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INTRODUCTION

Studies of the diving behaviour of air-breathing
aquatic animals provide insight into the physiological
constraints shaping species behaviour, distribution and
ecology. In animals that are highly aquatic and con-
stantly diving, behavioural aspects, such as the dura-
tion of dives, are most probably optimised and thus
reveal the physiological limits of the animal in its envi-
ronment. Sea turtles are excellent subjects for such
studies because, unlike some freshwater species (e.g.
Girgis 1961, Priest & Franklin 2002), they rely entirely
on gas exchange at the water surface. In contrast to
most diving endotherms, sea turtles have a time bud-
get that is constantly and extremely biased towards
time spent submerged (e.g. Lutz & Bentley 1985).
Hawksbill turtles have been found to spend 95%
(inter-nesting females) to 97% (immatures) of their

time under water (Storch 2003). Compared to many
reptile species, these animals are large and very active
(Jackson & Prange 1979, Lutz & Bentley 1985). The
extreme body size of the leatherback turtle Der-
mochelys coriacea and its previously studied gigan-
tothermy (Paladino et al. 1990, Davenport 1998) make
it desirable to differentiate between the families Der-
mochelidae and the smaller Cheloniidae. However,
even species of the latter family are capable of main-
taining their body temperatures above that of the
surrounding water during activity, with the huge pec-
toralis muscles being up to 7°C above water tempera-
ture (Heath & McGinnis 1980, Standora et al. 1982,
Spotila & Standora 1985, Sato et al. 1994). Animals the
size of sea turtles have high, internal, heat-storage
capacities and therefore large thermal inertia. In addi-
tion, the green turtle Chelonia mydas is capable of con-
trolling heat exchange with the environment through
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variable blood circulation in the front flippers (Hoch-
scheid et al. 2002). Although such studies have not
been conducted on the hawksbill turtle Eretmochelys
imbricata to date, it is probable that this species
adheres to similar patterns, despite its smaller size. 

During periods characterised by resting behaviour
only a limited amount of energy is used for movement.
Therefore resting sea turtles in particular can be
expected to show clear physiological responses to dif-
ferent temperatures; to date, changes exhibited in
blood gas and pH, duration of gastric and intestinal
digestion, intestinal glucose transport, frequency of
gastric contractions, probable digestive efficiency,
activity, duration of inter-nesting intervals and meta-
bolic rate have been shown (Skoczylas 1978, Lutz et al.
1989, Moon et al. 1997, Sato et al. 1998, Hays et al.
2002). In this context, the temperature quotient Q10 is
important in describing the response of metabolism to
temperature (Rao & Bullock 1954).

Other responses of reptiles to temperature, such as
thermal dependence of sensory functions (Adrian et al.
1938, Patterson et al. 1968), neural function (Andry et
al. 1971) and even learning (Krekorian et al. 1968),
may also occur in sea turtles.

In this study, we examined changes in the dive
behaviour of female hawksbill turtles following long-
term, natural temperature fluctuations over a 2 yr re-
migration interval in the Caribbean Sea. This is the
longest continuous record of sea turtle diving behaviour
to date.

MATERIALS AND METHODS

Between 1 and 15 September 1999, 6 female hawks-
bill turtles were fitted with time–depth recorders
(TDRs) while nesting at Buck Island Reef National
Monument (64° 37’ W, 17° 47’ N). This protected, un-
inhabited island is 1.6 km long and 0.8 km wide, situ-
ated 2.7 km northeast of St. Croix, US Virgin Islands,
and serves as a nesting ground for approximately 120
hawksbill turtles.

We attached 4 TDRs to females that (based on long-
term monitoring data collected by the Buck Island Reef
Sea Turtle Research Program: initiated in 1988 under
the supervision of the National Park Service at Chris-
tiansted, St. Croix, US Virgin Islands, to study the
endangered hawksbill turtle) were expected to re-nest
after 2 yr, i.e. in 2001. The body masses of these turtles
were 72.5 kg (Turtle Ref. No. QQD 280), 77.0 kg (QQD
048), 80.5 kg (QQD 132) and 95.0 kg (QQD 401). In
previous years, 2 other instrumented females had
shown longer and irregular re-migration intervals, and
1 of these returned in 2003 (analysis of recorded data
still pending).

