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Abstract The Calabrian subduction zone is one of the narrowest arcs on Earth and a key area to
understand the geodynamic evolution of the Mediterranean and other marginal seas. Here in the Ionian
Sea, the African plate subducts beneath Eurasia. Imaging the boundary between the downgoing slab and the
upper plate along the Calabrian subduction zone is important for assessing the potential of the subduction
zone to generate megathrust earthquakes and was the main objective of this study. Here we present and
analyze the results from a 380-km-long, wide-angle seismic profile spanning the complete subduction zone,
from the deep Ionian Basin and the accretionary wedge to NE Sicily, with additional constraints offered by
3-D gravity modeling and the analysis of earthquake hypocenters. The velocity model for the wide-angle
seismic profile images thin oceanic crust throughout the basin. The Calabrian backstop extends underneath
the accretionary wedge to about 100 km SE of the coast. The seismic model was extended in depth using
earthquake hypocenters. The combined results indicate that the slab dip increases abruptly from 2-3° to
60-70° over a distance of <50 km underneath the Calabrian backstop. This abrupt steepening is likely
related to the rollback geodynamic evolution of the narrow Calabrian slab, which shows great similarity to
the shallow and deep geometry of the Gibraltar slab.

Plain Language Abstract we investigate the deep crustal structure of southern Italy and the
central Mediterranean where some of the oldest oceanic crust on Earth is actively descending
(subducting) into its interior (Speranza et al., 2012). This process causes much of the moderate seismicity
observed in this region and may be responsible for strong historical earthquakes as well (Gutscher et al.,
2006). Deep seismic data recorded during a marine geophysical expedition performed in 2014 allow us to
reconstruct the 3-D geometry of this subduction zone. Our data reveal a 1-4-km-thick evaporitic (salt
bearing) layer in the 13-km-thick accretionary wedge. The thin underlying crust has characteristics of
oceanic crust. The adjacent onshore domains (E Sicily and SW Calabria) are composed of 25-30-km-thick
crust with velocities typical of continental crust. Together with earthquake travel-time tomography
(providing images of the subducting slab down to 300 km) and gravity modeling, we can for the first time
image the abrupt steepening of the subducting slab, the “slab hinge,” where slab dip increases from <5° to
>60° over a downdip distance of 50 km. This slab dip is steep compared to other subduction zones, for
example, in Northern Honshu, Japan, or Sumatra, where the slab dip remains roughly 10°- down to 40-km
depth and therefore may have consequences on the seismicity of the region.

1. Introduction

The Calabrian Arc is one of the narrowest subduction zones in the world. Here, the African plate subducts
toward the NW beneath the Calabrian and Peloritan continental blocks. The fore-arc region is characterized
by moderate seismicity with rare strong events (Carminati et al., 2005; Scarfi et al., 2013). Southern Italy has
repeatedly been struck by strong earthquakes that also triggered tsunami (e.g., Messina M7.1 in 1908;
Hyblean earthquake M7.5 in 1693—Piatanesi & Tinti, 1998; Jacques et al., 2001; Gutscher et al., 2006).
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The seismicity of the slab is distributed along a well-defined Wadati-Benioff zone with focal depth that is less
than 50 km in the Ionian Basin and down to 660 km in the Tyrrhenian Basin (Engdahl et al., 1998; Selvaggi &
Chiarabba, 1995).

Imaging the boundary between the downgoing slab and the upper plate along the Calabrian subduction
zone is important for assessing the potential of a subduction zone to create megathrust earthquakes.
Indeed, many authors consider that earthquake rupture cannot extend beyond the intersection with the
mantle wedge, which is thought to be highly serpentinized (Byrne et al., 1988; Oleskevich et al., 1999).
Other workers have hypothesized that there is a significant influx of hot mantle beneath Calabria
(Ferranti et al., 2007; Westaway, 1993), and others evoke slab break-off and possible delamination beneath
central E Sicily and Calabria (Faccenna et al., 2011; Giacomuzzi et al., 2012; Piana Agostinetti et al., 2009).
However, the exact depth and dip of the downgoing slab, as well as the thickness and nature of the upper
plate (Calabria block), remain uncertain. This study tries to unravel the slab geometry and the slab depth
in the Calabrian subduction zone using wide-angle seismic data and gravity modeling as well as earthquake
locations and regional tomographic data.

1.1. Tectonic History of the Study Region

The evolution of the central western Mediterranean region is driven by the convergence between the African
plate and the Iberian and Eurasian plates leading to subduction initiation, slab rollback, and formation of
back-arc basins (Faccenna et al., 2011; Handy et al., 2010; Jolivet et al., 2015; Rosenbaum et al., 2002; van
Hinsbergen et al., 2014) (Figure 1). NW dipping subduction and ensuing rollback are thought to have started
at 35-30 Ma (Rosenbaum et al., 2002; van Hinsbergen, Mensink, et al., 2014). At 25 Ma the Sardinia-Corsica
block began rotating in a counterclockwise direction in response to SE-ward retreat of the subduction
(Rosenbaum et al., 2002). This led to widespread extension causing the opening of the Liguro-Provencal
and Valencia basins (Séranne, 1999). The original forearc then split into individual blocks known as
AlKaPeCa (Alboran, Kabylides, Peloritan, Calabria) continental terranes (Bouillin et al., 1986). The
Calabrian slab rolled back to the E, and the overriding continental blocks were thrust onto the margin of
Adria forming the southern Apennines. The Peloritan block has overthrust the African margin of Sicily
(Speranza et al., 2003). A slab length offset between the originally attached Calabrian and the Kabylides slab
might be at the origin of the initiation of a subduction-transform edge propagator (STEP, Govers & Wortel,
2005) fault that then separated these into two slabs (van Hinsbergen, Mensink, et al., 2014). The modern-day
fore-arc STEP fault is thought to be located either at the Alfeo Fault system (Dellong et al., 2018; Gutscher
et al., 2016, 2017) or at the Ionian Fault system (Polonia et al., 2011; Scarfi et al., 2018) (Figure 2). An earlier
proposition that the STEP fault follows the Malta Escarpment, a 3-km-high feature offshore E Sicily
(Argnani & Bonazzi, 2005) formed during the Tethyan rifting history of the Ionian Sea (Frizon de
Lamotte et al., 2011; Gallais et al., 2011), seems unlikely given the absence of tectonic deformation along
the central to southern Malta Escarpment since the Messinian, on the basis of high-resolution seismic pro-
files shot across the escarpment (Gutscher et al., 2016).

