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Spatio-temporal variability of processes across
Antarctic ice-bed–ocean interfaces
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Understanding how the Antarctic ice sheet will respond to global warming relies on knowl-

edge of how it has behaved in the past. The use of numerical models, the only means to

quantitatively predict the future, is hindered by limitations to topographic data both now and

in the past, and in knowledge of how subsurface oceanic, glaciological and hydrological

processes interact. Incorporating the variety and interplay of such processes, operating at

multiple spatio-temporal scales, is critical to modeling the Antarctic’s system evolution and

requires direct observations in challenging locations. As these processes do not observe

disciplinary boundaries neither should our future research.
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The Antarctic Ice Sheet (AIS) is at risk of reaching a tipping
point (critical threshold for irreversible large-scale changes
caused by small perturbations) under the COP21+ 2 °C

atmospheric warming limit1 by around 2030–20502. Once this
threshold is reached, global sea-level rise of several, possibly tens,
of meters on timescales of centuries to millenia becomes
inevitable3,4. Currently, ice-sheet models disagree on the origin
and magnitude of the main processes driving AIS retreat and on
the proportion of its contribution to projected sea-level rise by
2100 and beyond4–6, as well as in the past7,8.

Over the last decade, ocean heat supply to the continental
shelves bordering the Southern Ocean has been shown to be the
main cause of thinning and retreat observed on several floating
Antarctic ice shelves9, with atmospheric temperature rise playing
a relatively minor role. It has been observed and modeled that in
areas where the bed slopes toward the continental interior, ice
shelf thinning can lead to a Marine Ice-Sheet Instability
(MISI)10,11. Both numerical simulations and observations show
that if the buttressing support of the floating ice shelves is
removed from the grounded ice, ice-sheet flow to the ocean
may be enhanced12, leading to accelerated and substantial mass
loss in a few years to a few decades13. Direct measurements of
physical processes and their feedbacks leading to MISI are
difficult to aquire over the spatio-temporal scales of glaciological
changes, however. Alternatively, past evidence, testifying to
repeated rapid retreats of both the East and West components of
the AIS (EAIS and WAIS) over the past 5 million years14, pro-
vides a valuable basis for validation of the physics of numerical
climate and ice-sheet models, allowing calibration between the
past and future in our assessments of ice sheet evolution. As a
consequence, the Intergovernmental Panel on Climate Change
commissioned a special “Oceans and Cryosphere” report to
urgently identify the knowledge gaps concerning the ice–ocean
interactions.

Numerical studies have shown that kilometer to sub-kilometer
spatial resolution is needed to simulate grounding zone migration
of ice shelves and outlet glaciers15, and to calculate the inter-
mittent and highly-localized incursions of oceanic warm waters
across the continental shelf break, partly caused by short-term
mesoscale eddy formation (Fig. 1) and/or tides16. The lack of a
detailed representation of bed morphology beneath grounded and
floating ice, and of seabed morphology across continental shelves,
resolved well enough to properly simulate the essential processes
and interactions, hampers our ability to describe past major
changes17, constrain tipping points and assess rates of previous
and future sea-level changes7 (Fig. 1).

Processes operating in cavities beneath ice shelves impact large-
scale and long-term retreat, or partial collapse, of the AIS (to be
discussed in an upcoming review by Smith et al. in preparation).
The resulting glacio-isostatic adjustment induces feedbacks that
enhance or dampen ice retreat on various spatial and temporal
scales (to be discussed in an upcoming review by Whitehouse
et al., in preparation) (Fig. 1). In this review, we examine: (1) the
importance of subglacial bed morphology and hydrological con-
ditions, as a control on ice-sheet flow (Fig 1a); (2) the way con-
tinental shelf morphology influences AIS dynamics and ice-sheet
sensitivity to ocean forcing (Fig. 1b); and (3) how ocean exchan-
ges, and in particular the oceanic heat supply to AIS margins
(Fig. 1c), operates at a variety of spatial and temporal scales. These
processes take place within the subsurface environment of both
the ice sheet and the ocean, and at the physical interfaces between
them, which necessitates cross-disciplinary research to observe,
measure, and understand them. These three physiographic realms
(subglacial, continental shelf, and ocean) are understudied, yet
critical to forming knowledge of AIS evolution from the deep past
to the future (Fig. 1).

Subglacial water and basal ice-flow processes
Ice-sheet flow is controlled by processes acting at its bed.
Although ice flow can occur slowly by the deformation of ice, it
is sliding over an ice-rock interface or deformation of weak
water-saturated basal sediments that mainly dictates the flux of
ice to the ocean. Sliding of ice sheets is constrained by bed
roughness at a variety of scales from the macro (i.e. bed
topography, Fig. 2d) to the micro-scale18). Basal water, where
present, may lubricate the base of an ice sheet or a glacier,
causing ice flow acceleration19 and enhancing erosion of the
bed18. Depending on bed morphology and conditions, sub-
glacial water is now understood to exist in three ways (Fig. 2b):
(1) subglacial lakes, which are large stores of water existing in
isolated or connected bed depressions; (2) organized channels
that route subglacial water, which may be cut down into the bed
or carved upwards into the overlying ice; and (3) subglacial
aquifers, in which water infiltrates through dilatant sediments
or flows in thin films at the ice bed interface.

