
Enabling Software Architecture
Comparison with ExplorViz

Bachelor’s Thesis

Daniel Teut

September 30, 2019

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
Christian Zirkelbach, M.Sc.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 30. September 2019

iii

Abstract

Comparing software architectures can be a useful but complex task. A visual tool like
ExplorViz is useful for that as changes can be seen on a glance. Currently ExplorViz does
not offer the functionality for directly comparing software architecture. Therefore we will
extend it to allow the comparison of two and more software architectures in this thesis.
Following this we conduct a usability study for the implemented software.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1

1.2.1 G1: Researching Related Work . 2
1.2.2 G2: Formulating an Approach for Software Architecture Comparison 2
1.2.3 G3: Implementation of a Software Architecture Comparison Ap-

proach in ExplorViz . 2
1.2.4 G4: Evaluation of the Implemented Approach 2

1.3 Document Structure . 2

2 Foundations and Technologies 3
2.1 ExplorViz . 3
2.2 Ember.js . 4
2.3 Jersey . 5
2.4 NGINX . 5

3 Approach 7
3.1 Overview . 7
3.2 Backend Extension . 8

3.2.1 Merging of Two Landscapes . 8
3.2.2 Calculating the History Between Multiple Landscapes 8

3.3 Frontend Extension . 9

4 Implementation 11
4.1 Overview . 11
4.2 Backend Extension . 11

4.2.1 Comparison of Two Landscapes . 12
4.2.2 Calculating the History . 18

4.3 Frontend Extension . 20
4.3.1 Uploading Landscapes . 20
4.3.2 Timeline . 21
4.3.3 Rendering of a Merged Landscape . 22
4.3.4 Displaying the history . 23

vii

Contents

5 Evaluation 27
5.1 Goals . 27
5.2 Methodology . 27
5.3 Usability Experiment . 27

5.3.1 Questionnaire . 28
5.3.2 Experimental Set-Up . 29
5.3.3 Execution of the Experiment . 30
5.3.4 Results . 31
5.3.5 Discussion of Results . 32
5.3.6 Threats to Validity . 34

5.4 Summary . 34

6 Related Work 35

7 Conclusions and Future Work 37
7.1 Conclusions . 37
7.2 Future Work . 37

Bibliography 39

A Usability Experiment 41
A.1 Experiment Procedure . 41
A.2 Questionnaire . 42
A.3 Raw Data . 45

viii

Chapter 1

Introduction

1.1 Motivation

Most software changes over the course of its lifetime. This is due to, for example, bug fixes,
new features, refactoring and other changes. Sometimes a developer might want to quickly
assess what those changes were and when they occurred. They may also want to compare
two similar architectures that are meant too be merged. It would be useful to know what
parts of each architecture need to be changed.

But comparing two or more complex things is never easy and this is especially true for
software. Such a comparison can be a quite daunting task. A naive approach would be the
comparison of the file structure or the actual code and while this approach might work
for simple architectures, it will be a lot harder to gain any meaningful information from
complex software. It is also very slow and can lead to errors.

To simplify this process one might try a visual approach by visualizing and comparing
each version. ExplorViz is a tool for such an approach. Here the software is shown as a
landscape in which the user can view an application in a three dimensional environment.
Currently the tool shows only one version at a time. A developer could of course use two
instances of the tool and compare the landscapes by hand. This has two major drawbacks:
It increases the complexity of the task, since they to have to use multiple instances at a
time, and is still error prone and slow. Therefore it would be useful to show two software
versions in one merged landscape that shows every difference between them. Additionally
a history of every change that occurred between those versions would further increase
the understanding of the differences and how the software changed over time. This might
be useful for bug fixing and to see if, for example, a particular versions introduced them.
Since ExplorViz currently does not offer this functionality the goal of this thesis will be the
development and implementation of such a comparison and history.

1.2 Goals

First we will present the overall goals. These will be reached during the thesis. This will
allow us to add the outlined functionality to ExplorViz.

1

1. Introduction

1.2.1 G1: Researching Related Work

First we need to identify similar approaches in the literature including other software
comparison tools and even other ExplorViz extensions. This allows us to build upon those
solutions and further our understanding of what can and has be done on this topic.

1.2.2 G2: Formulating an Approach for Software Architecture Compari-
son

We must identify what we want to present to the user and how to present it. For this,
an approach for the backend and the frontend must be formulated, especially the user
interface of the frontend. This will then allow us to implement this approach.

1.2.3 G3: Implementation of a Software Architecture Comparison Ap-
proach in ExplorViz

As a main goal, the comparing of software architectures needs to be implemented in
ExplorViz. This will be accomplished be developing two extensions for the tool, one for the
backend and one for the frontend. The backend extension is realized as a microservice and
the frontend extension as an ember addon.

1.2.4 G4: Evaluation of the Implemented Approach

To improve the usability of the previously implemented software and to test its functionality,
we will collect feedback by conducting an evaluation. This will allow us to identify future
improvements to the software and the user interface. For this we will conduct a usability
study.

1.3 Document Structure

The thesis is structured as follows. First we will show the foundations and tools needed
for the rest of the thesis in Chapter 2. This is followed by Chapter 3 with the envisioned
approach mentioned above in G2. After this in Chapter 4 we will describe how to implement
this approach inside ExplorViz. Chapter 5 then presents an evaluation of the implemented
software. Then we will present a few related works that occur in the literature in Chapter 6.
Finally Chapter 7 will close with potential future works on this topic and an overall
conclusion.

2

Chapter 2

Foundations and Technologies

This chapter outlines every tool and technology used in this thesis. Especially ExplorViz
and the tools it uses are described here since we will develop our extension for ExplorViz.

2.1 ExplorViz

ExplorViz is a tool for software visualization. It was first introduced by Fittkau, Waller, Wulf,
and Hasselbring [1]. It uses landscapes to represent software systems. These landscapes
are generated by runtime monitoring data. They are build hierarchically with systems,
node groups, nodes, and applications [2]. Systems represent a “logical union of multiple
applications and servers”. They contain multiple node groups which contain multiple
nodes of their own. A node is an abstraction of a server. Node groups represent multiple
servers with the same configuration. They are named by the IP range they occupy. This can
be for example useful for cloud architectures that can be dynamically scaled [3]. Finally
there are applications that are deployed on the nodes. These are software running on the
servers.

Here the switch between the two dimensional landscapes and the three dimensional
application view occurs. By selecting a single application the user can view it. Figure 2.1
shows such an application view. The figure also shows the timeline where the live monitor-
ing data is visualized. Here a city metaphor is used where the components (i.e. packages
in Java) are represented as districts and the so called classes (i.e classes in Java) are build-
ings [1]. The components are also ordered hierarchically so components that are a child
of another component are set on top of said component. Additionally the communication
between the classes is shown as lines between the buildings. The width of those lines and
the height of the buildings correspond to the number of method calls and the number of
instances respectively.

ExplorViz uses a microservice approach [8, 7, 9]. Therefore its backend and frontend
are separated and can be deployed on different servers. Any additional functionality is
added by so called extensions. These are realized as their own webservices with their own
server and, if necessary, their own database.

3

2. Foundations and Technologies

Figure 2.1. ExplorViz application view

2.2 Ember.js

Ember.js1 is a Javascript webframework and is used by the ExplorViz frontend. It is based
on the Model-View-Controller pattern. The view is handled by HTML patterns and relies
on the Handelbars.js template engine2. These templates can be populated by a model
defined by the developer. Each ember application defines routes which correspond to
URL endpoints which can be accessed by the user. These routes can define models which
fill the corresponding HTML templates. Additionally there are controllers for each route
which define behavior for interactive elements in the template. The templates can contain
components which have there own template and defined behavior similar to a controller
of a route. They encapsulate certain elements of the website and increase the reusability.
Each route and component has a lifecycle which the developer can interact with by so
called lifecycle hooks. These hooks are simple methods that get called whenever a certain
point in the lifecycle is reached. For routes this cycle consists of the transition from one
route to another and for components the methods get called during the rendering of the
component. For example, ExplorViz uses the “didRender” hook which gets called directly
after a component was fully rendered, to start its rendering of landscapes. Another feature
of Ember are services which are just simple javascript objects that provide properties and

1https://emberjs.com
2https://handlebarsjs.com/

4

https://emberjs.com
https://handlebarsjs.com/

2.3. Jersey

functions. Ember allows for easy injection of those anywhere inside the application.
Ember uses addons to easily add functionality to an application. This is used by the

ExplorViz frontend to realize its extensions. One such addon is Ember data. This addon
is used to simplify the communication between the backend and frontend and to store
data on the client side. For this purpose the service “store” gets automatically injected
everywhere into the application. This service allows the developer to access the stored
data and make queries to receive it. This data is represented by developer defined models.
Additionally adapters can be defined to customize the communication between Ember data
and the backend.

