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Abstract. Stream processing frameworks have gained popularity in the
past years. In contrast to the isolated analysis of individual operations we
design four benchmarks for common stream processing use cases that are
derived from realistic production scenarios. Therefore, we define relevant
topologies that cover the realistic scenarios, scalability dimensions, met-
rics, and workloads that lead to our benchmark definitions. Additionally,
we execute one of our benchmarks for the stream processing framework
Kafka Streams. Our results show that Kafka Streams scales linearly with
the workload for the given configuration.
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1 Introduction

Data processing software systems can be divided into batch- and stream process-
ing systems [3]. While in batch processing systems, whole chunks of incoming
data are processed sequentially in a single step at a certain time after its arrival,
in stream processing systems, the data is processed continuously with its arrival.
In times of the Internet of Things (IoT) and huge amounts of data, stream pro-
cessing is gaining importance [8]. A key requirement for stream processing is the
ability of applications to handle larger loads by adding resources which is re-
ferred to as scalability [13]. Also, scalability is fundamental to allow auto-scaling
of the application, e.g., in elastic environments. A realistic scenario for stream
processing is the monitoring of the power consumption in industrial facilities [4].
In this case, sensors for measuring the power consumption are the source of the
incoming data which is processed continuously to allow real-time visualization
and analytics. When the load of input data changes and exceeds the maximum
load the application can handle with its current configuration, the application
must by scaled in order to cope with the changing requirements. Therefore, it
is important to know how the system reacts to changing input data, meaning it
should be conceivable how the system scales. There are various stream process-
ing frameworks out there which contribute to the design and implementation
of stream processing applications by providing reusable structures. To enable
developers to find the appropriate stream processing framework for their appli-
cations, it is useful to have knowledge about how different frameworks scale in
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various scenarios. Therefore, in this paper, we define a set of specification-based
benchmarks [10] that can be used as a basis to compare different stream pro-
cessing frameworks in terms of their scalability, or to compare the same stream
processing framework in different environments, for example, for different cloud
providers. Additionally, we focus on the implementation and execution of one of
our designed benchmarks for the stream processing framework Kafka Streams.

The remainder of the paper is structured as follows: In Section 2, we give
a short overview over Kafka Streams. After that, in Section 3, we explain our
benchmarking approach which consist of the description of topologies and the
definition of scalability dimensions, metrics, and workloads. Finally, in Section 4
we execute one of our benchmarks and discuss the results, before we come to
our conclusions in Section 5.

2 The Stream Processing Framework Kafka Streams

Kafka Streams [12] is a framework which allows implementing stream processing
applications in combination with Apache Kafka [11], simply referred to as Kafka.
Kafka allows clients to publish streams of data entries to a distributed store and
to asynchronously consume data from the store. Thereby, data is considered to be
a continuous stream of key-value pairs that are stored in ordered data structures
called topics. Topics are partitioned in order to allow parallel processing for
achieving scalability. Moreover, partitions can be replicated over multiple Kafka
brokers for achieving fault-tolerance. Kafka Streams utilizes Kafka and provides
abstractions for performing common operations in stream processing such as
mapping operations, aggregations or joins. In Kafka Streams, an operation is
either stateless or stateful. Each application of a stateless operation, for example,
a filter operation, does only depend on one record, whereas the application of a
stateful operations, e.g. counting, depend on multiple records.

3 Benchmark Design

3.1 Definition

Benchmarking of software can be defined as a standardized process used for the
competitive comparison of systems [10]. Based on this definition we want to pro-
vide a specification for benchmarking competing stream processing frameworks
in order to compare their scalability.

