
Enabling Dynamic Analysis and
Software Visualization

in Continuous Integration
Platforms

Bachelor’s Thesis

Jan Erik Petersen

April 10, 2020

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
Alexander Krause, M.Sc.





Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 10. April 2020

iii





Abstract

Software development is moving more and more towards a continuous process, where
fast and frequent deployments are a requirement. This is often realized with continuous
integration. At the same time, the complexity of applications is rising. Extensive testing
of applications by hand is expensive and not feasible, especially when using continuous
deployment. Hence the need for automated software analysis arises. Static analysis is well-
proven but being based on the source code alone it can only gain superficial knowledge. To
get desired insights into application runtime behavior, dynamic analysis must be performed,
but that is complex to implement in a fully automated build process, where no user is
available to interact with the system. In this thesis we conceptualize and implement an
approach that offers dynamic analysis for applications from continuous integration builds.
Specifically, it allows developers to visualize each build of the software as a 3D model by
utilizing the ExplorViz live trace visualization software.

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Foundations and Technologies 5
2.1 Application Framework Spring Boot . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Relational Database H2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Web Application Framework Vaadin . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Monitoring Framework Kieker . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 ExplorViz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Container Platform Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1 API client docker-java . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6.2 Docker Compose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Continuous Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7.1 GitHub Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7.2 Travis CI Build Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Spring PetClinic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Approach 15
3.1 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Build Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Docker Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Base Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Build Submission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Running Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4.1 Docker Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Docker Compose Definition . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Container Log Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Implementation 23
4.1 Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 RichList Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



Contents

4.1.4 User Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Build Submission API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Secrets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Submission Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Running Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Running Docker-Compose . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Running the Build Image . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.3 Frontend Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.4 Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Evaluation 33
5.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.3 Execution of the Experiment . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.1 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.2 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Related Work 49

7 Conclusions and Future Work 51
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

viii



Chapter 1

Introduction

Static software analysis (SSA), an established method to find common mistakes in software
and estimate software quality, is based solely on statically analyzing the source code of
the software. As such, it is fast and easy to use and therefore often utilized in automated
Continuous Integration (CI), which is the process of automatically building and testing
individual changes in software, to detect likely bugs. However, with increasingly large
software systems, it becomes important to understand the composition and interaction of
separate software components. Static analysis cannot make any statements about runtime
behavior.

By monitoring a running software that is performing real work, information about
the software’s runtime behavior can be obtained. Kieker is a dynamic analysis tool that
offers such functionality for Java applications by monitoring application behavior at the
JVM-level [van Hoorn et al. 2012]. The collected information is stored in records, which
can be saved for Kieker-based analysis methods or sent to another applications.

The live trace visualization tool ExplorViz1 acts as a consumer of these records to
visualize the software system and its internal communication [Fittkau et al. 2017]. ExplorViz
is designed to be run as a standalone application alongside the monitored software system.

1.1 Motivation

Each time a developer wants to perform dynamic analysis on an application they have
to start ExplorViz, configure Kieker to submit records to that ExplorViz instance, run the
target application manually with Kieker and generate load by some means. Oftentimes
a developer wants to isolate the cause of a performance regression, meaning they have
to go through most steps again for a multitude of versions of the application. This is a
tedious process, hindering widespread adoption of dynamic analysis methods. It also
means ExplorViz cannot be used in automated software builds.

In this thesis, we develop and evaluate ExplorViz as a Service(EaaS), a Software as
a Service-platform (SaaS), which is a distribution model where software is continuously
made available as a hosted service instead of running it on-premise. SaaS applications
have the advantage that multiple customers can be served from a single, shared service
[Sengupta and Roychoudhury 2011]. EaaS collects build artifacts from automated software

1https://www.explorviz.net, accessed 2020-02-22

1

https://www.explorviz.net


1. Introduction

builds. Users can navigate through these builds and start ExplorViz instances for specific
builds they want to visualize at any time.

This makes dynamic analysis more feasible and allows for quick insights into runtime
behavior of an application, without having to manually load-test the application every time
analysis is desired.

1.2 Goals

The primary objective of this thesis is to enable developers to make use of dynamic analysis
in continuous integration builds, specifically to visualize the software using ExplorViz. This
means having to overcome the problem that ExplorViz is a live inspection tool that can only
visualize applications running at the same time. This objective is fulfilled by developing a
server software that fits the requirements defined hereafter.

G1: Service to Launch ExplorViz On-Demand

G1.1: Collect Build Artifacts

Automated builds must be able to submit build artifacts to the server where they are stored
so users can analyze them at any time. The submissions must include a means to generate
load on the software so interesting analysis can be performed. The interface to submit
builds must be designed in a way that it is possible to use it from a most commonly used
build environments. Build artifacts must be stored permanently in a way that uses disk
space efficiently.

G1.2: Start ExplorViz Instances from Web Interface

The server must offer a web-based user interface to browse through submitted build
artifacts. Users can choose to dynamically analyze any build from the list at any time. Upon
starting a build the server should automatically launch an instance of ExplorViz, then run
the application and load generation and finally provide the user with an address to access
the ExplorViz live visualization on.

G2: Submit Builds from Continuous Integration

G2.1: GitHub Actions

GitHub Actions is a workflow automation service recently launched on the code hosting
platform GitHub. It should be possible to send build artifacts to an ExplorViz as a Service
server from this service in a streamlined way. Therefore we need to develop a tool that

2



1.3. Document Structure

automates packaging the build artifact and uploading it to the server while only needing
minimal configuration from the developer.

G2.2: Script for Other CI Services

The aforementioned tool should be reusable for a wide range of CI services. This includes
self-hosted CI servers and public continuous integration services, which are of high
importance for many projects who might be unable to afford a build server or lack the
necessary time or knowledge to maintain it. The solution should specifically work with
Travis CI, a public continuous integration service with widespread use in open source
projects.

G3: Evaluation

A sample application and build procedure showcasing the developed software must be
put together, which includes load generation for the application and submitting builds
to the server. We present a general usage scenario for the software and test its resource
consumption. We will evaluate how issue-tolerant the system is and how well errors can
be diagnosed by deliberately injecting faults into the process in a number of different
scenarios.

1.3 Document Structure

After this introduction, we begin by introducing the technology and software used in this
thesis in Chapter 2 and explaining their purpose and use. Thereafter Chapter 3 covers the
approach how the aforementioned goals will be accomplished. In Chapter 4 we cover the
technical implementation of the approach in depth. We then evaluate this implementation
and discuss the results in Chapter 5. After we look at related work in Chapter 6 we draw a
conclusion and discuss possible future work in Chapter 7.

3





Chapter 2

Foundations and Technologies

2.1 Application Framework Spring Boot

Spring Boot1 is an application framework for Java, built on top of the Spring framework.
Spring Boot simplifies Spring configuration by letting developers use Java annotations
to configure the framework instead of separate XML files. Spring is one of the biggest
frameworks for application development in the Java ecosystem.

Spring makes use of the Inversion-of-Control (IoC) pattern to streamline application de-
velopment. Through individually selectable modules many commonly needed components
for application development can be used.

We use Spring Boot as framework when developing the ExplorViz as a Service ap-
plication server. We use the dependency injection (DI) built into Spring, a technique to
supply all dependencies to a class that it needs to perform its task. Furthermore we make
use of Spring Data JPA, a module that builds on top of Jakarta Persistence (formerly Java
Persistence API, JPA) to provide automated implementations of so-called repositories that
allow to query for relational data as Java objects. The data that we store includes users,
projects and metadata of builds.

JPA by itself is only a set of interface definitions. Hibernate2 is an object-relational
mapping (ORM) framework implementing JPA that Spring Data JPA uses by default.
Hibernate maps between Java objects and tables in relational databases, by automatically
generating the SQL code to query and update entries in the database.

For web applications specifically, Spring offers the Web model-view-controller (MVC)
framework3. It allows for writing RESTful APIs by mapping URLs to methods in a classes
marked as controller. Such controllers are used to implement the build submission API.
Furthermore Spring Security is used as it provides necessary authentication and other
security-related functionality like password hashing.

1https://spring.io/projects/spring-boot, accessed 2020-02-22
2https://hibernate.org/, accessed 2020-03-05
3https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html, accessed 2020-03-05

5

https://spring.io/projects/spring-boot
https://hibernate.org/
https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/mvc.html


2. Foundations and Technologies

2.2 Relational Database H2

H24 is a relational database written entirely in Java. Like many databases, it uses the
well-known SQL language for queries. In-memory databases like H2 can be embedded into
applications and profit from having no I/O overhead. This has lead to a widespread use of
such database systems [Soares and Preguiça 2018].