The TDRs (Mk7, Wildlife Computers) recorded light
intensity, temperature and dive depth, allowing tem-
perature measurements over a range from –40 to 60°C
with a resolution of 0.1°C. Depth readings to a depth of
19.75 m were saved with a resolution of 0.5 m; between
20 and 99.75 m the resolution was 1 m, and dives
deeper than 100 m were recorded with a resolution of
5 m. Depth was recorded at intervals of 30 s, while
temperature was measured every 900 s. For 3 TDRs,
the accuracy of the time measurements was <11 min
after 2 yr of operation (i.e. a maximum inaccuracy of
<0.0006 s min–1).

The Mk7 incorporates a 2 MB non-volatile Flash
EEPROM for data storage. To cover a period of approx.
22 mo (the estimated duration of 1 re-migration inter-
val) it was necessary to employ a duty cycle: the
devices were programmed to store data for 2 d, then
stop for 4 d and to cycle these shifts until the memory
was complete. The TDRs measured 2.2 × 10.7 × 1.2 cm
and weighed ca. 35 g in air (<0.05% of mean turtle
body mass).

The devices were attached while the females were
at the nesting beach. After egg-laying commenced,
marginal scutes 10 and 11 on both sides of the cara-
pace were checked to find the optimal attachment
area. The serrated scutes were examined from below
with a strong flashlight to verify the borderline
between live tissue (incorporating bone) and non-
innervated, translucent keratin. We drilled 2 holes
(diameter 4 mm) dorso-ventrally into the keratin
using a hand-held cordless drill. The surface of the
scutes at the attachment area was sanded with
coarse sandpaper, and a small amount of epoxy
resin (R-Kex®, synonym Foil-Fast®, Rawl, which cures
within approx. 30 min) was applied between the
holes to fill in the gaps between the data logger and
the uneven surface of the scutes. The Mk7 was posi-
tioned and held in place by 2 stainless steel bolts
(4 mm diameter × 30 mm) that were inserted into the
holes from below; 2 self-securing nuts were tight-
ened from above. Finally, the Mk7 was surrounded
by fast-setting epoxy putty (repair stick ST115 steel,
WEICON® worldwide, which cures within approx.
5 min) to even the edges and provide an instant
support before the R-Kex® bonded. All edges were
shaped to minimise drag. 

The data analysed in this paper include the regular
patterns of nocturnal resting and diurnal activity while
at the foraging grounds. Times of nesting activity and
migratory behaviour are excluded due to their diver-
gent diurnal behaviour pattern (Storch et al. 2003). The
temperature data were used to calculate a mean tem-
perature for each dive event (surface period excluded
to avoid the effects of evaporative cooling and heating
by radiation).

264



Storch et al.: Temperature-dependent diving in hawksbill turtles

To exclude short submersions or events of waves
rolling over a surfacing turtle, a dive was defined as a
submergence beyond a depth of 2 m. However, the
duration of a true dive event was then calculated as the
time the turtle spent at depths of ≥ 50 cm in order to
include the beginning of the descent and the end of
the ascent phase in the dive duration.

Data recorded between 06:00 and 17:59.5 h (local
time) are referred to as daytime data, those between
18:00 and 05:59.5 h (local time) as night-time data.
Seasonal shifts in sunrise and sunset (within 1 h) and
the effects of turtle movement on the onset and end of
daylight (ca. 45 min, cf. Storch 2003) were neglected as
these were considered minor compared to the 12 h
duration of day and night phases, and furthermore
were found to be less than the duration of 1 or 2 dives.
As no direct recordings of swimming speed were
taken, we used vertical velocity as an indirect measure
for active swimming-stroke effort during ascent and
descent (Hays et al. 2004). The vertical velocity (which
does not necessarily equate with swimming speed as
dive angle was not taken into account) was calculated
as the rate of change of depth (m s–1), and maximum
values per dive are given. The expression ‘dive depth’,
as used herein, refers to the maximum depth reached
during a dive event. Regression lines are based on
least-squares methodology.