1.2. Deep Structure of the Ionian Basin and the Malta Escarpment

Several deep seismic reflection and refraction studies were conducted on the eastern Sicily margin in the
1980s and 1990s (Catalano et al., 2001; Hirn et al., 1997; Makris et al., 1986; Nicolich et al., 2000). These stu-
dies concluded that a 30-km-thick continental crust underlies the Sicilian-Hyblean Plateau. An expanding
spread profile experiment located in the Ionian Abyssal Plain (IAP) and on the Mediterranean ridge pro-
vided the first constraints on the crustal velocities of the deep IAP, where the sedimentary cover is thinnest.
The wide-angle seismic results show a 5-km-thick sedimentary cover overlying a thin crust of about 7 to 9
km (de Voogd et al., 1992; Le Meur et al., 1997). However, different interpretations were proposed including
a thinned continental crust or an oceanic one. Later studies clearly imaged a 5- to 6-km-thick oceanic crust in
the basin spanning the northern IAP (Dannowski et al., 2019; Dellong et al., 2018). Previous multichannel
seismic (MCS) studies have imaged the deep structure of the Ionian Basin and the adjacent Calabrian accre-
tionary wedge, with sediment thicknesses increasing from about 5 km (undeformed thickness) in the abyssal
plain to 10-15 km within the accretionary wedge as the dip of the subducting plate below remains very shal-
low (1-2° on average) (Cernobori et al., 1996; Gallais et al., 2011; Maesano et al., 2017; Minelli & Faccenna,
2010; Polonia et al., 2011). An early MCS study imaged the steepening of the subducting basement as it
approaches the Calabrian block (lines ION-3 and ION-4) (Cernobori et al., 1996). At the transition
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Figure 1. (a) Location map of the study area. Ocean-bottom seismometers and land stations deployed during the Dionysus cruise (October-November 2014,
Meteor). Earthquakes from the INGV-ISIDe catalog (http://cnt.rm.ingv.it/en) are plotted with a size proportional to the magnitude and color corresponding to
the hypocenter depth. The CROP-M3 MCS profile is coincident with DY-P4 and is marked by underlying bold yellow line (Figure 5 in this study and shown in
detail in Polonia et al., 2011). Profiles used for the construction of the gravity model are marked by white lines. Bathymetry from Gutscher et al. (2017) and
EMODnet. (b) and (c) Paleogeographic reconstruction figures are modified from van Hinsbergen, Mensink, et al. (2014). Al = Alboran; Ca = Calabria; CIR =
Central Iberian Ranges; EBT = Emile Baudot Transform; GoL = Gulf of Lion; GoV = Gulf of Valencia; Ka = Kabylides; NBTZ = North Balearic Transform Zone; Pe
= Peloritan Mountains. Inset shows the location of the study is in the central Mediterranean region.

between the continental (Sicilian) and the deep oceanic (Ionian) domain, an abrupt crustal thinning by 3 km
is observed along the Malta Escarpment. The escarpment was originally interpreted to be a passive margin
originating from the initial opening of the Ionian Sea. Later studies proposed this to be a transform margin
(Catalano et al., 2001; Dellong et al., 2018; Frizon de Lamotte et al., 2011; Gallais et al., 2011), which is in
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Figure 2. Tectonic map of the study area. Ocean-bottom seismometers and land stations are marked by red dots. Red stars mark hypocenters location of historical
earthquakes. CROP-M3 MCS profile is coincident to DY-P4 (Figure 5; Polonia et al., 2011). Bathymetry from Gutscher et al. (2017) (after Dellong et al., 2018).
Yellow-shaded area marks the supposed extension of tectonically thickened evaporites in the Calabrian accretionary wedge.

good agreement with an opening at the Late Triassic/Early Jurassic of the Ionian Basin (Frizon de Lamotte
et al., 2011). Other studies propose ages ranging from early Late Triassic (220 Ma; Speranza et al., 2012) to
Late Jurassic to Early Cretaceous (Catalano et al., 2001).

Travel-time tomography using local or teleseismic events has been able to image downgoing slabs in subduc-
tion zones to depth of several hundreds of kilometers (e.g., Spakman et al., 1993;Spakman & Wortel, 2004 ;
Wortel & Spakman, 2000). One of the first studies of the Italian region showed large-scale lithospheric inho-
mogeneity in the deep structure of the Tyrrhenian Sea (Scarpa, 1982). Positive travel-time anomalies inter-
preted to be a NW dipping subducting slab beneath the Calabrian Arc were later imaged from teleseismic
events (Amato et al., 1993). Results from 3-D teleseismic tomography focused on the study region reveal
the downgoing slab as a fast structure extending 350 km laterally from northern Sicily to southern
Campania and 400 km vertically (Cimini, 1999). A more refined mantle tomography imaged a 150-km-wide
slab window beneath the southern Apennines, which probably opened after a slab tear occurred between the
Apulian continental subduction and the Ionian oceanic slab (Chiarabba et al., 2008). These results were
refined using a denser data set and led to the proposition that the subducting lithosphere remains attached
along a 100-km-long segment at the central portion of the Calabrian Arc (Neri et al., 2012). Global
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tomography models clearly image a horizontal anomaly in the transition zone at a depth of 500 km, which is
interpreted to be a flat-lying part of the Calabrian slab (Spakman & Wortel, 2004; Wortel & Spakman, 2000).
The existence of a proposed STEP fault (Govers & Wortel, 2005; Wortel et al., 2009) was confirmed by tomo-
graphic and gravity modeling, with a proposed location of the faults in the Tindari and Crotone Basin (Neri
et al., 2012, Figure 1 for location). Recent geodetic work provided evidence for toroidal flow around the
retreating slab edges of the Calabrian subduction system expressed by counterclockwise rotations at the
northern and clockwise rotations at the southern edge of the slab corresponding to movements predicted
by STEP faults (Palano et al., 2017). Recent tomographic studies imaged a trench-parallel slab break-off
on both sides of the slab, which might be still propagating, narrowing the slab (Barreca et al., 2016, 2018;
Scarfi et al., 2016, 2018). Horizontal tearing affecting both sides of the slab was proposed to result in a nar-
rowing of the subduction system and enhanced subsidence along the still-intact segment of the slab (Scarfi
et al., 2018). In central Calabria the depth of the slab has been determined by source-receiver function ana-
lysis during a tomographic experiment. The results show that the slab is steeply inclined and that a 4- to 6-
km-thick layer of low-velocity sediments is imaged between the oceanic crust and the continental Calabrian
backstop (Piana Agostinetti et al., 2009).

Gravity anomalies at subduction zones are generally characterized by strong signatures that are linked to
topographic effects, material density, and temperature heterogeneities in the lithospheric mantle and the
crust or even forces and stresses induced by plate dynamics (e.g., Krien & Fleitout, 2008; Levitt &
Sandwell, 1995 and references therein). Gravity anomaly lineaments parallel to the arc-trench axis are often
observed along subduction zones. For example, a negative free-air anomaly is usually observed at the trench
and above the downgoing slab and is interpreted as a result of a topographic effect or of the presence of a
light crustal material entrapped within the subduction complex (Forte et al., 1993; Marotta et al., 2006). It
was suggested that great earthquakes occur predominantly in regions with a strongly negative trench-
parallel gravity anomaly (Song & Simons, 2003). Earlier studies in the Ionian Sea have shown that
Bouguer gravity anomalies are consistent with young subduction of an intermediate foreland lithosphere
beneath two opposing subduction systems, the Apennine-Calabrian system to the SW and the Hellenic sys-
tem to the northeast (Moretti & Royden, 1988).

