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Introduction

Anthropic activities threaten global biodiversity in the 
oceans by direct causes like overfishing, pollution and habitat 
destruction (Lotze et al. 2006), or indirectly through eutrophi-
cation and climate change (Worm et al. 2000, Harley et al. 
2006). Since biodiversity regulates processes (e.g., primary 
production and nutrient cycling; Worm et al. 2006), prop-
erties (e.g., resistance to invasion; Stachowicz et al. 2002) 
and their maintenance over time and space, its decline has 
profound consequences on the functioning of ecosystems. 
Although causal relationships are difficult to infer, the ac-
celerating biodiversity loss is expected to be critical for the 
provision of goods (e.g., decrease of catch from fisheries; 
Worm et al. 2009) and services (e.g., increased exposure to 
flooding events and loss of nursery habitats; Díaz et al. 2006, 
Orth et al. 2006) to human populations. This scenario requires 
effective actions of ecosystem management to arrest the ero-
sion and sustain the recovery of biodiversity. The failure of 
traditional strategies for fisheries management suggested 
shifting the focus from single species or sectors to actions 
targeting the whole ecosystem, a principle that lies behind the 

approach of “Ecosystem-Based Management” (EBM; Long 
et al. 2015). 

Long et al. (2015) identified fifteen essential elements 
to successfully implement EBM. Among those elements the 
consideration of ecosystem connections was classified as of 
high importance. Such principle can be interpreted as: (1) the 
connectivity of marine environments, (2) the synergistic ef-
fect of multiple stressors and (3) the interactions among spe-
cies (Guerry 2005). The first refers to the flow of nutrients 
and energy that can establish links between marine environ-
ments. For example, sub-tidal kelps supply carbon to inter-
tidal communities and are vital for maintaining dense popula-
tions of patellid limpets in the southwestern rocky shores of 
South Africa (Bustamante et al. 1995). The second focuses on 
the fact that the interplay between various perturbations and 
their impact on ecosystems are often complicated to unveil. 
Indeed, in the Black Sea the overexploitation of small pelag-
ics started in the 1970s but its consequences were masked ini-
tially by the bottom-up effect due to eutrophication (Bodini et 
al. 2018). The third lies on the assumption that the modelling 
of trophic interactions can give clues on the spread of indi-
rect effects in food webs. Bondavalli and Ulanowicz (1999) 
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showed that intraguild predation can cause unexpected ben-
eficial effects of the American alligator upon its prey (e.g., 
frogs are consumed by both snakes and alligators, but the 
latter exert stronger predatory impact on snakes than on the 
common prey). Therefore, to consider ecosystem connections 
implies emphasis on processes (i.e., interactions) linking ob-
jects (e.g., marine environment, sources of stress or species), 
a perspective shared with the studies of network analysis.

Network analysis represents an ideal tool to model eco-
system connections in multitrophic systems, and centrality 
indices can be calculated to quantify species importance in 
trophic interaction networks. Scotti and Jordán (2015) found 
that less abundant species in the Prince William Sound food 
web are unevenly distributed towards the top of the trophic 
chain and such network position further accentuates their 
risk of local extinction, which is already high because of the 
small population size. Rocchi et al. (2017) proposed network 
analysis to merge the gap between EBM theory and practice 
in data-poor contexts. They showed that, in general, the struc-
ture of the food web is robust to the removal (i.e., local ex-
tinction) of most vulnerable species (i.e., main target of fish-
eries) in the coastal ecosystem of Baja California Sur. Studies 
that rank species using centrality indices assume that being 
central in the trophic network corresponds to being function-
ally important. These studies provide indications based on 
the taxonomy (i.e., identity of the nodes), without inform-
ing about the ecological attributes (e.g., body size, habitat, 

spatial and temporal distribution) of the most central species. 
The way species traits (and other attributes) are overlooked 
is in contrast with the goal of understanding how the position 
of species in the biotic interaction milieu (i.e., the realized 
niche) is governed by functional traits (McGill et al. 2006).

In this work, a highly disaggregated network of the Gulf 
of California food web was constructed. Sixteen indices 
(centralities and trophic level) were computed and regressed 
against species attributes (i.e., traits, together with features 
that classify spatial and temporal distribution). The attributes 
of the species (i.e., nodes) are independent of their network 
positions and allowed studying the ecological aspects that can 
explain node centralities and trophic level. Our goals were: 
(1) to investigate whether attributes can be used to predict 
centrality scores of species; and (2) to identify if there exists 
a restricted set of attributes able to characterize the position 
of species in the food web.

Methods

Study area

The study area is the Gulf of California, a marginal sea 
of the Pacific Ocean between the Baja California Peninsula 
and the Mexican mainland (Fig. 1). It spans from 24º N up to 
32º N of latitude and is strongly influenced by the discharge 
of sediments from the Colorado River, with shallow waters 
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Figure 1. Map of the Gulf of California where isobaths are visualized and blue colors reflect sea depth. The map was generated with 
QGIS (version 2.14.20) http://www.qgis.org. The bathymetry was retrieved from the British Oceanographic Data Center (BODC) 
through the General Bathymetric Chart of the Oceans (GEBCO) https://www.bodc.ac.uk/data/online_delivery/gebco/. The relief layers 
for the continental area were obtained at a resolution of 60 m from the INEGI website and are based on the Continuo de Elevaciones 
Mexicano 3.0 (CEM 3.0) - discharge http://www.inegi.org.mx/geo/contenidos/datosrelieve/continental/default.aspx. The map of 
Mexico in the upper right corner is in vector format; it was obtained from the shape file “Mex_adm1.shp”, which contains the states of 
the Mexican Republic. The US map layer (grey map on the top right) was obtained from the United States Geological Survey (USGS) 
https://www.sciencebase.gov/catalog/item/4fb555ebe4b04cb937751db9. All webpages were accessed on November 3, 2018.
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in the north and deeper waters in the southern part (200-
3000 m). The continental shelf is wider on the east coast due 
to the absence of high flow rivers on the west part. The Gulf 
of California has a characteristic continental climate, with sea 
surface temperature (SST) ranging between 13 °C and 31 °C 
and salinities of 35-35.8 PSU. In the northern part there are 
four endemic species. Three of them are economically impor-
tant for fisheries (Cynoscion othonopterus (Jordan & Gilbert), 
Micropogonias megalops (Gilbert), and Totoaba macdon-
aldi (Gilbert)) while the fourth is Phocoena sinus (Norris & 
McFarland), the smallest and most endangered cetacean in the 
world. The rich biodiversity and the provision of relevant eco-
system services (e.g., resources for fisheries) call for the imple-
mentation of effective strategies of conservation (Lluch-Cota 
et al. 2007), an effort highlighted by the presence of 12 protect-
ed areas and 5 biosphere reserves (Sánchez-Ibarra et al. 2013). 

