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ABSTRACT 20 

The Tyrrhenian Basin is a region created by Neogene extensional tectonics related 21 

to slab rollback of the east-southeast–migrating Apennine subduction system, commonly 22 

believed to be actively underthrusting the Calabrian arc. A compilation of >12,000 km of 23 
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multichannel seismic profiles, much of them recently collected or reprocessed, provided 24 

closer scrutiny and the mapping of previously undetected large compressive structures 25 

along the Tyrrhenian margins. This new finding suggests that Tyrrhenian Basin extension 26 

recently ceased. The ongoing compressional reorganization of the basin indicates a 27 

change of the regional stress field in the area, confirming that slab rollback is no longer a 28 

driving mechanism for regional kinematics, now dominated by the Africa-Eurasia 29 

lithospheric collision 30 

INTRODUCTION 31 

The Tyrrhenian Basin is a young basin of the Mediterranean (Fig. 1A), commonly 32 

assumed to be actively opening (Malinverno and Ryan, 1986; Trua et al., 2018). It is well 33 

established that the Tyrrhenian Basin formed as a back-arc (Fig. 1) within a preexisting 34 

microcontinent, the Calabrian-Sardinia-Corsica microplate (Alvarez et al., 1974) (Fig. 35 

1C). The lithospheric thinning of the Tyrrhenian region started in the late Miocene, ca. 9–36 

10 Ma (Kastens et al., 1988), and was caused by the east-southeast to southeast retreat of 37 

the Apennine subduction system (Malinverno and Ryan, 1986; Doglioni et al., 1997). 38 

Continental breakup (Prada et al., 2016) of Corsica-Sardinia from Calabria (Fig. 1D) just 39 

after the Messinian (5 Ma) was followed by mantle exhumation in the Magnaghi-Vavilov 40 

Basin and, soon after, by the same process in its[[Clarify what “its” refers to]] 41 

easternmost portion (Figs. 1E, 1F), in the Marsili Basin (Prada et al., 2018). As suggested 42 

by the age of the sedimentary cover (Kastens et al., 1988), the mantle unroofing 43 

terminated ca. 2 Ma in the Magnaghi-Vavilov Basin and between 1.8 Ma (oldest age of 44 

sediments sampled by the International Ocean Drilling Program[[References?]]) and 0.8 45 

Ma (age of the volcano) in the Marsili Basin, leading to the formation, from west to east, 46 
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of deep abyssal plains. These basins are now floored mainly by partially serpentinized 47 

mantle and by the homonymous Magnaghi, Vavilov, and Marsili volcanoes at their 48 

centers (Figs. 1E, 1F). 49 

Notwithstanding all of the published evidence of past widespread extensional 50 

tectonics (Fabbri et al., 1981; Kastens et al., 1988), scattered and local evidence of active 51 

compressive structures was described in the Tyrrhenian Basin (Trincardi and Zitellini, 52 

1987; Bigi et al., 1991; Milia et al., 2017), as well as the occurrence of compressive 53 

crustal seismicity north of Sicily, offshore Sardinia-Corsica and Lazio-Campania, Italy 54 

(Vannucci et al., 2004; Presti et al., 2013). To check the presence of these structures, we 55 

reprocessed 8000 km of the Crosta Profonda (CROP) data set of deep-penetrating 56 

multichannel seismic (MCS) reflection profiles collected in the late 1980s and 1990s to 57 

investigate the crustal structure around Italy[[References?]]. This data set was integrated 58 

with data from two[[Three appear to be listed?]] recent MCS reflection surveys 59 

(MEDOC [MEDiterráneo Occidental] in 2010, CHIANTI in 2015, and ISTEGE in 60 

2010[[Conducted by whom? References?]]) (Fig. 1B), vintage single-channel data from 61 

the 1970s and 1980s (Fig. DR1 in the GSA Data Repository1), and multibeam bathymetry 62 

covering the basin[[References?]] (Figs. 1A and 1B). The seismic images do not show 63 

evidence of large active normal faulting that may support current extension of the 64 

Tyrrhenian Basin, as commonly assumed, but rather display abundant evidence of 65 

previously unrecognized active contractional structures. The new data detected and 66 

mapped active large-scale compressive tectonic structures along a large sector of the 67 

Tyrrhenian margin of Italy. We describe them and discuss the kinematic and geodynamic 68 
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implications, providing new constraints for unacknowledged ongoing crustal shortening 69 

of the entire basin. 70 

METHODS 71 

The data set consists of MCS reflection lines collected on behalf of the Italian 72 

CROP project (http://www.crop.cnr.it), which was funded by the Italian National 73 

