Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific).

Gillard, Benjamin, Purkiani, Kaveh, Chatzievangelou, Damianos, Vink, Annemiek, Iversen, Morten and Thomsen, Laurenz (2019) Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific). Open Access Elementa: Science of the Anthropocene, 7 (1). p. 5. DOI 10.1525/elementa.343.

[thumbnail of 343-5902-1-PB.pdf]
Preview
Text
343-5902-1-PB.pdf - Published Version
Available under License Creative Commons: Attribution 4.0.

Download (4MB) | Preview

Supplementary data:

Abstract

The anthropogenic impact of polymetallic nodule harvesting in the Clarion-Clipperton Fracture Zone is expected to strongly affect the benthic ecosystem. To predict the long-term, industrial-scale impact of nodule mining on the deep-sea environment and to improve the reliability of the sediment plume model, information about the specific characteristics of deep-sea particles is needed. Discharge simulations of mining-related fine-grained (median diameter ≈ 20 μm) sediment plumes at concentrations of 35–500 mg L–1 (dry weight) showed a propensity for rapid flocculation within 10 to 135 min, resulting in the formation of large aggregates up to 1100 μm in diameter. The results indicated that the discharge of elevated plume concentrations (500 mg L–1) under an increased shear rate (G ≥ 2.4 s–1) would result in improved efficiency of sediment flocculation. Furthermore, particle transport model results suggested that even under typical deep-sea flow conditions (G ≈ 0.1 s–1), rapid deposition of particles could be expected, which would restrict heavy sediment blanketing (several centimeters) to a smaller fall-out area near the source, unless subsequent flow events resuspended the sediments. Planning for in situ tests of these model projections is underway

Document Type: Article
Keywords: Deep-sea mining, Sediment plume, Particle size, Aggregation, Settling velocity
Refereed: Yes
Open Access Journal?: Yes
Publisher: BioOne
Projects: JPIO-MiningImpact, EcoMining-DEU, Sediment Plume, The Ocean in the Earth System
Expeditions/Models/Experiments:
Date Deposited: 20 Jan 2020 13:50
Last Modified: 31 Jan 2022 09:15
URI: https://oceanrep.geomar.de/id/eprint/48780

Actions (login required)

View Item View Item