Food web construction

The food web was constructed using literature data (e.g., 
gut content analysis; see Electronic Supplementary Material 
1, ESM1) and consists of 317 taxa (nodes; n = 317), 74% of 
which were identified at species level. All nodes stand for 
living compartments (32 primary producers and 285 con-
sumers) and the 3971 trophic interactions (links; l = 3971) 
are weighted with predator’s feeding preferences, which 
consider the proportions of food that each predator receives 
through its prey (i.e., the total amount of food consumed by 
each predator is set to 1 and the relative contribution of each 
prey corresponds to the weight of the link). Therefore, the 
feeding preferences are always included in the interval (0, 
1]. The only case with link weight = 1 is when the preda-
tor consumes a single prey type (i.e., diet specialization). 
Species distribution was validated through maps built with 
Mapmaker in the ModestR environment (García-Rosello et 
al. 2013), the Ocean Biogeographic Information System1 
(OBIS) and iSpecies2. The diet of 262 nodes (91.93% of 
the consumers) was defined using literature data specific to 
taxa that appear in the food web, while surrogate species 
(i.e., species that belong to the same genus, with compara-
ble body size and maximum depth distribution) were con-
sidered for the remaining 23 nodes (8.07%; ESM1 at page 
15). In particular, the diet of 186 consumers (65.26%) is 
based on information from the Gulf of California or areas 
nearby (i.e., Pacific Ocean in front of California and Central 
America). Main objectives were constructing a high resolu-
tion food web with most nodes representing single species 
and retrieving information on feeding preferences. All flows 
of energy from prey/resources (first column) to predators/
consumers (second column), together with feeding prefer-
ences (third column), are stored in the ESM2 (text file with 
tab-separated values).

1 www.iobis.org
2 www.ispecies.org
[both websites last accessed on November 3, 2018]

Attributes of the taxa

To investigate the ecological meaning of various cen-
trality indices we built a database including different at-
tributes (e.g., traits and habitat; see ESM1). Metadata con-
cerning all nodes were collected and the centrality scores 
(dependent variables) were regressed against the ecological 
attributes (independent variables). The following attributes 
were taken into account: (1) body size (classes of maximum 
body length measured in cm, with intervals representing 10-
fold increases), (2) habitat (nine categories: reef, benthic, 
benthic-neritic, benthic-pelagic, pelagic-neritic, demersal-
neritic, pelagic, pelagic-oceanic, or demersal), (3) maxi-
mum depth (to distinguish among: species close to surface 
(0,10] m, subtidal zone close to coast and reefs (10, 100] 
m, continental shelf (100, 200] m, continental slope in the 
upper part of mesopelagic zone (200, 500] m, lower part 
of mesopelagic zone (500, 1000] m, aphotic zone (1000, 
2000] m, or deeper zones where large size migrants can live 
(2000, 3000] m), (4) mobility (i.e., taxa were classified as 
sessile or moving at various velocities: “low” for taxa dis-
playing mainly passive movements that cannot be efficient 
for predator avoidance; “medium” that indicates the capa-
bility to move actively to escape from predators, referring 
to movements restricted to specific systems as seagrass beds 
and coral reefs; “high” that is used for species that move fast 
and cross different habitats), (5) direction of spatial move-
ment (absence of move, move in latitude and/or longitude, 
water column move, movements both in latitude/longitude 
and water column), (6) seasonality (present in summer, win-
ter, or both seasons), (7) daily activity (diurnal, nocturnal, 
or both), and (8) congregatory behavior (e.g., schooling for 
fish; it includes two classes: yes or no). Altogether, 2536 
traits were considered and 89.04% of them was retrieved 
from the literature for taxa present in the food web. The re-
maining 10.96% was estimated with the opinion of experts 
(Prof. Gustavo De La Cruz-Agüero and Dr. Andrés Felipe 
Navia). The traits not found in the literature refer to: body 
size (20 nodes), daily activity (147 nodes) and congregatory 
behavior (111 nodes). The attributes of each node are in the 
ESM3. Frequency distributions of the eight attributes are 
reported in the ESM1, Fig. S1.  