We use H2 to persist our application data, by using it as the storage for Spring Data
JPA. Therefore we don’t need to run a separate database server, simplifying deployment.
Benchmarks5 carried out by H2 developers conclude that it faster than a separated SQL-
server like MySQL, making it a good choice to save resources.

2.3 Web Application Framework Vaadin

Vaadin6 is a UI framework for building web interfaces in Java. Vaadin applications are
single-page applications (SPA), a modern approach to building web applications where the
page isn’t reloaded completely every time the user navigates to another page, but instead
only the changed contents are transmitted between the server and the browser, in order to
decrease loading times and give the application a more native feel.

We use Vaadin to create the web interface of the server, where users can manage their
projects, look at the list of collected build artifacts and start visualizations.

As shown in Figure 2.1, UI views are composed entirely from Java code, in a similar
manner to Javas GUI framework Swing. Each component, like a button or a text-field, is
a Java object. Likewise, event listeners for frontend interactions are written as server-side
lambdas with Vaadin handling all of the synchronization between frontend and backend.

Vaadin simplifies development by only having to work on a code base when introducing
new features or making changes. That also means validation logic doesn’t have to be
duplicated in both frontend and backend code, leading to less bugs. This makes Vaadin an
ideal choice for a bachelor’s thesis, removing the need to adopt a frontend framework in
addition to the backend. Vaadin also integrates well with the dependency injection and
request routing of Spring by processing all paths that aren’t registered to any Spring MVC
controller.

On the frontend side, Vaadin components translate into functional, reusable web
components. This removes the need to write any frontend code, with the exception of
stylesheets to adjust sizing and layout of the components.

4https://www.h2database.com/html/main.html, accessed 2020-03-05
5https://www.h2database.com/html/performance.html, accessed 2020-03-05
6https://vaadin.com/, accessed 2020-02-22

6

https://www.h2database.com/html/main.html
https://www.h2database.com/html/performance.html
https://vaadin.com/


2.4. Monitoring Framework Kieker

Figure 2.1. Building views from individual components in Java code

2.4 Monitoring Framework Kieker

Kieker7 is a tool to monitor the runtime behavior of running software. It uses monitoring
probes instrumenting the software to generate monitoring records. These records can be
persisted or transferred to external applications, which in turn can use the contained
information to perform dynamic analysis on the monitored application. Applications
include performance evaluation, problem localization and reverse engineering [van Hoorn
et al. 2012].

Kieker installs monitoring probes into the application using aspect-oriented program-
ming frameworks. Which probes are to be installed and which classes are covered is
configured by the developer in a file called aop.xml. Additionally, Kieker reads a key-value
configuration file kieker.monitoring.properties, containing metadata and the writer con-
figuration. The writer is responsible for processing the generated monitoring probes, e.g.
by writing them into a file or sending them to another program over the network [Kieker
Project 2013].

Kieker is used to generate monitoring records of the application in question and send
them to ExplorViz.

7http://kieker-monitoring.net/, accessed 2020-02-22

7

http://kieker-monitoring.net/


2. Foundations and Technologies

2.5 ExplorViz

ExplorViz8 is an application to create software landscapes visualizations from Kieker
monitoring records. It uses a layered approach, allowing a user to observe the software
system from an overview level (Figure 2.2) down to the application level (Figure 2.3). It
consumes the monitoring records generated by Kieker and generates a visualization of the
software, remotely resembling a city [Fittkau et al. 2017].

Figure 2.2. Landscape view in ExplorViz

Since its inception, ExplorViz has gone through significant changes and, as a research
project, has been used and advanced by many researchers. To better support this develop-
ment style, ExplorViz has been rewritten in a microservice-based approach (see Figure 2.4).
This approach simplifies extending the software and allows for higher flexibility in adapting
to different usage scenarios [Zirkelbach et al. 2019].

To compose these microservice into a full ExplorViz instance, Docker Compose9 is used,
running each microservice in its own Docker container. ExplorViz extensions are separated
microservices and can be enabled by adding them to the docker-compose.yml file. ExplorViz
visualization are presented in a web interface that can be accessed through a regular web
browser, but require the presence of a 3D graphics adapter on the client.

ExplorViz is used to visualize the applications and provide the dynamic analysis
capabilities.

8https://www.explorviz.net/, accessed 2020-02-22
9https://docs.docker.com/compose/, accessed 2020-02-22

8

https://www.explorviz.net/
https://docs.docker.com/compose/


2.6. Container Platform Docker

Figure 2.3. Application view in ExplorViz

2.6 Container Platform Docker

Docker10 is a tool to simplify application deployment. Applications are executed in con-
tainers, isolated from the rest of the system, bringing their own execution environment
[Rad et al. 2017], which is a stripped-down version of an operating system, including only
the parts necessary for the system to run in a container and for the application to function
properly. By controlling the entire environment of the application, the developer can make
sure the application works the same for every user and doesn’t have to invest as much time
in testing different system configurations.

Docker provides an API to control all container-related tasks like loading images,
starting new containers In theory, the use of Docker also opens up the future possibility of
using remote machines to deploy both ExplorViz and the tested applications.

10https://www.docker.com/, accessed 2020-02-22

9

https://www.docker.com/


2. Foundations and Technologies

Figure 2.4. Microservice-based architecture of ExplorViz

ExplorViz instances are run inside Docker containers and Docker images are also be
used to package the applications builds for visualization. Furthermore, the ExplorViz as a
Service server itself also runs in a Docker container to simplify its installation, improve
security and make sure it runs correctly on all operating systems.

2.6.1 API client docker-java

To control all of the used Docker containers from within Java, the docker-java11 library is
used, allowing the application server to send commands to the API of the Docker daemon
through a streamlined Java interface.

2.6.2 Docker Compose

Docker Compose12 simplifies management of applications that are composed from multiple
containers. It allows the developer to write a single docker-compose.yml file defining all
containers their application is made of. Then, the docker-compose command-line program
can be used to configure and start all of these containers at once using only a single
command. It does this by communicating with the Docker API to first set up shared

11https://github.com/docker-java/docker-java, accessed 2020-02-22
12https://www.docker.com/, accessed 2020-02-22

10

https://github.com/docker-java/docker-java
https://www.docker.com/


2.7. Continuous Integration

resources for the entire compose file, like networking, then creating and starting each
container individually, just like you can do by hand using the docker command line
program.

This approach is most useful for applications with a microservice architecture like
ExplorViz, as they are made up of many containers that run one microservice each. Further-
more docker-compose.yml files are helpful to system operators by acting as a permanent
storage for the configuration for each container, as Docker by itself only stores container
configuration for as long as the container runs. There is no way to modify the configuration
of a container after it has been started - it needs to be stopped and than started again
providing all options.

Official ExplorViz versions are released by publishing such docker-compose.yml defini-
tion files. These are also be used by the ExplorViz as a Service server to run ExplorViz
instances in the officially supported way. Furthermore Docker Compose is also used to run
the ExplorViz as a Service server itself, as Docker Compose files can act as a way of storing
configuration.

2.7 Continuous Integration

Continuous Integration (CI) is the process of continuously building new versions of a
software whenever a change is made available to the source control system. Oftentimes,
this includes running automated tests to verify the application is working correctly in its
current state. Use of CI in projects helps them release more often and be more confident
about changes not breaking the build. Of the most popular projects on GitHub, 70% make
use of CI and further growth is expected [Hilton et al. 2016].

CI enables developers to immediately identify code changes that break previously
working functionality, called regressions. Making sure the application can be built and is
working at all times is critically important to be able to release a new version whenever
needed. For example, when a security vulnerability is found, a new version of the applica-
tion needs to be released as soon as possible to minimize potential damage caused by the
vulnerability.

Furthermore, it is advisable to analyze the source code and artifacts in continuous
integration builds. Static analysis is already widely used through various tools to track code
quality metrics over time and ultimately improve software quality [Bolduc 2016]. Examples
include CheckStyle, which verifies readability of the source code, or SpotBugs which
attempts to identify common programming issues in the code. It is common to generate
metrics from the number of issues found, as seen in Figure 2.5. Dynamic analysis is a major
point of interest to obtain more detailed metrics by instrumenting the applications runtime
behavior, but is harder to utilize in continuous integration.

ExplorViz as a Service should be usable from a variety of different CI services, of which
two have been selected specifically based on their popularity and the fact they allow the
use of Docker in builds. In the evaluation of our implementation, we are testing with these

11



2. Foundations and Technologies

Figure 2.5. Graphs showing static analysis results over time

services. All of the tools we develop also use continuous integration with static analysis
throughout the development phase to keep track of the software quality as development
progresses.