RESULTS

The 4 turtles expected to re-nest after a 2 yr re-
migration interval were observed at Buck Island be-
tween July and September 2001. TDRs were retrieved
from 3 individuals (QQD 280, QQD 048 and QQD 132)
while no evidence of the device or the attachment ma-
terials could be found on the carapace of the fourth
(QQD 401). Successful recordings of re-migration be-
haviour of up to 22 mo were obtained (Table 1). During
the phase of the stationary foraging behaviour analysed
here, the instrumented turtles usually performed dives
to depths of <30 m (Table 1). Diurnal patterns in the
dive profiles were found with nocturnal dives (between
18:00 and 05:59) characterised by flat bottom-phases
and diurnal dives (between 6:00 and 17:59) showing
frequent depth variations during the bottom time
(cf. Storch 2003, Storch et al. 2003).
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Table 1. Eretmochelys imbricata. Time and depth (mean ± SE)
recordings for 3 female hawksbill turtles during re-migration

Turtle No. Start End Depth No. of
(m) dives

QQD 280 18 Sep 1999 23 Jul 2001 21.1 ± 7.0 6233
QQD 048 19 Oct 1999 24 Aug 2001 8.8 ± 2.7 8248
QQD 132 31 Oct 1999 04 Sep 2001 27.7 ± 8.8 6647
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Fig. 1. Daily mean water temperature recorded by MK7 time–depth recorders (TDRs) attached to 3 female hawksbill turtles (Eret-
mochelys imbricata: QQD 280, QQD 048 and QQD 132) over a period of 22 mo and daily mean dive duration for day and night dives



Mar Ecol Prog Ser 293: 263–271, 2005

Temperature fluctuations and dive duration

Data from the 3 recovered MK7 TDRs showed
seasonal fluctuations in water temperature
(Fig. 1) over the 22 mo observation period. Al-
though the turtles moved to different feeding
grounds after the 1999 egg-laying season
(Storch et al. 2003) all 3 individuals experienced
parallel temperature changes. The minimum
and maximum recorded temperatures were
24.1 and 31.4°C, respectively. As the sampling
interval of temperature measurements was long
(15 min) we could not expect to see clear tem-
perature gradients within single dive events.
We did, however, occasionally obtain surface
temperatures when the turtle happened to be at
or near the surface at the time of data recording.
These recordings showed an increase of up to
2°C compared with the temperature at depth
during the day, while the difference was only
approx. 0.4°C at night. During the dives, the
temperature data did not show any trend in
relation to the actual depth of the turtle.

The diving behaviour was very regular and
uniform over the period of feeding away from the
reproduction site, whereas nesting and migra-
tory behaviour led to distinct behavioural pat-
terns that were much more complex (Storch et al.
2003). For the analysis, we excluded these com-
plex patterns and only used the data obtained
during the described period of feeding of each
individual, resulting in a total of 18 955 dives.

Dive duration was negatively correlated
with water temperature, with increased sub-
mergence times at lower temperatures (Fig. 1).
This change in dive duration was particularly evident
between winter and summer conditions and especially
during the night.

The least-squares fit calculated for the dive duration as
a function of temperature showed a strong effect of tem-
perature on nocturnal submergence times at tempera-
tures below 28°C (Fig. 2), while at temperatures between
28 and 30°C the curve appeared to level off. By means of
a piecewise linear regression, this point of inflection was
located at 27.8°C, with corresponding linear regressions
at either side of the break point describing the tempera-
ture dependence of the nocturnal dive duration (Fig. 3).
Dive duration as a function of temperature showed a
strong effect of temperature on nocturnal submergence
times at temperatures up to 27.8°C (Fig. 3, F = 1172.7,
p < 0.0001, n = 4104). At temperatures above 27.8°C,
changes in dive duration were not significant (F = 1.8,
p = 0.177, n = 2963). Temperature effects on daytime dive
duration were significant (F = 1782.2, p < 0.0001,
n = 11914), but much less distinct than at night (Fig. 2).