Centrality indices and trophic level

Centrality indices were selected to model the importance 
of nodes with respect to energy circulation and the spread of 
indirect effects in the food web. The position of each node i 
in was characterized by degree, betweenness, closeness, im-
portance score, keystone indices and topological importance 
(Fig. 2). Such indices were chosen for their capability of de-
scribing node importance from local to global network scale, 
taking into account the diffusion of both vertical (i.e., bottom-
up and top-down) and horizontal (e.g., to discriminate among 
trophic cascade and apparent competition) effects (Scotti and 
Jordán 2015). Feeding preferences were used to calculate the 
weighted forms of betweenness and closeness centralities. 
All other indices were presented in the unweighted version as 
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they were computed using the architecture of trophic interac-
tions only. The centrality indices account for the role of the 
nodes at local (degree), meso- (keystone indices and topolog-
ical importance), and global scale (closeness, betweenness, 
and importance score). In addition to the centrality indices 
also the trophic level was quantifi ed. The trophic level of each 
consumer depends on the set of resources eaten; the contri-
bution of the resources is then weighted by considering the 
feeding preferences of the consumer.

The degree of i is the sum of all directed interactions in 
which the node is involved (dci); it can be decomposed into 
in-degree (total number of prey/resources; dcin,i) and out-de-
gree (total number of predators/consumers; dcout,i) (Jordán et 
al. 2006):

dci =  dcin,i + dcout,i (1)

Betweenness centrality measures how frequently a node 
i lies on the shortest paths (i.e., geodesics) connecting any 
pair of nodes j and k in the network (Jordán et al. 2006). 
Betweenness can be calculated either by considering the di-

rectionality of fl ows (directed betweenness; bcdir,i) or ignoring 
it (undirected betweenness; bcund,i); the fi rst accounts for the 
importance of nodes in spreading bottom-up effects, while 
the second combines vertical (bottom-up and top-down) and 
horizontal effects. In presence of undirected data, and in a 
network of n nodes, the normalized betweenness is:        

(2)

where cjk is the total number of shortest paths between j and 
k, and cjk(i) are the geodesics linking j with k and crossing i. 
The total score is computed by summing the relative number 
of times the geodesics between all pairs of nodes pass through 
i. The denominator is used to normalize the total score and 
stands for the number of all pairs of nodes excluding i. 
Directed betweenness is calculated in analogy with (2), and 
the only modifi cation concerns the normalization that uses 
[(n–1)(n–2)] as denominator. Nodes with high betweenness 
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Figure 2. Schematic representation of centrality indices used in this study. These indices quantify the role of nodes with reference to lo-
cal (degree, a), global (betweenness, b; closeness, c; and importance score, d), and meso- (all keystone indices but kdir,i, which accounts 
for local effects only - see Fig. 3, e; and topological importance, f) scales. In the fi rst three charts (a-c) the arrow-headed links leave 
the prey and point to predators. Conceptual diagram is illustrated for the keystone indices while all other centralities are calculated for 
node B.
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are in the shortest paths linking many pairs of nodes and are 
expected to play relevant role in the spread of indirect effects.

Closeness centrality depends on the length of geodesics 
connecting a given node i to all other nodes in the network 
(Jordán et al. 2006). Undirected closeness is computed using 
the shortest paths linking node i to all other nodes, irrespec-
tive of energy flow direction (ccund,i). Two directed versions 
can be calculated when shortest paths detection is constrained 
by energy flow orientation (i.e., strict bottom-up perspective): 
(a) in-closeness (ccin,i) accounts for shortest paths from all 
network nodes to a given node i, while (b) out-closeness 
(ccout,i) is based on the shortest paths from a given node i to 
all other network nodes. In directed networks there might be 
nodes that are not reachable when following the energy flow 
(e.g., two nodes that are apical predators); in such cases the 
shortest path is conventionally set as equal to n. In-closeness 
is obtained by summing all shortest paths to node i, and the 
size of the network (n) is used to normalize the score (the 
denominator is the number of all nodes except the one for 
which closeness is computed):                                             

  (3)

where d(pk,pi) is the number of steps in the geodesics linking 
the nodes k to i. Out-closeness is calculated according to the 
same principle, but considering all shortest paths from node i: 
d(pi,pk). The equation for ccund,i has the same form of (3) but 
the search of geodesics from and to i does not depend on ener-
gy flow orientation. Thus, undirected closeness indicates how 
fast perturbations of specific nodes can propagate through the 
food web, irrespective of energy flow direction. Undirected 
closeness can also give clues on the exposure of each node to 
perturbations that target any other node in the food web, with 
the spread of effects not constrained by energy flow direction. 
In the directed versions of closeness, the shortest paths follow 
the direction of energy circulation and spread perturbations 
either from low trophic level nodes to the target taxa (when 
the in-closeness of this latter is calculated) or from the target 
taxa to higher trophic level nodes (when the out-closeness of 
the target node is computed). Therefore, in-closeness quanti-
fies how fast a given node can be affected by perturbations on 
other nodes, while out-closeness defines how fast the pertur-
bation targeting a specific node can diffuse to the rest of the 
network. Large values are found for: (a) nodes that can be 
quickly influenced by perturbations of various food web spe-
cies (ccund,i and ccin,i), and (b) nodes the disturbance of which 
can rapidly spread and affect many species in the food web 
(ccund,i and ccout,i).

The focus of degree centrality is on local interactions, 
while betweenness and closeness characterize node position 
under a whole-network perspective (by taking into account 
the relative position compared to all pairs of nodes or all other 
nodes, respectively). In the attempt of simultaneously consid-
ering these alternative aspects, an importance score (isi) was 
calculated for each node i by combining the local and global 
information portrayed by degree, undirected betweenness and 

undirected closeness. These indices were selected because 
they are the most widely used centralities in food web analy-
sis (e.g., see Scotti and Jordán 2010, 2015). First, for each 
centrality the nodes were ranked in descending order (i.e., the 
value of the most central node is 317). Second, for each node i 
the rank values (denoted by the r superscripts) were summed:   

	 (4)

Finally, each score in (4) was normalized by dividing it with 
the sum of all cumulative ranks:  

		           (5)