2.3 Jersey

Jersey3 is a Java framework and is used by the ExplorViz backend for sending data from
the backend to the frontend. This data is send via a REST (REpresentational State Transfer)
API over HTTP(S). Jersey implements the JAX-RS API standard4 for this. The backend
exposes so called resources to the web, which can be accessed by the frontend. Each
resource is represented by its own public class where each method can respond to a
different query. The return values of those methods are the answers of the query. Java
objects are automatically serialized, e.g. into the JSON format5. Jersey makes heavy use of
Java annotations to set, for example, the type and path of its resources.

Additionally annotations are used for injecting classes into other classes. Jersey then
automatically creates those objects when needed without the need for an explicit “new”
call. This allows for simple management of different parts of the program and reduces a
lot of boilerplate code.

2.4 NGINX

NGINX6 is a reverse proxy. Since the backend consists of several servers with their own
addresses a reverse proxy is used to allow the frontend to communicate with the backend.
The reverse proxy provides a single host and port the frontend can use and depending on
the URL the request is forwarded to the address of the appropriate microservice in the
backend. In ExplorViz NGINX is simply setup as a docker image with a configuration file
inserted.

3https://jersey.github.io/
4https://github.com/jax-rs
5http://json.org/
6https://www.nginx.com/

5

https://jersey.github.io/
https://github.com/jax-rs
https://www.nginx.com/

Chapter 3

Approach

This chapter provides an overview of the approach we will take to enable software archi-
tecture comparison in ExplorViz.

First we will give an overview on how ExplorViz is extended and then will present our
approach for the backend and the frontend.

3.1 Overview

ExplorViz uses a microservice architecture[7, 9]. Figure 3.1 shows the software stack that
ExplorViz uses. Each functionality in the backend is provided by its own service. For
example the saving and loading of landscapes is handled by the HistoryService.

To now extend ExplorViz, we need to develop our own service for the backend and an
ember addon to extend the frontend.

Processes

Message Broker

Monitored Server

Application

Discovery-Agent

Client

Records

Analysis

TracesRecords

API-Gateway / Reverse Proxy

Backend-
Extension

Data

HTTP

HTTP

Frontend

Visualization

Frontend-Extension

Settings Broadcast History

LandscapesLandscapesUser Lifecycle
events

Landscape

Traces Landscapes

DiscoveryUser

ProcessesUser Lifecycle
events

Figure 3.1. ExplorViz Software Stack a

aSource: https://github.com/ExplorViz/Docs/blob/master/images/software-stack.pdf

7

https://github.com/ExplorViz/Docs/blob/master/images/software-stack.pdf

3. Approach

3.2 Backend Extension

The backend must provide two functionalities:

1. merge two landscapes and encode their differences inside a new merged landscape.

2. calculate the history between a list of landscapes.

We will present the approach for those problems in the following two sections.

3.2.1 Merging of Two Landscapes

The differences of the landscapes need to be saved somehow in the new merged landscape.
The data model of ExplorViz allows for arbitrary attributes attached to each entity (i.e.
each part of the hierarchy of the landscapes). We will use this to save the differences.
Wegert [6] already presented a similar approach to this idea. We will reuse and extend
some aspects of this approach. The author added these attributes to each component, class
and communication of a landscape. The status attributes are ADDED, DELETED and
ORIGINAL. A fourth attribute is used in the original approach but it is not relevant for us.

To explain the meaning of each status, let us assume that we have two landscapes that
represent two versions of an software architecture: version one and version two.

An entity is

� ADDED, if it exists in version two but not in version one.

� DELETED, if it exists in version one but not in version two.

� ORIGINAL, if it exists in both versions.

The merged landscape therefore show the differences that occurred from version one
to two. To determine if an entity exists in a version we use the fully qualified name for the
components, classes and communications and the name for applications, i.e. we compare
these strings to know if an entity changed between versions. The reasoning given for this
by Wegert [6] is that names of classes and components are not necessarily unique but
paired with the name of their package, which the fully qualified names provides, they can
be expected by naming convention to be unique. We also assume that applications with
the same name refer to the same application as the merging only considers each unique
application name once.

The algorithm consists of iterating over the entities we want to compare and checking if
they exist in the other versions. We then set the status accordingly.

3.2.2 Calculating the History Between Multiple Landscapes

The history requires the consideration of more than two landscapes. We need to calculate
the changes that occurred between each landscape in the list. For this we use a modified

8

3.3. Frontend Extension

version of Wegert [6]’s algorithm multiple times. First we compare the first and second
landscape then the second and third and so on. This will allow us to find every change
between the versions. Each change is saved with the corresponding name of the current
application and the component, class or communication and the timestamp of the version
the change occurred.

3.3 Frontend Extension

The frontend is responsible for showing the information the backend calculated, namely
the merged landscape and the history of every entity in an application.

First the user needs to select which versions they want to compare. For this the user
interface provides a timeline similar to the one from the visualization of ExplorViz. The
timeline is populated by versions the user uploaded before. This upload is presented when
the user presses the upload button.

In this timeline the user can select two versions: one to start the comparison and one to
end it. The frontend will then show the merged landscape between those versions. This
landscape will show all differences between those versions by coloring each status attribute
in a different color, e.g. yellow for deleted entities, blue for added ones and green for
original ones. These colors can be filtered to only show certain attributes.

If the user selects any application, component or class a history of these entities will be
shown. This history consists of all changes which occurred from the start version to the
end version. Each child of the entity which were added or removed in those versions will
be shown along with the version in which these changes occurred.

9

Chapter 4

Implementation

In this chapter we present the actual implementation inside the ExplorViz framework. We
start with an overview about our implementation and then go into further detail with the
backend and frontend of our extension.

4.1 Overview

First we will give a general overview of the implementation and how we extend ExplorViz.
Figure 4.1 shows the relevant components of ExplorViz and our extension. The components
ExplorViz Backend and ExplorViz Frontend are the core components of ExplorViz. To add the
desired functionality we need to extend them. This is done via the components Comparison
Extension Backend1 and Comparison Extension Frontend 2.

Both the core backend and the extension backend provide a REST resource the frontend
can use. These are used with a reverse proxy to allow the frontend to access all functionali-
ties under one address. We need to slightly modify the configuration for the reverse proxy
to allow it to forward the resources of our backend extension.

4.2 Backend Extension

The backend is implemented as its own server in accordance to the microservice architec-
ture. We start by extending the explorviz-backend-extension-dummy extension3 provided by
ExplorViz. This extension provides basic functionalities like setting up the server and a
service for serializing and deserializing landscapes.

We need to implement the functionalities outlined in our approach in Section 3.2. These
are presented to the frontend as resources i.e. URL endpoints. We will describe those
resources and the services and models they use in the following two sections.

1https://github.com/ExplorViz/explorviz-frontend-extension-comparison, Branch: dte
2https://github.com/ExplorViz/explorviz-backend-extension-comparison, Branch dte
3https://github.com/ExplorViz/explorviz-backend-extension-dummy

11

https://github.com/ExplorViz/explorviz-frontend-extension-comparison
https://github.com/ExplorViz/explorviz-backend-extension-comparison
https://github.com/ExplorViz/explorviz-backend-extension-dummy

4. Implementation

Addon

REST

REST

«component»
Reverse Proxy

«component»
Comparison Extension

Frontend

REST

«component»
ExplorViz Frontend

«component»
Comparison Extension

Backend

«component»
ExplorViz Backend

Figure 4.1. ExplorViz component diagram

4.2.1 Comparison of Two Landscapes

This functionality is provided by a a resource called ComparisonResource. It can be seen in
Listing 4.1.

Listing 4.1. ComparisonResource

1 @Path(value = "merged-landscapes")

2 public class ComparisonResource {

3
4 @Inject

5 private MergeService mergeService;

6
7 @Inject

8 private LandscapeRetrievalService landscapeRetrievalService;

9
10 @GET

11 public Landscape getMergedLandscape(@QueryParam("timestamp1") final long

timestamp1,

12 @QueryParam("timestamp2") final long timestamp2) throws IOException,

DocumentSerializationException {

13
14 return mergeService.mergeLandscapes(landscapeRetrievalService.

retrieveLandscapeByTimestamp(timestamp1),

12

4.2. Backend Extension

15 landscapeRetrievalService.retrieveLandscapeByTimestamp(timestamp2));

16 }

17 }

The resource gets two landscape timestamps as its arguments. Those are the timestamps
of the landscapes the frontend wants to compare. These timestamps are a property of
ExplorViz landscapes and represent the time of creation in UNIX time. Since ExplorViz
only produces one landscape at a time, those timestamps can be assumed to be unique and
are therefore used as an identifier for landscapes.