3.2 Topologies

In contrast to benchmarking individual stream processing operations in an iso-
lated manner, our approach is based on realistic production scenarios from a
real-time stream processing application [4] for the monitoring of the power con-
sumption in industrial facilities based on sensor measurements. Therefore, we
build our benchmarks on top of different topologies that map to relevant use
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cases. The first benchmark is based on a linear topology which is composed out
of stateless operations. This maps to use cases where we read messages from a
stream, manipulate them and finally store them in a database. In the second
benchmark, we look at an example for hierarchial aggregation that allows to
compose values from certain sources to higher order results with respect to a
given hierarchial data structure. An example use case for this form of aggrega-
tion is a system, where we want to determine the total power consumption of
machines, based on sensors that are part of these machines, where the machines
themselves are grouped together to higher order units, resulting in a nested tree
structure. For the two remaining benchmarks, where we examine the aggregation
based on non-overlapping and overlapping windows. The two types of windows
are visualized in Figure 1. In Kafka terminology, non-overlapping windows are
also called tumbling windows (a), while overlapping windows are referred to as
hopping windows (b) [12]. In general, windows are defined by their range, rep-
resenting the span of the window, and their period, determining the interval
how often a new window begins. When the period of a window is less than its
range, this means multiple windows of that form are overlapping when they are
continuously created, since data points are assigned to all parallel windows that
exist at the time of observation. For the special case, where range and period
are equal, the windows are considered to be non-overlapping, since there only
exist one definite window at a time where each data point can be assigned to.
This means, tumbling windows can be seen as a special case of hopping windows.
Accordingly, we define the four topologies (1) Sink, (2) Hierarchial Aggregation,
(3) Non-Overlapping Windowed Aggregation, and (4) Overlapping Windowed
Aggregation as the basis for our benchmarks.

The first topology (1) Sink corresponds to a typical linear pipeline of stateless
operations. First, the data is read from a Kafka topic and a map operation is
performed to manipulate the data. Consecutively, in a for Each operation, we
log the corresponding message. In a realistic scenario, here the data can be,
e.g., be forwarded to a persistent storage such as an database or alternatively to
another kafka topic.

The second topology (2) Hierarchial Aggregation constitutes an hierarchial,
key-based aggregation, as proposed by [5] which reuses previously computed
aggregation results. Further, we define the following two benchmarks based on
two similar topologies for time-based aggregation. As these topologies are quite
similar to each other, they are visualized together in Figure 2.

The third benchmark (3) Non-Overlapping Windowed Aggregation consti-
tutes an windowed aggregation with non-overlapping windows: After reading
input records from a topic, we group our records of the stream by their keys in
a group By Key operation. After that, we transform the grouped stream to a
windowed stream with non-overlapping windows and perform the aggregation,
before we publish the aggregation results to the output topic.

The benchmark(4) Overlapping Windowed Aggregation allows a key-based
aggregation with overlapping windows: Similarly to the third benchmark, we
read records from a topic, but afterwards, we perform a select Key operation,
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Fig. 1. Window types for aggregation in Kafka Streams.
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Fig. 2. Visualization of the topologies for overlapping and non-overlapping windowed
aggregation. The select key operation is only used in the third benchmark for overlap-
ping windowed aggregation.

where we modify the key, based on the record timestamp. This leads the amount
of possible keys to grow linearly with the size of some number. For example, if it
is desired to process records with the same key for each weekday for the window,
the domain of keys grows by a factor of seven, as each original key gets mapped
to one of seven possible keys, each for one weekday. In the next step, we perform
the group By Key operation and the remaining stream operations analogously
to the third benchmark.

3.3 Relevant Dimensions for Scalability

Stream processing applications can have various characteristics, such as types
and format of input data or the internal structure of the application. Hence,
each of these characteristics constitutes a dimension that potentially impacts
the scalability of the system, resulting in a large degree of variability [1] for the
scalability benchmarking. In the following, we define a set of dimensions that af-
fect the scalability of stream processing engines. This enables us to evaluate with
our benchmarks, whether the system scales with the corresponding dimensions.

3.4 Number of Message Keys

Depending on the stream processing framework, the decision which record be-
longs to which partition of a topic is made with respect to the key. For example,
in Kafka Streams, messages with the same key are always assigned to the same
partition. As in Kafka Streams, the amount of partitions impacts the degree of
parallel processing within a topic, the amount of messages with different keys
must be large enough, such that, the messages can be distributed evenly over all
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partitions in order to exploit the full potential of parallelization. To an instance
that produces messages with the same key we refer as a message generator.