The meso-scale importance of any given node i was char-
acterized by the keystone index (ki) (Jordán et al. 2006). Such 
index requires as input the binary matrix of trophic interac-
tions without cycles. It is calculated by summing bottom-up 
(kbu,i) and top-down (ktd,i) keystone indices

      		            (6)

                                             
 (7)

                                              
(8)

where m is the number of predators feeding on species i and q 
is the number of prey eaten by species i; dcin,j is the number of 
prey of j (in-degree) and dcout,z is the number of predators of z 
(out-degree). The term kbu,j stands for the bottom-up keystone 
index of predator j, while ktd,z indicates the top-down key-
stone index of prey z. Both the bottom-up and the top-down 
variants include parts that refer to direct and indirect effects. 
Therefore, the keystone index can be rewritten by summing 
two other terms: the keystone indices of direct (kdir,i) and in-
direct (kindir,i) effects

 
                                 (9)

                           
     (10)

                                
(11)

Both kbu,i + ktd,i and kdir,i + kindir,i equal ki. The keystone 
index ki is particularly suitable to quantify the relevance of 
vertical interactions over horizontal ones, being thus appro-
priate for identifying the impacts related to trophic cascade 
rather than those due to apparent competition.

Topological importance was used to model meso-scale 
effects by also taking into account exploitative and appar-
ent competitions (Jordán et al. 2006). This index considers 
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Page 154, Equation (17) should be written as follows: 

𝑇𝑇𝑇𝑇𝑖𝑖𝑚𝑚 = ∑ 𝛽𝛽𝑧𝑧,𝑖𝑖𝑚𝑚
𝑧𝑧=1
𝑚𝑚 = ∑ ∑ 𝑎𝑎𝑧𝑧,𝑗𝑗𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑧𝑧=1

𝑚𝑚         (17) 
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Page 152, Equation (2) – replace the first comma with semicolon: “…; i ≠ j ≠ k,…” – see below 

𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖 =
∑ ∑

𝐶𝐶𝑗𝑗𝑗𝑗(𝑖𝑖)
𝐶𝐶𝑗𝑗𝑗𝑗

𝑛𝑛
𝑘𝑘=1

𝑛𝑛
𝑗𝑗=1
(𝑛𝑛−1)(𝑛𝑛−2)

2
; 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘       (2) 

 

 

Page 153, Equation (3) – the sum goes from “k=1” and not “j=1” as currently indicated: 

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑖𝑖 = [∑ 𝑑𝑑(𝑝𝑝𝑘𝑘,𝑝𝑝𝑖𝑖)𝑛𝑛
𝑘𝑘=1

𝑛𝑛−1 ]
−1

         (3) 

 

 

Page 153, Equation (8) – the last term should be “ktd,i” and not “ktd,z”: 

𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑏𝑏𝑏𝑏,𝑖𝑖 + 𝑘𝑘𝑡𝑡𝑡𝑡,𝑖𝑖         (8) 

 

 

Page 154, Equation (17) should be written as follows: 

𝑇𝑇𝑇𝑇𝑖𝑖𝑚𝑚 = ∑ 𝛽𝛽𝑧𝑧,𝑖𝑖𝑚𝑚
𝑧𝑧=1
𝑚𝑚 = ∑ ∑ 𝑎𝑎𝑧𝑧,𝑗𝑗𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑧𝑧=1

𝑚𝑚         (17) 
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all interactions as undirected. The effect of j on i when these 
two nodes are m steps from each other is am,ij. The simplest 
way to calculate am,ij is when m = 1; in such case the effect 
corresponds to the reciprocal of the degree of node i: a1,ij = 
1/dci. Indirect chain effects are assumed to be additive and 
multiplicative. If two pathways of length m = 2 connect i to 
j by passing through the nodes q and h, then the net effect 
of j on i (a2,ij) is calculated by summing the two individual 
2-steps effects:
a2,ij(q) = a1,qj × a1,iq		         		         (12)

a2,ij(h) = a1,hj × a1,ih		             		         (13)

a2,ij  = a2,ij(q) + a2,ij(h)			          (14)
 
where a2,ij(q) and a2,ij(h) are the individual effects of j on i trans-
mitted via 2-steps pathways that cross nodes q and h, respec-
tively. In a network with n nodes the effect of all species on 
node i via pathways of exactly m steps is

		         (15)

while the total effect of species i on all other species via m-
steps pathways is:        

	 
		         		        (16)

The topological importance of any node i (TIi
m) is defined 

as the average total effect transmitted through all chains of 
length up to m steps (i.e., if m = 3, then the chains of length 1, 
2, and 3 steps are considered):

		                                                         (17)

Here the index was calculated up to four steps (m = 4) be-
cause previous works demonstrated that meso-scale, horizon-
tal effects in food webs tend to converge when such threshold 
is attained (Scotti and Jordán 2015). The topological impor-
tance complements the meso-scale description provided by 
keystone indices. 

Besides centrality indices, the position of nodes in food 
webs is often characterized by the trophic level. The trophic 
level quantifies the average distance of nodes from the ex-
ternal source of energy (i.e., the average number of steps 
through which energy is transferred from primary producers 
to consumers; Scotti et al. 2006). In a food web with n nodes, 
the trophic level of any species i (TLi) depends on the trophic 
level and the relative amount of energy received from its prey:

   		         (18)

where TLj is the trophic level of prey j and gji indicates the 
feeding preference of i for j (this value is in the interval 0 ≤ 

gji ≤ 1). The trophic level is calculated from local information 
and takes into account energy flow direction. It represents a 
relevant indicator as the distribution of the most central spe-
cies, calculated using various indices, shows regular patterns 
along the trophic hierarchy (Scotti and Jordán 2010).