Research Council and by the two Italian leading energy companies (ENI and ENEL) to 74 

explore the crust and upper mantle of Italy and surrounding seas. This project was carried 75 

out between 1986 and 1999 in coordination with the French ECORS-CROP, the Swiss 76 

NRP20, and the Austrian-German TRANSALP projects [[spell out the acronyms for 77 

these projects]]. At sea, the MCS lines were acquired using an airgun array as seismic 78 

source with a volume of ~4900 c.i.[[cubic inches? Convert to SI units]] and shots 79 

recorded with a 4500-m-long streamer; see Scrocca et al. (2003) for detailed acquisition 80 

parameters. The stack version was published in the form of an atlas in 2003 81 

(http://www.videpi.com/videpi/crop/crop.asp). We carried out the complete reprocessing 82 

to the time migration[[Unclear what this means – reword]] of the subset of CROP data 83 

located in the Tyrrhenian Basin. The processing was done at the Institute of Marine 84 

Science (ISMAR) in Bologna, Italy. The processing sequence was: decimation from 2 ms 85 

to 4 ms, common-depth-point gathering, spiking deconvolution, velocity analysis every 86 

2.5 km, normal move-out, correction, CDP[[Spell out]] staking, spherical,[[Delete 87 

comma? (Otherwise, “spherical” seems to lack an associated noun)]] divergence 88 

correction, finite-difference wave-equation migration using stacking, velocities with 89 

reduction of 10%[[Unclear how this describes a step in the sequence – reword]]. The 90 

CROP data set was supplemented with the MEDOC MCS lines processed at the Institute 91 

Utente
Barra

Utente
Barra

Utente
Barra
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of Marine Sciences of the Spanish National Research Council in Barcelona, Spain (Prada 92 

et al., 2014) and at GEOMAR in Kiel, Germany (Moeller et al., 2014) (Fig. 1B), with the 93 

ISTEGE MCS lines processed at the National Institute of Oceanography and 94 

Experimental Geophysics (OGS) in Trieste, Italy (Loreto et al., 2013), and with a large 95 

collection of single-channel, high-resolution, 30 kJ sparker profiles.[[What about the 96 

CHIANTI survey mentioned above?]] 97 

RESULTS 98 

We found different types of large structures indicating compression, including 99 

folds, anticlines growing above reverse faults, inversion of preexisting normal faults, and 100 

compressive reactivation of reverse faults (Fig. 2; Figs. DR2–DR5). Based on 101 

stratigraphy, we distinguish three episodes of shortening: two older and currently inactive 102 

episodes related to subduction dynamics, and one widespread phase of active basin 103 

inversion: 104 

(1) The oldest, pre-rift compressive structures, detected only in the northwestern 105 

continental margin of Sicily (Fig. 2A) and in the northern Tyrrhenian Basin (Fig. 106 

DR2). These structures belong to the fold-and-thrust belt units shortened from the 107 

Oligocene to the middle Miocene during the rotation of the Sardinia-Corsica-Calabria 108 

microplate (Sartori et al., 2001). They remain largely undisturbed by the successive 109 

episode of extension because they are located in areas affected by minor crustal 110 

thinning, i.e., along the northern Tyrrhenian and northern Sicilian margins. 111 

(2) Compressive structures active only during, or soon after, rifting and mantle 112 

exhumation that occurred in the Marsili Basin. These structures are present along the 113 

western side of the Paola Basin (Fig. 2B), located in the easternmost Tyrrhenian just 114 
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west of Calabria, and are sealed by a package of undeformed sediments lapping on 115 

either flank of the basin (Fig. 2B; Fig. DR3). The folds formed during the early 116 

Pleistocene, ca. 1.8–2.5 Ma (Argnani and Trincardi, 1988), or later (Loreto et al., 117 

2013), probably during the latest stage of the eastward migration of the Calabrian 118 

subduction system. 119 

(3) Present-day active compressional structures including folding (Fig. 2A) and rupture of 120 

the sedimentary sequence reaching the seafloor (Figs. 2C and 2D), supporting 121 

ongoing contractional processes. Several active structures were mapped along the 122 

northwestern Sicilian margin and along the western peninsular margin (Figs. DR4, 123 

DR5). 124 

[[Is this paragraph part of episode 3? If so, combine with that list 125 

item]]Along the northwestern Sicilian margin, the inversion of rifting-related basins 126 

occurs mostly by reactivation in compression of the tectonic structures (Fig. 2A; Fig. 127 