2.7.1 GitHub Actions

Github Actions13 is a recent addition to GitHubs offerings for open-source projects and
business users. It is a workflow automation service, allowing maintainers to automatically
run tasks in a virtual machine whenever an event happens in the repository. Events include
updated code pushed by a developer, a comment written on an issue or a new pull request
being handed it.

While GitHub Actions can be utilized for many purposes, we only look at it as a CI
service in our evaluation.

2.7.2 Travis CI Build Service

Travis CI14 is a well-known public build service. It is free to use for open source projects.
Travis builds are configured by build scripts placed in the same repository as the code.

13https://github.com/features/actions, accessed 2020-02-22
14https://travis-ci.org/, accessed 2020-02-22

12

https://github.com/features/actions
https://travis-ci.org/


2.8. Spring PetClinic

Build scripts are written in a declarative and procedural way, listing the steps, which can
be thought of as commands, to build and test the software.

Being used by the ExplorViz project itself, it is familiar to ExplorViz developers, making
it a good choice as a reference for a public continuous integration service.

2.8 Spring PetClinic

Spring PetClinic is a sample Spring Boot application implementing a simple website for
an exemplary pet clinic [Spring Project 2020]. It is developed by the Spring project and is
intended to showcase some of the features of the Spring Boot framework. The application
is complex enough to produce interesting visualization in ExplorViz.

We use Spring PetClinic by utilizing it as the application to be visualized in our
evaluation of EaaS. It is an ideal candidate for such a task because it is fully open-source,
so we can modify it for various tests. As a long-standing sample application for Spring
it is well-tested, so we can focus on the evaluation of our own implementation, avoiding
problems that could occur in an untested self-made application.

13





Chapter 3

Approach

3.1 Deployment

Before we discuss how we build the ExplorViz as a Service platform, we want to clarify
our approach for its deployment. Understanding the way EaaS is set up is critical to be
able to follow development choices. Our overall goal is to implement a platform that
continually provides the service of collecting build artifacts and offering visualizations for
builds on-demand.

Therefore, our approach is to use EaaS in a deployment as shown in Figure 3.1, where
EaaS is installed on a server, permanently running to accept build artifacts from continuous
integration services and visualization requests from users.

Figure 3.1. Deployment diagram for ExplorViz as a Service

The server software is written in Java as a Spring Boot application and utilizes a number
of technologies that are explained in-depth in the following chapters. The software is
deployed on the server inside a Docker container. This has the advantage that we can
be sure our server will run everywhere Docker is available, without the need to install
dependencies or handle operating system compatibility. We also use a Docker Compose
file that our server can be started from.

15



3. Approach

3.2 Build Packaging

One of our main goals is to open the possibility of performing dynamic analysis on a build
artifact that was build in a continuous integration environment at any point in time, even
long after they were built and even if the application has undergone significant changes in
the meantime. To visualize the build artifacts, they need to be run alongside an instance
of ExplorViz. This presents a problem, because applications have dependencies and may
require that their runtime environment is set up in a specific way to function properly.
Recreating such an environment manually whenever we want to visualize a build is tedious
and error-prone, as we cannot cover all parameters of the environment.

3.2.1 Docker Images

Our solution is to package build artifacts in Docker images, which include the entire
operating system environment. This means that in the CI build, after we have produced the
artifact in question, we build a Docker image from a developer-supplied Dockerfile. This
file must be kept updated by the developer as the applications environment requirements
change. As a result, for each build there will always be a compatible environment to run
the application in.

Kieker Monitoring To visualize an application in ExplorViz, it is instrumented with the
Kieker monitoring tool to produce monitoring records and write them to a target location.
Therefore we need a compatible version of Kieker when running visualizations. The weaver
configuration aop.xml to specify the classes that should be instrumented and which probes
will be installed must be provided by the application developer as it cannot be inferred
automatically. Furthermore Kieker reads a kieker.monitoring.properties configuration file
where some metadata like the applications name and the record writer is configured.

Handling all of this complexity just-in-time when we are about to start a visualization
is not a feasible approach as it would require that we modify or extend images for
each run. We instead solve these requirements by including a copy of Kieker and the
configuration files inside the image. Most importantly, Kiekers writer must point to the
ExplorViz monitoring ingress that will be present during the visualization. The correct
writer configuration results from the way we run ExplorViz instances and is discussed in
Section 3.4.

Load Generation In dynamic analysis we look at the runtime behavior of an application. If
the application is idling, no interesting analysis can be performed. Therefore, the application
must be made to perform some work while it is instrumented. For example, the developer
could choose to add a special mode where it keeps itself busy. The more general approach,
which applies to web servers like Spring applications, is to include a load generation script
inside the same image that will continually perform requests to keep the application busy.

16



3.2. Build Packaging

While running both the application and load generation processes in the same container
is bad practice in Docker, where the rule of thumb is to use one container per application,
it is acceptable in this case — the containers are only run temporarily for the purpose of
analysis and do not need to meet the standards of a production deployment. Allowing
applications to consist of multiple Docker images would drastically increase the complexity
of our approach.

3.2.2 Base Images

On the server, we permanently keep the images of all builds, so we can use them later. The
images have to contain all of the dependencies necessary for the application. Therefore
they need to include an entire operating system and a Java runtime environment and as a
result become much larger than the build artifact alone.

We remedy this issue by utilizing Dockers layer caching. Each Dockerfile command,
like COPY, creates a new layer that only contains the changes compared to the previous
layer. Layers that contain exactly the same files get the same ID. This way they can be
reused among multiple images. Only once the files start to differ do the layers diverge into
separate paths. This can be seen in Figure 3.2. The main build artifact, called application.jar
is different between two builds, but all previous layers, including base images loaded with
the FROM command, are exactly the same and do not take up additional space for the second
image. If this form of deduplication is used correctly, significant storage savings can be
achieved [Zhao et al. 2019].

To make sure all builds share as many layers as possible and in turn minimize the
storage requirement each build image adds, we introduce a common base image that
already incorporates most of the tools and steps that build images need. Specifically, the
images are based on OpenJDK images to provide a Java runtime environment and they
contain a copy of Kieker and the kieker.monitoring.properties configuration file.

This way, the individual build images can share almost all of the files in common layers.
Only the applications own files remain in separate layers, which lowers the effective size
down to the build artifact itself again, eliminating the overhead our Docker packaging
approach has. Another advantage of the base images is that it becomes easier for developers
to build their images, because they don’t need to set up Kieker themselves.

3.2.3 Build Submission

To run the build images on our EaaS server later we need to be have them available on the
Docker host we run visualizations from. We accomplish this by saving the images in the
local Docker image library. In our approach we utilize Dockers save and load commands to
transmit the Docker image built in the CI environment to the EaaS server. Once an image
is built, Docker keeps it in its local image library. The save command allows exporting an
image with all of its layers into a single archive file, while load imports the image from
such an archive.

17



3. Approach

Figure 3.2. Schematic showcasing how Docker images make use of layers.

Submission API Our server should offer a simple API1 over the HTTP protocol to receive
new builds. HTTP is widespread and therefore tools to send data over this protocol are
readily available. From the CI environment we need to be able to communicate with the
Internet, so we can send the exported archive file to the servers API. The server then saves
it into its Docker image library and adds a build entry to its database.

Along with the archive the API should accept some metadata. Because projects might
begin utilizing ExplorViz as a Service only after some time into their development, build
numbers won’t be synchronized if EaaS assigns numbers on its own. This leads to a
confusing disconnect between the CI service and the EaaS interface. It is solved by letting
the client set a name when submitting builds, which EaaS will use when displaying the

1Application programming interface

18



3.3. User Interface

build in its interface.

Access Control To prevent attackers from uploading their own images to the server, the
API implements a form of access control with tokens. All requests to the API must contain
a secret string. If it is missing or incorrect, the server discards the request and won’t add
the new build.

Users should be able to generate these secret tokens in the EaaS interface. They must be
available in the CI build process so they can be specified when sending the upload request
to EaaS. To not expose the tokens to the public, especially when dealing with open source
projects, where a secret value cannot be hidden inside the public source code repository,
the CI services GitHub Actions and Travis CI offer to store Secrets, which are variables that
are only made available to the commands running in the build.

3.3 User Interface

To let users access the list of collected builds, we integrate a web interface into our
application based on the Vaadin web framework. This allows us to create a single-page
application from reusable components, without having to implement the frontend ourselves.
Instead, it is automatically generated by Vaadin during the build process of the server and
included inside the servers executable Jar file.

Structure The web interface will provide basic functionality for a multi-project platform.
Multiple users can use the platform and create their own projects. There is a page to display
all projects that are hosted on the server.