Network analysis was performed in the R statistical envi-
ronment (R Core Team 2017) except for the keystone indices, 
which were obtained with the FLKS 1.1 software program 
(Jordán et al. 2006). All versions of degree, betweenness and 
closeness were calculated using the ‘igraph’ package (Csárdi 
and Nepusz 2006); the importance score, the topological im-
portance and the trophic level were computed with ad hoc R 
scripts.

Statistical analysis

Centrality indices and trophic level (i.e., dependent varia-
bles) were regressed against species attributes (i.e., independ-
ent variables). Eklöf et al. (2013) showed that a limited set of 
trait axes is required to model interactions in ecological net-
works (they found that the minimum number of dimensions 
has mean 2.665 and the “best” number of dimensions has 
mean 1.395). Therefore, we limited the assessment to models 
including either a single variable or two variables (i.e., all 
possible combinations of two variables were explored). The 
predictive power of both single attributes and combinations 
of two attributes was tested using generalized linear models 
(GLMs). GLMs were fit with the glm function from the ‘stats’ 
R package (R Core Team 2017). Gaussian, gamma or Poisson 
distributions were used to model the centrality indices and 
the choice of the distribution depends on the properties of the 
index (e.g., Poisson distribution to model integer values with 
zeroes as in the case of in-degree centrality; see Table 1). For 
all models, either identity or logarithmic link function was 
used. Model selection was based on the Akaike Information 
Criterion (AIC). The amount of deviance explained by each 
GLM (i.e., D2) was calculated with the Dsquared function 
from the ‘modEvA’ R package (Barbosa et al. 2016). When 
an overall statistically significant difference in group means 
was detected with ANOVA, post-hoc comparisons were 
performed with the Tukey’s Honest Significant Difference 
(HSD) test (glht function from the ‘multcomp’ R package; 
Hothorn et al. 2008). All p-values of multiple comparisons 
performed with Tukey’s test were adjusted with the single-
step method. Pairwise similarities between all indices (cen-
tralities and trophic level) were quantified with Spearman’s 
rank correlation coefficients. These coefficients were used 
to construct the dendrogram of similarities, based on Ward’s 
minimum variance clustering method.

Results

Body size and mobility are the best predictors to model 
centrality indices and trophic level in the Gulf of California 
food web (Table 1). They appear in 12 (body size) and 8 (mo-
bility) GLMs (Fig. 3). However, a two-way ANOVA run to 
examine the main effect of the two traits showed that only 
mobility is positively associated with GLMs that account 
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Page 152, Equation (2) – replace the first comma with semicolon: “…; i ≠ j ≠ k,…” – see below 

𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢,𝑖𝑖 =
∑ ∑

𝐶𝐶𝑗𝑗𝑗𝑗(𝑖𝑖)
𝐶𝐶𝑗𝑗𝑗𝑗

𝑛𝑛
𝑘𝑘=1

𝑛𝑛
𝑗𝑗=1
(𝑛𝑛−1)(𝑛𝑛−2)

2
; 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘       (2) 

 

 

Page 153, Equation (3) – the sum goes from “k=1” and not “j=1” as currently indicated: 

𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑖𝑖 = [∑ 𝑑𝑑(𝑝𝑝𝑘𝑘,𝑝𝑝𝑖𝑖)𝑛𝑛
𝑘𝑘=1

𝑛𝑛−1 ]
−1

         (3) 

 

 

Page 153, Equation (8) – the last term should be “ktd,i” and not “ktd,z”: 

𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑏𝑏𝑏𝑏,𝑖𝑖 + 𝑘𝑘𝑡𝑡𝑡𝑡,𝑖𝑖         (8) 

 

 

Page 154, Equation (17) should be written as follows: 

𝑇𝑇𝑇𝑇𝑖𝑖𝑚𝑚 = ∑ 𝛽𝛽𝑧𝑧,𝑖𝑖𝑚𝑚
𝑧𝑧=1
𝑚𝑚 = ∑ ∑ 𝑎𝑎𝑧𝑧,𝑗𝑗𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑧𝑧=1

𝑚𝑚         (17) 
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for larger proportions of deviance (i.e., with D2 > 0.2) [χ² (1, 
15) = 7.411, p = 0.006], while no significant relationship was 
found for the body size [χ² (1, 15) = 0.796, p = 0.372]. Larger 
D2 values were obtained for local indices calculated using 
directed data [two-way ANOVA with main effects only; di-
rected data: χ² (1, 15) = 8.392, p = 0.004; local importance: 
χ²������������������������������������������������������������� (1, 15) = 4.035, p = 0.045]. The fact that centralities com-
puted using directed data and quantifying node importance 
at local scale are better predicted by traits can be only par-
tially explained by similarities among the indices. Indeed, the 
ranking of taxa based on centralities and trophic level allows 
obtaining three clusters (Fig. 4) and two of them include the 
indices modelled by GLMs with D2 larger than 0.2. The indi-
ces with D2 > 0.2 are in clusters that mainly account for the 
energy that either enters (dcin, dc, ccin and TL) or leaves (dcout, 
ccout and kbu) the nodes for which centralities are computed. 
The third cluster includes many indices based on undirected 
data (e.g., bcund, TI4) and poorly explained by traits (i.e., D2 
< 0.2). Also the importance score (is) belongs to the third 
cluster related to undirected data, due to similarities in node 
rankings determined by the use of bcund and ccund. Body size 
has pervasive consequences on the number of prey consumed 

by each taxon (dcin). The number of prey per taxon signifi-
cantly increases from the class of smallest size organisms (0, 
1] to the class of large size animals (100, 1000], while the 
trophic habits of largest megafauna (1000, 10000] do not dif-
fer from those of species in the small (1, 10] and medium 
(10, 100] size classes (see Tukey’s test in Table S2, ESM1). 
Also, animals with medium and high mobility consume sig-
nificantly more prey than sessile organisms and animals with 
low mobility. The relevance of body size in trophic interac-
tions is corroborated by the decreasing number of consum-
ers per taxon with increasing body size of the prey (dcout). 
However, such trend is non-monotonic and taxa belonging 
to the class of smallest size animals (0, 1] have significantly 
less consumers than organisms in the small (1, 10] and me-
dium (10, 100] size classes (see Tukey’s test in Table S5, 
ESM1). The number of predators per taxon is also affected 
by the habitat, with prey inhabiting coral reefs and demer-
sal zones showing significantly less predators than prey from 
pelagic and benthic habitats. In-closeness (ccin) and trophic 
level (TL) display similarities with in-degree centrality (dcin), 
with body size and mobility being strong predictors that ex-
plain large proportions of deviance (D2 > 0.2; see Tukey’s 