The timestamps now need to be transformed into their respective landscape objects,
so we need to retrieve the saved landscapes from ExplorViz. This is done by the landsca-
peRetrievalService. Listing 4.2 shows the method that actually retrieves the landscape from
the service. First a URL connection to the HistoryService of ExplorViz is established. This
service is responsible for storing landscapes for ExplorViz and offers a URL endpoint to
retrieve a single landscape by its timestamp. After we get the landscape from the service
we deserialize it, to work with the actual object.

Listing 4.2. Method for landscape retrieval

1 public Landscape retrieveLandscapeByTimestamp(long timestamp) throws IOException,

DocumentSerializationException {

2 final HttpURLConnection landscapeConnection = (HttpURLConnection) new URL(

urlPath + "?timestamp=" + timestamp).openConnection();

3
4 landscapeConnection.setDoInput(true);

5 landscapeConnection.setRequestMethod("GET");

6 landscapeConnection.setRequestProperty("Content-Type", "application/json;

charset=utf-8");

7 landscapeConnection.setRequestProperty("Authorization", "Bearer " + token);

8
9 if(landscapeConnection.getResponseCode() == 403) {

10 getToken();

11 return retrieveLandscapeByTimestamp(timestamp);

12 }

13
14 final InputStream inputStream = landscapeConnection.getInputStream();

15 String jsonString = IOUtils.toString(inputStream, StandardCharsets.UTF_8);

16 inputStream.close();

17
18 return landscapeSerializationHelper.deserialize(jsonString);

19 }

These retrieved landscapes are now passed to the MergeService, where the actual

13

4. Implementation

-events : TreeMap<Long, String>
-exceptions : TreeMap<Long, String>

Landscape

-name : String

System

-name : String

NodeGroup
-name : String
-ipAddress : String
-cpuUtilization : double
-freeRAM : long
-usedRAM : long

Node

-timestamp : long
-totalRequests : int

Timestamp

-id : long
-extensionsAttributes : HashMap<String, Object>

BaseEntity

-requests : int
-technology : String
-averageResponseTime : float

ApplicationCommunication

-name : String
-progammingLanguage : EProgrammingLanguage
-lastUsage : long

Application

JAVA
C
PHP
CSHARP
PERL
JAVASCRIPT
PYTHON
RUBY
literal
UNKNOWN

<<enumeration>>
EProgrammingLanguage

-timestamp : long
-statementType : String
-sqlStatement : String
-returnValue : String
-responseTime : long

DatabaseQuery

-name : String
-fullQualifiedName : String

Component

-totalRequests : int
-averageResponseTime : float

AggregatedClazzCommunication

-name : String
-fullQualifiedName : String
-instanceCount : int

Clazz

-operationName : String
-totalRequests : int
-averageResponseTime : float

ClazzCommunication

-traceId : String
-totalRequests : int
-totalTraceDuration : float
-averageResponseTime : float

Trace

-tracePosition : int
-requests : int
-currentTraceDuration : float
-averageResponseTime : float

TraceStep

-timestamp : long
-eventType : EEventType
-eventMessage : String

Event

NEWSYSTEM
NEWNODE
NEWAPPLICATION
EXCEPTION
UNKNOWN

<<enumeration>>
EEventType

events *

clazzCommunications

timestamp

applicationCommunications

*

clazzCommunication

*

sourceClazz /
targetClazz

sourceClazz

clazzCommunications

*

*

traceSteps *

parent
systems

children

*

parent

parentComponent

traceSteps

clazzes *

databaseQueries

targetApplication

applicationCommunications

*

sourceApplication

nodes

parent

parentApplication

parent

nodeGroups

parent

*

parentApplication

*

parentApplication*

applications*

components
*

traces

parentTrace

*

aggregatedClazzCommunications

*

*

*

targetClazz

sourceClazz / targetClazz

Figure 4.2. ExplorViz data model

calculation takes place. The service will then return the merged landscape that is then
passed to the frontend.

To calculate the differences the service employs an algorithm based upon the algorithm
described by Wegert [6]. Figure 4.2 shows the data model for ExplorViz landscapes. We
can see that the BaseEntity has an attribute “extensionAttributes”. BaseEntity is the parent
class of every entity in the model. The “extensionAttributes” allow us to add an attribute
to every entity in the landscape. We will use that to mark the differences in the landscape.

To start we need to get every application in the landscapes. This is done by simply
iterating over every System, NodeGroup and Node and concatenating the applications
contained within. In this process we put every application in a map where the name of the
application is the key. This allows for easier comparing. The comparison itself can be seen
in Listing 4.3. This is the method that gets called by the resource. As can be seen we simply
iterate over both application lists and check if they are present in the other list. Here the
purpose of the map is clear. The check if the applications exists in the other list, is done via
the “get” method of the map. We use a hash map and therefore on average the check runs
in O(1). The status in the extension attributes is then set to the appropriate value. These
values are saved in an enum that holds all three possible values. The values are set in the
second landscape as we return this landscape as our merged one.

The second iteration shows a problem. Here the application would be marked as
DELETED and therefore it exists in landscape one but not in landscape two and we need to
add it to landscape two. This is done by getting the Node, NodeGroup and System of the
application and checking if they already exist in landscape two. If they do, the application

14

4.2. Backend Extension

is added to them, otherwise they are added to landscape two and then the application is
added.

The components, classes and communications of applications that are either ADDED
or DELETED get also marked with the same status. This is done in the markApplication
method. Here everything inside the application is iterated over and the status is set.

Listing 4.3. Landscape comparison

1 public Landscape mergeLandscapes(Landscape landscape1, Landscape landscape2) {

2 Map<String, Application> applications1 = MergerHelper.

getApplicationsFromLandscape(landscape1);

3 Map<String, Application> applications2 = MergerHelper.

getApplicationsFromLandscape(landscape2);

4
5 for (Map.Entry<String, Application> application2 : applications2.entrySet())

{

6 Application application1 = applications1.get(application2.getKey());

7
8 if (application1 != null) {

9 application2.getValue().getExtensionAttributes().put(MergerHelper.

STATUS, Status.ORIGINAL);

10 mergeApplications(application1, application2.getValue());

11 } else {

12 markApplication(application2.getValue(), Status.ADDED);

13 }

14 }

15
16 for (Map.Entry<String, Application> application : applications1.entrySet())

{

17 if (!applications2.containsKey(application.getKey())) {

18 Node node = application.getValue().getParent();

19 NodeGroup nodeGroup = node.getParent();

20 System system = nodeGroup.getParent();

21
22 int systemIndex = indexOfSystem(landscape2, system.getName());

23
24 if (systemIndex != -1) {

25 system = landscape2.getSystems().get(systemIndex);

26 } else {

27 system.getNodeGroups().clear();

28 system.setParent(landscape2);

29 landscape2.getSystems().add(system);

30 }

15

4. Implementation

31
32 int nodeGroupIndex = indexOfNodeGroup(system, nodeGroup.getName());

33
34 if (nodeGroupIndex != -1) {

35 nodeGroup = system.getNodeGroups().get(nodeGroupIndex);

36 } else {

37 nodeGroup.getNodes().clear();

38 nodeGroup.setParent(system);

39 system.getNodeGroups().add(nodeGroup);

40 }

41
42 int nodeIndex = indexOfNode(nodeGroup, node.getName());

43
44 if (nodeIndex != -1) {

45 node = nodeGroup.getNodes().get(nodeIndex);

46 } else {

47 node.getApplications().clear();

48 node.setParent(nodeGroup);

49 nodeGroup.getNodes().add(node);

50 }

51
52 node.getApplications().add(application.getValue());

53 markApplication(application.getValue(), Status.DELETED);

54 }

55 }

56
57 return landscape2;

58 }

We call the mergeApplications method on every application that was marked as ORIGI-
NAL, meaning both exists in both landscapes and they need to be compared. This method
then compares their components, classes and communications. The algorithm is similar to
the one used before.