Determining the position of the slab at shallow depth compared to earthquake tomographic studies and
using seismic and gravimetry methods remain difficult because of the thick accretionary wedge and the
Messinian evaporite layers introducing velocity inversions and density anomalies. This study aims to shed
light on the deep structure of the Ionian subduction interface below the Calabro-Peloritan backstop with
a higher resolution than the above-mentioned tomography and receiver function studies.

1.3. Objectives of the Study

Four wide-angle seismic profiles were acquired to provide a 3-D image of the E Sicily margin and the western
portion of the Calabrian subduction zone (Figures 1 and 2). Two profiles orthogonal to the E Sicily margin
cross the Malta Escarpment and the transition between the continental crust of the Hyblean Plateau and the
Tethyan oceanic crust of the deep Ionian Basin (Dellong et al., 2018). One profile close to the Medina sea-
mounts was shot to characterize the nature of the crust below the IAP (Dannowski et al., 2019). Our work
presents the findings of the 380-km-long dip line, intersecting the three other profiles, and thus provides a
comprehensive 3-D structural view of the analyzed sector. The dip line crosses from the undeformed domain
of the IAP, across the external (evaporitic) Calabrian accretionary complex and the internal (clastic) accre-
tionary wedge, and all the way to the Peloritan continental domain (NE corner of Sicily), composed of
Hercynian metamorphic basement currently forming the backstop of the upper plate. The objective of this
combined data set is to image the complex 3-D transition between the adjacent and the overlapping crustal
domains, as well as the deep expression of the lateral slab tear (STEP) fault. Among the open questions that
remained following the previously published work are (e.g., Dellong et al., 2018) what is the geometry
(depth, thickness, dip) of the downgoing oceanic crust and its relative position to the overlying backstop
and how does the thickness and nature of the accreted and/or underplated sediments vary downdip. We ana-
lyze the first wide-angle seismic data compilation that can address this set of questions.

Furthermore, regional 3-D gravity modeling was performed with the aim to test end-member models for the
slab depth in the Calabrian-Messina strait region. Specifically, in wide-angle profile DY-P3, the top of the
subducting oceanic crust was not imaged (Dellong et al., 2018). The authors proposed two hypotheses for
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Figure 3. (a) Seafloor bathymetry along the sections shown below. (b) Data section from OBS 08 vertical geophone chan-
nel. The data are band pass filtered (3-4-24-36 Hz corner frequencies) and are reduced to a velocity of 6 km/s. (c) Data
section OBS 08 with travel-time picks overlain.

its position (1) significantly below the Calabrian backstop and beyond the range of the seismic rays and (2)
that the slab is part of the thick lower crustal layer of the backstop but not resolved by the OBS data given
that velocity contrasts would be minor producing no high-amplitude reflection. As an intervening layer
with mantle velocities (first hypothesis) will produce a strong, observable gravity anomaly, this problem
can be resolved using 3-D gravity modeling.

2. Data Acquisition and Processing

The wide-angle seismic data were acquired in 2014 during the Dionysus survey, a collaboration between
GEOMAR (Kiel, Germany), INGV (Rome, Italy), Ifremer, and the University of Brest (both Brest, France)
onboard the R/V Meteor (M111 cruise). Additionally, we used gravity data from satellite free-air anomaly
from the World Gravity Map (WGM2012—Bonvalot et al., 2012; Pavlis et al., 2012) for gravity modeling.

2.1. Wide-Angle Seismic Data

Three long and one shorter wide-angle seismic profiles were shot using an array of six GI-Guns of a total
volume of 84 liters (5,440 in.*) (Figure 2). This work focuses on the DY-P4 profile, which spans the
Calabrian subduction zone along a SE-NW transect.

DELLONG ET AL.
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Figure 4. (a) Seafloor bathymetry along the sections shown below. (b) Data section from land-station S3 vertical geophone channel. The data are band pass filtered
(3-4-24-36 Hz corner frequencies) and are reduced to a velocity of 6 km/s. (c) Data section from land-station S3 with travel-time picks overlain.

Half of the marine instruments used in this experiment were MicrOBS from Ifremer equipped with three-
component 4.5-Hz geophones and a hydrophone both recording at a 4-ms sampling rate (Auffret et al.,
2004). The other half consisted of ocean-bottom hydrophones from GEOMAR (Bialas & Flueh, 1999).
Ocean-bottom seismometers (OBSs) were deployed on even position numbers and ocean-bottom hydro-
phones on odd position numbers. The land stations were six REF TEK 130S-01 equipped with short period
velocimeter sensors with a 1-s dominant period. Their sampling rate was set at 8 ms. The seismic source used
during the survey consisted of two subarrays of six GI-Guns. The 12 guns together provided a volume of 84 1
(5,440 in3) and were operated at 190 bar. The shooting interval was set to a constant 60 s for all profiles,
resulting in a shot point interval of 150 m. The marine part of the profile is coincident with the deep reflec-
tion seismic profile CROP M2B, which was used in this study to constrain the geometry of the sedimentary
layers (Polonia et al., 2011) (Figures 1 and 5).

We installed 61 ocean-bottom instruments along profile DY-P4 at 5- to 6-km intervals and 5 INGV land sta-
tions in Sicily along the prolongation of the profiles (see Figure 2). Data quality is good; however, arrivals are
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Table 1

Name, Phase Number, and RMS Error for All Phases

Phase Phase Number Number of picks RMS error [ms]
Water 1 3879 0.030
Sediment 1 2 1133 0.129
Sediment 2 3 3616 0.079
Sediment 3 9 823 0.190
Sediment 4 18 659 0.136
Sediment 5 16 306 0.162
Sediment reflection 1 4 676 0.107
Sediment reflection 2 5 326 0.086
Sediment refllection 3 10 102 0.193
Sediment reflection 4 19 1815 0.142
Top basement 6 1469 0.178
Oceanic lower crust 15 3494 0.139
Continental lower crust 11 3039 0.147
Intra-crustal reflection 12 506 0.229
PmP continental 7 422 0.203
PmP oceanic 14 811 0.189
Pn 8 895 0.086
All phases 23971 0.133

highly distorted, and energy is lost at long offsets probably due to the highly irregular sedimentary layer
boundaries and the presence of salt leading to a velocity inversion in the sedimentary column (Figure 3 and
Figure S1 in supporting information). The land-station data are of very good quality, and reflections picked
from the data sections were one of the main inputs for the modeling of the subducting oceanic plate
geometry (Figure 4). Initial processing was performed onboard, and profiles DY-P1 and DY-P3 were
modeled using a forward approach (Dellong et al., 2018). This study uses an identical approach for profile
DY-P4 to achieve intercomparable models. The OBS data were corrected for time and spatial drift during
the deployment on board. First arrival time picking and a preliminary tomographic inversion were
equally run on board; however, the resulting preliminary velocity models showed high uncertainties, due
to the velocity inversion of the salt layer and the low density of seismic rays reaching lower crustal and
upper mantle depth. Because of these difficulties, the data were modeled using the Rayinvr software (Zelt,
1999; Zelt & Smith, 1992) to be able to include additional information from coincident reflection seismic
data and gravity modeling. This approach uses a combined forward and inversion approach to model
layers of different velocities and velocity gradients. Layer depth and velocities are defined by the user in
the first place. A smoothed inversion at velocity and depth nodes selected by the user can be used
additionally to constrain the best-fitting solutions. Depending on the data quality, either the hydrophone
or the vertical geophone data were used for the modeling.