When builds are submitted to the server they are added to a specific project. That way,
completely independent projects can be hosted on the same EaaS instance. Each project
has its own list of builds. Each build entry in turn features a button to start visualizing it
in ExplorViz.

Access Control While some information, like the list of the saved builds including their
names and upload date, will be publicly readable by anyone who opens the web interface,
most actions require being logged in with a user account. Upon first start, the server creates
a user with known default credentials that the administrator can use to gain full access to
the web interface.

To allow multiple users to access the system without all sharing the same account with
administrator rights, we implement a rudimentary permission system. Administrators
can create new users and determine which permissions they have. For example, one such
permission is Can create new projects. With the Can manage users permission, users become
administrators and can themselves create new users. Users can change their password

19



3. Approach

when they’re logged in and additionally administrators can reset the passwords of other
users.

The owner of a project can create, display and delete secrets for the build submission
API. He also has the option to hide the project from the public altogether, meaning only
himself and users with the Can see hidden projects permission can access the project. Users
with the Can manage all projects can modify these settings for all project, not only for the
ones they own.

3.4 Running Visualizations

The central task of the EaaS server is to run visualizations with ExplorViz for the builds it
collected whenever a user requests to do so. That means we need a running instance of
ExplorViz and then start the Docker image corresponding to the requested build to let it
send monitoring records to ExplorViz. No manual setup of ExplorViz should be necessary.
The server should handle starting ExplorViz automatically without user involvement. Our
approach how we deal with ExplorViz instances is lined out in the following chapters.

3.4.1 Docker Integration

Both to run ExplorViz and to store build images as described in Section 3.2.3, the EaaS server
needs administrative access to Docker. Each Docker daemon provides an API, which we
call an endpoint, that programs can use to perform Docker commands. We will utilize this
API from our server with the docker-java library. This library can be configured to contact
a specific endpoint. However, to keep our approach simple for now, we let the library fall
back to obtaining the configuration for a single endpoint from environment variables, most
notably DOCKER_HOST, which defaults to the local Docker daemon communication socket
/var/run/docker.sock. This socket is also made available inside the servers container by
our Docker Compose file, where server operators can also adjust the variables in case they
want to use another endpoint.

Furthermore, to run ExplorViz from the Docker Compose files the project releases, we
need an implementation of Docker Compose. Unfortunately no such implementation exists
as a Java library, so we resort to including the docker-compose command line utility in the
Docker image of our server and using it as an external process. As the environment is
passed through to child processes, this also works with our approach to configure the
endpoint through environment variables.

3.4.2 Docker Compose Definition

In the upstream Docker Compose files, ExplorViz exposes a number of ports to the host
system. The most important ones that are required is the port to access the web frontend

20



3.4. Running Visualizations

on and the port where monitoring records from the instrumented application are accepted
that are used to generate the visualization.

Our approach is to start a new, separate instance of ExplorViz for every single visu-
alization started by the user. ExplorViz adopted a microservice architecture, where the
software is split into many smaller application, so-called microservices [Zirkelbach et al.
2019]. Several of them expose some ports to accept data from the outside world. If we
started multiple visualizations from the same Docker Compose file, the used ports would
collide and the instance would fail to start. Hence we start with the docker-compose.yml

files provided by ExplorViz but modify them according to our needs. Additionally, some
options are replaced with placeholder strings that are replaced on-the-fly when starting
new visualizations. That way, a single docker-compose.yml file effectively acts as a template
we can run any number of instances from.

� Remove the discovery-service that does not apply for our use-case.

� Remove all volumes because we do not want to keep persistent data.

� Make the ExplorViz frontend port a variable that we can choose dynamically for each
instance.

� Do not expose any other ports to avoid collisions.

� Add a unique container label to all services. This is required for the Traefik2 reverse
proxy utilized by ExplorViz — without it, Traefik is unable to differentiate different
instances and the frontend won’t be accessible

Docker Compose assigns each instance a project name. Usually, this is the name of the
current working directory the user is running the docker-compose command from. However,
as our Docker Compose files are generated on-the-fly and never saved to disk, we generate
a unique project name ourself to avoid name collisions.

Running the Build Image Lastly, the build image of the application we wish to visualize
has to be run as well. The difficulty herein is to configure the Kieker monitoring tool to send
records to the right ExplorViz instance. Our solution is to not expose the ExplorViz analysis
port to the host at all and instead run the build image from the same Docker Compose
file. To do so we just add another service to the docker-compose.yml file and specify the
image as a variable, which will be filled with the image ID of the build the users wants to
visualize.

From within the Docker Compose environment the address of the ExplorViz analysis
port is always the same. The hostname is the name of the ExplorViz analysis microservice,
analysis-service, and the port is the default of 10133. Therefore we can set the Kieker
writer configuration to this address in our base images and do not need to adjust it when
running the visualization.

2https://docs.traefik.io/, accessed 2020-04-09

21

https://docs.traefik.io/


3. Approach

Frontend Port Selection For each instance, we need to select a unique, unoccupied port
where the user can access the ExplorViz frontend corresponding to the build he chose to
run. We implement this by letting the server operator configure a range of ports that the
EaaS server may assign for this purpose and use the individual ports in a round-robin
fashion.

ExplorViz Versions Due to our approach, we can trivially add another feature to our
server. Since Docker Compose files are generated on-the-fly, we can let the user choose the
version of ExplorViz they want to run. This is accomplished by keeping several different
template files in our severs resources. This way older ExplorViz versions can be kept to
support visualizing older builds, even if newer ExplorViz versions become incompatible to
the Kieker version used in older images. This approach also provides us with the option to
extend the selection of dynamic analysis programs in the future.

3.4.3 Container Log Output

To debug errors it can be helpful to see the log output of the containers involved. Most
importantly, if a visualization shows unexpected results the user should be able to obtain a
log output of their application to diagnose the issue. Logs from containers run through
Docker Compose are obtained in real-time with the docker-compose logs -f command.

In our interface, the user can choose to receive either the output of his application
only, or the combined log of all containers belonging to the visualization instance. Upon
starting the log, the server will start the logs command and forward all output. This log
output should appear in the users browser in real-time as it is produced by the application.
The WebSocket protocol is widely supported in browsers and provides bidirectional
communication, making it a good choice for real-time communication [Qigang and Sun
2012].

22



Chapter 4

Implementation

In this chapter, we present selected key parts of our implementation. The primary compo-
nent is the ExplorViz as a Service server, written in Java using Spring Boot and Vaadin. As
part of our implementation, smaller side projects were developed and together, they form
the ExplorViz as a Service platform. Everything we developed is included in the provided
data package [Petersen 2020].

4.1 Web Interface

The interface is built on top of Vaadin. This means all views are composed from Java objects
on the server side, each representing a component or container.

We realize that with each additional tool incorporated into the build workflow, the
complexity of the CI process rises and leads to the problem that relevant information for
developers is scattered across a multitude of systems [Brandtner et al. 2014]. Therefore we
concentrate on implementing a lightweight and simple web interface presenting the core
functionality necessary in a clear way.

4.1.1 RichList Component

The RichList is one of the core components of the web interface and is reused for many
purposes. It can be seen in Figure 4.1. A RichList only contains objects a specific class. In
the constructor, a converter function has to be given to convert between these objects and
UI components displayed in each list entry. Then, the view can add and remove objects to
the list with the addEntry and removeEntry method, even dynamically.

4.1.2 Layout

Upon opening the interface and logging in, the user is presented with the view seen in
Figure 4.2. To the left is a sidebar menu that can be toggled with the drawer button in top
navigation bar, which was introduced to save space on smaller screens. From the sidebar
new projects can be created. It also lists all project the currently logged in user owns.

When opening a project, the sidebar is changed to a project-specific one looking like
Figure 4.3, where all pages of the project are listed. The Secrets and Settings menu entries
are only listed if the user is permitted to manage the project.

23



4. Implementation

Figure 4.1. A RichList component on the Explore page listing the available projects on the server.

Figure 4.2. Screenshot of the EaaS web interface. To the left is a sidebar menu where all views can be
reached from.

On the Builds page, all collected builds are listed and new visualizations can be started.
This procedure is explained in-depth in Section 4.3. The Instances page is like the Builds
page, but only lists the builds that have an instance running at the moment.

24



4.1. Web Interface

Figure 4.3. Different layout for project views.