Table 1. ANOVA results for centrality indices and trophic level. The column “statistics” reports χ² (dcin, dcout, dc) or F values (for all 
other indices). The last two columns indicate families and link functions used in the GLMs.

test term statistics p df family link
dcin body size 587.870 < 0.001 4 Poisson log
(D2 = 0.386) mobility 531.150 < 0.001 3
dcout body size 1291.030 < 0.001 4 Poisson log
(D2 = 0.378) habitat 992.580 < 0.001 8
dc mobility 436.820 < 0.001 3 Poisson log
(D2 = 0.204) direction of spatial movement 536.620 < 0.001 3
bcund direction of spatial movement 2.663 0.048 3 Gaussian identity
(D2 = 0.025)
bcdir mobility 8.335 < 0.001 3 Gaussian identity
(D2 = 0.103) seasonality 5.433 0.005 2
ccin body size 66.379 < 0.001 4 Gamma log
(D2 = 0.536) mobility 52.111 < 0.001 3
ccout body size 71.520 < 0.001 4 Gamma log
(D2 = 0.536) mobility 25.069 < 0.001 3
ccund body size 8.270 < 0.001 4 Gamma log
(D2 = 0.070)
is body size 11.946 < 0.001 4 Gamma log
(D2 = 0.182) mobility 10.630 < 0.001 3
kbu body size 17.507 < 0.001 4 Gaussian identity
(D2 = 0.212) mobility 4.382 0.005 3
ktd body size 6.843 < 0.001 4 Gaussian identity
(D2 = 0.137) direction of spatial movement 7.264 < 0.001 3
kdir direction of spatial movement 14.116 < 0.001 3 Gaussian identity
(D2 = 0.143) activity 4.670 0.010 2
Kindir body size 4.891 < 0.001 4 Gaussian identity
(D2 = 0.091) direction of spatial movement 3.831 0.010 3
k body size 4.890 < 0.001 4 Gaussian identity
(D2 = 0.094) direction of spatial movement 5.746 < 0.001 3
TI4 body size 6.582 < 0.001 4 Gamma log
(D2 = 0.187) direction of spatial movement 12.204 < 0.001 3
TL body size 81.012 < 0.001 4 Gamma log
(D2 = 0.666) mobility 102.751 < 0.001 3
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test in Tables S16-S17 and S45-S46, ESM1). Animals with 
medium and high mobility have signifi cantly higher ccin 
and TL than sessile organisms and taxa with low mobility. 
Differences among body size groups are less straightforward 
than in the case of dcin: (1) medium (10, 100] and large (100, 
1000] size animals have signifi cantly higher ccin than organ-
isms in smaller size classes and large megafauna (this latter 
holds for large animals only); (2) organisms of smallest size 
(0, 1] show signifi cantly lower TL than animals belonging 
to all other size classes; (3) large size animals (100, 1000] 
feed at signifi cantly higher TL than all other taxa, with the 
exception of large megafauna (that include both fi lter-feeding 
baleen whales and sperm whale). Out-closeness (ccout) and 
bottom-up keystone index (kbu) vary with body size and mo-
bility with analogous patterns, thus deviating from out-degree 
(dcout) that was better modeled with body size and habitat (see 
Tukey’s test in Tables S5-S6, ESM1). Both ccout and kbu de-
crease with body size and mobility, being signifi cantly higher 
for smaller size animals. Sessile and less motile organisms 
have signifi cantly higher chances of affecting taxa that re-
ceive energy (either directly or indirectly) from them (i.e., 
they have higher ccout than taxa that lie downstream in the 
trophic hierarchy). Degree (dc) is the only index based on 
undirected data for which two traits can explain a suffi ciently 
large amount of deviance (D2 > 0.2). It attains largest values 
in presence of animals that move along the water column with 
medium mobility. The scores calculated for each node using 
all 15 centrality indices and the trophic level are stored in 
the ESM3. In the ESM1 we illustrated frequency distributions 
of centrality indices and trophic level (Fig. S2), and nodes’ 
similarities defi ned by the 15 centrality indices (non-metric 
multidimensional scaling in Fig. S19).

