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Abstract International Ocean Discovery Program Expedition 352 recovered sedimentary‐volcaniclastic
successions and extensional structures (faults and extensional veins) that allow the reconstruction of
the Izu‐Bonin forearc tectonic evolution using a combination of shipboard core data, seismic reflection
images, and calcite vein microstructure analysis. The oldest recorded biostratigraphic ages within
fault‐bounded sedimentary basins (Late Eocene to Early Oligocene) imply a ~15 Ma hiatus between the
formation of the igneous basement (52 to 50 Ma) and the onset of sedimentation. At the upslope
sites (U1439 and U1442) extension led to the formation of asymmetric basins reflecting regional stretch
of ~16–19% at strain rates of ~1.58 × 10−16 to 4.62 × 10−16 s−1. Downslope Site U1440 (closer to the
trench) is characterized by a symmetric graben bounded by conjugate normal faults reflecting regional
stretch of ~55% at strain rates of 4.40 × 10−16 to 1.43 × 10−15 s−1. Mean differential stresses are in the
range of ~70–90 MPa. We infer that upper plate extension was triggered by incipient Pacific Plate rollback
~15 Ma after subduction initiation. Extension was accommodated by normal faulting with syntectonic
sedimentation during Late Eocene to Early Oligocene times. Backarc extension was assisted by
magmatism with related Shikoku and Parece‐Vela Basin spreading at ~25 Ma, so that parts of the arc
and rear arc, and the West Philippine backarc Basin were dismembered from the forearc. This was
followed by slow‐rift to postrift sedimentation during the transition from forearc to arc rifting to
spreading within the Shikoku‐Parece‐Vela Basin system.

Plain Language Summary This study examines the stress and deformation conditions and
timing of extension in the Izu‐Bonin forearc subsequent to subduction initiation by combining seismic
images and microstructure analyses on veins and fault zones. By that we also examine a hiatus of 15 Ma
between the formation of igneous forearc crust and the formation of sediment basins by forearc extension.
This is implemented into an overall tectonic model at lithospheric scale.

1. Introduction

In 2014, the International Ocean Discovery Program (IODP) conducted three closely related drilling expedi-
tions using the R/V JOIDES Resolution to explore the Izu‐Bonin‐Mariana (IBM) arc system (Figure 1), and
the magmatic processes related to subduction initiation. Expedition 350 (Sites U1436 and U1437) was the
first expedition designed to ascertain “the missing half” of the subduction factory in the IBM rear arc
(Busby et al., 2017; Tamura et al., 2015). Expedition 351 (Site U1438) drilled west of the Kyushu‐Palau rem-
nant arc ridge with focus on IBM arc origins (Arculus, Ishizuka, Bogus, Gurnis, et al., 2015). Expedition 352
(Sites U1439 to U1442) drilled the igneous outer Bonin forearc, related to subduction initiation (Reagan
et al., 2015). The IBM system is the type locality to examine the accretion of oceanic crust immediately after
the initiation of subduction, arc evolution, and continental crust formation in a suprasubduction zone (SSZ)
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setting (Rudnick, 1995; Stern et al., 2003; Stern & Bloomer, 1992; Tatsumi & Stern, 2006). This
predominantly submarine convergent plate boundary extends for 2,800 km from the Izu Peninsula to
Guam. It resulted from ~52 Ma of subduction of the Pacific Plate beneath the eastern margin of the
Philippine Sea plate (Reagan et al., 2019). IODP expedition results were published recently, notably
concerning the magmatic evolution (Brandl et al., 2017; Yogodzinski et al., 2018; Hickey‐Vargas et al.,
2018; Shervais et al., 2019), and the age of IBM volcanic rocks (Barth et al., 2017; Ishizuka et al., 2018;
Reagan et al., 2019). In addition, the drilled cores provided (hemi)pelagic sedimentary‐volcaniclastic
successions and tectonic structures that bear information on the tectonic evolution of the outer IBM
forearc. The biostratigraphic record within the related sedimentary basins provides temporal constraints
on the fault activity, and revealed a ~15 Ma hiatus between the formation of the igneous IBM basement
and the onset of sedimentation within these basins.

In this study we investigate the overall structure of fault‐bounded sedimentary basins and the related tec-
tonic structures at IODP Expedition 352 drill sites in order to reconstruct the structural and tectonic

Figure 1. Location map for IODP Expeditions 352, 351, and 350, showing the Izu‐Bonin‐Mariana arc system along the western Pacific margin and the Philippine
Sea Plate backarc basins. Red dots show location of the Expedition 352 drill sites; orange and yellow dot shows the drill site for Sister Expeditions 351 and 350,
respectively.
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evolution of the IBM forearc, in particular the ~15 Ma time gap between Pacific Plate subduction initiation
and forearc extension with related sedimentary basin formation. The results from this study also have
implications for the evolution of the IBM system at a lithospheric scale and are implemented into an
overall tectonic model. The new results from structural and tectonic studies, together with its magmatic
and sedimentary inventory, facilitate a comprehensive reconstruction of forearc architecture in a SSZ
tectonic setting and are therefore relevant to the interpretation of SSZ ophiolites worldwide.

Figure 2. Prestack time migrated images, converted to depth, showing the location of drill sites (after Christeson et al., 2016). (a) Upper forearc basin Sites U1439
and U1442. (b) Lower forearc basin site U1441. (c) Lower forearc basin site U1440. Images are plotted with a 0.5 s automatic gain control, without exaggeration.
Sedimentary and basement units at the drill sites are indicated by green and orange lines, respectively; the sedimentary cover is displayed in pale yellow.
Interpretation: green lines represent the sediment‐basement interface, the orange lines the change in dip (unconformities) within sedimentary sections, and red
lines = normal faults. CDP: Common depth point.

Figure 3. (after Twiss &Moores, 2007): (a) Geometric relationships of equally spaced planar, rotating high‐angle normal faults above a (hypothetical) detachment;
ϕ: fault dip angle, θ: sediment dip angle, d: displacement, l0: initial bed length; and x: maximum basin depth (sedimentary cover thickness). (b) Geometric rela-
tionship of conjugate, nonrotating high‐angle normal faults; ϕ: fault dip angle, d: displacement, l0: initial bed length, Δl1,2: fault‐related extension.
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Tectonic structures mainly resulted from brittle deformation that took place within and in the vicinity of
fault zones. Timing of fault activity is basically derived from the stratigraphy within the adjacent sedimen-
tary basins, described in detail by Robertson et al. (2018). These fault zones display a wide variety of related
deformation structures including discrete faults, cataclastic shear zones, extensional fractures, and veins in
which minerals, mainly derived from hydrothermal fluids, precipitated (e.g., Kurz et al., 2015; Reagan et al.,
2015). The faults and related veins were created after the formation of the forearc crust. Extension veins also
help to elucidate the deformation history of their host rocks and the associated fluid effects (e.g., Bons et al.,
2012; Hilgers &Urai, 2002; Ramsay &Huber, 1983). We therefore analyzed calcite veinmicrostructures from
drill cores at the Expedition 352 Sites U1439, U1440, U1441, and U1442. Microstructures obtained from
these veins reveal the related deformation conditions, in particular differential stresses, deformation tem-
peratures, and constraints on strain rates. Similar structures were also studied within the magmatic base-
ment of the Amami‐Sankaku Basin (ASB) in the northwest Philippine Sea, drilled during Expedition 351
at Site U1438. The techniques used were electron backscatter diffraction (EBSD) combining with stress
piezometry of mechanically formed e‐twins of calcite.

2. Geological Background

The approximately north‐south trending IBM arc is related to the west dipping subduction of the Pacific
Plate under the easternmargin of the Philippine Sea Plate (PSP) (Figure 1). From north to south the subduct-
ing Pacific Plate steepens from about 30° beneath Japan to nearly vertical below the Mariana arc (Faccenna
et al., 2018; Holt et al., 2018, and references therein). It is assumed that the IBM subduction zone began as
part of a hemispheric‐scale tectonic structure (e.g., a transform fault) of ancient, dense lithosphere in the
western Pacific Ocean (Bloomer et al., 1995; Hall et al., 2003; Stern, 2004).

2.1. Igneous Basement

The timing of large‐scale lithospheric subduction is constrained by the age of igneous rocks of the IBM
forearc that started in the Eocene, at ~52 Ma (Bloomer et al., 1995; Cosca et al., 1998; Ishizuka et al.,
2006; Ishizuka et al., 2018; Reagan et al., 2019). The initial spreading generated forearc basalt (FAB)
lavas at ~52 Ma; later volcanism produced low‐Si, then high‐Si boninites (~51–46 Ma: Ishizuka et al.,
2006, Ishizuka, Tani, et al., 2011; Reagan et al., 2013, Reagan et al., 2019) to form the proto‐Bonin
Ridge. Magmatic activity appears to have migrated inboard, with the FAB erupting closest to the
trench (Sites U1440 and U1441) and the boninites (Sites U1439 and U1442 and the Bonin Ridge) erupt-
ing farther from the trench. Arc andesites erupted in the western part of the Bonin Ridge (Figure 1)
after about 46 Ma (Ishizuka et al., 2006). Ishizuka, Taylor, et al. (2011) argue that the crustal stratigra-
phy of the IBM forearc is oceanic crust overlain by boninitic and later arc lavas, while Stern and
Bloomer (1992) and Ishizuka et al. (2006) argue that a broad swath of forearc crust formed by seafloor
spreading after subduction initiation. Relating to IODP Expedition 352 results, Reagan et al. (2017, 2019)
have developed a hybrid of these models, in which FAB and low‐Si boninite magmas were
generated during an initial period of seafloor spreading, whereas the high‐Si boninites erupted subse-
quently at discrete volcanic centers (i.e., the nascent arc) at 51.3 Ma. The rear arc basalts of the ASB
(Site 351‐U1438) are younger than the Sites U1439 and U1442 boninite, which suggests that they formed
by renewed volcanism west of the Bonin Ridge, after initial spreading ceased in the forearc (Ishizuka
et al., 2018).

The Philippine Sea Plate (PSP) (Figure 1) is characterized by a complex tectonic and magmatic evolu-
tion (Hall et al., 1995). It is surrounded by transform faults and subduction zones. Initial seafloor
spreading began around the time of subduction initiation at ~52 Ma to form the initial back arc basin
in the PSP (i.e., the West Philippine Basin) (Deschamps & Lallemand, 2002; Ishizuka et al., 2018; Seton
et al., 2012; Whittaker et al., 2007; Wu et al., 2016). The ASB, in which Site U1438 was drilled, is situ-
ated north of the West Philippine Basin and west of the Kyushu‐Palau Ridge. The ASB sole comprises
about 1.5 km of sediment overlying igneous oceanic crust. The ASB basement commonly encompasses
basaltic sheet flows and dikes of high‐Mg, low‐Ti, tholeiitic basalts showing variable alteration and vein-
ing (Arculus, Ishizuka, Bogus, Gurnis, et al., 2015; Arculus, Ishizuka, Bogus, & the Expedition 351
Scientists, 2015). The geochemistry of the basement lavas (Hickey‐Vargas et al., 2018; Yogodzinski
et al., 2018) indicates derivation from mantle source rocks that were more melt depleted than those
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of typical mid‐ocean ridges, similar to the IBM FABs (Shervais et al., 2019). The basaltic basement of
the ASB (IODP Site U1438) is currently interpreted as part of the initial basement produced during sub-
duction initiation (Arculus, Ishizuka, Bogus, & the Expedition 351 Scientists, 2015), although ages of the
Amami‐Sankaku basement are concurrent with high‐Si boninite volcanism on the Bonin Ridge
(Ishizuka et al., 2018), allowing an alternative explanation that this was the first IBM back arc basin
(Reagan et al., 2019).

2.2. Postmagmatic Faulting and Sedimentation

The arc and forearc crust that formed after subduction initiation was affected by later fault‐related deforma-
tion and chemical/hydrothermal alteration owing to tectonic deformation at the IBM forearc. Extension‐
related asymmetric sedimentary basins (e.g., half‐grabens) are developed at Sites U1439 and U1442 on the
upper trench slope (Christeson et al., 2016; Kurz et al., 2015; Robertson et al., 2018) (Figure 2). The basins
are bounded by west dipping normal faults along their eastern margins, accompanied by syntectonic
(hemi)pelagic and volcaniclastic sedimentation. According to shipboard data, the lowermost sedimentary
units at Sites U1439 and U1442 were tilted eastward by ~20°, and the tilted beds were covered by subhori-
zontal beds (Reagan et al., 2015). Drill cores revealed discrete shear structures with dominant reverse to obli-
que reverse slip along subhorizontal fault zones. These were either reactivated as, or transected by, normal
faults, oblique faults with a normal slip component, and strike‐slip faults (Reagan et al., 2015). At Sites
U1440 and U1441, on the outer forearc, the sedimentary basins are bounded by normal and oblique‐slip/
strike‐slip faults. The sedimentary fill was not significantly affected by tectonic tilting. Additional exten-
sional, mainly fault‐related structures are steeply dipping to subvertical mineralized veins and
extension fractures.

Biostratigraphic constraints from calcareous nannofossils reveal initial sedimentation at ~35 Ma (Robertson
et al., 2018). Tephra layers higher in deep‐sea successions indicate that explosive dacitic IBM volcanism
started around 28.6 Ma (Kutterolf et al., 2018). Since the IBM igneous basement formed at 52–50 Ma
(Reagan et al., 2019), a ~15 Ma depositional hiatus must therefore exist prior to the oldest known
sediment deposits.

The sedimentary‐volcanogenic evolution of the forearc basins, together with their tectonic and paleogeo-
graphic implications for the IBM forearc, had recently been discussed by Robertson et al. (2018) and by
Kutterolf et al. (2018). Site U1439 has by far the best overall recovery of the sedimentary succession, with
approximately 180 m of mainly pelagic sediments and tephras. This site can therefore be taken as reference
site for the general upslope structure and related postmagmatic tectonics. Based on biostratigraphic con-
straints, three major time slices of fine‐grained background sedimentation were defined by Robertson
et al. (2018). Time Slice 1 ranges from the early Oligocene (ca. 34.44–32.92 Ma) to early Miocene (ca. 23
Ma), with sedimentation of nannofossil chalk, marl, or limestone, variablymixed with volcaniclastic and tuf-
faceous sediment (i.e., calcareous siltstone or sandstone) as well as IBM tephras since 16 Ma. The boundary
between Time Slices 1 and 2 coincides with the change in sediment dip, from subhorizontal (Time Slice 2) to
continuously increasing dip angles below 127 m below sea floor (bsf) (Time Slice 1). This boundary also
marks the demise of the early IBM‐derived volcanism. Time Slice 2 ranges from the early Miocene to the
mid‐Pliocene (ca. 23–4 Ma), with clay/claystone and mud/mudstone (variably mixed with silt/siltstone
and sand/sandstone). Time Slice 3 ranges from mid‐Pliocene to Holocene (ca. 4–0 Ma) with sedimentation
of nannofossil ooze and minor mud (variably mixed with tuffaceous sediment and tephras from IBM and
mainland Japan).

The succession at Site U1442A has many similarities to that at Site U1439, although thinner, and the
Miocene succession is not as complete; no early Miocene nannofossils were identified (Robertson
et al., 2018).