Thanks to radio-echo sounding (RES) campaigns, more than
400 subglacial lakes, scattered across the continent, have been
identified to date20,21 (Fig. 2a). Their bright, smooth specular
radio-wave reflections are distinct from those over ice-rock
(Fig. 2c) or ice-sediment interfaces22. Although the heat for the
meltwater that feeds subglacial lakes is not known well, geo-
thermal heat and that developed from basal friction, as well as
pressure melting point decrease from hydrostatic pressure, are the
main factors (Fig. 2d). How water flows beneath the ice sheet is
critical to the dynamics of ice above. The dominant control on
water flow is the basal hydro-potential gradient, which is a
function of ice surface slope, with bed slopes being an order of
magnitude less significant23. As a consequence, water melted
beneath the center of an ice sheet is routed to its margins24,25,

where drainage may occur26,27 over a period of weeks and
months. Hence, there is an association between the fast-flowing
ice streams (and sliding) and the availability of water at their
beds28,29. On longer timescales, groundwater could accumulate in
subglacial aquifers during glaciations30 and be released during
interglacials, when the ice sheet thins and retreats, inducing
further ice flow changes.

Basal motion is a key component of the total velocity solution
for a modeled ice mass, and depends on both macro- and micro-
scale roughness and basal resistance (dragging stresses) of the
bed18 (Fig. 2d). Some ice-sheet models parameterize the sub-
glacial boundary in a way that allows basal drag to evolve in space
and time as a function of meltwater availability and sediment
cohesion31 (Fig. 2d). This formulation is based on a Coulomb-
type flow law32, which allows substrate deformation to be char-
acterized by either a linear response to applied stress, a purely
plastic response, or by exhibiting some intermediate behavior
between these end members. Sliding then depends on effective
pressure and allows basal drag to reduce smoothly to zero, instead
of a step change in basal drag at the floating ice transition33.
Although model comparison studies show that this transition
improves grounding-line tracking, the artificially imposed
smoothing along the grounding line might not be valid
everywhere.

Despite localized high-resolution bed observations for some
areas, the current low spatial resolution of subglacial topography
from BEDMAP234 precludes detailed knowledge of basal water
pathways over most of Antarctica and impedes precise simula-
tions of basal hydrology within ice-sheet models. As micro-scale
roughness is largely unknown, ice-sheet models use satellite
observations of surface velocities in fast-flowing areas to “invert”
for total basal friction, enabling ice stream dynamics to be
simulated35. Continent-wide models have achieved success with
simulations using this and related techniques5,36. Inverting ice
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velocities does not provide explicit information on the basal
hydrology nor on past or future changes in basal conditions.
Consequently, when climate conditions depart too much from
present-day state and lead to substantial expansion or retreat of
the AIS away from its present-day margins, this technique fails.

Hence, there is an urgent need to refine the parameters for basal
hydrologic processes in ice-sheet models. A hydrological scheme
bridging the gap between relatively small-scale geophysically
observed phenomena and their representation in continental-
scale ice flow models has been implemented and tested within the
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Fig. 1 Conceptual and simplified view of the Antarctic polar system. a The state-of-the-art and the knowledge gaps about subglacial hydrology (1),
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Numerical simulations89 suggest that a smaller Weddell Sea continental shelf, as during the mid Miocene (≈ 15Ma) compared to modern, induces a
poleward shift of regional oceanic circulation, and enhances heat transport (CDW/AABW) across the continental shelf edge. The depth and shape of the
continental shelf edge and slope determine where the intrusions of CDW occur. The sub-cavity ocean processes and the glacio-isostatic adjustment will be
discussed in upcoming reviews by Smith et al. (in preparation) and Whitehouse et al. (in preparation). AABW, Antarctic Bottom Water; ACC, Antarctic
Circumpolar Current; ASC, Antarctic Slope Current; CDW, Circumpolar Deep Water; GL, Grounding line; HSSW, High Salinity Shelf Water; mCDW,
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Parallel Ice Sheet Model37. This mass-conservative scheme
includes a subglacial deformable sediment layer combined with a
distributed system of linked, water-filled cavities that open as a
consequence of sliding and close due to the creep of ice over a
range of spatial and timescales. To validate the physics of this
scheme, present-day simulations should predict locations of at
least the larger (> 10 km long) subglacial lakes.

Some conceptual experiments have produced realistic simula-
tions of ice flow over subglacial lakes using simplified geometry 38

or for a limited area domain39. At a continent scale, the
best results will be achieved once high-resolution bed topography,
geothermal heat flux distribution40–42, and the location
and thickness of subglacial sediments are known well. More
direct observations of these are needed to account for hydro-
logical processes and to improve ice-sheet models. A great
utility of RES observations is in the identification and location
of basal water, and mechanisms by which water may flow. RES
methods are incapable of sounding through water, however,
and there is a lack of information beneath suglacial water sur-
faces. This shortfall can be addressed by other methods such as
sonar, gravity inversion, and seismic surveying that may reveal
the thickness and extent of soft water-saturated basal
sediments43,44 (Fig. 2e).