Discussion

Network analysis is often applied to quantify the struc-
tural and functional importance of species in food webs. For 
example, centrality indices can be used to identify which spe-

Figure 4. Dendrogram of similarities among indices, which was 
built using Spearman’s rank correlation coeffi cients. The dendro-
gram was assembled with the Ward’s minimum variance clustering 
method. Key of the codes: ccin = in-closeness, TL = trophic level, 
dcin = in-degree, ktd = top-down keystone index, dc = degree, is = 
importance score, k = keystone index, ccund = undirected closeness, 
bcund = undirected betweenness, bcdir = directed betweenness, kdir = 
keystone index, direct effects, TI4 = topological importance up to 
4 steps, dcout = out-degree, kindir = keystone index, indirect effects, 
ccout = out-closeness, kbu = bottom-up keystone index.
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Figure 3. Summary of best 
predictors used to model 
centrality indices and trophic 
level. The indices quantify 
either local or non-local (i.e., 
at meso- and global-scale) 
importance and are com-
puted with either directed or 
undirected data. Traits and 
other attributes (e.g., habi-
tat) are the predictors taken 
into account to describe the 
scores of the indices. Body 
size and mobility are the 
most informative traits for 
modelling centrality indi-
ces and trophic level. The 
last column summarizes the 
GLMs capable of explaining 
the largest amount of devi-
ance.
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cies should be protected to increase the resilience of marine 
food webs (Bornatowski et al. 2014, Scotti and Jordán 2015, 
Navia et al. 2016, Rocchi et al. 2017). However, poor details 
are known about the ecological meaning of centrality indi-
ces. Here we calculated centralities and trophic level of spe-
cies and trophospecies (i.e., groups of species that share the 
same prey and are eaten by the same predators) in the Gulf of 
California food web. To investigate the possible mechanisms 
behind the rankings provided by different centralities we 
modelled the values calculated for each index as a function of 
independent ecological attributes, such as traits and habitat. 
We found that body size and mobility are the best predictors, 
particularly in the case of indices that describe species im-
portance at local scale by considering the direction of energy 
flow in the food web (Table 1, Fig. 3).

Theoretical models have shown that a single trait allows 
generating networks with structural properties coherent with 
those of empirical food webs. Body size was evoked as an 
important trait in theoretical models that order the nodes 
along one niche axis to define the probabilities of having prey 
(e.g., cascade and niche models; Cohen and Newman 1985, 
Williams and Martinez 2000). Also, Petchey et al. (2008) 
started from the body size of species to construct an optimal 
foraging model and used allometries of foraging variables for 
predicting the structure of real food webs. Further research 
elucidated that body size is a key trait to predict whether two 
species interact in food webs (Eklöf et al. 2013). Our work 
confirms the pivotal role that body size has in shaping the 
architecture of trophic interactions (Table 1). Larger animals 
consume more types of prey than species of smaller size, even 
though large megafauna (e.g., blue whale and sperm whale) 
do not comply with such trend. The predators per species de-
crease with the body size but the smallest organisms present 
in the food web (e.g., dinoflagellates and cladocerans) are not 
the most vulnerable. The non-univocal trend found for small-
est organisms could be due to the low resolution of the mi-
crobial food web, with all organisms of size ≤ 1 cm grouped 
in the same class (Sommer et al. 2018). These relationships 
linking body size to numbers of prey (dcin) and predators 
(dcout) can explain why species feeding higher in the trophic 
hierarchy have more prey than those with lower trophic level 
(Cohen and Newman 1985, Williams and Martinez 2000; see 
Fig. S20 in ESM1 for the comparison between the trends of 
centrality indices along the trophic hierarchy in the Gulf of 
California food web and in theoretical models). Also in the 
Gulf of California food web, species at higher trophic levels 
(TL) have larger body size than species towards the bottom 
of the trophic chain. The skewed distribution of trophic in-
teractions along the food chain holds for diverse aquatic food 
webs (Scotti et al. 2009a,b). The uneven distribution is due 
to the fact that more prey types are consumed by predators at 
higher trophic levels compared to what happens for species 
feeding lower in the trophic chain. However, such pattern is 
reversed when trophic interactions are weighted by the ac-
tual amount of energy/matter flowing in the food web (Scotti 
et al. 2009b). Species at lower trophic levels have less prey 
types but feed more evenly on them than predators that lie 
towards the top of the trophic hierarchy. The latter exhibit 

wider potential dietary breadths than lower trophic level 
consumers, but they satisfy the energy demand by preferen-
tially feeding on small subsets of few prey (i.e., with feeding 
specialization). Our data confirm the strong positive correla-
tion between trophic level and number of prey per predator 
(Spearman’s ρ = 0.666, p < 0.001), with body size distribu-
tion along the trophic hierarchy responsible for such relation-
ship. The study of feeding preferences reveals that also in the 
Gulf of California food web the strongest interactions are un-
evenly distributed towards the top of the trophic chain, with 
few interactions responsible for most of energy/matter flow 
(Spearman’s ρ = 0.640, p < 0.001). An exception is repre-
sented by Eden’s whale (Balaenoptera edeni Anderson) that, 
despite its body size, feeds at intermediate trophic level (TL 
= 3.279) and shows no trophic specialization for its prey (i.e., 
fish and planktonic crustaceans). The prevalence of weak 
links towards the top of the trophic hierarchy might however 
have been affected by the principles adopted to construct the 
food webs analyzed by Scotti et al. (2009a,b). Indeed, in most 
weighted food webs the nodes at lower trophic levels lump 
together various species, while better resolution is attained 
at higher trophic levels (i.e., with a 1:1 correspondence be-
tween species and nodes). Our analysis was based on a high 
resolution food web composed of 317 nodes, 74% of which 
represent single species. It confirmed that species at higher 
trophic levels have larger size, display more potential prey 
and higher specialization than species feeding lower in the 
trophic chain, thus suggesting that the findings of Scotti et 
al. (2009a,b) were not necessarily biased by inhomogeneous 
node resolution along the trophic chain. Nevertheless, micro-
bial trophic interactions are poorly represented in the current 
version of the Gulf of California food web and this might 
have led to underestimating both dietary breadth and trophic 
level of various taxa (Sommer et al. 2018). For example, the 
heterotrophic flagellates are crucial in the microbial food web 
of marine systems but do not form a homogeneous trophic 
guild (Moustaka-Gouni et al. 2016). Thus, the inclusion of 
heterotrophic flagellates and the adoption of a fine taxonomic 
description might modify the centrality of tunicates and other 
members of the “jelly food chain” (Sommer et al. 2018).

