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Conclusion

A RMS of 0.5-0.7 m/s is observed when comparing wind speeds at WHOI buoys with scatterometers. A detailed investigation
of more than 18 years of wind observations at the buoys was performed. Flow distortion errors of ~“5% relative wind speed
difference are the main result, indicating the importance of the position of the sensor on the buoy. Generally, the flow
distortion is responsible for “30% of the total RMS. Compared to scatterometer observations, the flow distortion still can be
observed. This systematic error can be removed from the data. After correction for the flow distortion, random errors
remain, e.g. averaging errors from the colocation of scatterometer and buoy or a “wrong” viscosity correction.
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