Starting with the components we first need a list of all components of the two appli-
cations. Listing 4.4 shows the corresponding method. We start with the components that
are referenced directly by the application itself. Then we iterate over every component and
add it to the list of components. The same method is then called recursively on all children
of the component. So in the end we have a list of components without the hierarchy. We
again put the components in a map with their fully qualified name as a key, so we can
uniquely identify each component in the application.

Listing 4.4. Component flattening

16

4.2. Backend Extension

1 public static Map<String, Component> flatComponents(List<Component> components) {

2 Map<String, Component> flatComponents = new HashMap<>();

3
4 flatComponentsInternal(components, flatComponents);

5
6 return flatComponents;

7 }

8
9 private static void flatComponentsInternal(List<Component> components, Map<

String, Component> flatComponents) {

10 for (Component component : components) {

11 List<Component> children = component.getChildren();

12 flatComponents.put(component.getFullQualifiedName(), component);

13
14 if (!children.isEmpty()) {

15 flatComponentsInternal(children, flatComponents);

16 }

17 }

18 }

These two lists are then iterated over and marked in the same way as the applications.
As before we need to add the components to the second landscape if they were marked as
DELETED. This can be seen in Listing 4.5. We first identify the original parent component
of the component that we want to add to the second landscape. If such a parent does
not exist, we can add to the second landscape directly since it is a top level component.
Otherwise we will search for the parent in the second landscape and change the parent of
our component to it. If such a parent doesn’t exist, we do not need to do anything, since
the parent must also be marked as DELETED and therfore will be added in the future. This
parent still has the original hierarchy saved and therefore it the component is then added
with their parent. We also record all components that were added to the second landscape.

Listing 4.5. Adding a component to the landscape

1 Component parentIn1 = component.getValue().getParentComponent();

2
3 if (parentIn1 == null) {

4 application2.getComponents().add(component.getValue());

5 } else {

6 Component parentIn2 = components2.get(parentIn1.getFullQualifiedName());

7
8 if (parentIn2 != null) {

9 parentIn2.getChildren().add(component.getValue());

10 component.getValue().setParentComponent(parentIn2);

17

4. Implementation

11 }

12
13 addedComponentsTo2.put(component.getKey(), component.getValue());

14 }

15
16 component.getValue().getExtensionAttributes().put(MergerHelper.STATUS, Status.

DELETED);

The classes are also compared in a similar fashion. We again get all classes in the appli-
cation by simply iterating over the previous component lists and getting all their classes.
These classes are then compared in the exact same fashion. Any DELETED classes are just
added to their respective components in landscape two. Since this is done after components
were added the needed components must exist. We use the previous component list and
the recorded added components to find the needed components.

Finally the communications are compared. Here we don’t need to create a list of
communications, since these are already saved in the applications. So we get the aggregated-
CalzzCommuniactions of the applications and iterate over them. Then we put them in the
same map structure as the others, i.e. the fully qualified name as the key and the actual
object as the value. The comparison is then exactly the same. DELETED communications
are just added to the list of aggregated communications of the second landscape.

4.2.2 Calculating the History

Listing 4.6 shows the resource that is responsible for providing the history. Here the
frontend provides a list of timestamps for the versions it wants the history of. As before
we get all landscapes from the history service and then call the HistoryService to calculate
the actual history. The listing also shows that this history is returned as its own object.
This object has three fields, one for the component history, one for the class history and
one for the communication history. The component history and class history have the type
Map<String, Map<String, Map<Long, Status>>>. Here for every application a number of
components/classes are saved. Then for every one of those components/classes a number
of timestamps and their respective changes are saved. The applications are saved with
their name and the components/classes are saved with their fully qualified name. This
combination of application name and fully qualified name assigns each component/class
that gets added to the history a unique identifier in the landscape.

Listing 4.6. HistoryResource

1 @Path(value = "histories")

2 public class HistoryResource {

3
4 @Inject

5 private HistoryService historyService;

18

4.2. Backend Extension

6
7 @Inject

8 private LandscapeRetrievalService landscapeRetrievalService;

9
10 @GET

11 public History getMergedLandscape(@QueryParam("timestamps[]") final List<Long>

timestamps) throws IOException, DocumentSerializationException {

12 List<Landscape> landscapes = new ArrayList<>(timestamps.size());

13
14 for(Long timestamp : timestamps) {

15 landscapes.add(landscapeRetrievalService.retrieveLandscapeByTimestamp(

timestamp));

16 }

17
18 return historyService.computeHistory(landscapes);

19 }

20 }

The communications are saved as a list of communicationHistory objects. These objects
hold the source and target class names and the application name. Again the fully qualified
name is used so every class is uniquely identified.

The actual calculation of the history is done inside the HistoryService and uses the
same algorithm as before. The difference is now that we not only compare two landscapes
but a list of them. Listing 4.7 shows how this is done. We first compare version one and
two then version two and three and so on. This allows us to record every change between
the versions.

Listing 4.7. History between multiple landscapes

1 public History computeHistory(List<Landscape> landscapes) {

2 History history = new History();

3
4 for (int i = 0; i < landscapes.size() - 1; i++) {

5 compareLandscapes(landscapes.get(i), landscapes.get(i + 1), history);

6 }

7
8 return history;

9 }

Every two landscapes are then compared to each other. This is done exactly like before,
only here the status is instead recorded into the history object instead of the landscape
itself. Also we only record ADDED or DELETED statuses. Listing 4.8 shows the component
comparison as an example. As can be seen if a difference occurs the current timestamp,

19

4. Implementation

application name and component name is recorded together with the actual change.

Listing 4.8. History between multiple landscapes

1 for (Map.Entry<String, Component> component : flatOldComponents.entrySet()) {

2 if (!flatNewComponents.containsKey(component.getKey())) {

3 history.addHistoryToComponent(applicationName, component.getValue().

getFullQualifiedName(), timestamp, Status.DELETED);

4 }

5 }

6
7 for (Map.Entry<String, Component> component : flatNewComponents.entrySet()) {

8 if (!flatOldComponents.containsKey(component.getKey())) {

9 history.addHistoryToComponent(applicationName, component.getValue().

getFullQualifiedName(), timestamp, Status.ADDED);

10 }

11 }

4.3 Frontend Extension

The frontend extension is responsible for presenting the data, that the backend calculated,
to the user. This is done via an ember addon that extends the ExplorViz frontend. On the
actual ExplorViz site our addon can be accessed by the comparison route. This route is
added to the navigation bar so the user can navigate to it. Figure 4.3 shows a screenshot of
the user interface without a merged landscape. The lower area consists of the timeline in
were the user can upload the different version. In the middle area the landscape will be
rendered. The button in the top right allows the user to upload new landscapes. We will
further present the implementation of the landscape upload, the timeline, the rendering of
a merged landscape and the presentation of the history.

4.3.1 Uploading Landscapes

For the upload we also utilize the HistoryService in the backend. This services provides a
resource that allows for landscape uploads. These landscapes are JSON files which can be
downloaded via the visualization route. This download functionality and a replay route
which displays uploaded landscapes are a core feature of the frontend.

Our upload function is mostly a copy of the upload function of the replay route. We
make an AJAX request to the backend with the file. Additionally we push the timestamp
of the uploaded landscape into the timeline to allow the user to select it. We just push the
timestamp into the array that holds them. This is only done if the upload was successful.

20

4.3. Frontend Extension

Figure 4.3. User interface

We also modified the function so the user can upload multiple landscapes at a time.
For this we modify the file dialog so it will allow for multiple file selection and then we
iterate over those files and make the request for each of them.

4.3.2 Timeline

The timeline started as a copy of the timeline that ExplorViz uses in it visualization route.
We then modify it in two ways: First we change it so the timestamps that get shown in the
timeline are saved in our merged-landscape-repository service. This service holds the current
landscape, application, history and a list of timestamps in the timeline. If the timeline has
to be rendered it pulls its timestamps from there. This allows us to be independent of the
rest of ExplorViz so we can display our own timestamps. Secondly we remove the request
in the y-axis since those are not relevant for our purposes.

If the user selects two timestamps in the timeline we get a subarray from all timestamps
with those two timestamps and every timestamp in between and we use this array to make
a request to our history and comparison route in the backend. The history resource gets
the whole content of the array and the comparison resource the first and last element. The
request are handled by the ember store via adapters. If the calls return we push the answers
into our merged-landscape-repository and trigger an update of the landscape rendering.

21

4. Implementation

4.3.3 Rendering of a Merged Landscape

As explained in Section 2.2 ember uses a lifecycle for its components to allow developers to
manipulate them. ExplorViz uses the didRender() hook to render its landscapes. This is done
in two components: landscape-rendering for the landscape view and application-rendering
for the application view. To allow us to render our merged landscape we have to extend
those components. We do this in the components merged-landscape-rendering and merged-
application-rendering respectively. Both components are then rendered in our comparison
route.