The need for high-resolution subglacial bed topography and
seabed bathymetry is demonstrated by recent work that reveals a
relict hydrological network dating back to the last glaciation and
evidence for grounding line retreat across the Ross Sea shallow
continental shelf45. Cross-cutting relationships between fluvial
channels and grounding zone wedges also show that hydrological
networks evolve through time46,47, as a consequence of glacial
dynamics changes and of erosion of the subglacial bed itself.
Hence, there is much knowledge of modern hydrological pro-
cesses to be gained from the study of paleo ice-sheet beds.
Simulation of robust basal hydrology that incorporates dis-
tributed subglacial lakes and channel networks, localized by
regional- to local-scale bed morphology, calls for flexible models
that replicate transient and/or evolving conditions arising from a
change in shape of the bed due to erosion or deposition, and from
variations in effective pressure resulting from the presence of
basal water. To attain a continental-scale picture of basal
hydrological processes, and to verify current hydrological obser-
vations, spatial gaps that exist in the current subglacial and seabed
morphology must be filled. Robust and accurate past subglacial
bed and seabed morphology reconstructions (e.g., the RAISED
Consortium48) are needed to simulate realistic past basal
hydrology49, and thus ice flow, in order to constrain past AIS
dynamics.

Continental shelf evolution at the ice bed–ocean interfaces
Reconstructions of past subglacial and seabed morphology of
the continental margins of Antarctica represent a challenge for
the paleo-polar community. Multibeam bathymetry45,50 and
seismic stratigraphy51–54 reveal evidence for widespread
past erosional and depositional modifications to the seabed over
the last 34Ma. These data show that sedimentary units deposited
in the Pliocene (5–3Ma) were eroded during late-Pleistocene
glaciations in many places. Despite this evidence, paleo ice-sheet
simulations of key climate intervals commonly use modern sub-
glacial bed topography and seabed bathymetry from BEDMAP55,
BEDMAP234, and IBCSO56 as boundary conditions if no
other paleo-reconstructions are available57. However, inherent
inaccuracies arising from heterogeneous spatial data coverage
(Fig. 3a) introduce uncertainties into numerical simulations
that strive to identify past and future AIS tipping points58.
Paleo-ice-sheet simulations will be improved when robust

reconstructed paleo-bed topography is provided to the modeling
community.

For areas having dense seismic and deep drilling data coverage
(Fig. 3a), sediment backstripping is a powerful technique for
bathymetric reconstructions. Sediment properties and thickness
provide constraints for decompacting accumulated sediments (see
Box 1 below). By successively removing sediment layers, and
by isostatically rebounding the underlying surface and through
consideration of the tectonics, the depth and extent of continental
shelves at times of maximum glacial advance may be inferred. To
reconstruct paleo-depths and continental shelf morphology
between two maximum glacial advances, spatial sediment erosion
has to be quantified. Sediment isopach maps59–61 combined with
seismic stratigraphy and drilling sites are used to trace back the
eroded sediments to their source position62. Uncertainty in those
reconstructions is large and depends on the spatial data coverage.
For some key regions in the Ross Sea52 and Weddell Sea63,
detailed topographic and seabed reconstructions have been
achieved for times of past climate significance. In the case of the
Ross Sea, backstripping and depth calculations for Miocene units
robustly show a change in sedimentary deposition from shallow
and seaward dipping to overdeepened and landward dipping
continental shelves52 (Fig. 3b).

The correct interpretation of backstripping reconstructions
relies on the knowledge of past sedimentological and climatic
history of the continental shelf environments. Marine seismic
sections from the Antarctic Peninsula, Amundsen Sea, Belling-
shausen Sea, Ross Sea, Weddell Sea, Wilkes Land margins, Sab-
rina Coast-Totten Glacier, and Prydz Bay continental margins
(Fig. 3a), correlated to marine cores and geological records since
≈ 34Ma, show an alternation of ice proximal and ice distal, glacial
and interglacial marine facies on the continental shelf with large
channel-levee complexes present in the deeper areas51,61,64–67.
This indicates that the AIS was highly dynamic under temperate
climate conditions of the Oligocene-early Miocene (Fig. 3b green
shade; Box 1, time t1).