Travel-time picking was performed when possible on unfiltered data sections. When necessary, a
Butterworth frequency band-pass filter was used to enhance the signal/noise ratio. A total of 23,971 picks
were used for the velocity modeling, including 17 phases (Table 1). The high number of phases is due to
the lateral changes of the tectonic regime along this long profile. Although the absolute number of layers
of the final velocity model is high (12 layers including water surface and Moho), the number of layers at
any given position along the profile never exceeds 7. The high absolute number of layers can be explained
by the lateral change of character of the sediments and crust from oceanic to the accretionary wedge and
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Figure 5. (a) Reflection seismic section of the coincident CROP M2B profile (Polonia et al., 2011) with velocities from our wide-angle seismic model underlain (see
Figure 7). OBS locations are marked by red circles. (b) and (c) are zooms indicated on (a) to show more details of the reflection seismic data.

the Calabria block. Along the oceanic part of the profile, within the accretionary wedge, four sedimentary
layers were modeled using reflected and turning arrivals. The second layer is characterized by a higher
velocity than the underlying one, therefore inducing a velocity inversion. At the accretionary prism, four
sedimentary layers were also picked. However, since the second and third layers show no lateral
continuity to the oceanic region, two additional layers were defined to avoid confusing the readers and to
demonstrate that the origin of those two layers differs from the ones to the SE. Similarly, two crustal
layers were picked in the oceanic domain as well as in the backstop domain, resulting in four individual
layers, which, however, are not continuous along the profile.

Key reflectors in the sedimentary layers were picked from the coincident CROP M2B time section (Figure 5
in this study and in more detail in Polonia et al., 2011) and were included in the wide-angle seismic model to
better constrain the sedimentary layer geometry. The reflectors were converted to depth with the help of the
OBS data. The model was extended on land to include the land-station data, but no reverse shots exist from
the land part of the profile. The OBS data constrain sedimentary, crustal, and upper mantle parts of the
model in the marine model. The land-station data provide constraints on the deep geometry of the necking
zone. No turning wave arrivals from shallow layers on land exist as shots were only produced along the mar-
ine part of the profile (Figure 6).

2.2. Gravity Modeling

To evaluate the impact of different scenarios for the slab depth along the DY-P3 profile, three different mod-
els were constructed differing only in the depth of the slab. The first model is the (1) reference model, built to
closely fit the predicted free-air anomaly from the model to the measured one. Then, two end-member mod-
els were built to test a (2) shallow slab hypothesis (5-km-shallower slab) and a (3) deep slab hypothesis (15 km
deeper) (detailed explanations are given in Text S1).

3. Results

In the following section, the results from the velocity modeling are presented together with their error esti-
mation. The results from the 3-D gravity models constructed in this study are presented thereafter.
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3.1. Seismic Velocity Model

The final velocity model is composed of five sedimentary units, an oceanic crustal layer subdivided into two
layers (corresponding to Layers 2 and 3) and a Calabrian crustal block composed of two layers (Figure 7).
The deepest layer corresponds to the lithospheric mantle; however, it's velocities are only constrained by div-
ing rays in the oceanic part. The first sedimentary layer has a velocity between 2.0 and 2.3 km/s and a vari-
able thickness between several hundreds of meters and 2-3 km. Along model distance 30 to 140 km, the
second sedimentary layer is characterized by velocities between 4.5 and 4.8 km/s and with a thickness
between 2 and 5 km, which is characteristic for the Messinian evaporite layer located in this part of the accre-
tionary wedge. Toward the NW this layer thickens before being pinched out by the sedimentary units of the
inner part of the accretionary wedge that has lower velocities between 2.3 and 2.35 km/s and a thickness of
2-3 km. The third sedimentary layer extends from the edge of the evaporite layer toward the NW with a vari-
able thickness of ~3 km and velocities of 2.30-2.35 km/s. It was modeled as a separate layer as the velocities

DELLONG ET AL.

10



~1
AGU

100

ADVANCING EARTH
'AND SPACESCIENCE

Geochemistry, Geophysics, Geosystems 10.1029/2019GC008586

DY-P5

NOVIOA-TOPONOWTONN-ODDN OWOT NN —

I I | | I | — I A P P I P P
0 0 - 0 07 F 0
4 ] r 2] -
.—5_ .—i_- - 57 4_- - 5‘ I~
=10 <67 - 10 gj - 10 -
£ £
1] s 8 r 7 r
5157 510 L £157 E104 [ g5 B
a 2., = e =
8 20 812 - =20 £ 12 r £ 20 -
H 14 F g 214 o g
g 25 S 16 L O 25 S 16 L O 25 I:
530 ‘g;g‘ o 30 ;g‘ r 30
3 320 r 7 r
1D 23C L ssd »4€ - asAf
1320-380 km 2440-200 km || DY-P4 DY-P3 24]DY-P4 DY-P1f[ DY-P4 DY-P5
40+ T 401 ERESERsmaEES A0~
345678 345678 2345678 2345678 2345678
Velocity [km/s] Velocity [km/s] Velocity [km/s] Velocity [km/s] Velocity [km/s]
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and gray thick line the velocity compilation for extended continental crust from Christensen and Mooney (1995). (d), (e), and (f) Velocity-depth profiles at the
crossing. Red line is the DY-P4 profile, and blue lines trace the DY-P1 and DY-P3 profiles.

change abruptly from the evaporitic layer. The fourth sedimentary layer presents a lateral velocity change
with higher velocities where it is underlying the evaporites of the outer accretionary wedge (3.50-3.80
km/s) than in the inner accretionary wedge (2.80-2.90 km/s). The lowermost sedimentary layer has a
velocity between 4.5 to 4.8 km/s in the SE and 3.8 to 4.2 km/s in the NW. Together the thickness of the
sedimentary cover varies between 5 km in the SW and 18 km at 230-km model distance. The Calabro-
Peloritan block is covered by only 2-3 km of sediments. The oceanic crust is 5-6 km thick with velocities
increasing from 6.5-7.2 km/s to 6.8-7.4 km/s toward the NW and has been subdivided into two distinct
layers of ~2- and 4-km thickness. The Calabro-Peloritan block has a thickness of 30 km and was
subdivided into two layers with velocities between 5.5 and 6.6 km/s diminishing to only 5.3 km/s at the
tip of the backstop.

The MCS and the wide-angle seismic section show good agreement as the shallow sedimentary layers as the
layer geometry was picked on the migrated time section (Polonia et al., 2011); however, MCS data offer a
finer resolution of certain structures of the subduction system (i.e., thrust faults, slope basins, and inverted
structures in the accretionary wedge) than deep-sounding wide-angle seismics (Polonia et al., 2011).