Listing 4.9 shows the extended method for the landscape rendering. This method
“createPlane” gets called when a new application is added to the scene. In line 12 and
following we check for the status of the application and color them accordingly. The
actual color comes from the comparisonConfiguration, a configuration service that just
holds the values of all needed colors in our expansion. More importantly we override the
landscapeRepo variable with our own merged-landscape-repository service, so we render our
own landscape.

Listing 4.9. Landscape Rendering

1 export default class MergedLandscapeRendering extends LandscapeRendering {

2 @service(’merged-landscape-repository’)

3 landscapeRepo!: MergedLandscapeRepository;

4
5 @service(’comparison-configuration’)

6 comparisonConfiguration!: ComparisonConfiguration;

7
8 createPlane(model) {

9 const emberModelName = model.constructor.modelName;

10 let color;

11 const applicationStatus = model.get(’extensionAttributes.status’);

12
13 if(emberModelName == ’application’) {

14 if(applicationStatus == ’ADDED’) {

15 color = this.get(’comparisonConfiguration.mergedLandscapeColors.

addedApplication’);

16 } else if(applicationStatus == ’DELETED’) {

17 color = this.get(’comparisonConfiguration.mergedLandscapeColors.

deletedApplication’);

18 } else if(applicationStatus == ’ORIGINAL’) {

19 color = this.get(’comparisonConfiguration.mergedLandscapeColors.

originalApplication’);

20 }

21 } else {

22

4.3. Frontend Extension

22 color = this.get(’configuration.landscapeColors.’ + emberModelName);

23 }

24
25 const material = new THREE.MeshBasicMaterial({

26 color: color

27 });

28 ...

29 }

The application view is implemented in a similar fashion. Listing 4.10 for example,
shows the coloring of the classes. Again we check the attributes and set the color to the
corresponding value. Here the filtering of entities is also visible. This allows the user to gray
out entities with a specific status. These filters are just booleans inside the configuration
service. The user can toggle them via buttons in the navigation bar. We simply check if the
relevant flag is set and otherwise set the color to the deselected value.

Listing 4.10. Class Rendering

1 const clazzAttribute = clazz.get(’extensionAttributes.status’);

2 let clazzColor;

3
4 if(clazzAttribute == ’ADDED’ && this.get(’comparisonConfiguration.

comparisonToggle.added’)) {

5 clazzColor = this.get(’comparisonConfiguration.mergedApplicationColors

.addedClazz’);

6 } else if (clazzAttribute == ’DELETED’ && this.get(’

comparisonConfiguration.comparisonToggle.deleted’)) {

7 clazzColor = this.get(’comparisonConfiguration.mergedApplicationColors

.deletedClazz’);

8 } else if (statusAttribute == ’ORIGINAL’ && this.get(’

comparisonConfiguration.comparisonToggle.original’)) {

9 clazzColor = this.get(’configuration.applicationColors.clazz’);

10 } else {

11 clazzColor = this.get(’comparisonConfiguration.mergedApplicationColors

.deselectedClazz’);;

12 }

13
14 this.createBox(clazz, clazzColor, true);

4.3.4 Displaying the history

We need to present the calculated history to the user. As described in we want to display
the history for a selected entity in the application view. To allow this, we use the highlighter

23

4. Implementation

service of ExplorViz. It allows us to easily find the selected entity in the current application.
Our history is then presented as a table split into three parts: the components, classes and
communications.

Listing 4.11 shows the implementation of the component history as an example. First
we have to determine what entity is currently selected. We then check if the selected entity
is a component. The actual history for the currently loaded landscape is also saved in the
merged-landscape-repository and is loaded here. We also get all children of the component
and their children. The highlighted component is also added to this list. This allows
us display the history for every component that is hierarchically below the highlighted
component. We then iterate over those components and check if the component name is in
the history. If such an entry exists it is added to the return value of the function. This is
then displayed by the template of the component.

Listing 4.11. Component History

1 get componentHistory() {

2 const highlightedEntity = this.get(’highlighter.highlightedEntity’);

3
4 if(highlightedEntity instanceof Component) {

5 const components = highlightedEntity.getAllComponents();

6 components.push(highlightedEntity);

7 const applicationName = this.get(’landscapeRepo.latestApplication.name’);

8 const histories = [];

9 const latestHistory = this.get(’landscapeRepo.latestHistory.

componentHistory.’ + applicationName);

10 const self = this;

11
12 components.forEach((component) => {

13 const historyEntry = latestHistory[component.get(’fullQualifiedName’)

];

14
15 if(historyEntry) {

16 histories.push({name: component.get(’name’), historyEntry: self.

convertHistoryEntry(historyEntry)});

17 }

18 });

19
20 return histories;

21 }

22
23 return null;

24 }

24

4.3. Frontend Extension

The function for the classes is similar. The class function distinguishes between a
selected class and a selected component. The component displays all histories of classes
it contains, if any exist, and, if a class is selected, only the history for this single class is
shown.

The communication is displayed similarly. Here a difference between classes and
communications is made. For a class, every communication it has, is shown. A selected
communication only shows the history of itself.

25

Chapter 5

Evaluation

In this chapter, we will present the evaluation of our approach and implementation. First we
will describe the overall goal of our evaluation in Section 5.1, followed by the methods used
for the evaluation in Section 5.2. Then we will present the conducted usability experiment
in Section 5.3 and finally summarize the evaluation in Section 5.4.

5.1 Goals

Our main goals are the evaluation of the functionality and usability of our software. A user
should be able to effortlessly and intuitively use our tool to compare two versions and look
at the history between them. We want the participants to interact with our tool and test if
they can employ it to easily compare software versions. Furthermore we want to identify
any potential errors, bugs or bad user interface decisions in our software.

5.2 Methodology

Here we describe the methods used in our evaluation. We conduct a survey based on a
questionnaire, which we will describe in Section 5.3.1. The questionnaire includes a series
of tasks, which the participants are asked to complete. During this time we also note how
well the participants navigate through the tool and what errors they make. Additionally
we note the completion time of the tasks.

5.3 Usability Experiment

Here we describe the actual experiment we conducted. We first start by describing the
questionnaire followed by the soft- and hardware setup for the experiment. After that the
actual course of the experiment is outlined. Then we present the results and our discussion
of them. Finally, we discuss threats to the validity of our experiment.

27

5. Evaluation

5.3.1 Questionnaire

We use an online questionnaire1 for our evaluation. It is divided into three sections. These
are presented below. The complete questionnaire can be found in Section A.2.

Personal Information

First we ask the participants for personal information, especially regarding their previous
knowledge. The first question asks for the job title or, if they are a student, their subject.
Then we want to know how many years they have worked in that job or in which semester
they currently are in and what degree they are pursuing. This allows us to assess how
knowledgeable our participants are in the general field of computer science. The final three
questions regard their previous knowledge in the following topics:

� ExplorViz

� Software Visualization Tools

� Java Programming

The participants are asked to rate those experiences on a four point scale (None-
Beginner-Intermediate-Expert). The perceived difficulty of the following tasks might corre-
late with the previous knowledge of the participants, especially with the ExplorViz tool.
Knowledge in other tools of that kind might also influence how easy they can work with
ExplorViz. Finally, since our landscapes are based on a Java program, knowledge here
might help understanding the parallels between ExplorViz landscapes and the architecture
of a Java program. This might allow the participants to intuitively grasp the different
aspects of an ExplorViz landscape.

Tasks for Comparing Landscapes

The second section of the questionnaire consists of a few tasks the participants are asked
to solve. The purpose of those tasks is for the participants to interact with the tool and
familiarize themselves with it.

We start with a short text asking the participants to upload four prepared landscapes.
Then the next six questions task the participant with finding an added/deleted compo-
nent (question 6/7), class (question 8/9) and communication (question 10/11). These tasks
are mostly used so the participants navigate through our tool and to measure how intuitive
features like the filter are.

Question 12 is intended to test how intuitive the changes of the applications in
the landscape view are. The participants are asked to consider a particular applica-
tion(remoteSampleApplicationClient) and to write down what happened to it.

1https://docs.google.com/forms

28

https://docs.google.com/forms

5.3. Usability Experiment

Questions 13 and 14 regard the history feature. We ask what changes occurred in two
entities and in which version those changes occurred. These two entities are the added
communication in the sampleApplication application (question 13) and the sampleClient

class in the remoteSampleApplication application (question 14). These questions will allow
us to asses how usable the history feature is and if it presents the data in a readable fashion.