By the mid–late Miocene (≈ 14Ma), global climate cooling led
to the expansion of grounded ice and the cold-based area
underneath the AIS65,68, which favored AIS stability, with fluc-
tuation of AIS margins over only a narrow zone on the outer
continental shelf. The formation of trough-mouth fans at the
continental shelf edge and a decreased sedimentation rate on the
rise69 both indicate extensive subglacial sediment erosion and
glacial marine deposition on the outer shelf and upper slope. In
several locations, progradational wedges imaged seismically show
that an expansion of the continental shelves occurred before the
mid-Pliocene (Fig. 3b, pink shade). An aggradation of the shelf
followed with deepening of the landward slope (Fig. 3b, blue
shade; Box 1, time t2). Concomitant deposition of sediment drifts
indicates that the Antarctic Slope Current (ASC, Fig. 1) actively
contributed to the maintenance of channel levees that were
shaped mainly by local turbidity currents in the deeper areas of
the pan-Antarctic continental margin70,71.

The dynamic geological history of the AIS margins clearly
demonstrates how past continental shelf morphologies differed
from the modern one. However, a continent-wide paleotopo-
graphic reconstruction, partly achieved using backstripping, exists
for just one important climate interval, so far, at ≈ 33.8–33.5
Ma57,62,66. The time of the reconstruction is for the presumed
onset of continental glaciation at the Eocene-Oligocene Transi-
tion (EOT). Other climate transitions of specific interest for
paleogeographic reconstructions include the mid-Miocene (≈ 14
Ma), mid-Pliocene (≈ 3.3 Ma), and some of the late Pleistocene
super interglacials (e.g., MIS 31 ≈ 1.1 Ma, MIS 11 ≈424 ka, MIS
5 ≈128 ka) or glacials (e.g., Last Glacial Maximum, LGM ≈ 21 ka).
These times, marked in some cases by a substantial retreat of the
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AIS, may yield insights that allow the cryosphere community to
identify upper and lower bounds for past WAIS and EAIS tipping
points that may be surpassed in the future. This objective creates
an impetus to develop Antarctic bathymetry/bed topography
reconstructions for these selected intervals.

To achieve pan-Antarctic paleobathymetric reconstructions of
these key periods, and reduce uncertainties in basal morphology,
precise age and environmental information (e.g., past ice prox-
imal versus distal lithological deposits, paleo-water depth,
and eustatic sea level), paleo-landscape, and identification of pan-
Antarctic seismic horizons of regional extent, will be required.
Some regional maps of key Cenozoic horizons and sequences
have recently been published54,59–61,63,72, however, the paucity of
stratigraphic constraints hinders the comprehensive pan-
Antarctic correlation of known horizons and pan-Antarctic
bathymetric reconstructions. The drilling expeditions by the
International Ocean Discovery Program scheduled in 2018–2020
will greatly expand knowledge of the WAIS margin (Fig. 3a).

Additional geophysical and drilling campaigns will be neces-
sary to fill gaps in circum-Antarctic coverage and provide pan-
Antarctic past boundary conditions to ice-sheet models. Recent
numerical studies17,57,73 highlight the large spread in simulated
ice volumes and extents produced by the uncertainties, or the lack
of definition, of past bed morphologies. For example, simulations
of AIS dynamics across the EOT using a maximum, mostly
emergent, topography lead to larger ice volume and extent than
when using a minimum, more subdued topography. Finally, the

variations in bed over time likely had consequences for the AIS
response to atmospheric and ocean forcing. When tested in ice-
sheet simulations, AIS sensitivity to changes in ocean temperature
increases along with a gradual deepening of the continental
shelves. This is because the area of ice shelves that is exposed to
ocean heat increases with a deepening of the bathymetry74.

Interactions between bathymetry and open-ocean circulation
The role of ocean heat supply to AIS margins is a key aspect of
ice-sheet vulnerability to global warming. Nowadays, oceanic
measurements show how subsurface water masses enter into
floating ice-shelf cavities inducing melting from below9,79. Lim-
ited geological evidence for such processes exists, documenting
grounded ice sheet retreat as ocean temperatures have risen80.
However, the mechanisms, spatio-temporal scales, and magnitude
of ocean heat and salt transport onto and across the shallow
Antarctic continental margins, and into marine embayments,
remain poorly understood. Several factors complicate the inter-
action of warm ocean waters and ice shelves as follows: (1) the
geometry and draft of the ice-shelf base; (2) water properties; (3)
circulation in the sub-shelf cavity (to be discussed in upcoming
reviews by Smith et al. in preparation); and (4) the connection to
water masses outside of the cavity (Fig. 1 and focus of the present
section). As in the case of subglacial hydrology and ice-sheet
dynamics, bed morphology exerts a fundamental control upon
each of these factors81 and must have done so in the geological
past. In particular, bathymetry modulates Southern Ocean heat

Box 1 Backstripping technique

Paleobathymetry of a continental margin can be calculated using backstripping techniques75 that restore tectonic subsidence, decompact sediment, and
remove water load for a given time. The backstripping procedure consists of stripping off stratigraphic units in sequence from the youngest to the
oldest, calculating the decompaction of remaining underlying sedimentary units, and isostatic rebound after removal of upper sedimentary units, at each
step. The depth at the time of sediment burial (tpd, t1, or t0) is restored for each horizon (red and yellow), deposited during the post-rift history (t0). The
paleo-depth calculation takes into account the sedimentary units age (tpd, t1, or t0) and thickness (S), water (ρw), sediment (ρs), and mantle (ρm)
density, paleo-water depth (Wd), and eustatic sea-level changes relative to present day (ΔSL). Isostatic rebound, caused by removal of sediment units
and of water load, is usually calculated with either local (no rigidity and effective elastic thickness Te= 0) or flexural (Te > 0) isostasy.