3.2. Error Calculations

The error between the picked arrival time and the predicted time from forward modeling indicates the fit of
the model to the data. The number of picks and root-mean-square travel-time residual for all phases are
listed in Table 1. Error calculations included the calculation of the node uncertainty smearing into neighbor-
ing parts of the model (spread point function) (Figure S2b), the resolution of the individual model nodes
(Figure S2d), and the number of rays passing through the different layers (ray hit count) (Figure S2b). We
also used “Vmontecarlo” software to produce a detailed analysis of the velocity uncertainties (Loureiro
et al., 2016) (Figure S3). A detailed description and resulting figures are shown in Text S2 and Figures S2
and S3. Results from the error estimation show that the sedimentary and oceanic crustal domains are well
constrained by reflected and turing rays. Here resolution is high with hit counts higher than 5,000 per cell,
and smearing of uncertainties is low. Resolution is lower in the Calabrian lower crustal layer with only few
rays passing through the layer and underneath the salt layer due to the velocity inversion from the salt to
underlying sedimentary layers. The Monte Carlo inversion shows a good fit with uncertainties not exceeding
1.0 km/s for the deepest layers.

DELLONG ET AL.

11



Geochemistry, Geophysics, Geosystems 10.1029/2019GC008586

(a) Free-Air anomaly Data (b) Reference Model

22400000

2200000
4200000
E  saxono
160000

41400000

02000
00m000
980000
6000

4000

=

200000

r250.0 (c) Models responses (A2B2)

200.0
150.0
100.0
50.0
0.0 (mGal)
F-50.0

--100.0

=
50000 0000 600G G0M00  TOWM000  THOMO  MONOO 8500000

(d) Reference model (A2B2)

4000 4W0D0 SO0 T SW0MO | 6000 6WON0 70000 7H0MO 8000 8500000
[

-------- Shallow slab model
---- Reference model

- - - Deep slab model

—— Free-Air anomaly Data

Figure 8. (a) Map of the free-air gravity anomaly (WGM2012—Bonvalot et al., 2012; Pavlis et al., 2012). (b) 3-D reference model gravity response. White rectangle
shows the area of interest around the A2B2 profile (black line). (c) Gravity response of the different 3-D models (solely varying the oceanic slab depth)

along the A2B2 profile. (d) A2B2 cross section extracted from the reference model, showing each individual layer and their densities. Earthquake hypocenters,
projected from 10 km onto the profile, are shown by small circles colored by depth.

3.3. Gravity Models

In the Ionian Basin, the free-air anomaly is increasingly positive toward the S (Figure 8). The Apulian and
Malta Escarpments are characterized by strong positive free-air anomalies. In central Sicily a negative anom-
aly contrasts with the positive free-air anomaly of Mount Etna, the Peloritan Mountains, and the Hyblean
Plateau. In the Tyrrhenian Basin, a relatively homogeneous anomaly is observed with a value of approxi-
mately 50 mGal with the exception of the Eolian Islands presenting stronger anomalies.

The 3-D gravity models were built to reproduce these main features observed in the free-air anomaly. The
long wavelength features of the free-air anomaly data are well reproduced throughout the three 3-D gravity
models, showing that the deep density variations are explained by our models. Short wavelength variations
are less well reproduced, meaning that some shallower features may be missing in the models.

The reference model places the top of the oceanic crust at a depth of about 30 km along this profile compar-
able to the wide-angle seismic model. For the deep slab model, the top of the oceanic crust is set at a depth of
about 45 km along the A2B2 cross section. The slab then deepens to 60 km to the N-E along the GH cross
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section allowing to observe the 3-D effect of a high-density body sandwiched in between the Calabrian
continental crust and the oceanic crust. The calculated anomaly from this deep slab model increases by about
20 mGal with respect to the reference model and also affects the resulting anomaly beyond the direct slab
depth deepening zone, in an area greater than 30 km. To the N, along the GH cross section, the slab deepen-
ing resulted in an increase of 10 mGal in the calculated anomaly in comparison to the reference model and in
the S, along the ST cross section, in an increase of less than 5 mGal.

For the “shallow slab” model, the oceanic crustal layer depth was decreased to 20-25 km along the A2B2
cross section. This configuration is a more realistic hypothesis suggested in the past (Dellong et al., 2018).
This model resulted also in an increase of the calculated gravity anomaly with respect to the reference model.
But this increase is significantly greater than the one calculated for the “deep slab” model and is about 30
mGal. This modification does not affect the gravity anomaly at a large wavelength as this increase is only
calculated for the areas that are close to the modification (less than 10 km along the cross section). To the
N (along the GH cross section), we observed a small effect of this modification on the gravity anomaly (less
than 5 mGal). However, it is characterized by a decrease of the anomaly in comparison to the reference
model. In addition, to the S, along the ST cross section, this shallow slab model shows an increase of less than
5 mGal of the calculated gravity anomaly.

Three mantle densities were used to satisfactorily fit the data. These reflect three different geodynamical ori-
gins: a continental Hyblean mantle layer derived from the wide-angle velocity models (at 3.33 g/cm® shown
in red in Figure 8 in more detail in Figure S4 and Table S1), an oceanic mantle layer (3.35 g/ cm?, in blue),
and a back-arc mantle layer (3.22 g/cm?, in pink). The relative difference of these values depends on the
depth of the gravity model. However from preliminary tests, it is clear that models using one single density
for the mantle do not allow to sufficiently fit the data. These last two layers were obtained by extrapolating
the tomographic models (Scarfi et al., 2018) and therefore do not have a corresponding velocity in Table S1,
which provides only velocities from wide-angle seismic modeling. The difference between the Hyblean and
the Tethyan oceanic mantle domains is small and can be explained by several factors, such as mantle com-
position or thermal state. However, the density of the Tyrrhenian mantle is significantly different as also
observed in the tomographic model (Scarfi et al., 2018). This difference is probably related to the post-
Messinian back-arc extension, subduction-induced mantle convection, ensuing asthenospheric upwelling,
and associated very high heat flow (Zito et al., 2003).

2-D gravity models produced using the “xgravmod” software of Colin Zelt along the profile DY04 are shown
in the electronic supplements (Zelt, 1999; Text S3 and Figure S5). In these more detailed model densities
from the seismic velocities, the sedimentary and oceanic crustal sections and the mantle velocities from
the 3-D gravity modeling were taken into account. The resulting fit is high and allows to reproduce small
gravity anomalies unresolved by the 3-D models.