Message Frequency A fundamental workload dimension is the frequency of
the sent messages. We define the message frequency as the number of messages
with the same key that a generator produces within a certain time span. As
a consequence, the number of generators and the message frequency together
determine the total rate with which messages are produced within the system.

Hierarchy Structure For topologies that perform hierarchial aggregation, it
can be analyzed how the application scales with the structure of underlying
hierarchy. On the one hand, the complexity of a hierarchy is affected by its
height and on the other hand by the number of children that each inner node
within the hierarchy has. Therefore, we can analyze how the application scales
with both, the height of the hierarchy and the number of children for individual
nodes. Depending on the interpretation, the hierarchial structure can be closely
related to the number of message keys, e.g., each leaf of the hierarchy can be a
message generator. This also means, that the hierarchy also affects the number
of message keys.

Time Window Structure For topologies that use windowed aggregation, the
structure of the time window, the aggregation is based, on is crucial. This in-
cludes the range of the window and additionally the period how often a new
window is initialized. Depending on these parameters, there might exist mul-
tiple partially overlapping windows at the time which means that records can
belong to more that one window.

3.5 Base Metrics for Scalability

In this section, we define the base metrics that are prerequisite for the definition
of the composed scalability metrics presented in Section 3.6.

Latency The latency for records in a stream processing application lets us assess
whether the processing of data within the system is sufficient. Karimov et. al.[9]
define latency as the difference between the time a message has been processed
completely and the initial time of the event, or the time the system has started
processing the message. However, calculating the latency as described for stateful
operations, e.g. windowed aggregations, yields to distorted results, since some
records are not processed immediately. This can be encountered by defining the
latency for stateful operations as the distance between the time a record has been
processed completely and the maximum event time over all records contained in
the respective stateful context. With these definitions of latency, we can conclude
that our application is able to handle the load efficiently as long as the latency
remains mainly constant.
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Consumer Lag Measuring the latency often is appropriate for assessing the
scalability of an application, as it does not require a deeper understanding of the
examined application. However, the latency can be influenced by other factors,
such as network bottlenecks, buffering, or waiting for the completion of stateful
operations. A more precise approach is to analyze the consumer lag which often
is the main factor affecting the latency in stream processing. During the lifetime
of an application, producers and consumers continuously commit offsets that
represent how many messages they have produced or consumed to a certain
point. Practically, the consumer lag is determined by the number of records
consumers are behind from producers for a topic. This means, the consumer
lag can be determined by the distance between producer and consumer offset.
Naturally, consumers are always be behind producers, since messages can only
be consumed after they are produced. Thus, an increasing consumer lag is an
indication for a lack of the application to cope with the incoming rate of data.

Throughput We define the throughput of an application as the number of
records, a streaming application can process in a fixed amount of time. Together
with the latency and the consumer lag, the throughput is the base for the fol-
lowing definition of our more composed scalability metrics.

3.6 Scalability Metrics

In this section, we present a set of more complex metrics that allow us to measure
the scalability of our application for the different topologies with respect to the
different workload dimensions.

Sustainable Throughput We define the sustainable throughput as the maxi-
mum throughput a stream processing application can handle while the consumer
lag is not increasing significantly. Accordingly, given a threshold for the upward
slope, the sustainable throughput is determined by the maximum throughput
where the increase of the consumer lag is less than the threshold. In practice,
the sustainable throughput is an indication for the point where an application
has to be scaled. This definition of sustainable throughput is similar to the def-
inition from Imai et. al. [7] who define the metric over the amount of data that
accumulates within the stream processing topology.

