounds and changed optimal parameters are bold. Cost
function time period was ’91-’95 with spin-up year 1990. Initial
profile for N was interpolation (Matlab R© function interp1) of

observational data ’around’ 1.15.1991.

5.5 Best fit for observational data

We now turn to the realistic observational data obtained from the BATS
source, see section 2. We applied again our optimization. For the parameter
bounds as in [6], the same cost function values were obtained. Because some
parameters are at the bounds, we also released the latter and ended up with
optimization results as in table 12. Here we give some parameter vectors
which gave the best fit for the observational data, depending on different
parameter bounds prescribed. It can be seen that enlarging the upper bounds
improves the fit, i.e. the cost function value. Notice that by enlarging the
upper bounds, almost all parameters significantly change, not only those that
were at the bounds. Using the weights σ given in section 2.5, we could not
improve on F = 55.2 which does not mean that this is impossible. But we
want to emphasize that increasing the width of the parameter bounds can
and does allow for very unrealistic parameter estimates. This is regarded as
a sign of model deficiency. Since [6] and [2] suggest a σpp = 0.3 for PP , we
also give two parameter vectors for this cost function, also in table 12.
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6 Conclusions

We presented a hybrid quantum-evolutionary and deterministic optimization
method and applied it to a time-dependent, spatially one-dimensional marine
biogeochemical model of NPZD type. The algorithm is parallelized and
efficient in terms of computational effort. It turned out that both

(1) a pure quantum-evolutionary version that only uses a very simple
coordinate-oriented line search

(2) and a nearly purely deterministic variant of the method, namely a
gradient-based local SQP algorithm starting from randomly chosen pa-
rameter vectors,

prove to be suitable tools for parameter optimization with this model. De-
pending on the (directional) differentiability of the model, there is thus the
choice to use only function evaluations in the evolutionary setting, or to
apply techniques of Algorithmic or Automatic differentiation in the local,
gradient-based method. The hybrid algorithm is flexible in the sense that it
can easily be applied to other model of general type.

For this model, the local, gradient-based strategy with stochastically cho-
sen starting values (version (2) above and as presented in section 3.3) works
more efficient w.r.t. to computation time. We observed fast convergence to
local minima and the best of all found minima is reached from approximately
every third random starting point. Also the evolutionary-dominated version
(see (1) above) succeeded in finding the minima.

Regarding the model under investigation, we summarize our results:

• If the given data to be fit are attainable (and thus assumed to be exact),
the corresponding parameter vectors in many cases are unique, i.e. the
discrete model is well suited for parameter identification.

• Taking into account data errors or uncertainties and thus accepting
also parameters that yield cost function values above a given thresh-
old, the in this sense also ’optimal’ parameter vectors may lie in a wide
range. This was already shown in [6]. Thus our results back up the
propositions made therin, even more as we obtained them by a par-
tially different and more general optimization strategy. The parameter
spread seems not to be caused by too sparse data sampling.

• When optimizing the parameters to fit real observational data, the al-
gorithm in both variants leads to non-optimal values. These values
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depend on the chosen parameter bounds, which then have to be ex-
tended to values beyond reasonable biogeochemical modeling to obtain
a better fit. Despite the massive computational power used and the cor-
responding exploration capabilities of the algorithm (when abstaining
from fast local convergence), we were not able to find a better opti-
mum. Thus we tentatively accept the found minima and argue that
the NPZD model in the current form is very unlikely to give a better
fit. A modification or extension of the model seems to be necessary.

• We also showed that the model output and thus an optimization de-
pends on the chosen initial profiles and on the chosen spin-up period
and length. We suggest to use interpolated observational data as ini-
tial profile and the corresponding date as starting point for the simu-
lation/optimization. These mentioned errors are still dwarfed by the
magnitude of the achieved cost F . To further validate the given model,
the (estimated) physical forcings should be scrutinized.

We regard our method as flexible, reliable, and a valuable tool for param-
eter optimization. Moreover we think that the investigation of initial profile
and spin-up sensitivities is a crucial step of model validation.

A Appendix: Modeling of Growth of Phyto-
plankton

The source minus sink equations of the NPZD model are effected by the
light limited growth rate µ(z, t) of phytoplankton which varies with depth
z and time t. Average light limited phytoplankton growth rates µ(k, t) are
calculated for every layer k of depth using a simplified version of an approx-
imative formula by Evans and Parslow [4].
The basic formula for the light limited growth rate as a function of depth
and time uses the curve of Smith, as recommended by Jassby and Platt when
analytic integration is desired. The curve of Smith is applied to the variable
irradiance:

µ(z, t) =
VP αI(z, t)√

V 2
P + (αI(z, t))2

where VP is the maximum growth rate of phytoplankton, α is the initial slope
of photosynthesis vs light intensity, and I(z, t) is the solar irridiance at depth
z and time t. Evans and Parslow deal with a triangular approximation of
the daily curse of the sun leading to a double integral for the representation
of average phytoplankton growth rate within one layer of depth.
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In our case, time dependent values of the solar irradiance I(0, t) at the ocean
surface are taken from the physical model, and the solar incidence angle βair

at noon is assumed to be the equivalent daily averaged incidence angle for
direct and diffuse radiation. The cosine of the solar incidence angle βwater

in water corresponds to the relative way of light per depth and is calculated
after Snells law [sin(βwater) = sin(βair/1.33)]:

cos(βwater) =

√
1− 1− cos2(βair)

1.332
.

The light attenuation factor per depth is supposed to be caused by water
and phytoplankton only. For the k-th grid box, it is calculated as

κ(k, t) =
1

cos(βwater) · kw
+

κ · P (k, t)

cos(βwater)
.

With zk and zk + 1 as the top of the k-th and (k + 1)-th box, respectively,
we obtain

µ(k, t) =
VP

zk+1 − zk

∫ zk+1

z=zk

αI(0, t)e−κ(k,t)z

√
V 2

P + (αI(0, t)e−κ(k,t)z)2
dz.

Substitution of depth z by light intensity ϕ(z) = αI(0, t)e−κ(k,t)z gives

µ(k, t) = − VP

κ(k, t)(zk+1 − zk)

∫ ϕ(zk+1)

y=ϕ(zk)

1√
V 2

P + y2
dz

with analytical solution

µ(k, t) = ln
ϕ(zk) +

√
V 2

P + ϕ(zk)2

ϕ(zk+1) +
√

V 2
P + ϕ(zk+1)2

.
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