For Site U1440, the basal sediments are Oligocene (32.92Ma), that is, coeval with the basal sediments at Sites
U1439 andU1442. Amajor hiatus ranges from the earliest Oligocene to theMiocene‐Pliocene boundary. Age
profiles differ considerably at Site U1441 with late Miocene basal sediments directly overlying the basement.
Neither Oligocene nor early Miocene sediments were recovered. Middle Miocene sediments are also missing
(Robertson et al., 2018).
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3. Samples and Methods

During IODP Expedition 352 samples were taken subsequently to shipboard drill core description. The sam-
pling mainly focused on deformational structures (veins and fault rocks) from several drill sites (U1439,
U1440, U1441, and U1442) (Figures 1 and 2). The supporting site survey data for Expedition 352 are archived
at the IODP Site Survey Data Bank (http://web.iodp.tamu.edu/UWQ/).

Samples were primarily taken from core intervals, which showed both (1) obvious shear deformation along
faults zones (cemented cataclasites and fault breccias) and (2) zones characterized by obvious fluid activity in
terms of wall‐rock alteration and precipitation within extensional veins, gashes, and voids along shear frac-
tures. Additional samples from IODP Expedition 351 were obtained from the Kochi Core Center (Japan).

Representative samples were cut from the working half of the drill cores into slices, with a maximum size of
10 × 5 cm. Deformation structures were cut parallel to the drill‐core axis (being defined as Z axis). Polished
thin sections, with a size of ~27 × 46 mm, were used for optical microscopy. About 200 thin sections
were studied.

The locations of samples described are listed in Table 1.

3.1. Seismic Images

Seismic images across Expedition 352 sites from Christeson et al. (2016), complimented with interpreted
faults, unconformities, and sedimentary bedding are displayed in Figure 2. The data are prestack migrated
images, converted to depth using velocities of 1,500 m/s for the water column, 1,700 m/s for sediments,
and the appropriate crustal velocities from a coincident seismic refraction profile (Christeson et al., 2016).
The sediment‐basement interface is indicated by a change from continuous reflectors to lower‐frequency,
disrupted reflectors, as confirmed, where possible, by the depth of the drilled igneous basement‐sediment
contact. Within the sedimentary succession we obtain a change from shallow, subhorizontal reflectors to
more chaotic, dipping reflectors which corresponds to the boundary between Time Slices 1 and 2 (~27
Ma) of Robertson et al. (2018). We interpret normal faults bounding the sedimentary basins, and throughout
the igneous basement.

3.2. Piezometry and Deformation Temperature From Calcite Twinning

Within calcite crystals, the most common mechanism of crystal‐plastic deformation below 400 °C is twin-
ning along the e‐plane (e.g., Burkhard, 1993; Groshong, 1988; Turner, 1953). Twin formation depends on

Table 1
Representative Sample Locations and Sites

Sample IODP sample ID Depth below seafloor [m] Intersecting faultsa Vein type Analyses

BON‐1 352‐U1439C‐13R‐1‐W 42/47 280.5 yes blocky piezometer
BON‐2 352‐U1439C‐23R‐1‐W 109/113 359.2 yes blocky piezometer
BON‐3 352‐U1439C‐23R‐2‐W 15/21 359.4 yes blocky piezometer
BON‐4 352‐U1439C‐26R‐2‐W 9/11 388.9 yes blocky piezometer
BON‐5 352‐U1439C‐27R‐1‐A 100/118 398 yes — microstructure
BON‐6 352‐U1439C‐27R‐4‐W 25/30 401 yes blocky piezometer
BON‐7 352‐U1439C‐29R‐4‐W 60/63 421.1 yes blocky piezometer
BON‐8 352‐U1439C‐31R‐3‐W 66/69 439.4 yes blocky piezometer
BON‐9 352‐U1439C‐32R‐3‐W 113/119 449.5 no blocky EBSD
BON‐10 352‐U1439C‐32R‐4‐W 111/114 451 no blocky piezometer
BON‐11 352‐U1439C‐33R‐2‐W 31/34 457.3 no blocky piezometer
BON‐12 352‐U1439C‐43R‐1‐A 25/41 524.1 yes — microstructure
FAB‐1 352‐U1440B‐12R‐1‐W 145/149 165.1 no blocky piezometer
FAB‐2 352‐U1440B‐17R‐1‐W 58/63 212.8 no blocky piezometer
FAB‐3 352‐U1441A‐14R‐1‐W 129/131 123.1 no blocky EBSD
FAB‐4 352‐U1441A‐20R‐1‐W 22/24 180.4 yes — microstructure
ASB‐1 351‐U1438E‐66R‐2‐W 26/30 1448.2 — blocky piezometer
ASB‐2 351‐U1438E‐71R‐3‐W 67/74 1473.4 — blocky piezometer
ASB‐3 351‐U1438E‐82R‐2‐W 43/52 1553.8 — blocky piezometer/EBSD

aFrom IODP shipboard observations.
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stress orientation and requires exceeding the critical resolved shear stress (CRSS) along one of the three e‐
planes (Burkhard, 1993; Ferrill, 1998; Jamison & Spang, 1976; Lacombe & Laurent, 1996; Tullis, 1980;
Wenk et al., 1987). Mechanical twins have been used by many authors during recent decades as differential
stress gauge (Jamison & Spang, 1976; Rowe & Rutter, 1990; Lacombe & Laurent, 1996; Rybacki et al., 2011).
The minimum CRSS necessary to produce calcite twins is 5 to 15 MPa and additionally depends on grain
size, porosity, temperature and strain rate (e.g., Turner, 1953; Jamison & Spang, 1976; Tullis, 1980;
Laurent et al., 2000; Passchier & Trouw, 2005).

The characteristic thickness of calcite twins from very thin (<1 μm) to thicker twins (1–5 μm) represents a
function of deformation temperature and deformation mechanisms (Burkhard, 1993; Ferrill, 1991; Ferrill
et al., 2004). For the description of twin types and twin morphology and the corollary deformation tempera-
tures, we generally follow the studies by Burkhard (1993) and Ferrill et al. (2004). Thin, straight type I twins
(<1 μm thick) form at <170 to 200 °C; thicker type II twins (≫1 μm) can be slightly lensoid and form at 150
to 300 °C; Type III twins are several micrometers thick, show a curved and tapered morphology, and develop
at temperatures >200 °C. Type IV twins are several micrometers thick, too, have a patchy, irregular mor-
phology, and show serrate twin boundaries related to boundary migration; these twins form at temperatures
>250 °C. Generally, only Types I and II are feasible for paleostrain and related stress assessment (e.g.,
Burkhard, 1993; Ferrill et al., 2004; Rowe & Rutter, 1990).

The evaluation of differential stresses from calcite twin densities generally follows the methods described by
Brandstätter et al. (2017). The density of deformation twins (i.e., number of twins per mm) can be used to
estimate differential stresses (e.g., Ferrill et al., 2004; Friedman & Heard, 1974; Rowe & Rutter, 1990;
Rybacki et al., 2011). Thin sections of thirteen representative samples hosting twinned grains were analyzed
for twin width and twin density using a Keyence VHX‐6000 digital photomicroscope and associated data
analysis software. The mean twin width was determined from the sum of twin widths for each twin set of
a calcite grain. The twin density was derived by counting the number of twins per grain, normalized to a unit
length of 1 mm. The mean twin density value of each grain was used for the piezometry calculations.

Differential stresses (Δσ) were calculated by using the experimentally calibrated twin density piezometer
after Rybacki et al. (2011), feasible for temperatures between 20 and 350 °C:

Δσ ¼ 101:29±0:02ρtwin
0:50±0:05 (1)

Results are given in megapascals, and ρtwin denotes the twin density (number of twins per millimeter).

Other piezometers, following the equations after Rowe and Rutter (1990), were not considered as these are
very sensitive to small changes in twin density and therefore may not be suitable for application to naturally
deformed rocks (for details, see Brandstätter et al., 2017).

3.3. EBSD Analysis of Vein Calcite

Crystallographic orientations of calcite grains in highly polished, oriented X‐Z thin sections (with Z parallel
to the drill core axis) weremeasured using a scanning electronmicroscope which was equipped with an elec-
tron back‐scatter diffraction (EBSD) system (HITACHI S‐3400N Type II with HKL Channel5) at Shizuoka
University. Twenty kilovolt accelerating voltage and low vacuum mode (30 Pa) were used. For microstruc-
tural observations and analyses, 30 μm thick thin sections were polished using 1 μm diamond paste and col-
loidal silica for >5 hr. Phase maps were obtained using step sizes of 5 to 7 μm. HKL Channel5 software was
used to process map data by removing single pixels that differed by >10° and extrapolating nonindexed pix-
els with the average orientation of neighboring pixels.

EBSD data were processed using the OIM Analysis software. For the determination of potential slip systems,
misorientation axes for misorientation angles from 2° to 5°, 5 to 10°, and 10° to 15° were displayed as con-
toured inverse pole figures (IPF) with reference to the trigonal calcite crystal system (hexagonal scalenohe-
dral crystal class) using the MATLAB© toolbox MTEX (Bachmann et al., 2010). For two default orientations
(grains, subgrains, crystals, and crystallographic axes), the misorientation is the rotation required to rotate
one set of crystal axes orientation into coincidence with the other (based on a fixed reference frame)
(Zhao & Adams, 1988). Misorientation axes generally are crystallographically controlled, as misorientations
(e.g., subgrain boundaries) result from intracrystalline deformation (e.g., dislocation glide) by the activation
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of distinct slip systems. IPFs display the orientation of crystallographic axes or normal to a crystallographic
plane relative to a reference axis. In this study, the reference axis is the drill core axis. A preferred orientation
of distinct crystallographic axes and/or planes therefore indicates which slip systems, defined by a crystallo-
graphic plane and a misorientation axis, were activated during intracrystalline deformation.

3.4. Raman Spectroscopy

Raman spectra of minerals were carried out in confocal mode using a Jobin Yvon LabRam HR800 micro-
spectrometer equipped with an Olympus BX41 optical microscope and a Si‐based charged‐coupled device
detector at the NAWI Graz Geocenter, Institute of Earth Sciences, University of Graz. The instrumentation
uses a 100 mWNd‐YAG laser (532 nm emission), a grating of 1,800 grooves/mm, and a slit width of 100 μm.
The spectral acquisition time was set to 10–20 s for all measurements between 100 and 1,200 cm−1.

4. IBM Forearc and Sediment Basin Structure

Despite the known differences in the mineralogical and geochemical composition of the magmatic base-
ment, the IBM forearc crust structure is continuous from the Bonin Ridge to the trench, with changes in
thickness but only minor changes in seismic wave velocity (Christeson et al., 2016; Takahashi et al.,
2009). Sites U1440 and 1441 are located within small normal and oblique‐slip/strike‐slip fault‐controlled
basins, respectively, on the lower forearc slope at water depths of 4,447 and 4,775 m (Reagan et al., 2015;
Robertson et al., 2018). The faults extend toward the trench axis (Kurz et al., 2015; Reagan et al., 2015;
Robertson et al., 2018). Sites U1439 and U1442 were drilled on the upper forearc slope at water depths of
3,128 and 3,162 m (Reagan et al., 2015; Robertson et al., 2018).

4.1. Upper Slope Sites

The upper slope sites are located in an area of NW‐SE trending asymmetric half‐graben structures that
embody fault‐controlled, >2 kmwide basins (Figure 2). Bathymetric ridges that are bounded by west dipping
normal faults separate these half‐grabens (Figure 2). Normal faults extend from the seafloor to depths of at
least a few hundredmeters into themagmatic basement and are prevalent near all of the Expedition 352 drill
sites (Christeson et al., 2016). High‐angle faults are clearly indicated by visibly disrupted layering in the
upper 200m of the basement. Dipping reflectivity coincides withmany of the fault zones identified from core
samples in Hole U1439C (Christeson et al., 2016; Expedition 352 Scientists, 2014) (Figure 2). Dip angles of
confining normal faults are approximately 40° with antithetic normal faults and uplifted local horst
ridges (Figure 2).

The seismic reflection images and the shipboard data show that the sedimentary lamination from 0 to
approximately 127 m bsf at Site U1439 is layered (sub) horizontally, whereas the layers between 127 and
153 m bsf have dip angles between 10° and 14° (Reagan et al., 2015). This corresponds to the apparent dip
direction displayed by seismic prestack timemigrated images (Figure 2). From 153m bsf down to the contact
with the igneous basement, dip angles range from 15° to 20° (Reagan et al., 2015). The sedimentary layering
at Site U1442 generally dips gently eastward down to 75 m bsf. From 75 m bsf to the basement contact dip
angles continuously increase up to 35° (Reagan et al., 2015).

Displacement along the confining normal faults can be calculated from the dip angles of the faults and the
sedimentary layering, taking account of the maximum sediment thickness in each basin above the hanging
wall cutoff, as indicated in Figure 3. Assumptions are that the faults are planar at the scale of the cross sec-
tion and that before rotating, layering was initially subhorizontal and that the faults have the same orienta-
tion and dip. Parameters are as follows: a fault dip angle φ of ~40° near CDP 66400 in Figure 2, an average
bedding dip angle θ of 10° from shipboard measurements of sedimentary bedding planes, and a maximum
sediment thickness x of 200 m near common depth point (CDP) 66375. Using the trigonometry displayed in
Figure 3a (d = x/sinφ), we estimate that the fault displacement d is approximately 311 m.

Extension (elongation) (e) and the stretch factor β can also be calculated from the fault dip angle φ and bed-
ding dip angle θ, using the following equations:
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e ¼ dcosφþ lo*cosθ−lo
lo

¼ d
lo
cosφþ cosθ−1 (2)

e ¼ sinθcosφ
sinθ

þ cosθ−1 ¼ sinθcosφþ cosθsinφ
sinφ

−1 ¼ sinθþ φ
sinφ

−1 (3)

β ¼ eþ 1 ¼ sinθcosφ
sinθ

þ cos θ ¼ sinθcosφþ cosθsinφ
sinφ

¼ sin θþ φð Þ
sinφ

(4)

Using a fault dip angle of 40° results in an extension e of approximately 0.19 for the basin adjacent to Site
U1439, that is, a stretch factor β of approximately 1.19. Any possible strike‐slip component was not consid-
ered, as the shipboard fault and slickenside data display major normal sense of shear (Reagan et al., 2015).
The elongation for the basin around Site U1442 was determined similarly. A fault dip angle φ of ~39° near
CDP 66700 was measured in Figure 2, as well as a bedding dip angle θ of 8°; this results in an east‐west direc-
ted extension e of ~0.16, and a stretch factor β 1.16. The bulk extension for the upslope Sites U1439 and
U1442 therefore is in the range of 0.175.

The faulting‐related strain rates can be estimated from the overall displacement, the stretching factor, and
the biostratigraphic constraints. As described above, the finite bulk stretching factor calculated for the basins
at Sites U1439 and U1442 is about 1.175 (e = 0.175). Assuming continuous fault slip over the full biostrati-
graphically documented time range of approximately 35 Ma gives a minimum strain rate estimate in the
range of 1.58 × 10−16 s−1. An assumption of bulk fault slip between 35 and 23 Ma (Time Slice 1 as defined
by Robertson et al., 2018), that is, within 12 Ma from beginning syntectonic sedimentation at 35 to the 23
Ma unconformity, gives a strain rate estimate in the range of 4.62 × 10−16 s−1.