Q10

Assuming that the nocturnal dives of the turtles are
resting dives, during which they reduce their activity to
a minimum (Storch et al. 2003), night dive duration can
be used as a relative measure of metabolic rate. We
accordingly calculated a resting Q10 (R1Q10) of 4.5 for
temperatures below 27.8°C, whereas the Q10 above
27.8°C (R2Q10) was 1 (no significant thermal depen-
dence). The Q10 resulting from the mostly active sub-
mergence times during daylight hours (AQ10) was 2.3.

Vertical velocity and dive depth

The means of the peak vertical velocities during the
descent  and ascent were 0.37 m s–1 (SD 0.19, n = 6793)
and 0.31 m s–1 (SD 0.15, n = 6953), respectively. For the
3 turtles engaged in nocturnal dives at the foraging
grounds, we did not find a relationship between ver-
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tical velocity and water temperature
within the observed temperature range
for either the descent or ascent (Fig. 4).
However, we cannot exclude the possibil-
ity that such a dependency exists at tem-
peratures beyond the range encountered
in this study. The turtles performed rest-
ing dives to specific depth levels, which
did not show any systematic variation
over the water temperature range (Fig. 5).
Due to the different feeding grounds
visited by the fitted turtles (Storch et al.
2003), the total range of temperatures
experienced differed by approx. 2°C.

DISCUSSION

Temperature fluctuations and dive
duration

The temperatures recorded by the
TDRs follow the same trends as the offi-
cial large-scale data for the sea-surface
temperature in the region of the Antilles
published in previous years (Table 2),
with mostly corresponding values. Our
recorded maximum temperatures in late
summer, however, appear to be 1 to 2°C
higher than the published large-scale
temperatures. This is because the fitted

turtles tended to reside in shallow areas near oceanic
islands, whereas the large-scale data were taken by
offshore ships. By extracting only the phase of station-
ary foraging in the feeding grounds, all events of bask-
ing behaviour (as observed during the migratory
phases, see Storch 2003) and therefore excessive heat-
ing of the TDR through solar radiation were excluded
from the analysis presented here. The sampling rate
used to record the temperature data was insufficient to
describe vertical thermal gradients. However, our
devices occasionally recorded an increase in tempera-
ture when the turtles were at or near the surface. This
increase is likely to have been caused by solar radia-
tion rather than by a genuine vertical gradient in water
temperature because these differences were not found
at night. Because of the short duration of the surfacing
events of the 3 turtles at the foraging grounds (mean
2.5 min, S. Storch unpubl. data) and the thermal inertia
of the body of large animals (Spotila & Standora 1985),
these differences in ambient water temperature should
have had a negligible effect on the body temperature
of the turtles.
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As hawksbill turtles are considered to be benthic
feeders (Meylan 1988), the differences in mean dive
depth (Table 1) most probably resulted from the
specific ranges of water depth at the individual feed-
ing grounds. Dives performed during the day were
assumed to be associated with active benthic feed-
ing, as they occurred at a variety of depths and
showed depth variation within bottom-phases (Storch
et al. 2002). In contrast, successive nocturnal dives
were characterised by a very limited bottom-depth
range (see also Hays et al. 2000), and were longer
than dives made during the previous and following
diurnal periods (Storch et al. 2003). We therefore
conclude that the turtles were essentially resting 

during the dark hours between 18:00
and 05:59 h, and only actively swim-
ming when they commuted to the
surface to breathe. A strong thermal
dependence of dive durations at tem-
peratures below 27.8°C was found
for the nocturnal resting dives of the
instrumented turtles. As plotted in
Fig. 3 for comparison, previously pub-
lished long-term data (up to 293 d)
obtained via satellite transmitters
from 3 green turtles in the Medi-
terranean also revealed a seasonal
change in dive duration (Godley et
al. 2002). Modal dive duration of
the instrumented green turtles was
less than 5 min and between 10 and
15 min at temperatures around 26°C,
the submergence times increased
to between 60 and 90 min when
the temperatures declined to 17°C
(Godley et al. 2002).