Sediment decompaction is calculated considering the exponential decay of porosity (ϕ) with depth, for each sediment type. Glacial environments
undergo an additional local sediment overcompaction due to the advance of grounding ice over the sediments, accounted for using the physical
properties of sediments measured at drill sites (Fig. 3a) and extrapolated laterally as representative of marine seismic facies76. In those calculations,
lithospheric rigidity and Te are often set to fixed values for an entire area, although those variables may exhibit strong lateral variations (e.g., Te =
30–60 km in the Ross Sea77). In the case of rifted provinces, such as West Antarctica, an additional correction accounts for the subsidence caused by
mantle cooling (Tm) or convection78. Using the age of rifting, the time of post-rift sedimentation, and a crustal stretching factor, thermal subsidence
(TS) is determined. Tectonic structures active during the burial history can be considered when restoring the paleo-depths. In glacial environments, a
final correction for glacio-isostasy is applied to the backstripping maps to account for both the eustatic and regional sea-level changes that result from
the growth or decay of an ice sheet. Finally, cross comparisons between restored paleo-depths, seismic facies (e.g., grounding zone wedges) and
lithofacies from drill sites are crucial to validate the backstripping applied to the sedimentary units. In fact, the interpretation relies on a number of
parameters and physical simplifications that approximate water, sediments, lithosphere, and mantle rheological properties and behavior52.
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transport to the Antarctic continental slopes and shelves over the
following three main spatial and temporal scales (Fig. 4).

Large-scale ocean pathway geometries. The Antarctic Cir-
cumpolar Current (ACC) position is, to a great extent, con-
strained by the bathymetry of the ocean basins and gateways, and
by the topography of the continental landmasses that affects the
position of the local maximum of the Westerly winds82. The long-
term bathymetric evolution of the basins that accommodate cir-
cumpolar circulation is adequately known and reveals that the
gross circumpolar circulation systems within the Southern Ocean
basins were established in the Eocene/Oligocene Epoch (≈ 40–25
Ma) with the opening of the Tasmanian Gateway and the

deepening of Drake Passage83. Climate simulations of the EOT
have shown that the opening of the gateways did not substantially
change the moisture supply to the AIS enough to explain its
complete glaciation84, but the gateway opening did contribute to
a large-scale cooling, leading to the gradual expansion of ice
sheets85.

Although the mean position of the ACC is controlled by long-
term changes in ocean gateways, its strength and vigor depend
upon the strength and relative position of the Westerly winds, in
turn determined by the mean climate state. In general, a warmer
climate is associated with a southward shift and strengthening of
the Westerly winds86, leading to a more vigorous ACC, enhanced
advection and volume of Circumpolar Deep Water (CDW), and
strong-bottom Ekman transport and vice versa under cold
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Fig. 4 Schematics of bathymetric control on open-ocean circulation. Impact of long-term continental shelf expansion on the Southern Ocean high-latitude
circulation in the Weddell Sea during the mid-Miocene a, during the late-Pleistocene b, and under modern-like climate conditions. During mid-Miocene (a),
high-latitude ocean circulation is shifted southward due to the smaller continental shelf break63 compared with the modern one (b). Westerly winds are
almost aligned with ACC, which strengthens the Gyre circulation and amplifies the inflow of CDW and outflow of AABW89 across the shelf break, also
favored by stronger Easterly winds. At glacial/interglacial timescale, the incursions of CDW on the continental shelf are controlled by the depth and
morphology of the continental slope and break97,117. During glacial periods c, with low atmospheric CO2 (< 200 p.p.m.), the AIS expands and the Westerly
winds shift northward. Ice-sheet advance on the continental shelf inhibits oceanic circulation, which limits the incursions of CDW118. During ice-sheet
retreat from the continental shelf edge, shallow-shelf ocean circulation is restored. Model simulations of super interglacials suggest that Westerly and
Easterly winds are strengthened and are shifted polewards compared to their modern position d. This enhances incursions of CDW on the continental
shelf, increasing the heat supply to the AIS grounding line, and promoting the formation and export of relatively fresh AABW94. However, depending on the
depth of the continental shelf break and the strength of the Easterly winds modulated by atmospheric teleconnections, CDW may or may not intrude on
the continental shelf, despite warm conditions
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climate conditions82. An intensification and poleward shift
of near-surface ocean winds, attributed to positive Southern
Annular Mode-like trends (atmospheric teleconnection)
is projected for warmer climates by most climate models by
2100 86. However, Coupled Model Intercomparison Project
Phase 587 (CMIP) and Paleo-modeling Intercomparison Project
phase 388 (PMIP) reveal a large spread in simulated strength of
the ACC among models, suggesting that the position of the
Westerly winds in climate simulations is model-dependent. This
is of consequence, because heat transport to southern latitudes is
in part regulated by the strength of the ACC.