4.2. Lower Slope Sites

The sedimentary basins at Sites U1440 and U1441 have an approximately symmetric graben geometry. The
lateral distance between these two basins is approximately 1.5 km (see Reagan et al., 2015). The fault pattern
at Site U1440 is quite irregular, whereas the basin boundaries at Site U1441 are well defined by east and west
dipping bounding faults. A fault dip angle φ1 of ~32.5° near CDP 5450 wasmeasured in Figure 2 for the limit-
ing fault at the western basin margin; at the eastern basin margin the fault dip angle φ2 is ~33° near CDP
5200. The sedimentary layering is generally subhorizontal; in the depocenter, particularly toward the eastern
basin margin, the sedimentary bedding is inclined, indicating synsedimentary/postsedimentary faulting and
tilting. The bulk basin width is ~1,300 m (Figure 2c). Dip‐slip displacements can be calculated from the fault
dip angles and the depth, z, of the base of the sedimentary succession above the igneous basement, as shown
in Figure 3b; the latter (z) is in the range of ~285 m bsf. Accordingly, the dip slip displacement is in the range
of 528 m (d1) and 520 m (d2) for the west and east bounding fault, respectively. The related overall extension
is therefore given by the ratio of the sum of the extensions on each fault (Δl1, 2), divided by the original sedi-
ment bed length (l0) (Figure 3b), with Δl1, Δl2, and l0 being in the range of 538, 416, and 261 m, respectively.
This results in an extension e of ~3.655. Assuming continuous fault slip over the full biostratigraphically
documented time range of approximately 35 Ma gives a minimum strain rate estimate in the range of 3.31
× 10−15 s−1 without consideration of any potential strike slip component. An assumption of bulk fault slip
between 35 and 23 Ma (Times Slice 1 as defined by Robertson et al., 2018) gives a strain rate estimate in
the range of 9.66 × 10−15 s−1.

The calculation using tilted blocks (upper slope sites) yields stretching of the crust in the entire block‐faulted
area in terms of regional extension. The calculation in the symmetric graben (lower slope sites), however,
yields the stretching of the graben itself and is therefore very local. The regional stretching basically depends
on how far away the next graben is from the graben under consideration. The lateral distance from the east-
ern margin of Site U1441 basin to the western margin of Site U1440 basin is approximately 1.5 km. In order
to make the stretching factor at upper slope sites and lower slope sites comparable, half of the distance from
Site U1440 to the next graben on both sides (approximately 1.5 km in total), were added to l0 used in the
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calculation above (l0 = 261m; l0 regional = l0 + 1.5 km= ~1,750 m). The regional extension for the lower slope
sites is therefore estimated from Δl1, Δl2 and l0regional, being in the range of 538, 416, and ~1,750 m.
This results in a regional extension eregional of ~0.545. Assuming continuous fault slip over the full biostrati-
graphically documented time range of ~35 Ma gives a minimum strain rate estimate in the range of 4.395 ×
10−16 s−1. An assumption of bulk fault slip between 35 and 23 Ma (Times Slice 1 as defined by Robertson
et al., 2018) gives a strain rate estimate in the range of 1.43 × 10−15 s−1.

5. Faults and Fault‐Related Structures

Several of the IBM sites revealed fault zones with various kinematic features, including discrete faults and
cataclastic shear zones (Figure 4), together with extensional fractures and veins with minerals that were
mainly precipitated from hydrothermal fluids (Figure 5). Sites U1439 and U1441 are situated close to the
related sediment basin axis, whereas Site U1442 is situated on a topographic, uplifted basement ridge.
Drilling at these sites penetrated several minor fault zones within the igneous basement, most of these being
related to themajor, basin‐bounding normal, oblique, and strike‐slip faults. Site U1440 is located off the sedi-
mentary basin axis, and penetrated the normal fault terminating this basin to the west, as well as related sec-
ondary extensional structures.

Fault structures that were observed in the Expedition 352 forearc sites are documented in detail by Reagan
et al. (2015) and are summarized below. These data are supplemented by postcruise
microstructural analyses.

5.1. Upper Slope Sites
5.1.1. Site U1439
Hole 1439C revealed cataclastic fault zones from ~348 to 401 m bsf (fault zone 1), from ~420 to 446 m bsf
(fault zone 2), and from ~475 to 535 m bsf (fault zone 3). The fault zones have variable thickness in the range
of a few centimeters to decimeters and are characterized by continuous downward loss of cohesion.
Extensional structures, including fractures and normal‐sense slickensides, tend to offset reverse faults.

An ultracataclasitic shear zone (Fault Zone 1) with host rock fragments of millimeter to centimeter size is
transected by subvertical veins with an en echelon geometry indicating normal sense of shear (Figure 4a).
The adjacent host rock (boninite) is highly altered and bleached (Figure 4a); veins are abundant between
348.8 and 359.8 m bsf.

Fault rocks within Fault Zone 2 comprise cohesive fault breccia with millimeter to centimeter sized host
rock fragments embedded within a fine‐grained matrix (<0.2 mm grain size) (Figure 5f). The matrix
amounts to less than 20%.

Fault Zone 3 contains slightly cohesive to incohesive fault breccia (centimeter‐sized fragments) and catacla-
sites, with friable centimeter sized fragments of host rock material, partly surrounded by fine grained fault
gouge and an irregular fracture network. Discrete cataclastic shear bands comprise incohesive cataclasite
and fault gouge. Vein quantity and vein thickness decrease remarkably downward within Fault Zone 3.
Veins are almost missing below 515 m bsf. On the other hand, the abundance of slickensides and shear frac-
tures increases. A domain of slightly cohesive fault breccia (centimeter‐sized fragments) was recovered at
from ~524 to 529.39. This deepest fault zone caused structural instability and prevented deepening of Hole
U1439C. Cataclastic shear zones with feasible recovery generally indicate top‐down kinematics (Figure 4b).
5.1.2. Site U1442
Hole U1442A revealed fault zones from 238.20 to 267.45 m bsf (Fault Zone 1), from 432.80 to 444.80 m bsf
(Fault Zone 2), and from 490.90 to 502.20 m bsf (Fault Zone 3).

Fault Zone 1 comprises medium‐ to coarse‐grained cataclasites and fault breccias and cohesive, foliated fault
gouges, forming a ~40 cm wide phyllonitic shear zone between 248.21 and 248.59 m bsf. Single sets of shear
bands indicate normal sense of shear.

Fault Zones 2 and 3 are basically characterized by single cataclastic shear zones. The shear zone thicknesses
range from a few to 15 cm. Fault rocks comprise fault breccias with host rock fragments, up to 1 cm in dia-
meter, as well as slightly cohesive, fine‐grained cataclasites with single millimeter‐sized host rock fragments
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Figure 4. (a) Highly altered boninite, transected by an ultracataclastic shear zone and by subvertical calcite veins (marked by black arrows), with mineralized
hybrid fractures (white arrows); IODP Expedition 352, Hole U1439C, Core 27R, Section 1A, 100–118 cm. (b) Cataclastic fault with fault breccia; top down displa-
cement (normal sense of shear); IODP Expedition 352‐U1439C‐43R‐1A‐25‐41 cm. (c) Foliated alteration zone (brownish) within FAB, characterized by micro-
fracturing, microbrecciation, and formation of secondary chlorite, calcite, clay minerals and opaque phases (microphotograph with parallel polarizers); IODP
Expedition352, Hole U1440B, Core 35R, Section 1, 29–39 cm; and (d) Microphotograph (parallel polarizers) of ultramylonitic, semiductile to brittle shear zone; the
ultramylonite consists of kryptocrystalline calcium carbonate with single clasts of calcite (with related Raman spectrum) and brownish amorphic volcanic glass; C′
shear bands indicate top down (normal) sense of shear; IODP Expedition352‐ U1441A‐20R‐1‐16‐18 cm. Figures 4a–4c are cutouts from shipboard core close‐up
images taken by Tim Fulton (provided by International Ocean Discovery Program [IODP] and JOIDES Resolution Science Operator [JRSO]).
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and fault gouges. The fault damage zones comprise steeply dipping to subvertical multiple sets of slicken-
sides with predominant normal to oblique‐normal slip.

5.2. Lower Slope Sites
5.2.1. Site U1440
Extensional fractures, generally with inclined to subvertical orientations, are the main structural features
from 144.76 to 183.50 m bsf. Subvertical to inclined mineralized veins, up to 7 mm thick, are steeply dipping
to subvertical. Locally, these veins occur as conjugate sets, forming a vein network (Figures 5c and 5e).

Macroscopic, centimeter‐thick cataclastic shear zones (Figure 4c) occur between 145.00 and 146.00 m bsf,
281.00 and 291.00 m bsf, and 358.00 and 369.00 m bsf. The shear zones are characterized bymicrobrecciation
and by a macroscopic foliation defined by (sub) parallel fracture sets and clusters of chlorite. Plagioclase and

Figure 5. (a) Single calcite vein (marked by arrow); IODP Expedition 352, Hole U1440B, Core36R, Section 1, 116–128 cm. (b) Fragmented boninite with multiple
cracks accompanied by dark alteration seams, and a single tapered calcite vein (marked by arrow); this opened as a tension gash along releasing bendwith top down
kinematics; IODP Expedition 352‐U1442A‐30R‐3A‐106‐115 cm. (c) Conjugate hybride fractures (marked by arrows) within boninite, filled with calcite; IODP
Expedition 352‐U1439C‐41R‐1A‐81‐90 cm. (d) Horsetail calcite veins and splays associated with distinct single sets of shear fractures with top down displacement
within boninite; the discrete tension gashes were formed along shear fractures; IODP Expedition 352‐U1439C‐23R‐2W‐14‐26 cm. (e) Complex multiple carbonate
vein network resulting from hydrofracturing within altered boninite; discrete boninite fragments (marked by arrow) are embedded in vein precipitates; IODP
Expedition 352‐U1439C‐4R‐1A‐108‐117 cm. (f) Hydraulic breccia of Forearc Basalt (FAB), cemented by calcite precipitate; IODP Expedition 352‐ U1440B‐19R‐1A‐
84‐94 cm. Figures are cutouts from shipboard core close‐up images taken by Tim Fulton; (provided by International Ocean Discovery Program [IODP] and JOIDES
Resolution Science Operator [JRSO]).
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pyroxenes show intense microfracturing; microfractures are partly filled by chlorite, calcite, and/or
clay minerals.
5.2.2. Site U1441
The general structure at Site U1441 is highly irregular at the sediment‐igneous basement boundary and
along the basin margins and is characterized by multiple minor faults and fracture zones. Fault damage
zones comprise steeply dipping to subvertical multiple sets of slickensides with predominant left‐lateral to
oblique‐normal left‐lateral shear. Mineralized veins are steeply dipping to subvertical.

The lowermost interval of Hole U1441A (~180 m bsf) revealed a semiductile low‐angle shear zone
(Figure 4d). This shear zone is characterized by an ultramylonitic fabric with distinct carbonate clasts and
clasts of amorphic volcanic glass embedded within an ultrafine‐grained, sheared calcium carbonate matrix,
as revealed by Raman Spectroscopy. Clasts reach up to 500 μm in size. Shear bands appear as subparallel
sets, indicating top‐down sense of shear (Figure 4d). The shear bands are transected by subparallel sets of
inclined shear fractures, indicating normal displacement, too. This shear zone marks the contact between
clinopyroxene‐phyric basalt above and aphyric to sparsely clinopyroxene‐bearing basalt below (see the geo-
chemical stratigraphy described by Reagan et al., 2015; Shervais et al., 2019). FAB pieces that were recovered
below and above this shear zone do not indicate comparable deformation or alteration.

5.3. Expedition 351 Site U1438 (ASB)

Pervasive faulting is not documented at Site 351‐U1438 (Arculus, Ishizuka, Bogus, & the Expedition 351
Scientists, 2015), as it is located centrally within the ASB. Seismic reflection images (see Arculus,
Ishizuka, Bogus, & the Expedition 351 Scientists, 2015) display almost horizontally layered sediment beds
and an almost unfaulted basement. Minor faults with reverse sense of shear are locally documented within
the sedimentary cover. The core images from the magmatic basement do not display pervasive fracturing,
neither. Fractures usually occur as discrete, single fractures. Veins are not as abundant as at Sites U1439
to U1442 and generally occur as subvertical, millimeter‐thick single veins filled with calcite and zeolite.

6. Veins and Wall Rock Alteration

Vein structures and alteration textures that were observed during IODP Expedition 352 are documented in
detail by Reagan et al. (2015) and are summarized below. These data are supplemented by postcruise micro-
structural and piezometry analyses.

6.1. Macroscale Vein Structures

Mineralized veins (Figure 5) were observed at several of the IBM sites and comprise tension fractures, hybrid
(tension and shear) fractures, tension gashes related to releasing bends and extensional step‐overs that are
distributed along distinct shear fractures. The vein dip angles are usually >45°. In general, the individual
drill sites are not particularly characterized by any distinct vein type. Veins occur as single subvertical fea-
tures (Figure 5a), single bent and tapered tension gashes (Figure 5b), or as conjugate hybrid mineralized
fractures (Figure 5c). Some of these veins, like at Site U1440, occur as intersecting networks (Figure 5c).
The related vein dip angles (from ~25° to 50°, and from ~65° to 90°, respectively) form two clusters. Other
vein types are splayed extensional veins with horsetail arrangement, associated with distinct single sets of
shear fractures with top‐down displacement (normal sense of shear) (Figure 5d), or as complex multiple vein
networks, resulting from hydrofracturing (Figure 5e). In addition, distinct domains with cataclasites and
fault‐related hydraulic breccias comprise disintegrated host rock fragments that are cemented by mainly
sparitic carbonate (Figure 5f).

Calcite, various zeolites, and clay minerals are the main vein fillings. Vein thicknesses vary from <1 to 15
mm. Calcite veins are usually filled with crystalline blocky (Mg‐) calcite. A few wider (>15 mm) veins have
antitaxial, zoned calcite fiber mineralizations that indicate incremental steps of extension and precipitation.

6.2. Vein Calcite Microstructures and Twin Density Piezometry

Each of the investigated host rocks contained blocky calcite veins with twinned grains. Boninites, FABs and
samples from ASB hosted nine, two, and three veins, respectively, that were suitable for twin density mea-
surements. The grains predominantly display one twin set, but locally two sets and rarely three sets.
Following the classification of Burkhard (1993), almost 90% of twins are of Type II, with subordinate
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examples of Type I. Grains hosting Type I twins tend to show higher twin densities than those with Type II
twins. The apparent width of the Type II twins ranges from 2 to 45 μm. Some twins are bent or show tapered
endings (Figure 6). Locally, offsets along intracrystalline microfractures are observed.

According to Burkhard (1993), Type II twins point to deformation temperatures between ~150 and 300 °C.
While tapered twins are distinctive of deformation and distinguish from growth twins, bent twins as well as
offsets along microfractures point to advanced intracrystalline deformation. Moreover, undulatory extinc-
tion and the formation of subgrains within calcite grains with tapered and curved twins (Figure 7) indicate
intracrystalline, plastic deformation mechanisms (dislocation glide and dislocation creep) (e.g., Twiss, 1977;
Wheeler et al., 2001).