DR4) formed during the rotation of Sardinia-Corsica-Calabria. Along this margin, 128 

shortening is not focused on individual large structures, but rather distributed on fault sets 129 

(Fig. 2A; Fig. DR4). Along the east Tyrrhenian margin, tectonic deformation is mostly 130 

associated to transpressive reactivation (Figs. 2C, 2B) or inversion of preexisting, 131 

northwest-southeast–trending (see also Milia et al., 2017) and west-northwest–trending 132 

normal faults (Fig. 2D; Fig. DR3) along the Latium-Campanian margin (Fig. 1B). 133 

Additional evidence of tectonic inversion in this region is found in the southwest offshore 134 

of Naples (Fig. 2E) and along the western side of the Palmarola Basin (Fig. DR5). In 135 

these two areas, the uplift of one of the flanks of the basin is recorded by the 136 

displacement of a pre-compression onlapping sedimentary sequence. 137 



Publisher: GSA 
Journal: GEOL: Geology 
DOI:10.1130/G46774.1 

Page 7 of 20 

DISCUSSIONS AND CONCLUSIONS 138 

[[This paragraph is very long – can it be broken into multiple 139 

paragraphs?]]To frame these observations in a coherent geodynamic context, we take 140 

into account the active Eurasia-Africa plate convergence during the opening of the 141 

Tyrrhenian. Since the onset of the rifting in the Tyrrhenian Basin ca. 9–10 Ma (Kastens et 142 

al., 1988), the trench of the Calabrian arc retreated at a rate of up to 60 km/m.y. 143 

(Faccenna et al., 2001) while the regional Eurasia-Africa plate convergence rate in the 144 

same period was only ~5 km/m.y. (Nocquet, 2012). Moreover, trench retreat caused a 145 

focused lithospheric deformation with the formation of the Tyrrhenian Basin, while the 146 

strain generated by the Eurasia-Africa plate convergence was most likely taken up in a 147 

much wider area, spanning the whole Apennine system from Sicily to the Alps (Fig. 1A). 148 

This implies that during the Tyrrhenian opening, the contractional effect of plate 149 

convergence was hardly detectable on local stresses, becoming instead apparent when the 150 

Tyrrhenian opening slowed or stopped. A significant slowdown of the subduction process 151 

is suggested by the infrequent, mostly strike-slip (Pondrelli et al., 2011) seismicity 152 

underneath the Ionian accretionary wedge and by a >1 km Pleistocene uplift of Calabria 153 

(Westaway, 1993). In contrast, the active (Argnani and Savelli, 1999; Trua et al., 2018) 154 

calc-alkaline Aeolian volcanic arc (AVA in Fig. 1B) and the inferred (Kastens et al., 155 

1988) seafloor spreading–like accretion at the Marsili Basin led to the proposition of an 156 

actively moving, but strongly locked subduction fault plane (Gutscher et al., 2006). This 157 

view is challenged by the recent discovery of mantle exhumation in place of seafloor 158 

spreading (Prada et al., 2016) in the Vavilov Basin. The Vavilov Seamount itself is built 159 

as a fissural volcano, as already pointed out by Robin et al. (1987), directly above 160 
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exhumed mantle, which is covered by undisturbed sediments at least ~2 m.y. old 161 

(Kastens et al., 1988). In the Vavilov Basin, extension halted after mantle exhumation, 162 

and the same process seems to have occurred in the Marsili Basin (Prada et al., 2018) 163 

where the basement is now covered by a sequence of undisturbed sediments as old as ca. 164 

1.8 Ma, ruling out currently active seafloor spreading. In the last decade, the strain and 165 

stress regime in Italy has been assessed from focal mechanisms, borehole breakouts, and 166 

overcoring data. These data support a present-day compressive to transpressive stress 167 

regime affecting the Tyrrhenian (Pondrelli and Morelli, 2008; Olaiz et al., 2009). Devoti 168 

et al. (2008) analyzed GPS data collected along the Tyrrhenian coast of Italy and 169 

described an “unexpected” southeast-nothwest velocity field with respect to stable 170 

Eurasia (Fig. 1A[[Devoti et al. are not cited in the Fig. 1A caption – please check]]), 171 

revealing a southeast-to-northwest compressional component. Also, the present stress 172 

field in southern Italy, modeled by Barba et al. (2010) by considering borehole breakouts 173 

along with GPS and earthquake data, supports a strike-slip to compressional regime along 174 

the Tyrrhenian coasts. Finally, evidence of compressional deformation are recorded by 175 

early Pliocene to Quaternary deposits in northeastern Corsica (Fellin et al., 2005) and are 176 

indicated by compressive earthquakes in the northern Tyrrhenian Basin (Vannucci et al., 177 