Debriefing Questions

Lastly, we ask four questions about the usability of the tool. The participants answer those
questions on a five point Likert scale [5]. The questions were in order:

15. How easy did you find the tasks?

16. How easy was it to use the tool?

17. How easy was it to navigate through the site?

18. How useful did you find the history feature?

Questions 15 to 17 had to be rated from very easy to very hard and question 18 from
not useful to very useful. Finally we asked for any additional feedback towards our tool
in question 19. These questions allow us to assess how usable our tool is and how much
functionality was added by our history feature.

5.3.2 Experimental Set-Up

Tutorial Set-Up

We use the tutorial extension from ExplorViz2 to demonstrate the basic functionality of
ExplorViz to the participants. For this we prepare a tutorial using one of the landscapes
described below. This tutorial consists of a series of steps starting with the landscape view.
Then the participant is taught what applications are and asked to open a specific one.
In the application view the same is done for components. To demonstrate classes they
now have to open more components until they can see some classes of those components.
Next the ability to highlight different entities is demonstrated and they have to highlight a
specific component to progress. Finally communications are explained and the participant
is required to highlight a specific one to complete the tutorial.

2https://github.com/ExplorViz/explorviz-frontend-extension-tutorial and https://github.com/ExplorViz/

explorviz-backend-extension-tutorial

29

https://github.com/ExplorViz/explorviz-frontend-extension-tutorial
https://github.com/ExplorViz/explorviz-backend-extension-tutorial
https://github.com/ExplorViz/explorviz-backend-extension-tutorial

5. Evaluation

Table 5.1. Hardware specifications

CPU Intel Core i5-6500 4x 3.20 Ghz
RAM 16 GB
Display Size 24 inch
Display Resolution 1920 x 1200 pixels

Generating Landscapes for the Experiment

We generate four landscapes for our experiment by monitoring the "kiekerSampleApplica-
tion" provided by ExplorViz. To allow the comparison we use two different versions in the
GitHub repository 3.

We start by monitoring the later version by executing the provided script and starting
the ExplorViz backend and frontend. Then we download the monitored landscape through
the visualization route.

The same thing is then repeated for the earlier version to generate a second landscape
with a later timestamp. To generate a history we repeat this process now again with the
later and then the earlier version again. We save those landscape files to later use them in
the experiment.

Configuration

The experiment is conducted using two machines. One is used by the participants for the
tasks and the other allows them to fill out the questionnaire. The first machine is a desktop
computer. Its specifications can be seen in Table 5.1.

The operating system is Windows 10 Professional 64-bit and we use the Java Develop-
ment Kit Version 12.0.2. The ExplorViz version is 1.4.0.

We prepare the machine by running the ExplorViz frontend and backend together
with our backend and frontend extension. The backend is started in Eclipse via the
provided run configurations and the frontend in the Windows powershell with “ember
serve”. Additionally we install the ExplorViz tutorial extension and upload the previously
prepared tutorial. The prepared landscapes are placed on the desktop.

The second machine is a laptop that is placed next to the first one, so the participants
can easily reach it. We open the questionnaire on it so the participants can fill it in.

5.3.3 Execution of the Experiment

We start by letting the participants run through the tutorial. Then we explain the overall
motivation behind our extension and why we developed it. Further we explain possible
scenarios in which such a tool might be useful.

3https://github.com/ExplorViz/sampleApplication/commit/3205bb90e3f40d0fcf40624fc43f21b6867699f5 and https://github.

com/ExplorViz/sampleApplication/commit/809c0d9e4570252948e40c4f4f69d5ac8a862f79

30

https://github.com/ExplorViz/sampleApplication/commit/3205bb90e3f40d0fcf40624fc43f21b6867699f5
https://github.com/ExplorViz/sampleApplication/commit/809c0d9e4570252948e40c4f4f69d5ac8a862f79
https://github.com/ExplorViz/sampleApplication/commit/809c0d9e4570252948e40c4f4f69d5ac8a862f79

5.3. Usability Experiment

Table 5.2. Participant experiences

Skill None Beginner Intermediate Expert
ExplorViz 3 3 1 1
Software Visualization Tools 4 3 1 0
Java Programming 0 5 2 1

Then we ask them to fill out the personal information section of the questionnaire
followed by the tasks. After they upload the landscapes, we point out the functionalities on
the navigation bar, namely the history and the filter. When they complete the tasks, the
experiment ends with the debriefing questions. We take the time time at the beginning and
end of the tasks. The whole experiment procedure can be found in Section A.1.

5.3.4 Results

Here we present the results of our experiment and our questionnaire, starting with the
personal information, followed by the comparing tasks. We then close with the debriefing
questions.

Personal Information

Our study consisted of eight participants, six of them bachelor computer science students,
one master student and one former bachelor computer science student. The bachelor
semester ranged from the 3rd to the 8th semester and the master student was in the 2nd
semester. Their experiences in the described subjects is shown in Table 5.2.

Tasks for Comparing Landscapes

Here we present the results of the comparison tasks. In Table 5.3 the percentage of partici-
pants who solved the tasks correctly can be seen. The raw data is shown in Section A.3.

We also measured the time the participants took to complete the tasks. The mean time
was 12.6 minutes.

Debriefing Questions

This section was designed to gather feedback. The mean results are presented in Table 5.4.
Additionally we asked for any additional feedback on our tool in question 5. These

answers can be seen in the raw data in Section A.3.

31

5. Evaluation

Table 5.3. Correct tasks

Question Correct Answers Incorrect Answers Percentage of correct answers
6 7 1 87.5%
7 7 1 87.5%
8 6 2 75%
9 8 0 100%
10 7 1 87.5%
11 6 2 75%
12 8 0 100%
13 8 0 100%
14 8 0 100%

Table 5.4. Debriefing Results

Question Mean
15 2.5
16 2.6
17 1.7
18 4.0

5.3.5 Discussion of Results

In this section we will discuss the previously described results again divided into the three
sections of the questionnaire.

Personal Information

All participants were computer science students, therefore it is not surprising that all
reported at least a beginner level of experience in Java, since they probably all gained
experience during their bachelor or master course. We can also see that the experience in
ExplorViz and software visualization tools in general seem to correlate, i.e. if a participant
reported no experience in ExplorViz they also didn’t report any or not very much experience
in software visualization tools. There is also a clear divide between participants that
prevoiusly worked with ExplorViz and those who didn’t. Only the two participants that
worked previously with ExplorViz reported their experience as intermediate or expert.

Tasks for Comparing Landscapes

Here we wanted the participants to work with our tool and measure how easy and intuitive
it is. On problem that some participants faced was the timeline. We had to explain how to
start the comparison of landscapes and what the datapoints represented. Here we should
try to explain this functionality better inside the tool.

32

5.3. Usability Experiment

As can be seen in Table 5.3 all tasks had at most one or two incorrect answers. We
observed during the experiment that most of those errors were due to misunderstandings
what a component, class or communication is in ExlorViz. This is further supported by the
fact that those mistakes only occurred with participants who had no former experience
with ExplorViz. A better explanation or tutorial would help us here to further improve our
tool.

Another error was that participants misinterpreted the color of the original classes as
added classes. When the filter was used, this mistake did not happen. Therefore we need
to change these colors to better reflect the status of the classes and resolve this ambiguity.

Especially the tasks related to the history feature (questions 12, 13 and 14) have a very
high correctness, which indicates that the usage is easy and not very error prone. Although
on participant started to compare multiple different landscapes and tried to find out which
timestamp correlates to which version in the timeline. This association should be made
automatically by the tool.

Some participants also used the history to identify the asked for changes and used the
wrong version. We need to better represent which timestamp corresponds to which version
in the timeline. Further we need to better communicate that the changes in the landscape
are actually between the selected datapoints.

The mean time for the tasks was relatively short, which indicates that the tool is
somewhat fast to use.

Debriefing Questions

We wanted to know if the tool was easy to use and intuitive. For the first three questions
a lower value means that the participants rated the tasks, tool usage and navigation as
easier. As can be seen in Table 5.4 the participants thought the tasks were easy to solve,
the tool easy to use and it was easy to navigate. This suggests that, even without previous
knowledge about ExplorViz, our tool was intuitive to use.

The fourth question asked for the usefulness of the history feature. Here a higher value
means that the participants rated the feature as more useful. The result in Table 5.4 shows
that the overall rating of the usefulness of this feature was quite high. This indicates that
this function is a useful addition to our tool.