4.1.3 Authentication

Due to the nature of Vaadin making single-page applications, page navigations do not
trigger a regular HTTP request to a different path for each view, but are instead accom-
plished with internal requests that bypass the filtering mechanism of Spring Security.
Therefore, the authentication checks have to be performed in the views. For this purpose,
views implement the BeforeEnterObserver interface. When a user tries to enter a view, a
BeforeEnterEvent is fired before the view is renderer and we can check the permissions of
the user to make sure he is allowed to enter the view. Otherwise we redirect him to the
login page or display an Access Denied error page.

Additionally, for some more coarse-grained permission checks we make use of the
Secured annotation on some views provided by Spring Security. These annotations by
themself have no effect on Vaadin views. We implement a UIEnterAuthenticator that is
registered to every new Vaadin UI that is created on the server. By doing this, we also get
BeforeEnterEvents, but in a central location for every view. Then we check if the view about
to be entered has the Secured annotation and make the user is allowed in.

Login When users want to run visualization or create a project, they need to login.
The login procedure looks like Figure 4.4. To avoid having to configure e-mailing, a self-
service password reset functionality has not been implemented. Instead, administrators

25



4. Implementation

can generate new passwords for each user.

Figure 4.4. Screenshot of the login view.

Users can change their password from the Change password page as seen in Figure 4.5.
This view has numerous checks to make sure the old password is correct, the new and
repeated passwords match and the new password is long enough as per the configuration.
The default minimum password length is 8 and can be raised if the administrator deems it
necessary.

Figure 4.5. Screenshot of the change password view.

26



4.2. Build Submission API

4.1.4 User Management

The user management can be reached from the Users tab in the sidebar. This menu entry is
only visible if the user has the necessary permission to manage users. The user management
looks like Figure 4.6. Notably, the currently logged admin is unable to delete or disable his
own account. This makes sure that the user management is never left in a state where no
administrator exists anymore.

Figure 4.6. Screenshot of the user management view.

4.2 Build Submission API

To accept build submissions, we implement a HTTP API in our application by using
the Spring RestController annotation. In classes with this annotation, we can use the
RequestMapping annotation. Java methods annotated with this will be called for incoming
HTTP requests matching the path and method specified in the annotation. The signature
for our submission API implementation is seen in Listing 4.1. We decided to use form data
for input and we output a single plain text string instead of JSON, in order to keep the API
as simple as possible.

Listing 4.1. Signature of the HTTP method to submit new builds.

1 @RequestMapping(path = "/{project}/builds", method = RequestMethod.POST,

produces = "text/plain")

27



4. Implementation

2 public String postProjectBuild(@RequestHeader(value = SECRET_HEADER, required

= false) String secret,

3 @PathVariable("project") long projectId,

4 @RequestParam("name") String name,

5 @RequestParam("imageID") String imageID,

6 @RequestParam("image") MultipartFile image) {

4.2.1 Secrets

To manage the secrets accepted by the build submission API, we introduce a Secrets view to
the project layout. As seen in Figure 4.7, here the owner of the project can add new secrets
and view or delete existing ones. One notable feature is the display of the date when the
secret was last used. This way the owner can decide whether the secret is still needed.

Figure 4.7. Screenshot of the Secrets view for a project.

4.2.2 Submission Script

To simplify the use of EaaS from a CI build, we developed a script, submission/submit-eaas.sh
that can be copied to the application repository and run during the build workflow. The
script is included in Listing 4.2. We have chosen to implement it in shell code rather than a
more sophisticated script language, because a shell is available in every Linux environment
and dealing with external processes is a task shell scripts perform very well.

Listing 4.2. Shell script to simplify submission of Build images to EaaS.

1 #!/bin/sh

2 set -eu

28



4.3. Running Visualizations

3
4 hash "docker" 2>/dev/null || { echo "Command docker missing" >&2; exit 1; }

5 hash "curl" 2>/dev/null || { echo "Command curl missing" >&2; exit 1; }

6
7 echo "Building image" >&2

8 IMAGE_ID="$(docker build -q -f "${IMAGE_DOCKERFILE:-Dockerfile}" "${IMAGE_CONTEXT

:-.}")"

9 echo "Built image: $IMAGE_ID" >&2

10
11 echo "Uploading to EaaS with name: $BUILD_NAME" >&2

12 BUILD_ID="$(docker image save "$IMAGE_ID" | curl -fsS -X POST -H "X-EaaS-Secret:

$EAAS_SECRET" \

13 -F "name=$BUILD_NAME" -F "imageID=$IMAGE_ID" -F "image=@-" "$EAAS_URL/api/v1

/projects/$EAAS_PROJECT/builds")"

14 echo "This build has ID #$BUILD_ID" >&2

15
16 # Optional; if your EaaS instance runs on the same machine as you CI builds then

you MUST comment this out

17 echo "Removing image locally" >&2

18 docker image rm "$IMAGE_ID"

Line 4-5 test for the presence of required commands. If they’re missing, the script aborts
with an error message. In line 8 we build the Docker image for EaaS. The user is expected
to specify where the Dockerfile is located through the IMAGE_DOCKERFILE variable. By using
the -q option of Docker, we do not get any informational output but only the image ID
instead.

This image ID is then used in line 12 to export the image and submit it to the server
with curl. The headers and parameters we submit match the definition of the controller
method in our server. The required environment variables can be specified in the build
file corresponding to the CI service in question or through secrets stored by the CI service.
This is further looked into in our evaluation in Section 5.3.3.

In line 18 we remove the image from the local Docker image library, to not permanently
use up storage space unnecessarily, in case the build is not running in an ephemeral
environment that is created for each build. If the build and EaaS run on the same server
however, this will delete the only copy of the image and therefore the line must be removed
manually in this case.

4.3 Running Visualizations

When the user presses the Run button on a build, a new visualization is started. Great care
has been taken in our implementation to separate all different aspects of this process into

29



4. Implementation

respective services. In Figure 4.8 we see a sequence diagram showing the communication
between the components that we developed for this purpose.

Figure 4.8. Sequence diagram of the execution flow when a new visualization is started by a user.

ExplorVizManager keeps track of all running ExplorViz instances and is also used to start
and stop instances. Each instance of ExplorViz gets a corresponding ExplorVizInstance object
that tracks some metadata, like the port number that was assigned to it and a unique name
that is used as the Docker Compose project name and the container label for Traefik. The
instance class also reads the docker-compose.yml template file for the requested ExplorViz
version and replaces the placeholder variables we introduced in our approach.

DockerComposeToolImplementation is a stateless adapter to execute Docker Compose
commands. ExplorVizInstance is a child class of DockerComposeDefinition, which provides
a method to get the generated docker-compose.yml contents. Instead of saving this file to
the disk, we let docker-compose read the file from standard input and write the compose
definition to the processes standard input directly from Java code.

4.3.1 Running Docker-Compose

Docker Compose commands are performed through the docker-compose command line
utility by running it in a background thread. This functionality is facilitated by a class
BackgroundProcess. It offers a method to forcefully stop the process — for example after
an operation took to long and is believed to have crashed. The main functionality is

30



4.3. Running Visualizations

the startListening method, which takes a ProcessListener interface. Implementation of this
interface receive real-time notifications about console output printed by the process and
are informed when the process exits.

For the up and down commands used to start and stop ExplorViz instances respectively,
this interface is utilized to capture potential error messages. The class is also used to abort
an operation if it took to long.

4.3.2 Running the Build Image

As explained in our approach, the build image is run from the same Docker Compose
definition simply by adding it to our template. This is achieved by adding a new service
definition for the application as shown in Listing 4.3.

Listing 4.3. Addition to ExplorViz docker-compise.yml file.

1 application:

2 image: "%APPLICATION_IMAGE%"

3 depends_on:

4 - analysis-service

The placeholder %APPLICATION_IMAGE% variable is replaced with the Docker image ID
of the corresponding build. The depends_on directive makes sure the analysis-service of
ExplorViz is started before the visualized application runs. This is necessary because the
Kieker writer expects that the port is available as soon as it starts, crashing if it is not yet
available.

4.3.3 Frontend Access

Figure 4.9. Build entry when an instance of the build is running.

When the visualization started successfully, users see a different set of controls for
the build entry as seen in Figure 4.9. Upon clicking Open, the address as generated from
the accessUrlTemplate in the servers configuration and the frontend port assigned to this

31



4. Implementation

instance is opened in the users browser. The built-in user authentication of ExplorViz is
still in place. The default credentials of ExplorViz must be used to log in.

4.3.4 Logs

To fulfill the task of presenting a live output of the logs in the clients browser, a functionality
of Vaadin is leveraged called the Push annotation. Annotating a view with this lets Vaadin
automatically build a WebSocket connection between the frontend and the server that
stays connected even after the view is built and the corresponding JVM thread dies. Other
background threads can then modify the users view by accessing the corresponding UI
object.