Most of the detailed studies were performed on samples from the boninite sites (U1439 and U1442), mainly
due to a higher vein recovery. Differential stresses at the boninite sites range from 34 to 150 MPa with an
average of 88 ± 9 MPa (Table 2). Veins from U1440 and U1441 (FAB) and from Site U1438 (ASB) show aver-
age differential stresses of 69 ± 7 (39 to 87 MPa) and 91 ± 33 MPa (34 to 181 MPa), respectively (Table 2).
Basically, no correlation of differential stresses with depth was observed (Figure 8).

As described above, differential stresses were estimated by calcite twin density following the method of
Rybacki et al. (2011), Rybacki et al., 2013). To estimate related strain rates we used the power law creep equa-
tion for calcite, as provided by Schmid (1982) and Rutter (1995):

log (strain rate) = −5.5–314 kJ/2.303 RT + 6.0 logσ

where σ = differential stress, R = gas constant (0.008314 kJ/mol K) and T = absolute temperature (°K).

The results of iterative strain rate calculations are shown in Table 3, indicating that strain rates (at given dif-
ferential stresses) are highly sensitive to temperature. Depending on the assumed deformation temperatures,
derived from calcite twin morphology and fault‐ and vein‐related alteration assemblages (see below), the
strain rates range from 10−18 to 10−16 at 100 °C, from 10−16 to 10−14 at 150 °C, and from 10−14 to 10−12 at
200 °C.

6.3. Fault‐ and Vein‐Related Wall Rock Alteration

Deformation temperatures can supplementarily be assessed by wall rock alteration mineral assemblages
within the fault zones and adjacent to mineralized veins. In Hole U1439C wall rock alteration is indicated
by secondary clay minerals, different zeolite types, and mutable occurrence of calcite. Additionally, the pre-
sence of talc within the lower sections of Hole U1442 indicates zeolite facies (metamorphic) conditions in the
range of 100° to 150 °C. The overall alteration degree is low tomoderate at these sites (see Reagan et al., 2015,
for details).

The extent of alteration at Site U1440 is generally low. Secondary minerals are clay minerals (montmorillo-
nite, interlayered montmorillonite‐illite, and illite), calcite, and small amounts of zeolite (largely laumontite
and phillipsite) (Reagan et al., 2015). Macroscopic foliation fabrics defined by clusters of chlorite were
observed between 145.00 and 146.00 m bsf, 281.00 and 291.00 m bsf, and 358.00 and 369.00 m bsf. The altera-
tion mineral assemblages indicate upper zeolite facies to prehnite‐pumpellyite facies metamorphic condi-
tions. Alteration mineral assemblages at Site U1441 comprise zeolites (phillipsite, merlinoite, chabazite,
and analcime), smectite group clays, and minor calcite. These assemblages indicate moderate to high altera-
tion with a tendency to decline downhole (Reagan et al., 2015). In general, the alteration at the upslope Sites
U1439 and U1442 appears to be lower, compared to the downslope sites. This difference also applies to the
metamorphic conditions and the related (deformation) temperatures, allowing for higher strain rates at
similar differential stresses at the downslope sites.

7. EBSD Analyses

The samples selected for the EBSD analysis are blocky calcite veins from Expedition 351 Site U1438 (ASB
rear arc), and from Expedition 352 Sites U1439 (boninite) and U1441 (FAB). Several calcite veins contain
twins and show undulatory extinction, bent twins andmultiple subgrain boundaries. Twins are usually over-
printed by or interact with subgrains (Figure 7).
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The subgrains within the blocky calcite grains showmisorientations between 1° and 70° (Figures 9–11). The
blocky calcite grain sizes range from ~ 0.5 to 2.5 mm (average > 1 mm); subgrain sizes vary between 30 und
50 μm. The misorientation profiles, as well as the EBSDmaps, display misorientation gradients by color cod-
ing (Figures 9–11), visualizing distinct shifts of crystal‐lattice orientation along the subgrain boundaries.

The internal calcite microstructure within Sample ASB‐3 (Site U1438) is characterized by the formation of
elongate subgrains with an average size of ~38.5 μm and an aspect ratio from 1.5 to 10 (Figure 9).

Figure 6. Microphotographs (crossed polarizers) showing representative vein microstructures: (a) Blocky calcite vein within boninite; average calcite grain size is
0.7 mm; Sample 352‐U1439C‐26R‐2‐W9/11‐KURZ. (b) Irregular blocky calcite vein with boninite fragments embedded in veinminerals; average calcite grain size is
0.3 mm; Sample 352‐U1439C‐29R‐4‐W60/63‐KURZ. (c) Blocky calcite with thin type I and thicker Type II twins and subgrain (SG) formation; Sample 351‐U1438E‐
79R‐2‐W 111/114. (d) Blocky calcite vein within boninite with thick Type II twins; Sample 352‐U1439C‐23R‐2‐W 15/21‐KURZ. (e) Bent and tapered Type II twins;
calcite host shows undulatory extinction; Sample 352‐U1439C‐26R‐2‐W 9/11‐KURZ. (f) Bent Type I and II twins; calcite host shows undulatory extinction; Sample
351‐U1438E‐82R‐2‐W 43/52.
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Misorientation angles range from 1° to 9°; only a few subgrain boundaries show misorientation angles
exceeding 5°. The misorientation profile shows higher misorientation angles in the rim areas with
reference to the starting point than within the internal grain domains. Major jumps in misorientation
angle are coupled with low‐angle grain boundaries. For the determination of potential slip systems,
misorientation axes for misorientation angles from 2° to 5°, 5 to 10°, and 10° to 15° were displayed as IPF
with reference to the trigonal calcite crystal system (hexagonal scalenohedral crystal class) (Figures 9–11).
Sample ASB‐3 shows a maximum in orientation distribution function (ODF) density (max) of 3.1 and 2.6,
respectively, parallel to the crystallographic c‐axis [0001] at low (2° to 5° and 5° to 10°) misorientation
angles. IPF for misorientation angles from 10° to 15° are characterized by a maximum relative to one of

the f‐ planes (1102).

The calcite grains in the vein Sample BON‐9 (Site U1439) have sizes in the same range as sample ASB‐
3. The subgrains are generally elongated, with aspect ratios between 1.5 and 5, and an average grain
size of ~30 μm (Figure 10). The subgrains in this sample appear to be more evolved in comparison
to Sample ASB‐3, with misorientation angles of up to 90° and the formation of discrete high‐angle
boundaries. The misorientation profile shows several domains of internally constant misorientation with
reference to the starting point; these domains are separated by high angle misorientation boundaries.
For low angles (2° to 5° and 5–10°), the IPFs show a maximum in ODF density (max) of 1.8 and
1.9, respectively, parallel to the crystallographic c‐axis [0001]. In addition, the 5° to 10° IPF is charac-

terized by a maximum in the area of (11 0 8). IPF for misorientation angles from 10° to 15° are char-

acterized by a maximum normal to one of the r‐planes (1 014).

Figure 7. Microphotographs (crossed polarizers) showing representative vein microstructures: (a) Subgrains (SG) within blocky calcite; average subgrain size is
0.15 mm; Sample 352‐U1439C‐26R‐1‐W 110/120‐KURZ. (b) Undulatory (Ud) extinction of calcite and subgrains (SG) within blocky calcite; average subgrain size
is 0.1 mm; Sample 351‐U1438E‐79R‐2‐W 111/114.

Table 2
Results of Piezometric Analyses After Rybacki et al. (2011)

Sample # grains Twin sets Twin type # twins mm−1 Δσ [MPa]

BON‐1 6 1 II > I range; average 17–50; 27 ± 9 80–138; 99 ± 22
BON‐2 13 1 > 2 II ~ I range; average 10–59; 36 ± 13 62–150; 114 ± 26
BON‐3 16 1 > 2 II range; average 9–33; 18 ± 6 58–112; 81 ± 17
BON‐4 15 1 > 2 II range; average 7–36; 17 ± 6 52–117; 78 ± 17
BON‐6 13 1 > 2 II range; average 12–42; 23 ± 6 68–126; 91 ± 16
BON‐7 17 1 > 2 > 3 II range; average 9–40; 17 ± 17 58–123; 80 ± 18
BON‐8 31 1 > 2 II > I range; average 10–35; 21 ± 7 62–115; 87 ± 18
BON‐9 19 1 > 2 II > I range; average 6–45; 19 ± 19 48–131; 83 ± 19
BON‐10 17 1 > 2 II > I range; average 3–54; 17 ± 7 34–143; 78 ± 22
FAB‐1 1 1 II range; average 15; 15 76; 76
FAB‐2 7 1 > 2 II range; average 4–20; 10 ± 3 39–87; 62 ± 8
ASB‐1 13 1 > 2 II range; average 4–41; 18 ± 9 39–125; 80 ± 19
ASB‐2 10 1 > 2 II range; average 3–14; 7 ± 2 34–73; 52 ± 9
ASB‐3 7 1 > 2 I > II range; average 7–86; 56 ± 19 52–181; 140 ± 43
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The intracrystalline calcite microstructures within Sample FAB‐3 (Site U1441) do not differ significantly
from the samples described above (Figure 11). Subgrains have elongate shapes with aspect ratios between
1.5 and 3; the average subgrain size is ~40 μm. An incremental increase in misorientation angle is apparent
along the misorientation profile (Figure 11). The internal domains are separated by subgrain boundaries
with misorientation angles of 5° to 10°. For low angles (2° to 5°), the IPFs reveal a maximum in ODF density

(max) of 1.3 in the area of (110 8), whereas the 5° to 10° IPFs are characterized by amaximum close to (1 014).

IPF for misorientation angles from 10° to 15° are characterized by a maximum at (1 014) and (110 8).

8. Discussion

Seismic reflection data at the scale of the IBM forearc upper crust, mesoscale structures within drill
cores, and fault and vein microstructures provide an insight into the tectonic evolution of the outer
IBM forearc. The tectonic structures indicate that IBM forearc deformation essentially took place after
formation of the igneous basement. Postmagmatic extension triggered the formation of asymmetric sedi-
ment basins, notably the half‐grabens at Sites 352‐U1439 and 352‐U1442 on the upper trench slope, and
symmetric graben structures at Sites 352‐U1440 and 352‐U1441 closer to the trench, with localized shear
along multiple sets of faults. Faulting was accompanied by syntectonic pelagic, hemipelagic, and
volcaniclastic sedimentation.

8.1. Deformation Conditions Derived From Microstructure Analysis

Calcite twin piezometry yielded mean differential stresses in the range of 52 to 140 MPa in general
(Table 2), with mean differential stresses of ~88 MPa at upslope sites, ~69 MPa at downslope sites,
and ~90 MPa at Site U1438, respectively. Deformation microstructures indicate that subgrain formation
and mechanical twinning have interacted, that is, subgrains overprint twins and vice versa. Subgrain
formation in particular can be related to the effects of either temperature‐reduced CRSS or increased

Figure 8. Differential stress data after Rybacki et al. (2011) versus borehole depth for site U1439C; error bars indicate 2σ
standard deviation.

Table 3
Strain Rates for Different Differential Stresses and Temperatures, Calculated From the Power Law Equation of Schmid (1982) and Rutter (1995)

T=100°C T=125°C T=150°C T=200°C

log strain rate strain rate log strain rate strain rate log strain rate strain rate log strain rate strain rate

σ=35 Mpa ‐40.202 3.471 e‐18 ‐37.44 5.495 e‐17 ‐35.05 6.27 e‐16 ‐30.906 3.78 e‐14
σ=50 Mpa ‐39.272 8.798 e‐18 ‐36.51 1.39 e‐16 ‐34.075 1.59 e‐15 ‐29.977 9.575 e‐14
σ=75 Mpa ‐38.216 2.527 e‐17 ‐35.454 4.00 e‐16 ‐33.019 4.57 e‐15 ‐28.92 2.75 e‐13
σ=80 Mpa ‐38.047 2.995 e‐17 ‐35.286 4.73 e‐16 ‐32.851 5.407 e‐15 ‐28.752 3.26 e‐13
σ=100 Mpa ‐37.466 5.35 e‐17 ‐34.704 8.477 e‐16 ‐32.269 9.677 e‐15 ‐28.171 5.827 e‐13
σ=140 Mpa ‐36.589 1.827 e‐16 ‐33.828 2.035 e‐15 ‐31.392 2.326 e‐14 ‐27.294 1.40 e‐12
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Figure 9. Results of EBSDmapping for Sample ASB‐3. Vein calcite contains several grains with internal subgrains. Subgrains are displayed by color gradient with a
tolerance angle of 2°; the color coding of grains refers to the orientation of crystallographic axes of a hypothetical single crystal. Subgrain boundaries with misor-
ientation angles of <5°, 5–10°, and 10–15° are marked by blue, green, and red lines, respectively. The black arrow indicates the direction of the misorientation
profiles. Misorientation profile: the blue line represents point to origin and the red line point to point misorientation angles. Color‐coded map (inverse pole figure
map): low angle boundaries (red and blue lines), and high angle boundaries (black line). Misorientation axes are shown in countered inverse pole figures (IPF) for
misorientations of 2° to 5°, 5–10°, and 10–15°. For exact sample locations see Table 1.
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Figure 10. Results of EBSD mapping for Sample BON‐9. For legend and explanation see figure captions at Figure 9. For exact sample locations see Table 1.
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Figure 11. Results of EBSD mapping for Sample FAB‐3. For legend and explanation see figure captions at Figure 9. For exact sample locations see Table 1.
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differential stresses and/or strain rates. These effects in turn permitted the activation of intracrystalline
deformation mechanisms, including dislocation glide and dislocation climb (De Bresser & Spiers, 1993,
1997; Rogowitz et al., 2014).

The temperature limits are constrained by the calcite twin morphology (Type I and Type II twinning), indi-
cating deformation conditions between approximately 125 and 250 °C. The upper temperature limits are also
constrained by alteration‐related mineral assemblages that indicate zeolite to prehnite‐pumpellyite meta-
morphic conditions. The activation of high‐temperature slip systems in calcite (Figure 12) can therefore
be neglected with reference to these upper temperature limits.

The related differential stresses were derived from calcite twin piezometry (Table 2). Although calcite piezo-
meters typically reveal a wide range of results (also in standard deviation), these differential stresses in the
range of 50 to 140 MPa were by all means sufficient to activate these low‐temperature‐high‐stress slip sys-
tems. By assumption of generally constant differential stresses during bulk deformation at several sites,
the inferred subgrain misorientations suggest the activation of low‐temperature slip systems, in particular
the f‐ as well as the easier r‐slip system (Figure 12).

As deformation temperatures appear to be higher at the downslope sites, compared to the upslope sites (~25–
50 °C) as indicated by alteration mineral assemblages), the related strain rates may also slightly increase
toward the trench. The derived mean differential stresses in the range of 70 to 90 MPa and deformation tem-
peratures of ~125 °C and ~150 °C at upslope and downslope sites, respectively, result in strain rates in the
range of 4 × 10−16 s−1 at 125 °C, and 4.5–5.5 × 10−16 s−1 at 150 °C (see Table 3).