The last question asked for any additional feedback. One common complaint was that
the colors for the different statuses are not intuitive and should be changed. Also some
colors (e.g. the yellow for the status deleted) make it hard to read the white text of the
labels. Here we might need use different colors or offer a customization option for those.

One participant suggested that the versions in the timeline should also be able to be
loaded in in non timestamp order. This would definitely enhance the functionality since it
wouldn’t rely on the landscape timestamps to order them in the timeline. The user could
potentially order them in any order they want.

Another suggestion was to make the history feature more prominent by, for example,
opening it up, if an entity got selected, or highlight the respective button better. This would

33

5. Evaluation

also make it easier to use the tool without an introduction as the one in the experiment.
The format of the timestamps was another issue. Here a better readable format would

be sufficient.
Finally a bug in the search feature was revealed. It does simply not work. This needs to

be fixed.

5.3.6 Threats to Validity

Our study only included eight participants. Statistically meaningful results are not really
possible with this low number. Another study with more participants would help solve
this problem and further validate our results.

Another threat are the chosen tasks. They might not fully represent a typical workflow
with the tool. Related to this are the chosen landscapes as those were quite arbitrary. We
might need to construct a better real life example for this.

Additionally, the experience level differences between participants, especially regarding
ExplorViz, was quite high. We had participants with no former experience and participants
with a lot of experience. This might skew our results as the less experienced participants
might have had more problems with ExplorViz overall instead of our tool specifically.

5.4 Summary

To summarize, overall we received positive feedback from our participants which was also
represented in our debriefing questions. The tool seems to be easy to use after a short
introduction with still a few user interface problems. Our tasks were solved correctly which
suggests that the functionality of our tool is given and the intended problems can be solved
with it. The questionnaire and the raw results can be found in Appendix A. Additionally
they can be found on Zenodo4 together with all needed artifacts to replicate the experiment.

4https://doi.org/10.5281/zenodo.3465317

34

https://doi.org/10.5281/zenodo.3465317

Chapter 6

Related Work

In this chapter we will present related work for this topic. We start with an ExplorViz
extension by Wegert [6] and follow with another extension by Hackel [4].

The first extension was developed by Wegert [6]. Here the goal was to compare two
software versions with the help of ExplorViz. To accomplish this a new extension for
front- and backend was developed. This extension was created before ExplorViz shifted to
microservice architecture [7, 9] and therefore it does not work with the current ExplorViz
version. The extension allows for the comparison of two landscapes. In this two landscapes
all applications are compared and the changes are merged into a single landscape. If
an application does not exist in both landscapes no comparison is done. The differences
between the landscapes are described with four statues: ADDED, DELETED, ORIGINAL,
EDITED. ADDED means an entity was added, DELETED it was deleted and ORIGINAL
that no change occurred. EDITED means that an entity contains an ADDED or DELETED
entity. These changes are visualized in the frontend by coloring the merged landscape
according the the statuses.

Another extension for ExplorViz was presented by Hackel [4]. Here the the goal was to
test if a software architecture conforms to a model. To construct this model an extension
called “Modeleditor” for the front- and backend is provided. This extension allows the
user to create a landscape in the frontend by adding the entities. This can be done for every
landscape in the data model. With such a model a “real” landscape can be compared with
it. For this the extension “ArchConfCheck” is provided. It compares a landscape with a
model and provides a new landscape where the entities are marked with three statuses.
The statues are ASMODELLED if the entity exists in the landscape and in the model,
WARNING if it exists in the landscape but not in in the model and GHOST if an entity
exists in the model but not in the landscape. These status are then visualized as colors in
the frontend, i.e. every status is colored differently.

35

Chapter 7

Conclusions and Future Work

In this chapter we will summarize our thesis and draw a conclusion. Furthermore we will
discuss any future work on our approach and implementation.

7.1 Conclusions

This thesis had the goal of developing an extension for ExplorViz to allow it to compare
software architectures. We first described our approach and implementation for this
extension. Finally we conducted an evaluation to gather information about the functionality
and usability of our implemented software.

Our software was developed as an extension to ExplorViz and consisted of a backend
and a frontend. Our backend is responsible for comparing and merging two landscapes and
calculating the history between a list of landscapes. We record those differences with the
three status ADDED, DELETED and ORIGINAL and added them directly to the landscape
and a our own history model. This data was presented to the frontend which was then
responsible for displaying that data to the user. The differences in the merged landscape
were visualized with the colors of the entities and the history showed every difference
between the versions for the selected entity in a table format.

The evaluation was conducted as a usability experiment. We designed a questionnaire
and performed the experiment with multiple participants. Our tasks were easily solved
and with a high correctness and we conclude that our extension is usable and functional.
Although we also identified some problems with the user interface and our experiment
might not be statistically relevant due to the low participant number.

Our extension allows a developer to compare two software versions visually, so changes
in the architecture can be easily identified. It also provides the ability to get a history of
every entity in an application that comprises every change that occurred in the versions
between the compared landscapes.

7.2 Future Work

Our software can be extended with several features in the future. We will describe some
ideas that came up during the development process and suggestions from the evaluation.

37

7. Conclusions and Future Work

First there is the issue of persisting the calculated landscapes and history. Currently
if the user closes the comparison site in the frontend everything that was calculated is
lost. Especially large landscapes or a lot of versions between them can take a while to
calculate. It would be useful if this is only needed one time and then everything could
be saved. This would be accomplished by adding a database to the backend and saving
the merged landscape and history to it if they are requested by the frontend. We would
need to assign them some sort of unique id to allows us to reference them back. The
frontend could then request those ids from the database. A file based approach would also
be possible. Here we would allow the user to up- and download previously generated
landscapes and histories. These would probably saved in the JSON format as are the
currently downloadable landscapes. We could also present previously saved landscapes
and histories to the user so they can easily select them.

Another possible feature would be the customization of the colors in the merged
landscapes. ExplorViz already offers a colorpicker extension for its normal landscapes. We
could use this extension to implement a color choice for our landscapes. This would allow
for example users with colorblindness to choose colors that are better visible for them. A
number of presets would also possible.

Another possible feature would be that the versions in the timeline can be ordered
in non timeline order. Currently the versions are ordered automatically in the order of
the timestamps of the landscapes. We would need a way to allow the user to order the
datapoints in the timeline perhaps via drag and drop.

Finally we could display more information within the merged landscape and the history.
Currently only changes to the architecture are calculated and for the communications we
only consider the aggregated communications, i.e. all method calls between two classes. If
for example a communication would get another method call our current implementation
would not detect that. We would need to compare the communications separately and
display them to the user. For example we could show in the history, if a user selects a
communication, every method call that changed in this communications in a similar fashion
as it is currently shown. Other useful information that could be compared is for example
the instance count of classes or applications to observe the load of the system. The same
is true for system or node metrics which would also be useful for performance analysis.
Also the communications between applications in the landscape view are currently not
considered. This would also be a useful addition.

38

Bibliography

[1] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring. 2013. Live trace visualization for
comprehending large software landscapes: the explorviz approach. In 2013 First IEEE
Working Conference on Software Visualization (VISSOFT). (September 2013), 1–4 (cited on
page 3).

[2] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. 2017. Software landscape
and application visualization for system comprehension with explorviz. Information
and Software Technology, 87, (July 2017), 259–277. http://eprints.uni-kiel.de/33464/ (cited
on page 3).

[3] Florian Fittkau, Sascha Roth, and Wilhelm Hasselbring. 2015. Explorviz: visual runtime
behavior analysis of enterprise application landscapes. In AIS (cited on page 3).

[4] Tim Hackel. 2018. Architekturkonformitätsüberprüfung von softwarelandschaften mittels
explorviz. Diplomarbeit. Kiel University, (September 2018). http://eprints.uni-kiel.de/

44272/ (cited on page 35).

[5] Rensis Likert. 1932. A technique for the measurement of attitudes. Archives of psychology
(cited on page 29).

[6] Josefine Wegert. 2018. Visualizing software architecture comparison of a web-based financial
application in explorviz. Masterarbeit. Kiel University, (Mai 2018). http://eprints.uni-

kiel.de/43099/ (cited on pages 8, 9, 14, 35).

[7] Christian Zirkelbach, Alexander Krause, and Wilhelm Hasselbring. 2019. Modular-
ization of research software for collaborative open source development. In The Ninth
International Conference on Advanced Collaborative Networks, Systems and Applications
(COLLA 2019). (June 2019), 1–7. http://eprints.uni-kiel.de/46777/ (cited on pages 3, 7, 35).