For this task BackgroundProcess is used as well. We start the docker-compose logs -f

command in the background to obtain log output from the container. Furthermore we
introduce a component LogDialog that implements ProcessListener and can therefore listen
to output from the BackgroundThread. The log dialog is opened when the user presses
one of the Logs buttons in the InstanceControls component as seen in Figure 4.9 and
looks like Figure 4.10. When it receives a notification about new console output from the
BackgroundProcess, an HTML <pre> element is appended to the dialog contents with the
new text.

Figure 4.10. Application log output dialog updated live for a running instance.

32



Chapter 5

Evaluation

The last goal we have defined in Section 1.2 is to evaluate our implementation. This is
done by setting up CI pipelines with a sample application in which we try to make use of
ExplorViz as a Service. First, we lay down the goals we want to achieve. Then, we describe
how we execute the evaluation and specify our environment. We conduct a feasibility
experiment and present the results afterwards.

5.1 Goals

Our goal is to evaluate the functionality and serviceability of our implementation. Primarily,
we want to verify if our solution works with the CI services we originally set to support
in Section 1.2. We want to find out how ExplorViz as a Service can be utilized from these
services and how to configure the build scripts for them. Furthermore we measure the
resource usage of the visualizations and discuss the robustness of the implementation in
regards to the debuggability of error conditions.

5.2 Methodology

We assess ExplorViz as a Service by running a feasibility experiment. This involves running
an instance of it and observing its behavior in a number of scenarios. These scenarios have
been selected to reflect (a) normal usage scenarios and (b) scenarios where we artificially
introduce fault conditions that are likely to occur in real-world applications at some point.
Based on the outcome of the scenarios we discuss how easily errors can be identified and
corrected and in turn make conclusions about the serviceability of the software.

5.3 Experiment

For the experiment we run an instance of EaaS, and then in each scenario attempt to submit
a build artifact to it from a CI build and visualize the application in ExplorViz. Because we
need an application to test with, we fork1 the Spring PetClinic sample application [Spring

1Copying a source code repository to modify it independently

33



5. Evaluation

Project 2020] as EaaS-demo-application [Petersen 2020] and modify it to our needs. For the
duration of this experiment, this project is hosted in a public GitHub repository. This is
necessary so we can use it from the public CI services we want to test with.

In Section 5.3.1 we specify the environment in which we run the server. Afterwards we
describe the scenarios in Section 5.3.2 and then go into detail how they were carried out in
Section 5.3.3.

5.3.1 Experimental Setup

To evaluate our implementation in an environment as close to real-world usage as possible,
we deploy EaaS on a dedicated server hosted in a data center. The server is equipped as
shown in Table 5.1. Additionally, no swap space is configured. That way, when we run out
of memory, the operating system has no choice but to forcefully kill one of the running
processes, instead of slowing down while moving memory pages into the swap. These
specifications are important as a reference point when we discuss the resource usage of the
software in Section 5.4. The versions of the software used can be obtained from Table 5.2.

Table 5.1. Components of the server used to run ExplorViz as a Service in the evaluation.

Component Specification
Virtualization KVM (fully virtualized)
Processor 8 vCores, 2.3 GHz
Memory 16 GB DDR4 ECC
Storage 160 GB SSD (RAID10)
Network 1 Gbit/s

Table 5.2. Software installed on the server for the evaluation.

Software Version
Debian GNU/Linux 10 (buster), x86_64
git 2.20.1
Docker 19.03.7
Docker Compose 1.25.0

ExplorViz as a Service is run in a Docker container. The image is built from the
Dockerfile included in the EaaS-server project directory [Petersen 2020] and the container
is started with docker-compose using the included docker-compose.yml.

The same docker daemon running the EaaS container is used to store build im-
ages and run ExplorViz instances. This is the default configuration specified in the
docker-compose.yml. Since we use a remote server that we access over the Internet we
configure eaas.explorviz.accessUrlTemplate to point to the server. To test the amount of
ExplorViz visualization we can run in parallel we set eaas.explorviz.maxInstances to 100.

34



5.3. Experiment

5.3.2 Scenarios

We run six different scenarios. The first three represent normal usage to evaluate the server
when functioning as intended, the other three model various error conditions that we
expect to occur during prolonged use of the software.

Scenario 1: Use from GitHub Actions

In this scenario, we build our sample application on the GitHub Actions service. We use
the submission script we developed as part of EaaS-server [Petersen 2020] to package and
submit the build artifact to our server. We then verify if the build artifact is visible from the
ExplorViz as a Service web interface. This requires writing a workflow script for GitHub
Actions.

Scenario 2: Use from Travis CI

We repeat the previous scenario, except we try to run the build from the Travis CI service
instead. Trying with different CI services is beneficial, because the environments where
builds are executed differ for each service. Travis CI also uses its own syntax for build
scripts.

Scenario 3: Running Multiple Visualizations

Our implementation allows us run any number of visualization concurrently, bound only
by the configured limit and the capability of the host system. We want to determine how
many visualizations of our sample application the server can handle on the same system.
From the results we derive the resource requirements per ExplorViz instance.

Scenario 4: Visualized Application Fails to Start

It is possible that the docker image submitted to the server is inherently broken and cannot
even start the application. This could happen for a number of reasons, the most likely being
a faulty Dockerfile or entry point script due to human failure. Within this scenario we
deliberately create a non-functional entry point script and observe how our implementation
handles it.

Scenario 5: Visualized Application Crashes

Applications can have bugs that make them crash completely, even after they started
correctly and a visualization is already displayed in the ExplorViz interface. Images that
come with a load generation script continuously keep the application busy. A bug could
crash the application at any time. In this scenario we simulate such a bug by forcefully

35



5. Evaluation

killing the application some time after the visualization started. We want to assess if and
how this issue can be diagnosed.

Scenario 6: Port Assigned for ExplorViz Already Used

ExplorViz as a Service automatically assigns unique port numbers for different ExplorViz
instances. The starting port can be specified in the configuration and it is the responsibility
of the server operator to make sure no port collisions occur, as the server cannot reserve the
ports to itself. We want to know how our implementation handles the case when ExplorViz
fails to start because the port is already in use by another application.

5.3.3 Execution of the Experiment

First, we setup an EaaS instance on the server. We do this by cloning the EaaS-server
repository, changing to the directory that was just created and then running docker build

-t eaas-server:latest -f docker/Dockerfile .. We now have an application image ready
to run ExplorViz as a Service. Before we start an instance, we configure some options by
modifying docker/docker-compose.yml as described in Section 5.3.1. We finally start the
instance with docker-compose -f docker/docker-compose.yml up -d and leave it running
in the background throughout the evaluation. We open the server web interface in the
browser on port 8080 and log in with the default credentials.

Next, we need to write a Dockerfile that will wrap the build artifact of our sample
application together with a load generator into a docker image, which can then be sub-
mitted to ExplorViz as a Service. We use one of the EaaS-base-images as parent image.
Because our application is a Spring Boot application that is packaged as a jar-of-jars2 it
uses a custom ClassLoader. This causes problems with Kiekers monitoring probe inject-
ing. We solve this problem by unpacking the jar and therefore not using the custom
ClassLoader. We make use of the set-kieker-property command to set a directive in the
kieker.monitoring.properties that the base image handles for us automatically. The kieker
properties are explained in the kieker user guide [Kieker Project 2013]. In the end, our
Dockerfile looks like Listing 5.1.

Listing 5.1. Dockerfile to build the EaaS image of our sample application.

1 FROM explorviz/eaas-base:11-jre-alpine

2
3 # We need curl to make HTTP request to put load on the application, unzip to

unpack the jar

4 RUN apk add --no-cache unzip curl

5
6 # Set a nice name to display in ExplorViz

2A jar is an archive of multiple files. Jar-of-jars bundle all of the applications dependencies as jar inside a
bigger jar file.

36



5.3. Experiment

7 RUN set-kieker-property kieker.monitoring.applicationName "Spring PetClinic"

8
9 COPY eaas-image /opt/app/

10 COPY target/spring-petclinic-2.2.0.BUILD-SNAPSHOT.jar /opt/app/

11
12 # Spring Boot uses a jar-of-jars that we need to unpack, otherwise monitoring

probes cannot be installed

13 RUN unzip spring-petclinic-2.2.0.BUILD-SNAPSHOT.jar \

14 && rm spring-petclinic-2.2.0.BUILD-SNAPSHOT.jar

15
16 USER runner

17 CMD ["/opt/app/run.sh"]

Furthermore, we write a script called create-load.sh that uses curl to continuously
send some HTTP requests to our sample applications. This way the application will have
some load which results in a more interesting ExplorViz visualization. A run.sh, shown in
Listing 5.2 is the main command for our container. It first starts the application and then
the load script.