In detail, the microstructures also indicate a variation in the dominant deformation mechanisms from Site
U1438 toward Site U1441. At Site U1438 (ASB), the dominant calcite deformation mechanisms are twinning
and f‐slip. At Site U1439 and Site U1441, the dominant calcite deformation mechanisms are twinning and f‐
slip and, in addition, r‐slip. This indicates locally changing deformation conditions from the rear arc toward
the forearc, probably depending on differences in the tectonic setting, and essentially for Sites U 1439 to U
1442 on the distance to the trench. In particular, at Site U1441 extension was accommodated by a (semi) duc-
tile shear zone (Figure 4d) along the western margin of a graben‐shaped sediment basin. The formation of
chlorite at Site U1440 (Figure 4c) also shows that the alteration was accompanied by fluid infiltration and
related hydration reactions. Shearing combined with these reactions therefore potentially facilitated shear
zone weakening, allowing for an increase of strain rates toward the trench. This increase can, conversely,
enable the activation of additional (high stress) slip systems.

Figure 12. Diagram, after De Bresser and Spiers (1997) summarizing the intracrystalline deformation mechanism of cal-
cite. The gray box displays the range of obtained differential stresses; the corresponding range of deformation temperature
was acquired from different twin parameters according the classifications after Ferrill et al. (2004) and Burkhard (1993),
and also the host rock alteration mineral assemblages described by Reagan et al. (2015). Mechanical e‐twinning occurs at
low CRSS and at proportional low temperatures. With increasing differential stresses and/or strain rates, f and r slip and
subgrain formation is enabled.
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8.2. Faulting and Formation of IBM Forearc Basins

Extensional faults and veins reveal the postmagmatic deformation within the Izu‐Bonin forearc upper crust
subsequent to the formation of its magmatic basement. Differential stresses, derived from calcite microstruc-
tures, were sufficient to exceed common tensile strength of the oceanic crust. This was potentially aided by
hydrothermal fluid pressures as indicated by, for example, hydraulic breccias (Figure 5f), allowing crustal
failure during incipient extension. Time constraints for the tectonic deformation of the IBM forearc are pro-
vided by the magmatic ages from the igneous basement and the biostratigraphic record of the sedimentary
cover. Zircon ages (Ishizuka, Tani, et al., 2011; Reagan et al., 2013; Reagan et al., 2019) and 40Ar/39Ar ages
from FABs and boninites from Expedition 352 (Reagan et al., 2019) indicate an Eocene igneous basement
age of 52–50 Ma. Preliminary results from stable oxygen and carbon isotope analyses, together with 87Sr/
86Sr isotope data from calcite veins described above (Micheuz et al., 2018), indicate that vein calcite precipi-
tated from seawater during late Eocene to Oligocene times. Accordingly, the related vein microstructures
indicate that deformation is clearly postmagmatic, within the time range of the oldest recorded biostrati-
graphic age of the sediment cover at Sites U1439, U1440, U1441, and U1442 (late Eocene to earliest
Oligocene, that is, ~35 Ma; Robertson et al., 2018). This implies a ~15 Ma hiatus between the formation of
the igneous basement, forearc extension and the onset of (hemi) pelagic sedimentation (Robertson et al.,
2018). The IBM forearc in general is sediment poor as it is widely remote from continental marginmass wast-
ing sedimentation (e.g., Reagan et al., 2010; Robertson et al., 2018; Stern et al., 2003). Following Robertson
et al. (2018), the hiatus was either controlled by topographic isolation, as indicated by epiclastic volcanic
material at the basement‐cover contact at Site U1439, or sediments were bypassing the outer forearc to
accumulate in the IBM trench. Fault‐controlled extensional basins, as observed at Expedition 352 drilling
sites, therefore allowed the preservation of the sedimentary record with minimal reworking (Robertson
et al., 2018) from ~35 Ma onward. The sedimentary and structural record at Sites U1439 and U1442 also
suggests that displacement along confining normal faults was incremental, with a first episode of fault
movement with syntectonic sedimentation during Time Slice 1 (as defined by Robertson et al., 2018) from
circa 35 to 23 Ma.

The boundary between Time Slices 1 and 2 coincides with the change of layering from subhorizontal above
to inclined below 127 m bsf, respectively, at Site U1439. At Site U1442 ship‐board data (Reagan et al., 2015)
show that bedding dip angles change from subhorizontal to up to 35° from 75 m bsf toward the basement
contact. This angular discordance (Figure 13) can be correlated with an increase of dip angles at Site
U1439 below 153 m bsf at ~27Ma. The biostratigraphic data documented by Robertson et al. (2018) therefore
provide a good constraint for this episode of faulting and related block tilting at circa 27–30 Ma (rift stage in
Figure 13). This faulting increment immediately precedes the opening of the Shikoku‐Parece‐Vela basins at
~25 Ma (IIshizuka, Taylor, et al., 2011). It also coincides with a period of PSP regional extension that pre-
ceded focusing of extensional strain in the West Philippine backarc Basin, when spreading decreased and
became more east‐west directed (Deschamps & Lallemand, 2002). For this interval the age‐depth plots for
Site U1439 as described by Robertson et al. (2018) are characterized by a very steep to subvertical gradient
indicating high sediment accumulation rates. Early to mid‐ Eocene sedimentation at Expedition 351 Site
U1438, as documented from biostratigraphic data (Arculus, Ishizuka, Bogus, & the Expedition 351
Scientists, 2015; Barth et al., 2017) and U‐Pb detrital zircon ages, is not necessarily inconsistent with the evo-
lution described above, as Site U1438 is located closer to theWest Philippine Basin backarc spreading center,
so that subsidence and sedimentation could have commenced earlier along the rear arc‐backarc
transition zone.

At Sites U1439 and U1442 the greater part of the fault displacement therefore took place from circa 35 to 23
Ma, accompanied by synrift sedimentation (Figure 13). Tephras originally deposited horizontally show the
same tilt as the associated sediment beds within Time Slice 1. The oldest tephra age within Time Slice 1 at
Site U1439 is 32.3 Ma, whereas the youngest tephra age in Time Slice 1 is an ash dated at ~27 Ma
(Kutterolf et al., 2018). Accordingly, a major increment of displacement and block tilting occurred at or
immediately after 27 Ma. This was followed by waning displacement, with slow‐rift to postrift sediment
deposition during the transition from rifting along the margins to spreading at the center of the Shikoku‐
Parece‐Vela Basin system at 25 Ma (Ishizuka, Taylor, et al., 2011) (Figure 13). At that time spreading
migrated from the West Philippine Basin, succeeded by the formation of the Shikoku and Parece‐Vela
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Figure 13. Schematic cross sections illustrating the evolution of the Philippine Sea plate near the latitude of IODP Expedition 352, based on Stern and Bloomer
(1992), Ishizuka et al. (2006), Ishizuka, Tani, et al. (2011), Ishizuka, Taylor, et al., 2011), Wu et al. (2016), Brandl et al. (2017), Reagan et al. (2017), Faccenna
et al. (2018), Ishizuka et al. (2018), Reagan et al. (2019), and this work. Not to scale. FAB (in red) = forearc basalt crust; Bon (in pink) = boninite crust; prearc crust is
in blue; Arc = arc lavas with basaltic parents; OT = Ogasawara Trough. IODP Expedition 351 and 352 drill sites are shown on the <10 Ma panel. 51 Ma—
approximately 1.5 Myr after subduction initiation and production of near‐trench FAB to Bon crust. 45Ma = backarc spreading at about the time that parental arc
magmas transition from boninite to basalt. Initiation of spreading was at about 50 Ma while high‐Si boninite was erupting along the Ogasawara Ridge. At 24 Ma
volcanism along the Kyushu‐Palau Ridge waned whereas the Shikoku Basin began to spread. Augmented subduction rollback and related trench retreat com-
menced when the Pacific slab reached the 660 kmmantle discontinuity, from ~35Ma onward. From <10Ma steady state volcanism occurred along the present Izu‐
Bonin volcanic arc. The inset shows the general tectonic and basin structure of the local forearc area, that is, normal faulting along cataclastic to semiductile shear
zones, (half‐) grabens, and related synrift (Time Slice 1) and postrift (Time Slice 2) sedimentation, with an unconformity at ~27–23 Ma.
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Basins (Deschamps & Lallemand, 2002; Faccenna et al., 2018) (Figures 1 and 13). These basins were subse-
quently formed by seafloor spreading during early andmiddle Miocene time, in a backarc position relative to
the IBM subduction zone system (Kobayashi et al., 1995; Kutterolf et al., 2014) (Figure 13).

Our forearc basin analysis revealed a declining stretching gradient from the downslope sites (in particular
Site U1441) toward the upslope sites (U1439 and U1442). Extension e is in the range of ~0.55 at Site
U1441, with related strain rates of 3.31 × 10−15 to 9.66 × 10−15 s−1, in contrast to e ~ 0.175 with strain rates
in the range of 1.58 × 10−16 to 4.62 × 10−16 s−1 at Sites U1439 and U1442. Normal faults that were located
closer to the retreating trench (Figure 13) therefore underwent more stretching compared to the upslope
extensional faults, which can be explained by flexure of the downslope forearc toward the retreating trench.
In addition, the shearing at Sites U1440 and U1441 was accompanied by alteration, which resulted from
fluid infiltration and related hydration reactions, potentially facilitating rheological weakening and an
increase of strain rates during extension.

8.3. A Lithospheric Scale Tectonic Model Working Hypothesis

According to Reagan et al. (2019), subduction initiation at ~52 Ma was accompanied by rapid trench retreat
and asthenospheric upwelling, followed by slab dehydration andmelting of the depleted upper plate mantle.
An early embryonic arc formed at ~51 Ma after termination of rapid trench retreat. Vast tectonic extension
may therefore not be expected during a period of plate coupling, beginning about the time that the protoarc
formed (i.e., ~51 Ma) (Figure 13). Discrete reverse faults, being later overprinted by younger extensional
structures, are inferred to be related to that period of coupling between the subducting Pacific Plate and
the IBM protoarc. Coupling presumably ended about the time of initial forearc extension and related basin
formation ~15 Ma later.

With an assumptive average Pacific Plate subduction rate of 50 mm/year (e.g., Fryer, 1996; Fryer et al., 1990;
Stern et al., 2003; Faccenna et al., 2009, 2018; Gong et al., 2018;Holt et al., 2018; Kong et al., 2018), and a sub-
duction angle of ~30° along the northern IBM subduction segment (as indicated by seismic tomography, e.g.,
Jaxybulatov et al., 2013; Gong et al., 2018; Kong et al., 2018; Holt et al., 2018), the Pacific lower plate is
expected to reach the 660 km mantle discontinuity within ~12–13 Ma after subduction initiation. Bending
of the plate at this juncture can help to accommodate subduction rollback inception and decoupling along
the plate boundary (Faccenna et al., 2009). Numerical models by Faccenna et al. (2009, 2018) and Čížková
& Bina, 2013, Čížková & Bina, 2015) also show that subduction rollback commences within 10 to 20Ma after
subduction initiation. IBM forearc extension is therefore inferred to be related to Pacific slab rollback and
the resulting trench retreat (Figure 13), presumably starting during Late Eocene times. In this case, the lack
of sediment accumulation between ~50 and ~35 Ma would reflect the lack of accommodation space in the
forearc, so that sediments bypassed into the trench.

Although the extensional strain rates in the range of 10−16 to 10−15 s−1 appear to be low, these rates just
represent initial upper crust rifting of the IBM forearc. Toward the arc and the backarc (West Philippine
spreading center; CBF rift of Ishizuka et al., 2018), rifting was assisted by magmatism probably related to
the Oki Daito Plume (Ishizuka et al., 2018) (Figure 13), so that effective stresses dropped and the lithosphere
was weakened locally (e.g., Koptev et al., 2017). Magmatism‐assisted rifting consequently resulted in a rheo-
logically decoupled lithosphere, where initial brittle deformation was accumulated in the upper crust and
subsequent lithospheric necking occurred due to weak lower crust and lithospheric mantle. The “boninite
sites” (U1439 and U1442) are therefore situated between the more intensely stretched trench‐near down-
slope sites and the weakened arc/rear‐arc/backarc sites. Accordingly, these boninite sites form a less
stretched, neutral domain between the retreating trench and the spreading arc and backarc. A major detach-
ment potentially commenced along the upwelling mantle zone and the related plutons that were located
beneath the IBM arc and the rear arc (Figure 13) as inferred by Stern (2010). This resulted in an increase
in extensional strain that culminated in the rifting of the Ogasawara Trough during the Eocene time
(Ishizuka et al., 2006) (Figure 13). Accordingly, spreading and arc magmatism ceased in the Amami‐
Sankaku/West Philippine Basin and along the Kyushu‐Palau Ridge, respectively, as it was confined by this
detachment, resulting in shutting down the arc (Stern, 2010). Subsequent spreading in the Shikoku Basin is
likely to have left some of the original arc behind the Ogasawara Trough. The dismembered crust to the west
of the Shikoku Basin, now exposed along the Kyushu‐Palau Ridge, therefore represents an arc‐derived
allochthon that is now located along the western margin of the Shikoku‐Parece Vela Basin system.
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Continuous backarc spreading resulted in the formation of the Shikoku‐Parece Vela Basin from 25 Ma
onward (IIshizuka, Taylor, et al., 2011).

8.4. Impacts on SSZ Ophiolite Analogues

The overall IBM forearc architecture as inferred from this study matches distinct structural features in
ophiolites worldwide, especially those formed in a SSZ setting. SSZ ophiolites include the Tethyan ophiolites
of the Alpine‐Mediterranean region (Beccaluva et al., 2004; Parlak, 2016; Robertson et al., 2002), the
Cordilleran and western Pacific ophiolite complexes (Hopson et al., 2008; Robertson, 1989; Shervais et al.,
2004; Snow & Shervais, 2015), and the Ordovician Appalachian‐Caledonian ophiolites (e.g., Bedard et al.,
1998; Cawood & Suhr, 1992; Dewey & Casey, 2011; Jenner et al., 1991).

Most relevant here are SSZ ophiolites that preserve oceanic extensional structures and related sediments.
The tuffaceous sedimentary cover of the Jurassic Coast Range ophiolite in central California (e.g., at Del
Puerto Canyon) (Robertson, 1989; Hopson, & Mattinson, & Pessagno, 1981, Hopson, Mattinson, Pessagno,
& Luyendyk, 2008) is comparable to the tuffaceous sedimentary cover of the Izu‐Bonin forearc (Kutterolf
et al., 2018; Robertson et al., 2018). Unfortunately, the Coast Range ophiolite, like many other circum‐

Pacific, Cordilleran‐type ophiolites, is too small in outcrop and overprinted by later active‐margin tectonics
to easily recognize primary ocean‐floor extensional structures. Also, throughgoing ocean‐floor extensional
structures are likely to have been reactivated during emplacement, so destroying any evidence of primary
extensional tectonics. More promising are Tethyan ophiolites that are commonly preserved as huge intact
sheets that may preserve ocean floor structures. Grabens and half‐graben formed parallel to the seafloor
spreading center in the Late Cretaceous Troodos ophiolite (Varga & Moores, 1985; Allerton & Vine, 1990).
Although not tuffaceous, metalliferous and pelagic sediments formed within ocean‐floor half‐grabens of
similar scale and structure to those of the Izu‐Bonin forearc (Boyle & Robertson, 1984), in some parts several
Ma after magmatic basement formation (e.g., Robertson, 1977). Similarly, in the Late Cretaceous Oman
ophiolite, rifts orientated parallel (or obliquely) to the spreading center, notably the Alley structure
(Smewing, 1980), hosted deep‐sea deposits including basaltic talus, metalliferous and pelagic sediments
(Fleet & Robertson, 1980). In Oman, seafloor extensional (and transverse) structures were reactivated during
ophiolite emplacement, associated with protrusion of serpentinized ultramafic rocks and subophiolite accre-
tionary melange (Robertson & Woodcock, 1982). However, in contrast to the Izu‐Bonin forearc these
extension‐related structures were short‐lived because subduction did not continue and create a related vol-
canic arc as associated tuffaceous sediments (e.g., Pearce & Robinson, 2010; Robertson et al., 2012).