4. Discussion
4.1. Gravity

The results obtained from the three 3-D gravity models show that the reference model has the best fit to the
free-air gravity anomaly. In this reference model, the top oceanic crust is located at around 25- to 30-km
depth along the A2B2 cross section (specifically along the DY-P3 velocity model). Based on the hypothesis
that the recorded seismicity is predominantly intracrustal, the corresponding slab depth is in good agreement
with either the reference model or the shallow slab model along the DYP3 profile. The three gravity models
allow us to conclude that a mantle wedge is highly unlikely to exist below the Calabrian backstop along the
DY-P3 velocity profile. The models show relatively large uncertainties concerning the depth of the interfaces
of +2.5 km for the Moho interface and the top of the oceanic crust. These results are in agreement with the
DY-P4 velocity model and also the tomographic model from Scarfi et al. (2018). Three different lithospheric
mantle densities enabled us to reproduce the large-scale regional observed free-air gravity anomaly and then
to test the three slab depth hypotheses. These densities were attributed to the Tethyan oceanic domain (3.35
g/cm?), the mantle below the Hyblean Plateau (3.33 g/cm®), and the mantle of the Tyrrhenian back-arc
domain (3.22 g/cm?), respectively. The difference between the Hyblean and the Tethyan mantle domains
is fairly small and can be explained by several factors, such as composition or thermal state of the mantle.
However, the density of the Tyrrhenian mantle is significantly different as also observed in the
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tomographic model (Scarfi et al., 2018). This difference is probably related to the post-Messinian back-arc
extension, asthenospheric upwelling, and associated very high heat flow (Zito et al., 2003).

4.2. Velocity Models

A comparison of the DY-P4 velocity model with the three previously published velocity models (DY-P1,
DY-P3, and DY-P5) (Dannowski et al., 2019; Dellong et al., 2018) provides a 3-D view of the Ionian Basin
(Figure 9). The fit at the crossing points is good, with slight differences that may be due to anisotropy or data
quality (Figures 7d-7f). Sedimentary thickness in the basin is highest at the backstop contact (10-12 km). The
Messinian salt layer is imaged along profiles DY-P1, DY-P4, and DY-P5 with a thickness of up to 4 km. A layer
of high-velocity sediments is imaged in the southern part of the basin (4.5-4.8 km/s). This high P wave velo-
city layer, showing parallel high-amplitude reflections, has long been described below as the IAP (de Voogd
et al., 1992; Gallais et al., 2011; Makris et al., 1986; Minelli & Faccenna, 2010) and likely represents Jurassic
deep-water carbonates, the only sedimentary rocks with such high velocities aside from halite (Anselmetti &
Eberli, 1993). Oceanic crust underlying the basin is ~5 km thick, implying it is thinner than normal Atlantic
Ocean crust from existing compilations throughout the basin, which has a mean thickness of 7.1 km (White
et al., 1992). Crustal thickness increases abruptly at the Malta Escarpment (DY-P1) and at the Sicily margin
(DY-P3) and at the Peloritan backstop (DY-P4), indicating the presence of continental crust in these domains
(Figure 9). Similarly, in both DY-P3 and DY-P4 velocity models, the upper crustal velocities increase laterally
toward the continental blocks of the Sicily margin (DY-P3, from 5.0 to 6.0 km/s) and Peloritan backstop
(DY-P4, from 4.75 to 5.75 km/s). These two continental domains differ in their lower crustal layers with
higher velocities in the Sicily margin. While the DY-P1 and DY-P3 are imaging the same continental Sicily
margin through the Malta Escarpment, profile DY-P4 images a different continental block that is likely
related to Peloritan backstop, inherited from the rollback of the Calabrian subduction. Another discrepancy
between DY-P3 and DY-P4 is the presence of the slab (Figure 9 and Figure S6). While along DY-P3 no slab
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was modeled, along the profile DY-P4, the slab is clearly imaged by the data from the land stations. This dif-
ference is due to the fact that the data quality of the land stations along DY-P4 is very high, and from OBS data
alone on DY-P3, the slab could not be detected. Furthermore, the ENS-WSW orientation of profile DY-P3
very close to and parallel to the NW dipping slab hinge was unfavorable for recording deep crustal or upper
mantle arrivals, as most of the seismic energy from the air gun shots would be transmitted downdip to the
NW and off profile. The Moho depth along model distance 80-120 km on profile DY-P3 (31 km) corresponds
to the depth of the oceanic Moho along DY-P4; however, the backstop-slab interface was not detected along
DY-P3 (Figure 9). This result is in good agreement with results from the gravity modeling. In the S DY-P4
intersects with profile DY-P5 where both profiles image thin crust interpreted to be of oceanic origin
(Dannowski et al., 2019).

Comparison of these results with existing compilations of crustal thickness and Moho depth shows a good
agreement in the center of the basin (Nicolich et al., 2000), but significant differences exist at the Sicily mar-
gin and the Malta Escarpment, where the older studies propose relatively thin crust (~24 km) compared to
our data that suggest a thickness of up to 30 km. These differences are probably due to the paucity earlier,
wide-angle seismic data along these margins.

During the CAT/SCAN seismic experiment, 18 land stations were deployed to record teleseismic events dur-
ing nearly 2 yr at the Sila Plateau in southern Italy. Using receiver functions from 586 events, the depth of the
Tonian Moho was calculated to lie at around 35 km underneath the eastern part of Calabria gently dipping
westward (Piana Agostinetti et al., 2009). The depth increases steeply to ~80 km beneath western Calabria.
This study is located about 150 km N of DY-P4 so direct comparisons are not possible. However, the thick-
ness of the Calabrian crust and steep dip of the subducting crust are in good agreement with our results. The
authors also propose the existence of a 6- to 10-km-thick layer of underplated sediments between the Ionian
and the Calabrian crust, which was not imaged in our velocity model. This might be due to the fact that our
velocity model in the NW end is mainly constrained by reflected arrivals from the land stations, which might
render the detection of low-velocity zones difficult. Also this observation is based on S wave velocities, which
we were not able to model. Another explanation might be that our profile is located at the western edge of
the subduction zone, where the crust is located at a shallower depth with respect to the center of the arc as
imaged by tomography (Maesano et al., 2017; Scarfl et al., 2018). In central Calabria, the slab is highly arc-
uate and may transport a greater amount of sediments.

4.3. Results From Earthquake Tomography

A detailed tomographic image of the Calabrian subduction was constructed from local earthquakes (Scarfi
et al., 2018) (Figure 10). The results indicate that the slab is continuous only below the southern Calabro-
Peloritan arc where its curvature is highest. In the SW, deformation at the free slab edge has led to the
detachment of a slab fragment and the formation of a slab window between 50 and 100 km (Scarfi et al.,
2018). Comparing the wide-angle seismic velocity model, with results from the earthquake tomography
and earthquake distribution, allows us to correlate the shallow layers to the deep mantle structures. The
downgoing slab is continuous and steeply inclined in this region and can be traced as a high P wave velocity
anomaly as well as by using the distribution of earthquake hypocenters. The Moho depths are similar in the
Tonian Basin and in the part of the arc constrained by seismic rays. The thickness of the low-velocity accre-
tionary wedge is similar as well. The tomographic model shows that the physical properties of the mantle
differ between the Ionian and the Tyrrhenian Basins, which led us to use different values for our
gravity modeling. The low-velocity anomaly in S wave velocity indicated from receiver function analysis
(Piana Agostinetti et al., 2009) does not correspond to a low-velocity zone in P wave velocity in the
tomographic model.