Listing 5.2. Shell script that acts as the main command for our image.

1 #!/bin/sh

2 set -eu

3
4 # Allow analysis-service some time to start

5 sleep 10

6
7 java-with-kieker -cp ".:BOOT-INF/classes/:BOOT-INF/lib/*" org.springframework.

samples.petclinic.PetClinicApplication &

8
9 # Now create some load on the server so we will have an interesting visualization

10 ./create-load.sh

In the following we describe how we perform each scenario in detail.

Scenario 1: Use from GitHub Actions

GitHub Actions workflows are configured by placing a YAML file in the directory .github/workflows/

into the repository. We write a workflow that triggers on the push event and runs the nec-
essary commands to compile the application, build the docker image and upload it to
our instance. The latter steps are carried out by utilizing the submission shell script we
developed. To make it available in the GitHub Actions environment, we upload it into the
repository.

37



5. Evaluation

Because our Dockerfile makes use of the EaaS-base-images, they need to be available in
the GitHub Actions environment. As they are not available from the public DockerHub yet,
we simply clone the repository and build them before building our image. The finished
workflow looks like Listing 5.3.

Listing 5.3. Workflow file to build our sample application on GitHub Actions.

1 name: Build
2 on: [ push ]
3
4 j o b s :
5 bui ld:
6 runs�on: ubuntu�18.04
7 name: Build
8 s teps :
9 - name: Checkout

10 uses: a c t i o n s /checkout@v2
11 - name: Setup Java
12 uses: a c t i o n s /setup�java@v1
13 with:
14 java�vers ion: 8
15 a r c h i t e c t u r e : x64
16
17 - name: Maven Build
18 run: mvn �B package
19
20 # Building EaaS -base - image because it is not on DockerHub yet

21 - name: Checkout EaaS�base�image
22 uses: a c t i o n s /checkout@v2
23 with:
24 r e p o s i t o r y : " ExplorViz /EaaS -base - image "

25 path: "EaaS -base - image "

26 - name: Build EaaS�base�image
27 run: ./ build�a l l . sh
28 working�d i r e c t o r y : EaaS�base�image
29
30 - name: ExplorViz as a S e r v i c e
31 run: ./ submit�eaas . sh
32 env:
33 IMAGE_CONTEXT: .
34 IMAGE_DOCKERFILE: eaas�image/D o c k e r f i l e
35 BUILD_NAME: " Build #${{ github . run_number }}"

36 EAAS_URL: $ { { s e c r e t s .EAAS_URL } }
37 EAAS_PROJECT: $ { { s e c r e t s . EAAS_PROJECT } }
38 EAAS_SECRET: $ { { s e c r e t s . EAAS_SECRET } }

38



5.3. Experiment

Next, we create a new project in the EaaS web interface. In the GitHub repository
settings we create three secrets.

1. EAAS_URL: We set this to the URL we access the web interface on.

2. EAAS_PROJECT: This ID is copied from the Settings page of the EaaS project.

3. EAAS_SECRET: This key is copied from the Secrets page of the EaaS project.

Finally, we create a commit with all of the files. GitHub immediately runs the workflow
after we push the commit to the repository.

Scenario 2: Use from Travis-CI

For this scenario we create another new project in the EaaS web interface. The Travis build
is configured by placing a .travis.yml file in the root directory of the repository, similar to
the GitHub workflow. We perform the same build steps as in the GitHub workflow. Travis
requires requesting Docker explicitly by specifying it as a service. Our final file looks like
Listing 5.4. The remaining three environment variables that specify how to access our EaaS
instance are created as secrets in the repository configuration on Travis CI, with details
from the newly created project.

Listing 5.4. Workflow file to build our sample application on GitHub Actions.

1 language: java
2 d i s t : b i o n i c # Ubuntu 18.04

3 jdk:
4 - openjdk8
5 s e r v i c e s :
6 - docker
7
8 a f t e r _ s c r i p t :
9 - g i t c lone ht tps ://github . com/ExplorViz/EaaS�base�image . g i t

10 - cd EaaS�base�image
11 - ./ build�a l l . sh
12 - cd . .
13 - ./ submit�eaas . sh
14
15 env:
16 g loba l :
17 - IMAGE_CONTEXT="."
18 - IMAGE_DOCKERFILE="eaas - image / Dockerfile "
19 - BUILD_NAME=" Build $TRAVIS_BUILD_NUMBER "

After we push this into the repository and log in on Travis CI we can see the build is
already running.

39



5. Evaluation

Scenario 3: Running Multiple Visualizations

For this scenario, we keep the setup from Scenario 1 and individually push several more
changes to the repository. This way, GitHub builds and in turn pushes a build artifact to
EaaS for each commit. The changes we make are not relevant for this scenario, but they
have to be in the sample applications code in order to produce unique build artifacts. If
two build artifacts were exactly the same, their images might have the same ID and EaaS
would automatically deduplicate them such that no new build is saved to the EaaS project.
We keep pushing changes until we have twenty builds available in EaaS.

Then we start running build visualizations from the web interface. We start them one
after another, each with version 1.5.0 and open the ExplorViz in our local browser. We
login, wait for the landscape to appear, open the application view and close the tab again.
After the memory usage on the server settles, we note down the operating systems total
memory used.

Scenario 4: Visualized Application Fails to Start

We start with the working setup from Scenario 1. This time we push a change to the
entrypoint script of our image that will make the sample application fail to start. This is
done by introducing a misspelling in the name of the main class in line 7 of our run.sh

script, see Listing 5.5.

Listing 5.5. Changes to the Dockerfile of our EaaS-demo-application.

java�with�kieker �cp " . : BOOT�INF/ c l a s s e s /:BOOT�INF/ l i b /*" org .
springframework . samples . p e t c l i n i c . PetClynycApplicat ion &

We push this change to the repository, which is then built automatically by our GitHub
Actions workflow. Afterwards we start the corresponding build in the EaaS web interface.

Scenario 5: Visualized Application Crashes

Again, we start with the working setup from Scenario 1. After we run a working build
in the EaaS interface, we open ExplorViz and log in. When we see the application in the
landscape, we open it and leave it open like that. No, to simulate the application crashing
we purposefully kill it on the server by executing the kill -KILL <PID> command, which
will forcefully exit the application without going through a regular shutdown.

Scenario 6: Port Assigned for ExplorViz Already Used

For this scenario, we can reuse any existing, working build and do not need to make a
change to the repository. Before we start the build however, we start the command nc -l

-p 8800 a network listener on port 8800 by running the command nc -l -6 -p 8800 on the
server to occupy one of the ports in the range that EaaS assigns for ExplorViz instances.

40



5.4. Results and Discussion

Then we start and stop a build visualization until EaaS tries to use the already occupied
port number.

5.4 Results and Discussion

Now we present the results of the scenarios we just executed.

5.4.1 Scenarios

Scenario 1: Use from GitHub Actions

In the Actions tab on our GitHub repository, we can see the build that was triggered by our
commit. Each build step defined in the workflow file has its log output saved. Listing 5.6 is
the log output of the EaaS step, where we can see an unwanted behavior: Several characters
have been replaced by asterisks. This is caused by GitHub automatically censoring secrets
in the log output. Since we have stored the EaaS project ID, which in this case was 2, as a
secret, GitHub removed every occurrence of that digit. This does not affect the functionality
however and is a purely visual issue. It could be fixed by saving the project ID in the
workflow file, instead of using a secret.

Listing 5.6. Log output of the ExplorViz as a Service build step in the GitHub workflow.

1 Run ./ submit�eaas . sh
13 Building image
14 B u i l t image : sha * * * 5 6 : 3 3 d * * * 7 3 0 c6bed6ca * * * 3 5 b7 * * * 6

efe9a900561d10aab88b5b5163fc0a8fe7e58 * * * d340
15 Uploading to EaaS with name : Build #1
16 This bui ld has ID # * * *
17 Removing image l o c a l l y

In the EaaS web interface we can see the build listed with the same image ID, name
and the time it was uploaded, as shown in Figure 5.1

Scenario 2: Use from Travis-CI

In the Travis CI interface we can see the build triggered by the commit we pushed. The job
log contains all commands run during the build, including those we specified in our Travis
build script. The output of the submission script is shown in Listing 5.7. We can find the
corresponding build in the EaaS web interface. On the home page of EaaS, we can now
also see the list of recently uploaded builds, sorted by date, as shown in Figure 5.2.