Position of continental shelf break. In models, the location of
the continental shelf break determines the position of regional
oceanic circulation systems such as the Weddell Sea and Ross Sea
gyres (Fig. 4a, b). The models reveal how ocean flow under dif-
ferent climate conditions (present, glacial, Pliocene, and Miocene)
and continental shelf extents is affected by topographic steering
(Fig. 4). The ocean flow controls the amount of heat and salt, as
well as nutrients, transferred from open ocean to the continental
shelves89. Coupled atmosphere–ocean model simulations produce
a more vigorous Weddell Sea gyre, with a southward shift from its
current location, for times in the mid-Miocene (≈ 14–17Ma)
when the continental shelf break was located more southerly
(Fig. 5a) than today (Fig. 5b). When this happens, heat transport
onto and out from the Antarctic continental shelf is enhanced,
with stronger Antarctic Bottom Water (AABW) formation.
Independent paleoceanographic data suggest that AABW was the

dominant source of global deep water until about 12Ma90. Then,
as the continental margin prograded northward close to its
modern position, the model simulations show that AABW for-
mation weakened. In late Miocene simulations, when a modern
ice sheet is imposed, the simulated strength of the AABW inflow
in the Atlantic Ocean is strongly modulated by the ice-sheet
height that affect the winds and hydrography89,91. In such cases,
the location of the continental shelf break is of minor importance
for the ocean circulation (Fig. 5c).

Changes in ocean circulation on shorter timescales thereafter
resulted from orbital effects, atmospheric CO2 forcing and sea-ice
cover change. The degree of local bathymetric control upon ocean
circulation is strongly dependent on the mean climate state.
Furthermore, during the last deglaciation and the Pliocene warm
periods, paleoceanographic data point to increased upwelling of
CDW and incursion onto the continental shelf on suborbital
timescales80,92,93 (Fig. 4d). If sea-ice cover is absent or reduced
over the Antarctic continental shelves, freshening of the sea
surface, along with strong Easterlies, facilitates upwelling of
relatively warm CDW by increasing southward Ekman trans-
port94, consistent with simulated mid-Pliocene ocean dynamics
(Fig. 5d). During glacials, the subsurface ocean circulation cannot
reach the continental shelf break (Fig. 5e) because of the
topographic steering of the flow, and also because of the ice-
sheet expansion that reaches almost the shelf edge (Fig. 4c). Due
to strong winds and enhanced sea-ice formation during glacials
relative to pre-industrial conditions (Fig. 5f), a pronounced
formation of relatively cold and salty AABW is detected95.
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velocities (cm s−1) at a depth of 420m (averaged core depth of CDW) for: amid Miocene (mid-MIO)89, for modern continental shelf break location, small
AIS extent and atmospheric CO2 concentration of 450 ppm representing 17–15Ma73. b Same as for a, but with a smaller continental shelf break63 than in a.
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which is of minor importance). Bottom row: simulated mean ocean states for key periods of the Plio/Pleistocene. dMid-Pliocene simulation (mid-PLIO, ≈ 3
Ma) with Pliocene bathymetry, an almost ice-free West AIS and atmospheric CO2 concentration of 405 p.p.m.119. e LGM (≈ 21 ka) with LGM bathymetry,
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Morphology and curvature of continental slope. The depth of
the continental shelf break and its position with respect to wind
systems, as well as the steepness and curvature of the slope, lead
to enhanced vertical dynamics and consequent exchange
between warm CDW and newly formed AABW96. At a local
scale, the heat and salt exchange across the shelf break does not
occur continuously in time and space. On the one hand, incur-
sions of CDW are controlled by the depth and the curvature of
the continental shelf break97, as well as by the concavity or
convexity of the isobaths along the slope, as, e.g., with the pre-
sence of incised sub-marine canyons98, which locally favor
upwelling of warm water when cold water sinks downslope. On
the other hand, the intensity and position of the Easterlies
enhance the strength of the ASC geostrophic current, which
might inhibit the upwelling and incursions of CDW across the
continental shelf break and the outflow of AABW downslope96.
Episodically, when Easterly winds weaken and bottom water
accumulates on the continental shelf, overflow occurs and allows
for the inflow of CDW. The main circulation path is also
modulated at regional scale by mesoscale eddy activity. Those
slope processes are essential to the AABW formation; however,
according to model grid resolution, the steepness and morphol-
ogy of the continental slope can be misrepresented. As a con-
sequence, models might not capture adequately the overflow of
AABW from the shelf across the shelf break and downslope, and
the subsequent strongly baroclinic inflow of CDW.