Particularly interesting feature of the Calabrian slab geometry as constrained by our wide-angle seismic data
and the tomographic image is the extremely shallow average dip of 1.3° of the subducting oceanic crust over
the frontal 200 km (deepening from 11 km to about 16 km), the slab hinge where the slab dip increases
abruptly from 2-5° to 60-70° over a distance of <50 km. By comparison with regional tomography data, only
the very steep dip of the deep slab below 60-km depth (about 70°) can be deduced. One of the novelties of this
work is the first successful imaging using wide-angle seismic data of a slab hinge with such an extremely
abrupt steepening.
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Figure 10. Profile extracted from the tomographic model of Scarfi et al. (2018) with layer boundaries from the DY-P4 pro-
file overlain. Earthquakes projected from a maximum of 5-km distance along the profile are marked as black dots. P wave
velocities in the model are indicated by the scale at right (in the inset). Inset: Bathymetry of the study region (Gutscher
et al., 2017). Blue line shows position of the tomography model and red dots OBS positions.

Finally, the very narrow geometry of the Calabrian slab (lateral width < 200 km) (Neri et al., 2012; Scarfi
et al., 2018) may contribute to the steep dip. Indeed, numerous analog (Funiciello et al., 2006; Schellart,
2004) and numerical modeling studies (Govers & Wortel, 2005) have shown that for narrow slabs, the toroi-
dal flow around the slab is facilitated, enabling the slab to roll back more rapidly and contributing to increas-
ing its dip (see also section 4.4 below on deep slab geometries). SKS splitting observed in the mantle below
southern Italy confirms strong toroidal flow behind the Calabrian slab (Civello & Margheriti, 2004). Such
extremely narrow slabs (e.g., Calabria, Gibraltar) were excluded in the global analysis of subduction zones
since their segment lengths were considered too short to be representative of typical slab behavior free of
edge effects (Heuret & Lallemand, 2005; Lallemand et al., 2005).

4.4. Narrow Curved Subduction Zones and Deep Slab Structure

Global travel-time tomographic images of the upper mantle reveal slab geometries at large scale (Bijwaard
et al., 1998) and can also image ongoing geodynamic processes such as slab tearing and slab detachment
(Wortel & Spakman, 2000). Here we present three examples of deep slab geometries, two from narrow
curved arcs (Gibraltar and Calabria) and one from a much longer laterally continuous subduction zone
(Northern Honshu), unsegmented over nearly 1,000 km (Figure 11). The Calabrian subduction and
Gibraltar subduction are possibly the narrowest arcs in the world, with lateral widths of <300 km and
<200 km, respectively (Faccenna et al., 2004; Gutscher et al.,, 2002; Gutscher et al., 2017; Wortel &
Spakman, 2000). In both cases wide-angle seismic studies have concluded that the downgoing lithosphere
is most likely oceanic in nature and of Jurassic age (Sallares et al., 2011; Dellong et al., 2018). Both subduc-
tion systems are characterized by extremely wide (~200 km downdip direction) accretionary wedge com-
plexes, with very shallow surface angles and thus narrow tapers (Dellong et al., 2018; Gallais et al., 2012;
Gutscher et al., 2002, 2009, 2012; Gutscher et al., 2017). There is a broad consensus that apart from their
large-scale morphotectonic similarities, both subductions formed through rollback of narrow slabs over
the past 5-10 million yr (Chertova et al., 2014; Faccenna et al., 2004; Gutscher et al., 2002; Gutscher et al.,
2017; Palano et al., 2017; van Hinsbergen et al., 2014). The overall slab geometry of both systems is also lar-
gely similar. As discussed above, the dip of the downgoing plate is very shallow below the accretionary
wedge (typically 1-5°). The plate dip increases abruptly below the overriding continental fore-arc block to
30-45° where the slab reaches depths of 50-100 km (Figures 11a and 11b). Below 100-km (for Calabria)
and below 150-km depth (for Gibraltar), the slab dip increases to >60°, locally approaching a subvertical geo-
metry (Figures 11a and 11b). There are also deeper subhorizontal high P wave velocity anomalies between
600- and 660-km depth, below the Betics (S Spain) and below Corsica-Sardinia, related to the older portions
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Figure 11. (a) Cross section in the global earthquake travel-time tomographic model UU-P07 (Amaru, 2007) through the
ITonian Sea subduction zone. (b) Location map for the profile in panel (a). (c) Cross section in the UU-P07 tomographic
model (Amaru, 2007) through the Gibraltar subduction zone. (d) Location map for the profile in panel (c). (e) Cross section
in the UU-P07 (Amaru, 2007) through the Honshu subduction zone. (f) Location map for the profile in panel (e).

of the Gibraltar and Calabrian subductions, respectively, which are already discussed at length by previous
authors (Bezada et al., 2013; Chertova et al., 2014; Faccenna et al., 2004; van Hinsbergen, Vissers, &
Spakman, 2014; Wortel & Spakman, 2000) and which are consistent with the long-term slab rollback kine-
matics, which have resulted in these narrow arcs. More recent detailed tomographic work using earthquake
travel-time data from local seismic networks has imaged the lateral slab tears and nearby portions of
detached slabs and concludes that these two systems are approaching the terminal stages of subduction
(Bezada et al., 2013; Neri et al., 2009; Scarfi et al., 2018).

There are some differences between the tomographic images from the respective back-arc domains, how-
ever. The Calabrian backarc (below the Tyrrhenian Sea) shows a broader stronger low P wave velocity anom-
aly, than the corresponding back-arc domain from the Gibraltar subduction (below the Alboran Sea), which
exhibits a thinner zone of higher-temperature asthenosphere at shallower depths (50-150 km), and further
in the backarc presents a less pronounced and more heterogeneous anomaly (Figures 11c and 11d). While
the estimated modern-day subduction velocities are very small for both subduction systems, 3-5 mm/yr
for Calabria (Palano et al., 2012, 2017) and ~5 mm/yr for Gibraltar (Koulali et al., 2011; Palano et al.,
2015), it is thought that the Tyrrhenian Sea back-arc basin had two major phases of opening linked to rapid
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Figure 12. Comparison of the wide-angle seismic profiles from the (a) Sumatra SAGER cruise (Klingelhoefer et al., 2010)
showing gradual flexure and a marked bulge expressed as a basement high around 40-km profile distance and (b)
Dionysus DY-P4 showing a nearly constant extremely shallow plate dip (1-2°) and then a slab hinge between 250- and 300-
km profile distance where the slab dip increases abruptly to >45°.

slab rollback, inducing vigorous mantle convection (Faccenna et al., 2001). Furthermore, the larger
Tyrrhenian Sea back-arc basin evolved all the way to seafloor spreading (Marani & Trua, 2002), whereas
the W Alboran basin, while highly extended, never reached seafloor spreading (Booth-Rea et al., 2007;
Medaouri et al., 2014; Watts et al., 1993). A broader subducting segment (300 vs. 200 km) and a larger, fully
developed back-arc basin both imply more vigorous convection in the asthenospheric wedge above the sub-
ducting Calabrian slab (Figures 11a and 11b).