Appropriate Hierarchy- and Time Window Structure Analogously to
the sustainable throughput, we define metrics that allow to relate the consumer
lag to the superordinate parameters of the topology. Specifically, we define the
appropriate hierarchy structure as the maximum height of the hierarchial struc-
ture where the consumer lag does not increase significantly. The appropriate
hierarchy structure for the number of children per inner node is defined anal-
ogously. Similarly, we define the appropriate time window structure for a time
window with a range r and a period p as the maximum value of p where the
consumer lag does not increase significantly.
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3.7 Workload Definition

Figure 3 gives an overview over the topologies, the associated scalability dimen-
sions, and metrics. Considering which dimension is relevant for each topology
and which metric is suitable for each dimension, we define the workloads for
our benchmarks. Hereby, each benchmark is composed by multiple experiments,
each with different parameters.

For the first benchmark that corresponds to the topology (1) Sink, the rele-
vant scalability dimension are the number of generators and message frequency,
and the corresponding metric is the sustainable throughput. We design the work-
load, such that we have a variable number of generators from 212 to 217 that
each produce records with a constant frequency of 1000 ms. We estimate the
sustainable throughput by the maximum measured throughput of the applica-
tion where the consumer lag does not increase more than 100 records over the
duration of the benchmark execution, meaning that the difference between the
consumer lag at the beginning and the end of the benchmark is less than 100
records.

For the second benchmark that is based on the topology (2) Hierarchial Ag-
gregation, the relevant scalability dimension are the hierarchy structure and the
message frequency, and the relevant metric is the appropriate hierarchy struc-
ture. For our workload, we only consider full hierarchies, meaning that each inner
node within the hierarchy has a total number of 10 children. Consequently, the
total number of leaves of the hierarchy is equal to 10k, where k is the height of the
hierarchy. For each leaf, we create a message generator, meaning that the work-
load defines multiple experiments with 101 to 105 generators, each producing
records with a frequency of 1 record per second.

For the third benchmark based on the topology (3) Non-Overlapping Win-
dowed Aggregation, the most relevant scalability dimension is the number of gen-
erators, as the number of keys determines the size key space that the windowed
aggregation is based on, but also the message frequency can be considered. The
corresponding is the sustainable throughput. Our workload contains different
amounts of generators, from 212 to 217, each generating messages with message
frequencies from 1 record per second to 6000 messages per second. For each of
the amounts of keys, the workload consists of a constant time window with a
range and period of one minute. As a consequence, there always exists exactly
one window at a time.

For the fourth benchmark, based on the topology (4) Overlapping Windowed
Aggregation, the dimension is the time window structure, defined by the range
and period of the window, but as for the previous benchmark, also the message
frequency might be considered. The relevant metric is the sustainable time-
window structure. Our workload defines a time window with a fixed range of
1 minute and a variable period between 1000 ms and 10ms. As a consequence,
the number of overlapping windows is at least 60 and at most 6000. Moreover,
for each incoming message, we select a new key, where the new key depends
on the record timestamp in seconds modular seven, resulting the key space to
increase by the factor of seven. Although it would also be reasonable to consider
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Fig. 3. Overview over the topologies, the associated scalability dimensions, and metrics.

variable numbers of message keys and message frequencies, within the bounds
of this benchmark we set the number of message keys to 10.000 and the message
frequency to 10 records per second.

Similarly to the first benchmark, for the other three benchmarks, we estimate
the appropriate hierarchy- and time window structure, as well as the sustainable
throughput with a threshold of 100 records.

4 Benchmark Execution

Within the bounds of this paper, we only execute our benchmark for the first
topology (1) Sink. Therefore we implement the topology for our first benchmark
as a Kafka Streams application. In this section, we describe the general setup,
environment and the results of the execution.

4.1 Setup

The general setup for our benchmarking approach is visualized in Figure 4. The
setup consists of the implementation of the Sink topology in form of a Kafka
Streams application, horizontally scaled to the number of instances for the re-
spective experiment. Additionally, we have a Workload Generator, based on [5],
which is continuously producing data according to the respective workload def-
inition and publishing this data to a Kafka topic. Subsequently, the data is
processed by the topology. We use the Java Management Extensions (JMX)
which enable the Kafka and Kafka Stream applications to expose their metrics.
As a consequence, we are able to collect the metrics with the time series database
Prometheus1 and visualize them with the monitoring tool Grafana2 in form of
dashboards. As, according to Figure 3, the relevant metric for the first topol-
ogy is the sustainable throughput, we use two JMX metrics3 to determine the
throughput and the average consumer lag across all partitions of a topic.