2004; Chiarabba et al., 2015). The results of this research together with the observations 178 

presented here imply that, at present, only one plate-driving mechanism is active: the 179 

lithospheric collision between Eurasia and Africa in the central Mediterranean. Once the 180 

southeastward migration of the Calabrian arc stopped in the Pleistocene, when the 181 

exhumation of the mantle terminated in the Marsili Basin, a radical change may have 182 

occurred in the stress field, which can account for the moderate ongoing deformation 183 

Utente
Barra
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north of Sicily and the more developed deformation of the eastern Tyrrhenian margin 184 

(Fig. 1A). 185 

The present-day compressional vector between Eurasia and Africa is almost 186 

perpendicular to the strike of the northern Sicilian margin, while it is almost parallel to 187 

the northwest-southeast strike of the faults located in the Tyrrhenian margin of the Italian 188 

Peninsula. In Figure 3, we present a schematic model of the tectonic inversion occurring 189 

in the Latium-Campanian margin. During the Tortonian to middle Pliocene opening of 190 

Vavilov Basin, several normal faults trending northwest-southeast developed in this area 191 

(Bigi et al., 1991), implying a stress vector with the σ1 component directed along the 192 

vertical and the σ3 component parallel to the extension direction (Fig. 3B). The present-193 

day main stress vector σ1 is oriented NNW-SSE due to the prevailing Europe-Africa 194 

convergence. This implies that the inherited normal faults are reactivated (Sibson, 1995) 195 

under a transpressive regime as dextral strike-slip faults, with diffuse uplift and folding 196 

(Figs. 2D and 3C). The same process does not occur in the northern Sicilian margin, 197 

where the stress vector is almost perpendicular to the east-west–trending structures, 198 

rendering their inversion more difficult[[In what repect?]] and less developed. The 199 

proposed new tectonic framework is regionally widespread: the effect of the Eurasia-200 

Africa lithospheric collision in the realm of the Oligocene-Miocene western 201 

Mediterranean back-arc basins has been reported in the Ligurian Sea (Larroque et al., 202 

2016) and along the coasts and continental margin of Algeria (Kherroubi et al., 2009) 203 

with the occurrence of compressive earthquakes and the presence of active tectonic 204 

structures. Also, in the Alboran Sea, which formed in response of the westward migration 205 

of the Gibraltar arc subduction system, extension no longer active (Zitellini et al., 2009) 206 
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and the strain caused by Eurasia-Africa convergence is also observed along oblique-slip 207 

NNE- and ESE-trending transpressive faults that crosscut the Alboran Basin (Martínez-208 

García et al., 2013) as well as in the Algero-Balearic Basin (Giaconia et al., 2015). The 209 

regional tectonic inversion of the Tyrrhenian Basin along with the evidence of 210 

compressive and/or transpressive deformation in the Ligurian and Alboran Seas shows 211 

that the entire central Mediterranean is presently affected by intraplate deformation 212 

driven by the Africa-Eurasia collision. 213 
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FIGURE CAPTIONS 377 

Figure 1. Structural setting and location map of study area. (A) Geodynamic sketch map 378 

of the central Mediterranean. Base map is from EMODnet bathymetry portal (EMODnet 379 

Consortium, 2016: EMODnet Digital Bathymetry, http://doi.org/10.12770/c7b53704-380 

4721-b1a3-4ec60c87238[[Is this intended to be in the reference list? DOI appears to 381 

be invalid]]); main structures are as synthetized by Bigi et al. (1991). Instrumental 382 

seismicity (yellow dots) <30 km depth is from EMSC[[Spell out]] 383 
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(http://www.seismicportal.eu/). Thick arrows are displacement vectors between Africa 384 

with respect to [[and?]] Eurasia: green are from GPS measurements (Serpelloni et al., 385 

2007); white and black[[Explain the difference between the white and black arrows]] 386 

are GPS residual velocity (Serpelloni et al., 2005); and red are GPS measurements from 387 

free accessible website (https://www.unavco.org)[[Provide a more specific URL to the 388 

data used]]. Med—Mediterranean. (B) Location map of reprocessed multichannel 389 

seismic reflection data set (black lines). Isobaths are downloaded from EMODnet 390 

bathymetry portal [[What contour interval?]]. Compressive focal mechanisms (CFM) 391 

and compressive earthquakes (red stars) are modified by[[from?]] Vannucci et al. (2004) 392 

and Presti et al. (2013). Black thick segments mark seismic profiles shown in Figure 2 393 