[8] Christian Zirkelbach, Alexander Krause, and Wilhelm Hasselbring. 2018. On the
modernization of explorviz towards a microservice architecture. In CEUR Workshop
Proceedings (cited on page 3).

[9] Christian Zirkelbach, Alexander Krause, and Wilhelm Hasselbring. 2019. On the mod-
ularization of explorviz towards collaborative open source development. Forschungs-
bericht. Kiel University, (April 2019). http://eprints.uni-kiel.de/46829/ (cited on pages 3,
7, 35).

39

http://eprints.uni-kiel.de/33464/
http://eprints.uni-kiel.de/44272/
http://eprints.uni-kiel.de/44272/
http://eprints.uni-kiel.de/43099/
http://eprints.uni-kiel.de/43099/
http://eprints.uni-kiel.de/46777/
http://eprints.uni-kiel.de/46829/

Appendix A

Usability Experiment

A.1 Experiment Procedure

� present the tutorial and let the participant solve it

� explain the motivation behind the extension:

� it is useful to compare software versions, e.g. for bug fixing

� this can be very complicated

� code comparison is possible but quite cumbersome

� a visual approach works better

� the extension automates this process and creates a version history

� present them the questionnaire and let them fill in the personal questions

� they start the tasks

� after uploading the landscapes, show them the history and the filter function

� let them fill in the debriefing questions

41

15.9.2019 Evaluation Bachelorarbeit

https://docs.google.com/forms/d/1cGFPRuIjsYSn25aw6ha6M2gw3PVhB01GilCeOUM34Bw/edit 1/3

Evaluation Bachelorarbeit

Personal Information

1. What is your job title? If you are a student
what is your subject?

2. How many years did you have this job or if
you are a student, what is your current
semester and what degree you are pursuing?

Experience

Please rate your experience with the following:

3. ExplorViz
Markieren Sie nur ein Oval.

 None

 Beginner

 Intermediate

 Expert

4. Software Visualization Tools
Markieren Sie nur ein Oval.

 None

 Beginner

 Intermediate

 Expert

5. Java Programming
Markieren Sie nur ein Oval.

 None

 Beginner

 Intermediate

 Expert

Comparison Tasks
Next you will try to solve some tasks using ExplorViz.

Please navigate to the comparison site and upload the four landscapes, which can be found on the
desktop in the folder "landscapes". The history of a component can be opened by highlighting it and
opening the history from the navigation bar.

A.2 Questionnaire

15.9.2019 Evaluation Bachelorarbeit

https://docs.google.com/forms/d/1cGFPRuIjsYSn25aw6ha6M2gw3PVhB01GilCeOUM34Bw/edit 2/3

Please compare the first and the final version. Try to find a example for the following. Note the name
and the application it is in. If you think it doesn't exist just leave the field blank.

6. An added component

7. A deleted component

8. An added class

9. A deleted class

10. An added Communication

11. A deleted Communication

12. What happend to the "remoteSampleApplicationClient"?

13. Consider the added Communication in the
sampleApplication. When was this
communication added? In which version?

14. What changed in the sampleClient Class in the remoteSampleApplicationClient in the
different versions? What change occured when?

Usability questions

15.9.2019 Evaluation Bachelorarbeit

https://docs.google.com/forms/d/1cGFPRuIjsYSn25aw6ha6M2gw3PVhB01GilCeOUM34Bw/edit 3/3

Bereitgestellt von

15. How easy did you find the tasks?
Markieren Sie nur ein Oval.

1 2 3 4 5

very easy very hard

16. How easy was it to use the tool?
Markieren Sie nur ein Oval.

1 2 3 4 5

very easy very hard

17. How easy was it to navigate through the site?
Markieren Sie nur ein Oval.

1 2 3 4 5

very easy very heard

18. How useful did you find the history feature?
Markieren Sie nur ein Oval.

1 2 3 4 5

not useful very useful

19. Do you have any additional feedback?

Question 1 2 3 4 5 6

Informatik Bachelor of Science, 8 Semester Intermediate Beginner Intermediate keine neue
Ex Wirtschaftsinformatiker, jetzt Koch Azubi 3 Semester None None Beginner
Student, Computer Science 2nd Semester, Master Expert Intermediate Intermediate

Informatik Student, Fachinforamtiker AW 6, Bachelor Beginner None Expert
Student Informatik 3 Beginner Beginner Beginner
Information Technology 3rd semester, Bachelor of Science None None Intermediate math
CS 8 Semester Beginner Beginner Intermediate
IT-Student 4, Bachelor None None Intermediate

A.3. Raw Data

A.3 Raw Data

45

7 8 9 10

net keine neue JavaExample SQLStatementHandler -> SQLStatementHandler&Querytype
net SampleClient SQLStatementHandler->SQLStatementHandler$Querytyp
remoteSamlpleApplicationClient.net SampleClient SampleServer -> Main

net SQLConnectionHandler SQLStatementHandler SamplerServer -> Main
SampleServer SampleClient SQLStatementHandler

application N/A Fibonacci SQLStatementHandler
net.explorviz SQLStatementHandler SampleServer -> Main
net SampleServer SampleServer -> Main

A. Usability Experiment

46

11 12 13 14 15 16 17 18

Main$ApplicationTask -> JavaExample gelöscht ...664 deleted everything ..664 3 2 2 3
SQLStatementHandler->createStatemen() got deleted 664 Deleted 664 2 2 1 5
SQLStatementHandler -> createStatement() It was removed entirely 1567741979664 It was reledet in the version with timestamp 1567741979664 2 3 1 2

Alles wurde gelöscht Letzte Version Deleted, 1567741979664 3 2 2 3
ApplicationTask deletet 664 664 2 2 1 5
JavaExample->Fibonacci Complete deleted :(664 664 - deleted 2 2 1 4
SQLStatementHandler -> createSatement() It got deleted 664 Deleted 4 4 3 5
SQLStatementHandler -> createStatement() everything got deleted 664 got deleted in 644 2 4 3 5

A.3. Raw Data

47

19
-andere farben wählen in der leiste. rot für löschen. Den text in den buttons weiß machen, damit besser lesbar.
-die suche nach komponenten funktioniert nicht wie erwartet.
-landscapes sollten auch in einer nicht kronolgischen reihenfolge in die applikation reinladbar sein. (graph unten)
-deslektieren von landschaften durch erneuten klick auf den roten datenpunkt.
always output history, no need to hover, so you can just remove it if you need the space as the user
The buttons for hiding or showing deleted or added components/communications etc. don't seem intuitive to me for some reason. The colors, like yellow, make the labels hard to read.
Klassennamen nicht überall lesbar
Mehrere Graphik Beispiele wie welche Veränderung aussieht
andere Farbe für Hide Added,
Die Zeitstempel in einem gängigen Datumsformat wären besser, ebenso dass die History nicht automatisch nach 3 Sekunden ausgeblendet wird.
Maybe highlight the History-Button.
Very difficult to select the component I aimed for. Timestamps are very unintuitive, rather use a normal date.

A. Usability Experiment

48

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.2.1 G1: Researching Related Work
	1.2.2 G2: Formulating an Approach for Software Architecture Comparison
	1.2.3 G3: Implementation of a Software Architecture Comparison Approach in ExplorViz
	1.2.4 G4: Evaluation of the Implemented Approach

	1.3 Document Structure

	2 Foundations and Technologies
	2.1 ExplorViz
	2.2 Ember.js
	2.3 Jersey
	2.4 NGINX

	3 Approach
	3.1 Overview
	3.2 Backend Extension
	3.2.1 Merging of Two Landscapes
	3.2.2 Calculating the History Between Multiple Landscapes

	3.3 Frontend Extension

	4 Implementation
	4.1 Overview
	4.2 Backend Extension
	4.2.1 Comparison of Two Landscapes
	4.2.2 Calculating the History

	4.3 Frontend Extension
	4.3.1 Uploading Landscapes
	4.3.2 Timeline
	4.3.3 Rendering of a Merged Landscape
	4.3.4 Displaying the history

	5 Evaluation
	5.1 Goals
	5.2 Methodology
	5.3 Usability Experiment
	5.3.1 Questionnaire
	5.3.2 Experimental Set-Up
	5.3.3 Execution of the Experiment
	5.3.4 Results
	5.3.5 Discussion of Results
	5.3.6 Threats to Validity

	5.4 Summary

	6 Related Work
	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography
	A Usability Experiment
	A.1 Experiment Procedure
	A.2 Questionnaire
	A.3 Raw Data