High-resolution bathymetry and accurate paleobathymetric
reconstructions are clearly needed to properly capture kilometer-
scale oceanic processes leading to heat and salt exchange at the
shelf break99. The lack of resolved bathymetry in models creates
an incorrect heat transport across the continental shelf and
incorrect sub-shelf melting, which in turn might induce an
incorrect grounding line responses. However, this is a challenge,
because high-resolution simulations cannot be integrated over the
millennial timescales that are needed to account for long-term

heat transport at global and regional scale. In the absence of pan-
Antarctic high-resolution coupled ice-sheet-ocean models, we
must learn about the AIS response to ocean warming from stand-
alone circum-Antarctic99 or regional ocean implementations
(such as the Weddell Sea100 or the Ross Sea101), or from
physically based sub-shelf melting parameterizations in stand-
alone ice-sheet models102. Those implementations are never-
theless useful to investigate how, under warmer than present
mean climate states, ice sheets display threshold behavior in
landward-deepening subglacial basins in response to relatively
short-lived high-intensity ocean heat supply103,104.

A unified model of Antarctic processes from past to future
This review provides insights into processes operating at the
interfaces between the ice sheet, its bed, the ocean and the con-
tinental margins around Antarctica (Fig. 1), all of which have
been identified as central to research questions posed by the
Scientific Committee on Antarctic Research (SCAR) Horizon
Scan105. It highlights the processes least understood, poorly
investigated or not implemented in models, that are understood
to operate in a connected manner (Fig. 6). Atmospheric and solid
Earth processes may also come into play. For example, an
interplay between long-term faulting and shorter term differential
erosion49,106 may influence the ice flow and lead to formation of
pinning areas that have a stabilizing effect on the ice shelves, and
therefore on the ice sheet, during both advance and retreat across
the continental shelf. The regional and local morphology of the
shelf break (interplay between curvature of the slope, as well as
concavity and convexity of the isobaths) regulates the long-term
and short-term heat/salt (AABW outflow and CDW inflow) and
carbon/nutrients transfer across the shelf break and the ice-shelf
cavities. The review also draws attention to the short-term
interactions between ocean circulation in the ice-shelf cavities and
ice-sheet dynamics across the grounding zone, which are seldom
observed and largely unknown in Antarctica. These interactions
potentially induce MISI. Although those processes may not
operate on policy-relevant timescales, the ability to predict the
AIS response to ocean warming and freshening, including the
surpassing of tipping point(s) and contribution to global mean
sea level, relies on advances in our understanding of interrelated
processes and the feedbacks spanning the three realms in the past,
present and future.

Due to the lack of integrated observations of the AIS basal
processes and ocean circulation, there is little direct knowledge of
the precise range of temporal and spatial scales of interactions
between these realms. The knowledge gap has consequences for
climate and ice-sheet model development, and experimental
design strategies, because observations are needed to validate
those recently developed or to develop new parameterizations of
ocean–ice-sheet interactions107. High spatial and temporal reso-
lution bed data are needed for models that simulate ocean cir-
culation, including mesoscale eddy transport, basal hydrology,
and marine-based ice-sheet dynamics, at the present-day margins
of the ice sheet. Such data are also required to identify regions of
Antarctica where the grounding line may migrate under atmo-
spheric and ocean warming.

To quantify AIS contribution to past, present and future global
mean sea-level variations, paleo-polar-change and contemporary
polar-change communities must converge toward the same
objective, which is to identify precursor signals to MISI or AIS
tipping points, with substantiated timescales. Investigating the AIS
sensitivity to climate changes, whether it is in the past, ongoing, or
projected, requires the study of the grounding line response to a
variety of external perturbations, such as sea-level rise, atmo-
spheric and oceanic warming, local to regional wind effects
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(katabatic winds and polynyas), sub-shelf circulation changes
and subglacial hydrology influences (Fig. 1). Timescales of
grounding line response to ice-sheet advance, MISI, or ice-sheet
retreat may span several thousands of years to a few years or
centuries. Conversely, ice-sheet response to atmospheric or oceanic
warming and circulation changes can span centuries or millennia
(e.g., shift in position or strength of atmospheric cells, amount of
deep water formation) down to seasonal/decadal timescales (e.g.,
teleconnections, sea-ice extent and volume, and sea surface tem-
perature inter-hemispheric meridional and zonal gradients). The
spatial framework for MISI and for grounding line advance or
retreat is regional to local, whereas atmospheric or ocean circula-
tion and heat transport changes are affected by processes that act
both at the local scale and regional to global scales.

One of the major challenges for the polar community to
surmount is the representation of the interplay of long-term,

large-scale processes, and small-scale, short-term processes
from both observational and modeling points of view (Fig. 7).
Processes occurring within the ice-shelf cavities are emblematic
of this interplay, insofar as they span short timescales of hours
(e.g., tides) to decades (e.g., inflow of ocean warm water or
seasonal water masses) on local scales of a few kilometers (e.g.,
grounding lines). Knowledge of the cavity environment is
imprecise because of the scarce spatial and temporal data
coverage for the present-day circum-Antarctic ocean and sub-
shelf circulation, and for geological proxies that inform about
past cavity conditions. However, processes within the cavity
may impact on the overall AIS dynamics and may have long-
term consequences on AIS volume, potentially inducing large-
scale changes in the global climate system and vice versa
(Fig. 7). Therefor, it is paramount to acquire geological proxies
for paleo-oceanic conditions at sufficient temporal and spatial