These data indicate a thermal dependence of dive
duration in green turtles that is remarkably parallel
to the steep part of our piecewise model obtained
from hawksbill turtles. However, dive durations of the
larger green turtles are rather short compared to the
submergence times found in our study. As the con-
firmed natural temperature range experienced by
hawksbill turtles extends from 15°C (J. A. Seminoff
pers. comm., cf. Seminoff et al. 2003) to 32°C (A. Moore
pers. comm.) additional data, especially at the lower
end of the scale, would be needed to confirm the
broader validity of the model and the possible further
similarity to the slope found for green turtles.

Unrestrained and undisturbed turtles have been
shown to breathe at a fairly constant level of depletion
of their oxygen store (e.g. Burggren & Shelton 1979,
Lutcavage & Lutz 1991). Assuming a mostly undis-
turbed nocturnal resting condition for our 3 indi-
viduals, submergence times at night are probably a
function of the metabolic rate and its thermal depen-
dence. In contrast, the different levels of activity that
occur throughout the day could not be determined in
this study. Such activities may substantially influence
metabolic rate, oxygen depletion and ultimately dive
duration. During the day, when dives are presumed to
be mostly associated with active foraging, the relation-
ship between water temperature and dive duration has
a reduced gradient in the slope (Fig. 2). This enhanced
independence probably stems from active sea turtles
being able to maintain a body temperature that
exceeds the water temperature due to muscular heat-
ing and thermal inertia (Sato et al. 1995, Hochscheid
et al. 2002).
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Table 2. Water temperatures recorded by TDRs on instru-
mented turtles in 2000 and 2001, and official large scale
temperatures for the northern Caribbean Sea (Deutsches Hydro-
graphisches Institut 1956, 1967, Bundesamt für Seeschiffahrt 

Hydrographie 1998)

Month Water temperature (°C)
This study 1956 1967 1998

January 24–26 26 25–26 26
February 25–26 25 25–26 26
March 25–26 25–26 25–26 24–26
April 26–27 25–26 25–27 26
May 27–28 27 26–27 26
June 28–29 27–28 27 26–28
July 28–29 27 27 26
August 28–29 28 27 28
September 29–30 28 28 28
October 29–30 27–28 28 28
November 29 27–28 27–28 26
December 28 26–27 26–27 26
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Fig. 5. Eretmochelys imbricata. Thermal independence of dive depth for females
QQD 280 (R, n = 2316, Pearson r = 0.03), QQD 048 (h, n = 2607, Pearson r = 0.1)
and QQD 132 (n, n = 2153, Pearson r = –0.4). Clusters of data represent 

preferred depth levels of turtles during benthic resting dives
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Q10

Piecewise linear regression analysis revealed that
there is a point of inflection in the thermal dependence
of the dive duration, leading to a high R1Q10 value of
4.5 at temperatures below 27.8°C, and a lack of sig-
nificant temperature-dependence above 27.8°C (Fig. 3).
The thermal dependence represents the sum of the Q10

values for the different tissues of the sea turtle’s body.
Some exemplary tissues of the green turtle have been
shown to have temperature-sensitive metabolic rates,
with Q10 values decreasing at higher temperatures
(Penick et al. 1996). Studies of tissues of other reptiles
revealed that metabolic rate increases dramatically
with increasing temperature in the lower experimental
range (4 to 20°C, Q10 of 6.5), but reach a metabolic
plateau in the upper range (20 to 34°C, Q10 approx.
2.0) (Hoskins & Aleksiuk 1973). These findings are
in agreement with our descriptive model (Fig. 3). Our
R1Q10 and R2Q10 values frame the Q10 value of 2.4 cal-
culated from the oxygen consumption of unrestrained,
captive loggerhead turtles kept in water between 10
and 30°C (Lutz et al. 1989). Typical Q10 values found
for reptiles are between 2 and 3 (Glass & Wood 1983).
Our AQ10 = 2.3 found during the daytime is well within
this range.

However, cognisance must be taken of the fact that
the relatively elevated body temperature of an active
turtle during daylight does not equal that of the sur-
rounding water (as reviewed in Spotila et al. 1996),
which is the case for a resting turtle at night. There-
fore, the temperature data included in the calculation
of the AQ10 are probably incorrect with regard to body
temperature.