Key features that SSZ ophiolites may share with the Izu‐Bonin forearc therefore include (1) basal
metalliferous‐oxide sediments; (2) a hiatus between igneous basement formation and its deep‐sea sedimen-
tary cover; (3) synmagmatic to postmagmatic extension, resulting in the formation of normal faults and
related extensional structures, and fault‐bounded graben or half‐graben (Figure 13); and (4) a sedimentary
cover that includes ophiolite‐derived talus and tuffaceous strata in small extensional basins.

9. Conclusions

The general structure of the fault‐bound sedimentary basins at IODP Expedition 352 drilling sites reflects the
post Late Eocene tectonic evolution of the Philippine Sea Plate.

Extensional fault‐ and vein microstructures reveal the postmagmatic deformation conditions within the Izu‐
Bonin forearc upper crust subsequent to the formation of its magmatic basement. Vein calcite microstruc-
tures indicate intracrystalline deformation within a low‐temperature‐high stress regime (T < ~250 °C; σ >
50 MPa). Mean differential stresses in the range of 70 to 90 MPa, calculated from calcite microstructures,
were sufficient to exceed common tensile strength of the oceanic crust. Extension resulted in the formation
of symmetric and asymmetric, fault‐bounded basins with initial syntectonic sedimentation. In the area of
IODP Expedition 352 drilling sites, the IBM forearc was stretched by ~16–19% at the “boninite sites” and
up to 55% at “FAB sites,” at strain rates in the range of 10−16 to 10−15 s−1. These rates are also indicated
by the vein and fault zone microstructures.

The published magmatic ages from the IBM forearc basement, isotope data, and the biostratigraphic record
from the cover sediments revealed a ~15 Ma hiatus between the rapidly forming near‐trench seafloor after
subduction initiation around 52 Ma and subsequent tectonic forearc extension. We explain this 15 Ma
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time gap by ongoing rollback of the Pacific Plate that triggered upper plate extension. This was accommo-
dated by normal faulting accompanied by extensional mineralized vein formation from late Eocene to early
Oligocene times onward.

By introducing a superordinate general plate tectonic model, extension and arc spreading are inferred to
have been tectonically controlled by Pacific Plate subduction rollback. Downslope increase of stretch is
inferred to be related to upper plate flexure toward the retreating trench. Near the arc, rear arc, and the back-
arc, extension was potentially assisted by magmatism, resulting in advanced lithospheric extension around
27–26 Ma with subsequent spreading of the Shikoku and Parece Vela Basins (~25 Ma). This period coincides
with a major unconformity within the sedimentary basin sequences. Parts of the IBM arc and rear arc, as
well as the West Philippine Basin, were sheared off from the IBM forearc forming an allochthon that was
delaminated from the IBM arc and rear arc. Along the IBM forearc this goes along with waning fault displa-
cement and slow‐rift to postrift sediment deposition, and the transition from rifting along the margins to
spreading at the center of the Shikoku‐Parece‐Vela basin system.

The overall IBM forearc architecture and development as inferred from this study may serve as a reference
setting, in particular with regard to postmagmatic rift‐related structures and a sedimentary cover that
includes tuffaceous strata and will help with the identification and interpretation of a SSZ origin of
ophiolites worldwide.

References
Allerton, S., & Vine, F. J. (1990). Palaeomagnetic and structural studies of the southeastern part of the Troodos complex. In J. Malpas, E. M.

Moores, A. Panayiotou, & C. Xenophontos (Eds.), Ophiolites: Oceanic crustal analogues (pp. 99–111). Nicosia: Cyprus Geological Survey
Department.

Arculus, R. J., Ishizuka, O., Bogus, K., & the Expedition 351 Scientists (2015). Proceedings of the International Ocean Discovery Program,
Expedition 351: Izu‐Bonin‐Mariana Arc Origins. College Station, TX: International Ocean Discovery Program. https://doi.org/10.14379/
iodp.proc.351.2015

Arculus, R. J., Ishizuka, O., Bogus, K. A., Gurnis, M., Hickey‐Vargas, R., Aljahdali, M. H., et al. (2015). A record of spontaneous subduction
initiation in the Izu‐Bonin‐Mariana arc. Nature Geoscience, 8(9), 728–733. https://doi.org/10.1038/ngeo2515

Bachmann, F., Hielscher, R., Jupp, P. E., Pantleon, W., Schaeben, H., & Wegert, E. (2010). Inferential statistics of EBSD data from within
individual crystalline grains. Journal of Applied Crystallography, 43(6), 1338–1355. https://doi.org/10.1107/S002188981003027X

Barth, A. P., Tani, K., Meffre, S., Wooden, J. L., Coble, M. A., Arculus, R. J., et al. (2017). Generation of silicic melts in the early Izu‐Bonin
Arc recorded by detrital zircons in proximal arc volcaniclastic rocks from the Philippine Sea. Geochemistry, Geophysics, Geosystems, 18,
3576–3591. https://doi.org/10.1002/2017GC006948

Beccaluva, L., Coltorti, M., Giunta, G., & Siena, F. (2004). Tethyan vs. Cordilleran ophiolites: A reappraisal of distinctive tectono‐magmatic
features of supra‐subduction complexes in relation to the subduction mode. Tectonophysics, 393(1‐4), 163–174. https://doi.org/10.1016/j.
tecto.2004.07.034

Bedard, J. H., Lauziere, K., Tremblay, A., & Sangster, A. (1998). Evidence for fore‐arc sea floor spreading from the Betts Cove Ophiolite,
Newfoundland: oceanic crust of boninitic affinity. Tectonophysics, 284(3‐4), 233–245. https://doi.org/10.1016/S0040‐1951(97)00182‐0

Bloomer, S. H., Taylor, B., MacLeod, C. J., Stern, R. J., Fryer, P., Hawkins, J. W., & Johnson, L. (1995). Early arc volcanism and the ophiolite
problem: A perspective from drilling in the western Pacific. In B. Taylor & J. Natland (Eds.), Active margins and marginal basins of the
western Pacific, Geophysical Monograph Series (Vol. 88, pp. 1–30). Washington, DC: American Geophysical Union. https://doi.org/
10.1029/GM088p0001

Bons, P. D., Elburg, M. A., & Gomez‐Rivas, E. (2012). A review of the formation of tectonic veins and their microstructures. Journal of
Structural Geology, 43, 33–62. https://doi.org/10.1016/j.jsg.2012.07.005

Boyle, J. F. & Robertson, A. H. F. (1984). Evolving metallogenesis at the Troodos spreading axis. In Gass I. G., Lippard, S. J., & Shelton, A.
W. (Eds.), Ophiolites and Oceanic Lithosphere (Vol. 13(1), pp. 169–181). London, UK: Geological Society of London Special Publication.
https://doi.org/10.1144/GSL.SP.1984.013.01.15

Brandl, P. A., Hamada, M., Arculus, R. J., Johnson, K., Marsaglia, K. M., Savov, I. P., et al. (2017). The arc arises: The links between volcanic
output, arc evolution and melt composition. Earth and Planetary Science Letters, 461, 73–84. https://doi.org/10.1016/j.epsl.2016.12.027

Brandstätter, J., Kurz, W., & Rogowitz, A. (2017). Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the
deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344). Tectonics, 36, 1562–1579. https://doi.org/10.1002/
2017TC004490

Burkhard, M. (1993). Calcite twins, their geometry, appearance and significance as stress–strain markers and indicators of tectonic regime:
a review. Journal of Structural Geology, 15(3‐5), 351–368. https://doi.org/10.1016/0191‐8141(93)90132‐T

Busby, C. J., Tamura, Y., Blum, P., Guerin, G., Andrews, G. D. M., Barker, A. K., et al. (2017). The missing half of the subduction factory:
Shipboard results from the Izu rear arc, IODP Expedition 350. International Geology Review, 59(13), 1677–1708. https://doi.org/10.1080/
00206814.2017.1292469

Cawood, P. A., & Suhr, G. (1992). Generation and obduction of ophiolites: Constraints from the Bay of Islands Complex, western
Newfoundland. Tectonics, 11(4), 884–897. https://doi.org/10.1029/92TC00471

Christeson, G. L., Morgan, S., Kodaira, S., Yamashita, M., Almeev, R. R., Michibayashi, K., et al. (2016). Physical properties and seismic
structure of Izu‐Bonin‐Mariana fore‐arc crust: results from IODP Expedition 352 and comparison with oceanic crust. Geochemistry,
Geophysics, Geosystems, 17, 4973–4991. https://doi.org/10.1002/2016GC006638

Čížková, H., & Bina, C. (2013). Effects of mantle and subduction‐interface rheologies on slab stagnation and trench rollback. Earth and
Planetary Science Letters, 379, 95–103. https://doi.org/10.1016/j.epsl.2013.08.011

10.1029/2019GC008329Geochemistry, Geophysics, Geosystems

KURZ ET AL. 26

Acknowledgments
This research used samples and/or data
provided by the International Ocean
Discovery Program (IODP).
Information on IODP Expedition 352
data and samples is provided (https://
iodp.tamu.edu/scienceops/expeditions/
izu_bonin_forearc.html). The
bathymetry information given in
Figure 1 is from the website (http://
www.geomapp.org). Core photos
displayed in Figures 4a–4c and 5 are
cutouts from shipboard core close‐up
images taken by Tim Fulton.
International Ocean Discovery
Program (IODP), JOIDES Resolution
Science Operator (JRSO), and Tim
Fulton are gratefully acknowledged.
The structural studies were carried out
within a project funded by the Austrian
Science Fund (FWF‐P 27982‐N29 to W.
K.) (P. M., D. Q., K. K., and W. K.); the
related IODP sample requests are
13563IODP (Expedition 352), and
39589IODP (Expedition 351). S. K.
thanks for the support by the German
Research Foundation (DFG) with the
Grant KU2685/4‐1. A. R. acknowledges
a research grant from the U.K. Natural
Environmental Research Council,
SF/USSSP postcruise: [Grant COL‐
T352A13]. Funding support to U.S.
participants (J. W. S., M. K. R., and G. L.
C.) from the Consortium for Ocean
Leadership and from the National
Science Foundation is gratefully
acknowledged (OCE‐1558689 to
Shervais and OCE‐1558647 to Reagan).
K. M. was supported by the Japan
Society for the Promotion of Science
and the Japan Drilling Earth Science
Consortium. The authors are grateful
for support from IODP, the JOIDES
Resolution Facility, and the scientific
staff and crew aboard the JOIDES
Resolution during Expedition 352. All
authors are extremely grateful to Staff
Scientist Katerina Petronotis for her
effort and support before and during
IODP Expedition 352 and during post-
cruise research. Reviews by Yildrim
Dilek and an anonymous reviewer as
well as suggestions by the Editor,
Maureen Long, are gratefully
acknowledged.

https://doi.org/10.14379/iodp.proc.351.2015
https://doi.org/10.14379/iodp.proc.351.2015
https://doi.org/10.1038/ngeo2515
https://doi.org/10.1107/S002188981003027X
https://doi.org/10.1002/2017GC006948
https://doi.org/10.1016/j.tecto.2004.07.034
https://doi.org/10.1016/j.tecto.2004.07.034
https://doi.org/10.1016/S0040-1951(97)00182-0
https://doi.org/10.1029/GM088p0001
https://doi.org/10.1029/GM088p0001
https://doi.org/10.1016/j.jsg.2012.07.005
https://doi.org/10.1144/GSL.SP.1984.013.01.15
https://doi.org/10.1016/j.epsl.2016.12.027
https://doi.org/10.1002/2017TC004490
https://doi.org/10.1002/2017TC004490
https://doi.org/10.1016/0191-8141(93)90132-T
https://doi.org/10.1080/00206814.2017.1292469
https://doi.org/10.1080/00206814.2017.1292469
https://doi.org/10.1029/92TC00471
https://doi.org/10.1002/2016GC006638
https://doi.org/10.1016/j.epsl.2013.08.011
https://iodp.tamu.edu/scienceops/expeditions/izu_bonin_forearc.html
https://iodp.tamu.edu/scienceops/expeditions/izu_bonin_forearc.html
https://iodp.tamu.edu/scienceops/expeditions/izu_bonin_forearc.html
http://www.geomapp.org
http://www.geomapp.org


Čížková, H., & Bina, C. (2015). Geodynamics of trench advance: insights from a philippine‐sea‐style geometry. Earth and Planetary Science
Letters, 430, 408–415. https://doi.org/10.1016/j.epsl.2015.07.004

Cosca, M. A., Arculus, R. J., Pearce, J. A., & Mitchell, J. G. (1998). 40Ar/39Ar and K‐Ar geochronological age constraints for the inception
and early evolution of the Izu‐Bonin‐Mariana arc system. The Island Arc, 7(3), 579–595. https://doi.org/10.1111/j.1440‐1738.1998.00211.
x

De Bresser, J. H. P., & Spiers, C. J. (1993). Slip systems in calcite single crystals deformed at 300‐800°C. Journal of Geophysical Research,
98(B4), 6397–6409. https://doi.org/10.1029/92JB02044

De Bresser, J. H. P., & Spiers, C. J. (1997). Strength characteristics of the r, f and c slip systems in calcite. Tectonophysics, 272(1), 1–23.
https://doi.org/10.1016/S0040‐1951(96)00273‐9

Deschamps, A., & Lallemand, S. (2002). The West Philippine Basin: An Eocene to early Oligocene backarc basin opened between two
opposed subduction zones. Journal of Geophysical Research, 107(B12), 2322. https://doi.org/10.1029/2001JB001706

Dewey, J. F., & Casey, J. F. (2011). The origin of obducted large‐slab ophiolite complexes. In D. Brown, & P. D. Ryan (Eds.), Arc–continent
collision (pp. 431–434). Berlin: Springer. https://doi.org/10.1007/978‐3‐540‐88558‐0_15

Expedition 352 Scientists (2014). Izu‐Bonin‐Mariana Fore Arc. Testing subduction initiation and ophiolite models by drilling the outer Izu‐
Bonin‐Mariana forearc. IODP Preliminary Report, 352. https://doi.org/10.2204/iodp.pr.352.2014

Faccenna, C., Di Giuseppe, E., Funiciello, F., Lallemand, S., & van Hunen, J. (2009). Control of seafloor aging on the migration of the Izu–
Bonin–Mariana trench. Earth and Planetary Science Letters, 288, 386–398. https://doi.org/10.1016/j.epsl.2009.09.042