We analyze the behaviour of our application for 1, 2, 4, 8, and 16 application
instances and we run each of our experiments for 360 seconds, with an additional

1 https://prometheus.io/
2 https://grafana.com/
3 kafka streams stream metrics process rate

kafka consumer consumer fetch manager records lag avg

https://prometheus.io/
https://grafana.com/
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Fig. 4. Setup for the execution of the Benchmarks. All components are deployed on a
4 node Kubernetes cluster.

warmup time of 180 seconds for the Java Virtual Machine (JVM) [6]. Moreover,
we limit the computational resources per instance to 2 GiB of memory, to prevent
the workload generator from becoming a bottleneck. For the replication of our
benchmark, we provide our source code and containerized executables [2].

4.2 Environment

We execute our benchmark on a 4 node Kubernetes cluster where each node is
equipped with two Intel Xeon Gold 6130 (2.1 GHz, 16 Cores, 64 threads) CPUs
with a total of 384 GB RAM. This way, we ensure that our Kafka Streams
application can be scaled properly.

4.3 Results

The results of our benchmark are shown in Figure 5. Each blue point constitutes
the sustainable throughput for respective number of instances. For 1 instance
the sustainable throughput is 213 and for 2, 4 and 8 instances it is 213, 215 and
216. Additionally, the red trend line, computed with linear regression, allows
us to estimate the sustainable throughput for amounts of instances between
our measurements. We could not determine the sustainable throughput for 16
instances, since the workload generator became a bottleneck for 217 messages
per second.

In general, we can see that our Kafka Streams application scales linearly with
the total number of sent messages per second. Although, for 1 instance and 2
instances, the sustainable throughput is the same. This may be caused by the
gap between the individual amounts of messages per second in the different ex-
periments growing too fast. Therefore, we plan to adjust our workload definition
so that we consider a more fine grained series for the amount of messages per
second.
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Fig. 5. The results of our benchmark execution. The blue points constitute the sus-
tainable throughput for individual experiments. The red line represents an estimation
of functional form of the scalability, computed with linear regression.

5 Conclusions and Future Work

In this paper we presented a specification that allows to benchmark stream pro-
cessing frameworks in terms of scalability. Specifically, we designed four bench-
marks that cover common use cases in realistic applications of stream processing.
In addition to the description of respective topologies, this included the defini-
tion scalability dimensions, workloads and suitable metrics for the evaluation.
Further, we implemented one of our benchmarks for the stream processing frame-
work Kafka Streams and we executed on a Kubernetes cluster. Our results show
that our benchmark allows us to assess that the implemented Kafka Streams
application scales linearly with the amount of incoming messages. However, it
may be appropriate to adjust the definition of the workload of the benchmark
in order to achieve more precise information how the application scales with
small numbers of instances. Further, it would be reasonable to design the work-
load generator as a distributed application to allow to produce much larger
workloads without the generator becoming a bottleneck. This way, it would be
possible to analyze the scalability for more than 8 instances. For the future, we
plan to implement and execute the remaining three benchmarks also for Kafka
Streams, in order to evaluate how the framework scales for more complex stream
processing topologies. For this, the general architecture of our setup, using JMX
in combination with Prometheus and Grafana can be used as a basis.
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13. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements
of real-time stream processing. SIGMOD Rec. 34(4), 42–47 (2005).
https://doi.org/10.1145/1107499.1107504

https://doi.org/10.1109/ICPPW.2016.42
https://doi.org/10.1109/ICFC.2019.00024
https://doi.org/10.1145/2668930.2688820
https://doi.org/10.1109/CCGRID.2017.105
https://doi.org/10.1109/ACCESS.2019.2904730
https://doi.org/10.1109/ICDE.2018.00169
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/3242153.3242155
https://doi.org/10.1145/1107499.1107504

	Scalability Benchmarking of Kafka Streams Applications