Spatial scale
(km)

Time scale

1

10

100

1000

10,000

1 10 102 103 104 106

 (yr)

Decadal Centennial Millennial MillionSeasonal

Basal water storage

Continental shelf expansion

AABW formation & CDW intrusions

ACC position/meandering

MISI

Ice sheet fast dynamics

Basal water drainage 

Ocean meridional circulation

Regional circulation models
1 to 20 km

Ice sheet models
< 1 to 40 km

Earth system models
~ 0.5° to > 1°

Sub-shelf melting

Ice sheet slow dynamics

+
 M

od
el

 h
or

iz
on

ta
l r

es
ol

ut
io

n 
–

– 
In

te
gr

at
io

n 
tim

e 
+

Tectonism

GIA

Fig. 7 Spatio-temporal scales of the processes discussed in the present review. Short-term processes occurring at local to regional scales are the ones
potentially triggering MISI. Heat transport from open ocean to the continental shelf also depends on the long-term meridional overturning circulation
(dashed orange line). Similarly, short-term ice sheet dynamics, and their response to local forcing, depend partly on its long-term evolution. The difficulty
for the modeling community resides in capturing the long-term essence of those processes, occurring at continental to global scale and short-term
response occurring at local to regional scales within the same simulation. A trade-off between numerical model horizontal resolution and integration time is
so far still necessary. Note that vertical resolution of numerical models is not mentioned but is essential to capture the continental slope and shelf oceanic
processes (heat, salt and nutrient transport). No atmospheric processes are reported here but they are implicitly contained in the AABW formation, CDW
intrusions, ACC position and meandering (winds effect, polynya opening, etc.) and in ice-sheet short and fast dynamics (surface mass balance processes)
as described in the previous sections. Note that glacio-isostatic adjustment (GIA) and sub-shelf melting are to be discussed in upcoming reviews by Smith
et al. (in preparation) and Whitehouse et al. (in preparation). Tectonism refers to volcanism and crustal deformation of timescales that are beyond the ones
discussed in this review

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04583-0 REVIEW ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2289 | DOI: 10.1038/s41467-018-04583-0 |www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


resolution for direct comparison with present-day
observations108.

High-resolution regional simulations, and long-term simula-
tions of the past, entail significant computational cost, so the
capability of supercomputing centers must increase and/or model
codes must be optimized for computation of essential feedbacks.
The use of unstructured grids in climate and ice-sheet models is a
good example of optimization and is under development. It
allows for nested areas of horizontal mesh refinement to or higher
than 1 km (at least on a regional scale)100,109,110, which will allow
coupled regional or global models to optimize computational
resources, while simulating processes and feedbacks that occur at
a variety of spatial and temporal scales.

To support high-resolution modeling, improved continental
shelf and sub-shelf bathymetry (among other quantities) is a
priority. Updated and new near-shore R-TOPO2 bathymetry for
the circum Antarctica111, the ongoing ROSETTA-Ice Project
(Tinto et al. (in preparation); http://www.ldeo.columbia.edu/res/
pi/rosetta/), whose objective is to retrieve the bathymetry beneath
the Ross Ice Shelf, and forthcoming BEDMAP3, reflect continued
progress in gradually filling this gap. High-resolution modeling
that investigates past AIS-ocean interactions during key intervals,
such as the mid-Miocene (≈ 14Ma), mid-Pliocene (≈ 3Ma), and
some of the late Pleistocene interglacials, is also needed. The
reconstruction of realistic past subglacial bed and seabed
morphologies, which persists as a major challenge, is one of the
major objectives for the SCAR scientific research program Past
Antarctic Ice Sheet dynamics (PAIS) (https://www.scar.org/
science/pais/).

Strong research synergies have developed between the paleo
and present-day observational and modeling communities over
the last two decades. Major community initiatives such as CMIP,
now in phase 6 (present day and future), which includes for the
first time the Ice Sheet Model Intercomparison Project 6 (sea-
level contribution from the Greenland and Antarctic ice
sheets112), the PMIP now in phase 4113, the PLIOcene Model
Intercomparison Project114 (LGM, last interglacial, mid-Holo-
cene, and mid-Pliocene), and the Pliocene Ice Sheet Modeling
Intercomparison Project17, have highlighted the large range
of climate and ice-sheet projections that result from gaps in
the model physics and observations. In developing a regional
polar system model for the past, present, and future, improve-
ments in global climate models are required. This can only be
achieved if present-day and paleo-climate data cover-
age improves, both in the polar areas and in the representation of
the essential teleconnections between the equatorial region and
Antarctica. Our understanding of the Polar system requires
strong synergies among the polar and global climate communities
to investigate interrelated processes and feedbacks in a common
framework aimed at assessing the onset and surpassing of tip-
ping point(s), and global mean sea-level changes in the past,
present and future.
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