Faccenna, C., Holt, A. F., Becker, T. W., Lallemand, S., & Royden, L. H. (2018). Dynamics of the Ryukyu/Izu‐Bonin‐Marianas double
subduction system. Tectonophysics, 746, 229–238. https://doi.org/10.1016/j.tecto.2017.08.011

Ferrill, D. A. (1991). Calcite twin widths and intensities as metamorphic indicators in natural low‐temperature deformation of limestone.
Journal of Structural Geology, 13(6), 667–675. https://doi.org/10.1016/0191‐8141(91)90029‐I

Ferrill, D. A. (1998). Critical re‐evaluation of differential stress estimates for calcite twins in coarse‐grained limestone. Tectonophysics,
285(1‐2), 77–86. https://doi.org/10.1016/S0040‐1951(97)00190‐X

Ferrill, D. A., Morris, A. P., Evans, M. A., Burkhard, M., Groshong, R. H., & Onasch, C. M. (2004). Calcite twin morphology: a low‐
temperature deformation geothermometer. Journal of Structural Geology, 26(8), 1521–1529. https://doi.org/10.1016/j.jsg.2003.11.028

Fleet, A. J., & Robertson, A. H. F. (1980). Ocean‐ridge metalliferous and pelagic sediments of the Semail nappe, Oman. Journal of the
Geological Society of London, 137(4), 403–422. https://doi.org/10.1144/gsjgs.137.4.0403

Friedman, M., & Heard, H. C. (1974). Principal stress ratios in Cretaceous limestones from Texas Gulf Coast. AAPG Bulletin, 58(1), 71–78.
https://doi.org/10.1306/83D9137B‐16C7‐11D7‐8645000102C1865D

Fryer, P. (1996). Tectonic evolution of the Mariana convergent margin. Reviews of Geophysics, 34(1), 89–125. https://doi.org/10.1029/
95RG03476

Fryer, P., Pearce, J. A., Stokking, L. B., et al. (1990). Proceedings of the Ocean Drilling Program, Initial Reports, 125. College Station, TX:
Ocean Drilling Program. https://doi.org/10.2973/odp.proc.ir.125.1990

Gong, W., Xing, J., & Jiang, X. (2018). Heterogeneous subduction structure within the Pacific plate beneath the Izu‐Bonin arc. Journal of
Geodynamics, 116, 1–12. https://doi.org/10.1016/j.jog.2018.01.006

Groshong, R. H. Jr. (1988). Low‐temperature deformation mechanisms and their interpretation. Bulletin of the Geological Society of
America, 100(9), 1329–1360. https://doi.org/10.1130/0016‐7606(1988)100<1329:LTDMAT>2.3.CO;2

Hall, C. E., Gurnis, M., Sdrolias, M., Lavier, L. L., &Müller, D. R. (2003). Catastrophic initiation of subduction following forced convergence
across fracture zones. Earth and Planetary Science Letters, 212(1–2), 15–30. https://doi.org/10.1016/S0012‐821X(03)00242‐5

Hall, R., Ali, J. R., Anderson, C. D., & Baker, S. J. (1995). Origin and motion history of the Philippine Sea Plate. Tectonophysics, 251(1‐4),
229–250. https://doi.org/10.1016/0040‐1951(95)00038‐0

Hickey‐Vargas, R., Yogodzinski, G. M., Ishizuka, O., McCarthy, A., Bizimis, M., Kusano, Y., et al. (2018). Origin of depleted basalts during
subduction initiation and early development of the Izu‐Bonin‐Mariana island arc: Evidence from IODP Expedition 351 Site U1438,
Amami‐Sankaku Basin. Geochimica et Cosmochimica Acta, 229, 85–111. https://doi.org/10.1016/j.gca.2018.03.007

Hilgers, C., & Urai, J. L. (2002). Microstructural observations on natural syntectonic fibrous veins; implications for the growth process.
Tectonophysics, 352(3‐4), 257–274. https://doi.org/10.1016/S0040‐1951(02)00185‐3

Holt, A. F., Royden, L. H., TBecker, T. W., & Faccenna, C. (2018). Slab interactions in 3‐D subduction settings: The Philippine Sea Plate
region. Earth and Planetary Science Letters, 489, 72–83. https://doi.org/10.1016/j.epsl.2018.02.024

Hopson, C. A., Mattinson, J. M., & Pessagno, E. A. Jr. (1981). Coast Range ophiolite, western California. In W. G. Ernst & W. W. Rubey
(Eds.), The geotectonic development of California Rubey Volume, 1 (pp. 418–510). Englewood Cliffs, NJ: Prentice‐Hall.

Hopson, C. A., Mattinson, J. M., Pessagno, E. A. & Luyendyk, B. P. (2008). California Coast Range ophiolite: Composite Middle and Late
Jurassic oceanic lithosphere. In J. E. Wright & J. W. Shervais (Eds.), Ophiolites, arcs, and batholiths: A tribute to Cliff Hopson, Geological
Society of America Special Paper (Vol. 438, pp. 1–102). Boulder, CO: Geological Society of America. https://doi.org/10.1130/
2008.2438(01)

Ishizuka, O., Hickey‐Vargas, R., Arculus, R. J., Yogodzinski, G. M., Savov, I. P., Kusano, Y., et al. (2018). Age of Izu‐Bonin‐Mariana arc
basement. Earth and Planetary Science Letters, 481, 80–90. https://doi.org/10.1016/j.epsl.2017.10.023

Ishizuka, O., Kimura, J.‐I., Li, Y. B., Stern, R. J., Reagan, M. K., Taylor, R. N., et al. (2006). Early stages in the evolution of Izu‐Bonin arc
volcanism: New age, chemical, and isotopic constraints. Earth and Planetary Science Letters, 250(1–2), 385–401. https://doi.org/10.1016/
j.epsl.2006.08.007

Ishizuka, O., Tani, K., Reagan, M. K., Kanayama, K., Umino, S., Harigane, Y., et al. (2011). The timescales of subduction initiation and
subsequent evolution of an oceanic island arc. Earth and Planetary Science Letters, 306(3–4), 229–240. https://doi.org/10.1016/j.
epsl.2011.04.006

Ishizuka, O., Taylor, R. N., Yuasa, M., & Ohara, Y. (2011). Making and breaking an island arc: A new perspective from the Oligocene
Kyushu‐Palau arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12, Q05005. https://doi.org/10.1029/2010gc003440

Jamison, W. R., & Spang, J. H. (1976). Use of calcite twin lamellae to infer differential stress. Geological Society of America Bulletin, 87(6),
868–872. https://doi.org/10.1130/0016‐7606(1976)87<868:UOCTLT>2.0.CO;2

Jaxybulatov, K., Koulakov, I., & Dobretsov, N. L. (2013). Segmentation of the Izu‐Bonin and Mariana slabs based on the analysis of the
Benioff seismicity distribution and regional tomography results. Solid Earth, 4(1), 59–73. https://doi.org/10.5194/se‐4‐59‐2013

Jenner, G. A., Dunning, G. R., Malpas, J., Brown, M., & Brace, T. (1991). Bay of Islands and Little Port complexes, revisited: Age, geo-
chemical and isotopic evidence confirm supra‐subduction zone origin. Canadian Journal of Earth Sciences, 28(10), 1635–1652. https://
doi.org/10.1139/e91‐146

Kobayashi, K., Kasuga, S., & Okino, K. (Eds.) (1995). Shikoku basin and its margins (pp. 381–405). New York: Plenum.

10.1029/2019GC008329Geochemistry, Geophysics, Geosystems

KURZ ET AL. 27

https://doi.org/10.1016/j.epsl.2015.07.004
https://doi.org/10.1111/j.1440-1738.1998.00211.x
https://doi.org/10.1111/j.1440-1738.1998.00211.x
https://doi.org/10.1029/92JB02044
https://doi.org/10.1016/S0040-1951(96)00273-9
https://doi.org/10.1029/2001JB001706
https://doi.org/10.1007/978-3-540-88558-0_15
https://doi.org/10.2204/iodp.pr.352.2014
https://doi.org/10.1016/j.epsl.2009.09.042
https://doi.org/10.1016/j.tecto.2017.08.011
https://doi.org/10.1016/0191-8141(91)90029-I
https://doi.org/10.1016/S0040-1951(97)00190-X
https://doi.org/10.1016/j.jsg.2003.11.028
https://doi.org/10.1144/gsjgs.137.4.0403
https://doi.org/10.1306/83D9137B-16C7-11D7-8645000102C1865D
https://doi.org/10.1029/95RG03476
https://doi.org/10.1029/95RG03476
https://doi.org/10.2973/odp.proc.ir.125.1990
https://doi.org/10.1016/j.jog.2018.01.006
https://doi.org/10.1130/0016-7606(1988)100%3c1329:LTDMAT%3e2.3.CO;2
https://doi.org/10.1016/S0012-821X(03)00242-5
https://doi.org/10.1016/0040-1951(95)00038-0
https://doi.org/10.1016/j.gca.2018.03.007
https://doi.org/10.1016/S0040-1951(02)00185-3
https://doi.org/10.1016/j.epsl.2018.02.024
https://doi.org/10.1130/2008.2438(01)
https://doi.org/10.1130/2008.2438(01)
https://doi.org/10.1016/j.epsl.2017.10.023
https://doi.org/10.1016/j.epsl.2006.08.007
https://doi.org/10.1016/j.epsl.2006.08.007
https://doi.org/10.1016/j.epsl.2011.04.006
https://doi.org/10.1016/j.epsl.2011.04.006
https://doi.org/10.1029/2010gc003440
https://doi.org/10.1130/0016-7606(1976)87%3c868:UOCTLT%3e2.0.CO;2
https://doi.org/10.5194/se-4-59-2013
https://doi.org/10.1139/e91-146
https://doi.org/10.1139/e91-146


Kong, X., Li, S., Wang, Y., Suo, Y., Dai, L., Géli, L., & Wang, P. (2018). Causes of earthquake spatial distribution beneath the Izu‐Bonin‐
Mariana Arc. Journal of Asian Earth Sciences, 151, 90–100. https://doi.org/10.1016/j.jseaes.2017.10.015

Koptev, A., Burov, E., Gerya, T., Le Pourhiet, L., Leroy, S., Calais, E., & Jolivet, L. (2017). Plume‐induced continental rifting and break‐up in
ultra‐slow extension context: Insights from 3D numerical modeling. Tectonophysics, 746, 121–137. https://doi.org/10.1016/j.
tecto.2017.03.025

Kurz, W., Ferré, E.C., and IODP Expedition Scientists (2015). Tectonic evolution of the outer Izu‐Bonin‐Mariana fore arc system: initial
results from IODP Expedition 352 (presented at the 2015 American Geophysical Union Fall Meeting, San Francisco, California, 14–18
December 2015). (Abstract T32C‐07) http://abstractsearch.agu.org/meetings/2015/FM/T32C‐07.html.

Kutterolf, S., Schindlbeck, J. C., Robertson, A. H. F., Avery, A., Baxter, A. T., Petronotis, K., & Wang, K.‐L. (2018). Tephrostratigraphy and
provenance from IODP Expedition 352, Izu‐Bonin arc: Tracing tephra sources and volumes from the Oligocene to the Recent.
Geochemistry, Geophysics, Geosystems, 19(1), 150–174. https://doi.org/10.1002/2017GC007100

Kutterolf, S., Schindlbeck, J. C., Scudder, R. P., Murray, R. W., Pickering, K. T., Freundt, A., et al. (2014). Large volume submarine
ignimbrites in the Shikoku Basin: An example for explosive volcanism in the Western Pacific during the Late Miocene. Geochemistry,
Geophysics, Geosystems, 15, 1837–1851. https://doi.org/10.1002/2014GC005263

Lacombe, O. P., & Laurent, P. (1996). Determination of deviatoric stress tensors based on inversion of calcite twin data from
experimentally deformed monophase samples: Preliminary results. Tectonophysics, 255(3‐4), 189–202. https://doi.org/10.1016/0040‐
1951(95)00136‐0

Laurent, P., Kern, H., & Lacombe, O. (2000). Determination of deviatoric stress tensors based on inversion of calcite twin data from
experimentally deformed monophase samples. Part II. Axial and triaxial stress experiments. Tectonophysics, 327(1–2), 131–148. https://
doi.org/10.1016/S0040‐1951(00)00165‐7

Micheuz, P., Quandt, D., Hippler, D., Bernasconi, S. M., Hauzenberger, C. A., & Kurz, W. (2018). Isotopes and microstructures from calcite
veins of the Izu‐Bonin fore arc and the Amami‐Sankaku basin: vein formation conditions, ages and deformation. Berichte der
Geologischen Bundesanstalt, 128. PANGEO Austria 2018 Abstracts, 105

Parlak, O. (2016). The Tauride ophiolites of Anatolia (Turkey): A review. Journal of Earth Science, 27(6), 901–934. https://doi.org/10.1007/
s12583‐016‐0679‐3

Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics. Berlin/Heidelberg: Springer‐Verlag. https://doi.org/10.1007/3‐540‐29359‐0
Pearce, J. A., & Robinson, P. T. (2010). The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting.

Gondwana Research, 18(1), 60–81. https://doi.org/10.1016/j.gr.2009.12.003
Ramsay, J. G., & Huber, M. I. (1983). The techniques of modern structural geology, Volume 1: Strain Analysis. London: Academic Press.
Reagan, M. K., Heaton, D. E., Schmitz, M. D., Pearce, J. A., Shervais, J. W., & Koppers, A. A. P. (2019). Forearc ages reveal extensive short‐

lived and rapid seafloor spreading following subduction initiation. Earth and Planetary Science Letters, 506, 520–529. https://doi.org/
10.1016/j.epsl.2018.11.020

Reagan, M. K., Ishizuka, O., Stern, R. J., Kelley, K. A., Ohara, Y., Blichert‐Toft, J., et al. (2010). Fore‐arc basalts and subduction initiation in
the Izu‐Bonin‐Mariana system. Geochemistry, Geophysics, Geosystems, 11, Q03X12. https://doi.org/10.1029/2009GC002871

Reagan, M. K., McClelland, W. C., Girard, G., Goff, K. R., Peate, D. W., Ohara, Y., & Stern, R. J. (2013). The geology of the southernMariana
fore‐arc crust: Implications for the scale of Eocene volcanism in the western Pacific. Earth and Planetary Science Letters, 380, 41–51.
https://doi.org/10.1016/j.epsl.2013.08.013

Reagan, M. K., Pearce, J. A., Petronotis, K., Almeev, R., Avery, A. A., Carvallo, C., et al. (2017). Subduction initiation and ophiolite crust:
New insights from IODP drilling. International Geology Review, 59(11), 1439–1450. https://doi.org/10.1080/00206814.2016.1276482

Reagan, M. K., Pearce, J. A., Petronotis, K., & and the Expedition 352 Scientists (2015). Izu‐Bonin‐Mariana Fore Arc. Proceedings of the
International Ocean Discovery Program, 352 (Chap. 1–6). College Station, TX: International Ocean Discovery Program. https://doi.org/
10.14379/iodp.proc.352.2015

Robertson, A. H. F. (1977). Tertiary uplift history of the Troodos massif, Cyprus. Geological Society of America Bulletin, 88(12), 1763–1772.
https://doi.org/10.1130/0016‐7606(1977)88<1763:TUHOTT>2.0.CO;2

Robertson, A. H. F. (1989). Paleoceanography and tectonic setting of the Jurassic Coast Range ophiolite, central California: evidence from
extrusive rocks and volcaniclastic sedimentary cover. Marine and Petroleum Geology, 6(3), 194–220. https://doi.org/10.1016/0264‐
8172(89)90001‐9

Robertson, A. H. F., Dixon, J. E., Brown, S., Collins, A., Morris, A., Pickett, E., et al. (2002). Alternative tectonic models for the Late
Palaeozoic‐Early Tertiary development of Tethys in the Eastern Mediterranean region. Geological Society, London, Special Publications,
105(1), 239–263. https://doi.org/10.1144/GSL.SP.1996.105.01.22

Robertson, A. H. F., Kutterolf, S., Avery, A., Baxter, A. T., Petronotis, K., Acton, G. D., et al. (2018). Depositional setting, provenance, and
tectonic‐volcanic setting of Eocene–Recent deep‐sea sediments of the oceanic Izu–Bonin forearc, northwest Pacific (IODP Expedition
352). International Geology Review, 60(15), 1816–1854. https://doi.org/10.1080/00206814.2017.1393634

Robertson, A. H. F., Parlak, O., & Ustaömer, T. (2012). Overview of the Palaeozoic‐Neogene evolution of Neotethys in the Eastern
Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geoscience, 18(4), 381–404. https://doi.org/10.1144/petgeo2011‐091

Robertson, A. H. F., & Woodcock, N. H. (1982). Genesis of the Batinah melange above the Semail ophiolite Oman. Journal of Structural
Geology, 5, 1–17.