The N Honshu subduction (NE Japan Trench) has a very different overall slab geometry with a nearly con-
stant shallow (50- to 150-km depth) and deeper (200- to 500-km depth) slab dip of about 30-35° (Figures 11e
and 11f). The age of the subducting lithosphere is Mesozoic, about 130 Ma (Mueller et al., 1997), and there-
fore rather similar to the estimated age of the lithosphere subducting below Calabria or Gibraltar. It should
be noted, however, that in fact there is no statistically significant correlation between the age of the subduct-
ing lithosphere and the slab dip based on a global analysis of subduction zone parameters (Lallemand et al.,
2005). Other factors play a more dominant role like the nature of the upper plate (continental vs. oceanic) or
the overall kinematics of the forearc and the backarc (extension vs. convergence) (Lallemand et al., 2005).
The reasons for the constant and very modest slab dip below N Japan and extending below NE China are
probably related to an anchoring of the Pacific slab at the 660 discontinuity below NE China and a stationary
trench (in a Eurasia-fixed reference frame) and to the large lateral width (1000 km) of the unsegmented
Pacific slab, before changing its orientation at the Kurile trench. A long, laterally continuous slab favors
poloidal flow, while limiting toroidal flow around the lateral slab edge, and creates a very stable kinematic
configuration for the large-scale slab (Lallemand et al., 2005; Schellart, 2004). Finally, there are also major
differences in the overall level of seismicity in the three slabs (Figures 11e and 11f). While the N Honshu slab
is marked by abundant seismicity down to 200 km and then by scattered seismicity down to 500 km
(Figure 11c), the Calabrian slab is also marked by abundant intermediate depth seismicity down to 300
km and thereafter by less abundant but still clearly marked seismicity down to 500 km (Figure 11a). In con-
trast, the Gibraltar slab exhibits a cluster of intermediate depth seismicity between 60- and 120-km depth
and no deeper seismicity below (Buforn et al., 2004) (Figure 11b). It has been suggested that this is evidence
for a horizontal tear (slab detachment) occurring here (Heit et al., 2017), though an alternative explanation is
the presence of extreme bending stresses as the slab abruptly steepens (Gutscher et al., 2002). Deep-focus
earthquakes occur below Granada (S Spain) (Buforn et al., 2011) and confirm the presence of a deep slab
here interacting with the 660-km discontinuity (Bezada et al., 2013).

4.5. Comparison of Two Thick Accretionary Wedges With Thick Incoming Sedimentary Sections

If we compare the accretionary wedges from Sumatra and Calabria (Figure 12), the cross-sectional areas of
the two accretionary wedges are quite similar. For Calabria the wedge is about 250 km wide (downdip width)

DELLONG ET AL.

18



'AND SPACESCIENCE

Geochemistry, Geophysics, Geosystems 10.1029/2019GC008586

with a maximum thickness of 12-13 km and an incoming sedimentary thickness of 5-6 km. For Sumatra, the
incoming sedimentary thickness is identical (5 km), and the width of 150 km and maximum thickness of 20
km are 40% less and 50% more than for Calabria, respectively. The main differences are the surface slope
angles, which are much lower for Calabria (~1°) than for Sumatra (2-3° with an overall convex shape)
and the dip of the downgoing plate. For Calabria as discussed above, it is a regular, constant 1.3° dip over
200 km, and then the dip steepens sharply (Figure 12). For Sumatra the dip is about 3° below the deforma-
tion front, and it increases progressively to 10° at 20-km depth (contact with the upperplate backstop at pro-
file km 200). The dip remains roughly 10° down to 40-km depth (Figure 12A). The overall geometry of the
Sumatra subduction resembles an ideally bulged lithosphere, with a marked 1-km-high flexural bulge visible
in the wide-angle seismic data (Figure 12A, model km 50) but buried beneath the thick Bengal Fan sedi-
ments. There would be a deep-sea trench, characteristic of most subduction zones, were it not for the enor-
mous quantity of sediments (5 km) drowning this morphological feature. The Calabrian subduction does not
show this broad-scale flexure and has no flexural bulge. This may be in part due to the fact that it is a very
narrow slab and that our seismic profile is sampling the edge of the subduction zone or due to the stiffness of
the plate. In the SE and central part of the profile (Figures 11 and 12, model km 0-200), the oceanic crust is
still attached to the W to the continental crust of the Hyblean domain. The slab dip increases abruptly NW of
the termination of the lateral slab tear fault (model km 280-300).

A second observation from this comparison is that the accretionary wedge in the Ionian Basin is character-
ized by a very shallow slope in comparison to other subduction zones with thick accretionary wedges. This
fact is possibly related to the presence of Messinian evaporites in a large part of the wedge, which will facil-
itate sediment sliding gradually down the slopes (Minelli & Faccenna, 2010) and therefore will facilitate the
buildup of a large accretionary prism. The very low taper angle of the external Calabrian Arc accretionary
wedge is comparable to that proposed for the neighboring salt-bearing Mediterranean Ridge by Kastens
(1991) through analysis of sediment facies within the wedge. Low slope angles might be explained by the
mechanical strength of the evaporites over a very weak basal detachment that favors outward growth rather
than vertical stacking of accreted units (Polonia et al., 2011). The composition of sediments along the sub-
ducting plate and in the accretionary prism has a direct influence on the hydrogeology, fluid budgets, and
geotechnical properties of the plate boundary (Underwood, 2007). Sediment thickness and the lithostratigra-
phy of the incoming plate influence the physical properties of the margin inducing lateral heterogeneities in
the prism formation (Ike et al., 2008). Also, salt layers influence the tectonic deformation style and spatial var-
iation in pore water salinity resulting in differences in fluid density and can therefore drive large-scale
fluid and heat transport (Sarkar et al., 1995) impacting on the position of the updip limit of the
seismogenic zone.

5. Conclusions

From gravity modeling we conclude that along the DY-P3 profile, the gravity model with the oceanic slab at
an intermediate depth of about 25 km shows the best fit. This model implies that there is no mantle layer
between the Calabrian backstop crust and the dipping slab. In order to obtain a good fit to the observed grav-
ity anomaly and with respect to the tomographic models, the mantle densities in the Tethyan oceanic
domain (3.35 g/cm?) must differ substantially from those in the Tyrrhenian back-arc domain (3.22 g/cm?).
This is in good agreement with the fact that the basins are of different ages and with the presence of hot, con-
vecting mantle/asthenosphere beneath the back-arc domain.

The velocity model for the DY-P4 profile images thin oceanic crust throughout the basin beneath the accre-
tionary prism. At the NW end of the profile, the Calabrian backstop extends underneath the accretionary
wedge to about 100 km SE of the Calabrian coasts. The thick accretionary wedge is divided into four layers
comprising a high-velocity evaporitic layer and a high-velocity stratified layer deposited directly on top of the
oceanic basement and probably consisting of deep-water carbonates. The presence of Messinian evaporites
in a large part of the wedge causing a very low basal friction facilitates lateral spreading during convergence
and favors construction of a very long, shallowly tapered accretionary prism.

Prolongation of the model using earthquake hypocenters and regional tomographic data indicates that the
slab dip increases abruptly from 2-3° to 60-70° over a distance of <50 km underneath the Calabrian
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backstop. This might be related to the rollback geodynamic evolution of the narrow Calabrian slab, which is
similar to the Gibraltar slab showing a very comparable geometry.
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