The relevance of body size goes beyond its predictive 
power in quantifying species importance at local scale (i.e., 
when it is used to model dcin, dcout and TL). In particular, the 
relationships linking body size to directed closeness centrali-
ties are consistent with trends observed using in- and out-de-
gree (see Table 1 and Tukey’s tests in Tables S2, S5, S16 and 
S19, ESM1). First, ccin increases with body size as it happens 
to the number of prey per predator (dcin). Therefore, when the 
exposure to perturbations is investigated by considering en-
ergy intake (ccin), large species that feed at high trophic levels 
are more quickly influenced compared to small organisms 
towards the bottom of the trophic hierarchy. The high vulner-
ability exhibited by species with more prey contradicts the 
expectation that wide dietary breadths act as buffer to prevent 
negative consequences due to biomass fluctuations of some 
resources (MacArthur 1955). The striking exposure of gener-
alist species to perturbations can however be explained with 
the presence of multiple pathways through which the distur-
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bance reaches the species at high trophic levels. Second, ccout 
shows an effect of body size that is coherent with what found 
for dcout (i.e., small body size animals are the most central). 
Hence, if constraints imposed by energy flow direction are 
taken into account, the spread of perturbations (ccout) occurs 
faster when anthropic pressures target small organisms at low 
trophic levels rather than large animals at the top of the troph-
ic chain. Body size, a relatively simple trait to determine, 
can thus predict indirect effects in addition to influencing the 
way species interact (Eklöf et al. 2013). These results can be 
explained with the similarities among trophic level, directed 
degree and closeness centralities (Fig. 4).

Mobility is the second most frequently used predictor to 
model centrality indices in the Gulf of California food web 
and is significantly associated to GLMs that explain larg-
est amounts of deviance (D2 > 0.2; see Table 1 and Fig. 3). 
Mobility has been already shown to yield higher overlap 
between predicted and empirical interactions than body size 
(Eklöf et al. 2013). The importance that mobility has in de-
termining the role played by species in food webs is further 
confirmed by our study. This is because we found that mo-
bility can also predict the scores of centralities quantifying 
indirect effects (i.e., bcdir, ccin, ccout, is and kbu). The relevance 
of mobility contrasts with some theoretical models that aim 
at assembling networks structurally equivalent to empiri-
cal food webs starting from body size alone (Williams and 
Martinez 2000, Petchey et al. 2008). Allesina et al. (2008) 
proposed an alternative framework for the inclusion of mul-
tidimensional niches. In their food web model the predators 
can choose the prey depending on more traits. Since body 
size and mobility are the two independent variables used to 
model dcin (Table 1), these traits define the most promising 
bi-dimensional niche space to account for most feeding rela-
tions in the Gulf of California food web. Our results do not 
exclude that different combinations of traits can represent the 
most suitable dimensions to model feeding relationships in 
other food webs. For example, habitat of the resources is one 
of the traits with the largest explanatory power for predicting 
trophic interactions in the Kongsfjorden food web (Eklöf et 
al. 2013). This agrees with the relevance that body size and 
habitat have as predictors of the number of predators per prey 
(dcout) in the Gulf of California food web (Table 1).

Our study is based on a highly resolved food web, with 
most of the nodes representing single species. The detailed 
description of nodes and trophic interactions is an essen-
tial requisite to investigate whether traits and attributes can 
predict the scores of centrality indices. This is because the 
unambiguous classification of traits and attributes gets more 
complicated when various taxa are grouped in the same node. 
Also, the prevalence of nodes that include single species al-
lows discriminating differences that strictly depend on feed-
ing preferences (i.e., when two species consume the same set 
of prey but feed on them in different proportions). However, 
some limits persist even in presence of high resolution food 
webs that exhibit 1:1 correspondence between nodes and spe-
cies. First, intraspecific trait variation cannot be taken into 
account despite it has large ecological effects (Bolnick et al. 
2011). Second, some issues can emerge in the treatment of 

traits that change along the ontogenetic development of spe-
cies (Reiss et al. 2009). Moreover, the limits imposed by the 
resolution can also affect the food web structure. This is the 
case of our model that represents most fish species as single 
nodes but does not consider ontogenetic diet shifts, which 
are common in many fish when becoming adult (Valenzuela-
Quiñonez et al. 2017).

In the Gulf of California food web, body size and mobil-
ity are good predictors of centrality indices that encompass 
diverse definitions of species importance (i.e., constrained 
by energy flow direction or not, and with reference to local-, 
meso- or global-scale; see Fig. 3). This result integrates previ-
ous findings that showed how a few functional trait-axes are 
required to model feeding interactions in food webs (Eklöf 
et al. 2013). The feeding interactions (i.e., directed degree 
centralities, which define the interaction milieu; McGill et al. 
2006) in the Gulf of California food web are constrained by 
three traits: body size, mobility and habitat. The novelty of 
our work stands in the evidence that a restricted subset of 
traits characterizes the role of species also at meso- and glob-
al-scale. We suggest that the use of a trait-based approach to 
model feeding interactions and species importance in trophic 
networks can help finding general patterns (McGill et al. 
2006). This is because it allows focusing on the processes 
that shape the ecological communities, rather than providing 
highly contingent rules as nomenclatural studies. Functional 
traits can explain the ecological meaning of network analysis 
results (e.g., scores of centrality indices), thus making possi-
ble to establish indirect but explicit links between the changes 
of environmental conditions (e.g., global warming that modi-
fies the frequency of some traits) and their consequences on 
food web structure. Therefore, merging trait ecology with net-
work analysis is essential to understand how rapidly changing 
conditions due to human activities may impact interactions 
and persistence of species in food webs.
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