Rogowitz, A., Grasemann, B., Huet, B., & Habler, G. (2014). Strain rate dependent calcite microfabric evolution—An experiment carried
out by nature. Journal of Structural Geology, 69, 1–17. https://doi.org/10.1016/j.jsg.2014.08.004

Rowe, K. J., & Rutter, E. H. (1990). Paleostress estimation using calcite twinning: Experimental calibration and application to nature.
Journal of Structural Geology, 12(1), 1–17. https://doi.org/10.1016/0191‐8141(90)90044‐Y

Rudnick, R. L. (1995). Making continental crust. Nature, 378(6557), 571–578. https://doi.org/10.1038/378571a0
Rutter, E. H. (1995). Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara

marble. Journal of Geophysical Research, 100(B12), 24,651–24,663. https://doi.org/10.1029/95jb02500
Rybacki, E., Evans, B., Janssen, C., Wirth, R., & Dresen, G. (2013). Influence of stress, temperature, and strain on calcite twins constrained

by deformation experiments. Tectonophysics, 601, 20–36. https://doi.org/10.1016/j.tecto.2013.04.021
Rybacki, E., Janssen, C., Wirth, R., Chen, K., Wenk, H.‐R., Stromeyer, D., & Dresen, G. (2011). Low‐ temperature deformation in calcite

veins of SAFOD core samples (San Andreas Fault)—Microstructural analysis and implications for fault rheology. Tectonophysics,
509(1‐2), 107–119. https://doi.org/10.1016/j.tecto.2011.05.014

Schmid, S. M. (1982). Laboratory experiments on rheology and deformation mechanisms in calcite and their application to studies in the
field. Mitteilungen des Geologischen Institutes der ETH Universität. Zürich, 241, 1–105.

10.1029/2019GC008329Geochemistry, Geophysics, Geosystems

KURZ ET AL. 28

https://doi.org/10.1016/j.jseaes.2017.10.015
https://doi.org/10.1016/j.tecto.2017.03.025
https://doi.org/10.1016/j.tecto.2017.03.025
http://abstractsearch.agu.org/meetings/2015/FM/T32C-07.html
https://doi.org/10.1002/2017GC007100
https://doi.org/10.1002/2014GC005263
https://doi.org/10.1016/0040-1951(95)00136-0
https://doi.org/10.1016/0040-1951(95)00136-0
https://doi.org/10.1016/S0040-1951(00)00165-7
https://doi.org/10.1016/S0040-1951(00)00165-7
https://doi.org/10.1007/s12583-016-0679-3
https://doi.org/10.1007/s12583-016-0679-3
https://doi.org/10.1007/3-540-29359-0
https://doi.org/10.1016/j.gr.2009.12.003
https://doi.org/10.1016/j.epsl.2018.11.020
https://doi.org/10.1016/j.epsl.2018.11.020
https://doi.org/10.1029/2009GC002871
https://doi.org/10.1016/j.epsl.2013.08.013
https://doi.org/10.1080/00206814.2016.1276482
https://doi.org/10.14379/iodp.proc.352.2015
https://doi.org/10.14379/iodp.proc.352.2015
https://doi.org/10.1130/0016-7606(1977)88%3c1763:TUHOTT%3e2.0.CO;2
https://doi.org/10.1016/0264-8172(89)90001-9
https://doi.org/10.1016/0264-8172(89)90001-9
https://doi.org/10.1144/GSL.SP.1996.105.01.22
https://doi.org/10.1080/00206814.2017.1393634
https://doi.org/10.1144/petgeo2011-091
https://doi.org/10.1016/j.jsg.2014.08.004
https://doi.org/10.1016/0191-8141(90)90044-Y
https://doi.org/10.1038/378571a0
https://doi.org/10.1029/95jb02500
https://doi.org/10.1016/j.tecto.2013.04.021
https://doi.org/10.1016/j.tecto.2011.05.014


Seton, M., Müller, R. D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., et al. (2012). Global continental and ocean basin reconstructions
since 200Ma. Earth‐Science Reviews, 113(3–4), 212–270. https://doi.org/10.1016/j.earscirev.2012.03.002

Shervais, J. W., Kimbrough, D. L., Renne, P., Murchey, B., & Hanan, B. B. (2004). Multi‐stage origin of the Coast Range ophiolite, California
and Oregon: Implications for the life cycle of supra‐subduction zone ophiolites. International Geology Review, 46(4), 289–315. https://doi.
org/10.2747/0020‐6814.46.4.289

Shervais, J. W., Reagan, M., Haugen, E., Almeev, R., Pearce, J., Prytulak, J., et al. (2019). Magmatic response to subduction initiation, Part I:
Forearc basalts of the Izu‐Bonin Arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 20(1), 314–338. https://doi.org/
10.1029/2018GC007731

Smewing, J. D. (1980). An Upper Cretaceous ridge‐transform intersection in the Oman Ophiolite. In A. Panayiotou (Ed.), Ophiolites:
International Ophiolite Symposium (pp. 407–413). Nicosia, Cyprus: Geological Survey Department.

Snow, C. A., & Shervais, J. W. (2015). Cuesta Ridge ophiolite, San Luis Obispo, California: Implications for the origin of the Coast Range
ophiolite. In T. H. Anderson, A. N. Didenko, C. L. Johnson, A. I. Khanchuk, & J. H. MacDonald, Jr. (Eds.), Late Jurassic Margin of
Laurasia—A record of faulting accommodating plate rotation. Geological Society of America Special Paper (Vol. 513, pp. 285–298).
Boulder, CO: Geological Society of America. https://doi.org/10.1130/2015.2513(07)

Stern, R. J. (2004). Subduction initiation: Spontaneous and induced. Earth and Planetary Science Letters, 226(3–4), 275–292. https://doi.org/
10.1016/j.epsl.2004.08.007

Stern, R. J. (2010). The anatomy and ontogeny of modern intra‐oceanic arc systems. Geological Society of London Special Publications,
338(1), 7–34. https://doi.org/10.1144/sp338.2

Stern, R. J., & Bloomer, S. H. (1992). Subduction zone infancy: Examples from the Eocene Izu‐Bonin‐Mariana and Jurassic California Arcs.
Geological Society of America Bulletin, 104(12), 1621–1636. https://doi.org/10.1130/0016‐7606(1992)104<1621:SZIEFT>2.3.CO;2

Stern, R. J., Fouch, M. J., & Klemperer, S. (2003). An overview of the Izu‐Bonin‐Mariana subduction factory. In J. Eiler (Ed.), Inside the
subduction factory, Geophysical Monograph Series (Vol. 138, pp. 175–222). Washington, DC: American Geophysical Union. https://doi.
org/10.1029/138GM10

Takahashi, N., Kodaira, S., Tatsumi, Y., Yamashita, M., Sato, T., Kaiho, Y., et al. (2009). Structural variations of arc crusts and riftedmargins
in the southern Izu‐Ogasawara arc–back arc system. Geochemistry, Geophysics, Geosystems, 10, Q09X08. https://doi.org/10.1029/
2008GC002146

Tamura, Y., Busby, C. J., Blum, P., & the Expedition 350 Scientists (2015). Expedition 350: Izu‐Bonin‐Mariana Rear Arc: Proceedings of the
International Ocean Discovery Program. College Station, TX: International Ocean Discovery Program. https://doi.org/10.14379/iodp.
proc.350.2015

Tatsumi, Y., & Stern, R. J. (2006). Manufacturing continental crust in the subduction factory. Oceanography, 19(4), 104–112. https://doi.
org/10.5670/oceanog.2006.09

Tullis, T. E. (1980). The use of mechanical twinning in minerals as a measure of shear stress magnitudes. Journal of Geophysical Research,
85(B11), 6263–6268. https://doi.org/10.1029/JB085iB11p06263

Turner, F. J. (1953). Nature and dynamic interpretation of deformation lamellae in calcite of three marbles. American Journal of Science,
251(4), 276–298. https://doi.org/10.2475/ajs.251.4.276

Twiss, R. J. (1977). Theory and applicability of a recrystallised grain size paleopiezometer. Pure and Applied Geophysics, 115(1‐2), 227–244.
https://doi.org/10.1007/BF01637105

Twiss, R. J., & Moores, E. M. (2007). Structural geology (p. 532). Macmillan Education. New York, NY: W. H. Freeman.
Varga, R. J., &Moores, R. J. (1985). Spreading structure of the Troodos ophiolite, Cyprus.Geology, 13(12), 846–850. https://doi.org/10.1130/

0091‐7613(1985)13<846:SSOTTO>2.0.CO;2
Wenk, H. R., Takeshita, T., Bechler, E., Erskine, B. G., & Matthies, S. (1987). Pure shear and simple shear calcite textures. Comparison of

experimental, theoretical and natural data. Journal of Structural Geology, 9(5‐6), 731–745. https://doi.org/10.1016/0191‐8141(87)90156‐8
Wheeler, J., Prior, D. J., Jiang, Z., Spiess, R., & Trimby, P. (2001). The petrological significance of misorientations between grains.

Contributions to Mineralogy and Petrology, 141(1), 109–124. https://doi.org/10.1007/s004100000225
Whittaker, J. M., Müller, R. D., Leitchenkov, G., Stagg, H., Sdrolias, M., Gaina, C., & Goncharov, A. (2007). Major Australian‐Antarctic

plate reorganization at Hawaiian‐Emperor Bend time. Science, 318(5847), 83–86. https://doi.org/10.1126/science.1143769
Wu, J., Suppe, J., Lu, R., & Kanda, R. (2016). Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab

reconstruction methods. Journal of Geophysical Research ‐ Solid Earth, 121(6), 4670–4741. https://doi.org/10.1002/2016JB012923
Yogodzinski, G. M., Bizimis, M., Hickey‐Vargas, R., McCarthy, A., Hocking, B. D., Savov, I. P., et al. (2018). Implications of Eocene‐age

Philippine Sea and forearc basalts for initiation and early history of the Izu‐Bonin‐Mariana arc. Geochimica et Cosmochimica Acta, 228,
136–156. https://doi.org/10.1016/j.gca.2018.02.047

Zhao, J., & Adams, B. L. (1988). Definition of an asymmetric domain for intercrystalline misorientation in cubic materials in the space of
Euler angles. Acta Crystallographica, A44, 326–336.

10.1029/2019GC008329Geochemistry, Geophysics, Geosystems

KURZ ET AL. 29

https://doi.org/10.1016/j.earscirev.2012.03.002
https://doi.org/10.2747/0020-6814.46.4.289
https://doi.org/10.2747/0020-6814.46.4.289
https://doi.org/10.1029/2018GC007731
https://doi.org/10.1029/2018GC007731
https://doi.org/10.1130/2015.2513(07)
https://doi.org/10.1016/j.epsl.2004.08.007
https://doi.org/10.1016/j.epsl.2004.08.007
https://doi.org/10.1144/sp338.2
https://doi.org/10.1130/0016-7606(1992)104%3c1621:SZIEFT%3e2.3.CO;2
https://doi.org/10.1029/138GM10
https://doi.org/10.1029/138GM10
https://doi.org/10.1029/2008GC002146
https://doi.org/10.1029/2008GC002146
https://doi.org/10.14379/iodp.proc.350.2015
https://doi.org/10.14379/iodp.proc.350.2015
https://doi.org/10.5670/oceanog.2006.09
https://doi.org/10.5670/oceanog.2006.09
https://doi.org/10.1029/JB085iB11p06263
https://doi.org/10.2475/ajs.251.4.276
https://doi.org/10.1007/BF01637105
https://doi.org/10.1130/0091-7613(1985)13%3c846:SSOTTO%3e2.0.CO;2
https://doi.org/10.1130/0091-7613(1985)13%3c846:SSOTTO%3e2.0.CO;2
https://doi.org/10.1016/0191-8141(87)90156-8
https://doi.org/10.1007/s004100000225
https://doi.org/10.1126/science.1143769
https://doi.org/10.1002/2016JB012923
https://doi.org/10.1016/j.gca.2018.02.047


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000710075006900200064006f006900760065006e0074002000ea0074007200650020007600e9007200690066006900e900730020006f0075002000ea00740072006500200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061003a0032003000300031002c00200075006e00650020006e006f0072006d0065002000490053004f00200064002700e9006300680061006e0067006500200064006500200063006f006e00740065006e00750020006700720061007000680069007100750065002e00200050006f0075007200200070006c007500730020006400650020006400e9007400610069006c007300200073007500720020006c006100200063007200e9006100740069006f006e00200064006500200064006f00630075006d0065006e00740073002000500044004600200063006f006e0066006f0072006d00650073002000e00020006c00610020006e006f0072006d00650020005000440046002f0058002d00310061002c00200076006f006900720020006c00650020004700750069006400650020006400650020006c0027007500740069006c0069007300610074006500750072002000640027004100630072006f006200610074002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200034002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200073006b0061006c0020006b006f006e00740072006f006c006c0065007200650073002c00200065006c006c0065007200200073006f006d0020006d00e50020007600e6007200650020006b006f006d00700061007400690062006c00650020006d006500640020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e006400610072006400200066006f007200200075007400760065006b0073006c0069006e00670020006100760020006700720061006600690073006b00200069006e006e0068006f006c0064002e00200048007600690073002000640075002000760069006c0020006800610020006d0065007200200069006e0066006f0072006d00610073006a006f006e0020006f006d002000680076006f007200640061006e0020006400750020006f007000700072006500740074006500720020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020007300650020006200720075006b00650072006800e5006e00640062006f006b0065006e00200066006f00720020004100630072006f006200610074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200034002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