Satellite telemetry, as used by Godley et al. (2002),
did not reveal the chronology of the depth data, but
integrated diving information from 6 h periods into a
histogram. Therefore the data from Godley et al. (2002)
did not provide insight into day- or night-time diving
behaviour and flat bottom-resting dives could not be
separated from obviously active dives. However, the
data obtained from the 3 green turtles included in
Fig. 3 for comparison show a trend that supports our
proposed model, even though the routine dive dura-
tion of green turtles is shorter than the submergence
durations of the hawksbill turtles (Hays et al. 2000,
2002).

Vertical velocity and dive depth

A decrease in environmental temperature has been
shown to decrease the locomotor performance of ecto-
therms (Hirano & Rome 1984, Du et al. 2000). More-
over, vertical velocity, a measure of the degree

of active power-stroking during ascent and descent,
should also decrease in response to cold water (cf.
Skrovan et al. 1999). However, our data failed to show
a corresponding temperature-dependent change in
maximum vertical velocity of the instrumented sea tur-
tles (Fig. 4). While our findings contradict the expected
results, previous studies of submaximal performance
have shown cases of thermal independence of muscle
output in cold-blooded animals (Rome 1982, Rome &
Loughna 1983 in Hirano & Rome 1984). The conclusion
of the results found in running lizards and swimming
carp is that at low temperatures a higher number of
muscle fibres and a selection of faster fibres con-
tributes invariant locomotion speeds at 10 and 20°C
(Rome & Loughna 1983).

Fig. 5 clearly shows clusters of levels of dive depth,
representing depth preferences of the tagged turtles.
Hawksbill turtles are known to dive serially to habitual
sites within the reef (van Dam & Diez 1997). The ab-
sence of a relationship between water temperature
and dive depth (Fig. 5) supports the model in Fig. 3,
and discounts this possibility as a cause of the ob-
served thermal dependence of submergence times. 

Effects of temperature changes

Although sea turtles should be able to mostly avoid
unacceptable temperatures through migration, they
still experience water temperatures which fluctuate
over several degrees Celsius. This has been shown for
the most tropical of all species, the hawksbill turtle. At
higher water temperatures, hawksbill turtles have to
surface more often, thus exposing themselves to a
greater risk of being affected by human impact (e.g.
being approached and disturbed or hit by a boat) or of
being attacked by sharks (M. Heithaus pers. comm., cf.
Strong 1996), with the tiger shark Galeocerdo cuvier
being the only predator that is specialised to take large
cheloniid turtles (Witzell 1987). The generally low
metabolism of cold-blooded animals such as reptiles
probably contributes to the longevity of these animals
(Jonsson 1991). Full torpor or hibernation, as discussed
or observed in other species (e.g. Felger et al. 1976,
Carr et al. 1980) are irrelevant for the hawksbill turtle,
as this species neither experiences temperatures below
10°C nor a seasonal shortage of food.

Overall, our data indicate that a substantial change
in ocean water temperature would influence sea turtles.
Levitus et al. (2000) found an increase in the tempera-
ture of the upper 300 m of the water column of 0.31°C
over the last 45 yr. There is evidence that the primary
cause of this change is anthropogenic global warming
rather than climate variability (Levitus et al. 2000).
Based on our model, this warming should shorten the
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resting dive duration by about 3 min at water tempera-
tures below 28°C, while at higher temperatures the
effect would be much less (15 s). Although we were
able to detect temperature-dependent dive duration in
the instrumented hawksbill turtles, the full conse-
quences of changes in water temperature for this spe-
cies are hard to foresee. Certainly, as longevity seems
to be related to metabolic rate (Jonsson 1991), small
increases in water temperature may decrease life ex-
pectancy and hence the number of breeding attempts.
In the context of climate changes, the effects of rising
sea level and increased incubation temperatures
might lead to an even more serious disturbance to
the life cycle of hawksbill turtles. The fairly substantial
changes in water temperature associated with the El
Niño phenomenon (e.g. Elliott et al. 2001) may facilitate
favourable conditions for further studies of the temper-
ature-dependency of marine turtle diving behaviour.
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