(Figs. 2A–2E) and in the Data Repository (Figs. DR2–DR5 [see footnote 1]). (C–G) 394 

Cartoons of southeastward Apennines system migration, modified from Gvirtzman and 395 

Nur (2001) and Reitz and Seeber (2012).[[Explain the light blue and dark blue regions 396 

and the associated arrows Sa, Sard—Sardinia; Co—Corsica; Ca—Calabria; Si—Sicily; 397 

Ma—Magnaghi [[Basin?]]; V—Vavilov [[Basin?]]; M—Marsili [[Basin?]]; AVA—398 

Aeolian volcanic arc. 399 

[[In the figure, panel A, include “°N” and “°E” on latitude/longitude; capitalize 400 

instances of “Basin”; change “ea” to “Sea”. In panel B, include a north arrow; label 401 

bathymetric contours with depths; in the legend, correct the spelling of “Reverse”; 402 

change instances of “faults” to “fault”. In panel G, should “Compressions” be 403 

“Compressive structures”?]] 404 

 405 

Utente
Barra
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Figure 2. Multichannel seismic (MCS) profiles in the Tyrrhenian Basin showing 406 

compressional structures; see Figure 1B for location.[[Explain the values shown on the 407 

horizontal axes]] (A) Anticline-syncline structures buried below well-stratified 408 

sediments detected to the northwest of Sicily, presently reactivated in compression. (B) 409 

Inverted sediments of the Paola Basin, located offshore of the western Calabria region. 410 

MES—Messinian erosional surface. (C) Sirene Seamount located offshore of the 411 

Campanian margin, showing compressive and/or transpressive structure growing in the 412 

middle of the former extensional sedimentary basin. (D) Inverted sedimentary basin 413 

located offshore of the Lazium-Campanian margin. (E) Progressive displacement of pre-414 

compression sedimentary sequences onlapping the western flank of the basin. TWT—415 

two-way traveltime; CDP—[[common depth point?]]. 416 

[[In the figure, make all instances of “CROP”, “TWT”, and “CDP” uppercase; 417 

insert commas in all values 10,000 and above; include units in horizontal-axis 418 

description, if applicable; on scale bars, change comma to decimal in “2.5 km”. In 419 

panel B, capitalize “Basin”. In panel C, make instances of “compression” lowercase; 420 

spell out and capitalize “Seamount”; correct the spelling of “Buried”. In panel E, 421 

align the “18,700” value with the other axis values. Beneath panel E, capitalize 422 

Figure; correct the spelling of “exaggeration”]] 423 

 424 

Figure 3. Fault reactivation due to stress regime changes in the Tyrrhenian Basin. (A) 425 

Topography of the Latium-Campanian margin derived from EMODnet grid data[[Cite 426 

reference or provide URL]], displaying the Sirene Seamount inverted structure shown 427 

in Figure 2C. This structure has been related to stress-field reorganization due to 428 

Utente
Barra
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prevailing Africa-Eurasia plate convergence during the Pleistocene. Image shows highly 429 

selective fault reactivation during inversion. Only individual and weak segments of the 430 

normal fault system affecting the margin underwent compressional reactivation (red 431 

triangles), as observed elsewhere (Sibson, 1995).[[Explain the color shading]] (B) 432 

During back-arc opening of the Tyrrhenian Sea, a rift-related extensional fault system 433 

striking NW-SE generated a set of subparallel, steeply dipping normal faults 434 

perpendicular to the opening direction. Black hatched thick solid line indicates normal 435 

fault.[[Explain “+” and “−” symbols]] Stress-field components due to pure extensional 436 

regime are shown on horizontal (x,y) and vertical (x,z) planes. FP—fault plane. (C) Fault 437 

reactivation with transpressive regime (red triangles) due to NNW-SSE Africa-Eurasia 438 

convergence that induced diffuse uplift and basin inversion along the margin. Stress-field 439 

components on the horizontal (x,y) and vertical (x,z) planes indicate dominant strike-slip 440 

component, according to the hypothesis that reactivation of steeply dipping normal faults, 441 

not well-oriented under compression, is easier than formation of new, favorably oriented 442 

thrusts (Sibson, 1995). 443 

[[In the figure, panel A, include a north arrow; include a scale to explain the color 444 

shading; spell out “Seamount”. In panels B and C, italicize instances of “x”, “y”, 445 

and “z”]] 446 

 447 

1GSA Data Repository item 2020xxx, [[Please provide DR item title(s) and brief 448 

descriptions here]], is available online at 449 

http://www.geosociety.org/datarepository/2020/, or on request from 450 

editing@geosociety.org. 451 
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