Listing 5.7. Log output of the ExplorViz as a Service build step in Travis CI.

5495 $ ./ submit�eaas . sh
5496 Building image

41



5. Evaluation

Figure 5.1. A build entry displayed in the EaaS web interface.

5497 B u i l t image : sha256 : 7 3
d9dd12e85d397cc3187f1e9e36c539277a2197929c2fee62cd28b51fdeceea

5498 Uploading to EaaS with name : Build 6
5499 This bui ld has ID #41
5500 Removing image l o c a l l y

Figure 5.2. Home page of ExplorViz as a Service listing the recently uploaded builds across all
projects.

When writing the build script for Travis CI, we had to explicitly request the availability
of Docker in our build. This reveals a problematic requirement for EaaS image creation:

42



5.4. Results and Discussion

Full access to a Docker endpoint is required to build the Docker image for EaaS submission.
Docker might not be available on all CI services. Certain types of continuous integration
run builds inside containers. Letting applications inside the container access the Docker
daemon takes away the security advantage of container-based build environments. This
problem however cannot be fixed with our approach to build packaging.

Scenario 3: Running Multiple Visualizations

Starting with only Docker, EaaS server and standard operating system processes running on
the system, we measure 1185MiB used memory on the system with the free -m command
before executing the scenario.

With each new ExplorViz instance the total memory usage on the system rises. After
starting the visualization, opening it and logging in once, we wait for the memory usage to
stop rising before taking the measurement. As we can see in Figure 5.3, the total memory
usage increases roughly linearly with the number of instances. The demo applications
each use memory in the range of 524MiB to 807MiB, on average 721MiB. The reason for
this large variance is unknown, but we suspect it is a result of the Java garbage collector
making different decisions about running a collection or letting the heap size grow. The
load scripts that are running parallel to the sample application can be neglected, because
their memory usage is around 1MiB each. The memory usage of the EaaS-server instance
is not changing throughout the scenario, which is in line with our expectations. EaaS only
keeps a minimum amount of state about which visualization are running and no actual
data, it merely runs docker-compose commands in the background.

Immediately after starting the seventh visualization, the server becomes unresponsive.
Actions in the EaaS interface time out, and the server console doesn’t respond to commands
anymore. After several minutes, the server starts responding again, and we can see in the
output of the dmesg command shown in Listing 5.8 that the Linux kernel killed one of the
applications because it ran out of memory.

Listing 5.8. Kernel log buffer output showing that the system ran out of memory and killed a java
process to free some up.

[ 7 7 2 6 8 8 2 . 8 6 1 2 5 5 ] Out of memory : K i l l process 6844 ( java ) score 46 or
s a c r i f i c e c h i l d

[ 7 7 2 6 8 8 2 . 8 6 1 5 8 2 ] K i l l e d process 6844 ( java ) t o t a l�vm:8962960kB , anon�r s s
:759116 kB , f i l e�r s s : 0 kB , shmem�r s s : 0 kB

[ 7 7 2 6 8 8 3 . 1 3 4 7 4 7 ] oom_reaper : reaped process 6844 ( java ) , now anon�r s s : 0 kB
, f i l e�r s s : 0 kB , shmem�r s s : 0 kB

We conclude that six instances is the maximum we can run on this server. Total memory
used was measured at 14649MiB for six instances. Subtracting the baseline system memory
usage, we find that all our visualizations use a combined 14649MiB�1185MiB = 13464MiB
of memory, or 13464MiB/6 = 2244MiB on average. Subtracting the memory used by our

43



5. Evaluation

0 1 2 3 4 5 6
0

2,048

4,096

6,144

8,192

10,240

12,288

14,336

16,047

Number of active ExplorViz instances

M
em

or
y

us
ag

e
[M

iB
]

System total used
Sum of demo applications

Figure 5.3. Memory usage of ExplorViz visualizations

sample application, we calculate that all ExplorViz instances use 13464MiB� 4326MiB =
9138MiB in total or 9138MiB/6 = 1523MiB on average.

Because our sample application isn’t particularly complex and the visualization that
ExplorViz generates is fairly simple, we assume that we approach the baseline memory
consumption of an actively used ExplorViz instance very closely. Therefore we postulate a
minimum requirement of 1.5GiB memory per active ExplorViz instance, plus the memory
used by the visualized application.

Scenario 4: Visualized Application Fails to Start

When we run the corresponding build in the EaaS interface, the visualization starts without
any errors. However, when we log in to the ExplorViz instance we do not receive a
landscape even after several minutes of waiting. This means ExplorViz is not receiving any
monitoring records from the application. EaaS offers a way to diagnose application issues:
We can read the log output of the applications Docker container by pressing the Application
Logs on the build entry. We find that we can indeed identify the cause of this problem,
because an explanatory error message was printed to the output, as shown in Listing 5.9.

Listing 5.9. Application log output.

Attaching to eaas�13�66 _ a p p l i c a t i o n _ 1
a p p l i c a t i o n _ 1 | Error : Could not f ind or load main c l a s s org .

springframework . samples . p e t c l i n i c . PetClynycApplicat ion

44



5.4. Results and Discussion

a p p l i c a t i o n _ 1 | Caused by : java . lang . ClassNotFoundException : org .
springframework . samples . p e t c l i n i c . PetClynycApplicat ion

eaas�13�66 _ a p p l i c a t i o n _ 1 e x i t e d with code 7

End of output

Application issues can only be identified this way if they print an error message to the
log. If they don’t, the log output might only show the eaas-XX-YY_application_1 exited

with code Z message, which would require more profound diagnosis and is dependent on
the specific command used for the Docker image.

Scenario 5: Visualized Application Crashes

Shortly after killing the sample application, we can see in ExplorViz that all operations
stopped, as the visualization becomes flat. The timeline at the bottom also drops to 0
requests. Other than that, there is no indication that the application is not running anymore.
If we suspect that the application is dead, we can again check with the Application Logs
function, where in this case we see the output shown in Listing 5.10 at the very bottom.

Listing 5.10. Last lines of the application log output

eaas�14�40 _ a p p l i c a t i o n _ 1 e x i t e d with code 7

End of output

There is no explanation however why the application crashed. This is expected because
we forcefully killed it, not allowing it to print any output. In case of a real crash, an
Exception stack trace is likely printed to the output. In this case we can see that the container
running our application exited. If the application would hang instead of crashing, this
would not be evident from the log.

We conclude that some types of application crashes can be diagnosed easily from EaaS,
but simulating a crash by killing the application simplifies this scenario too much and may
not represent how most crashes occur in the real world.

Scenario 6: Port Assigned for ExplorViz Already Used

When we try to run the build in the EaaS interface, we receive the following error message:
Error starting instance: Operation failed (error 1). See log for more information and
the build won’t show up as a running instance. Therefore, EaaS correctly recognized that
our visualization failed to start and does not present a non-functional link to the user. No-
tably, the error message EaaS presents us with does not provide any details why the launch
failed and instead points to the log. This seems adequate however, because administrative
server access is required to fix the problem anyway.

45



5. Evaluation

When we look into the log output of the docker container running EaaS, we find the
excerpt Listing 5.11, which provides information about the error. It clearly states that the
listen address 0.0.0.0:8800 is already in use. Therefore we conclude that the error output
of EaaS is detailed enough to find the cause of the failure.

Listing 5.11. Last lines of the application log output

2020�03�29 0 6 : 2 0 : 4 4 . 9 4 2 INFO 1 ��� [ io�8080�exec�16] n . e . e . s . explorv iz .
ExplorVizManager : S t a r t i n g i n s t a n c e eaas�0�40 ( # 0 ) on port 8800

2020�03�29 0 6 : 2 0 : 4 4 . 9 4 3 INFO 1 ��� [ io�8080�exec�16] . e . s . d . c .
DockerComposeToolImplementation : Running command : docker�compose ��no
�ans i �p eaas�0�40 �f /dev/s t d i n up �d

Creat ing network " eaas�0�40_ d e f a u l t " with the d e f a u l t dr iver
[ . . . ]
Creat ing eaas�0�40_frontend_1 . . . e r r o r

ERROR: f o r eaas�0�40_frontend_1 Cannot s t a r t s e r v i c e frontend : dr iver
f a i l e d programming e x t e r n a l c o n n e c t i v i t y on endpoint eaas�0�40
_frontend_1 (
c9deb8229af680ce628d957cc55a52d440d15842e774ea7a1ae30722760ef50f ) :
Error s t a r t i n g userland proxy : l i s t e n tcp 0 . 0 . 0 . 0 : 8 8 0 0 : bind : address
already in use

Encountered e r r o r s while br inging up the p r o j e c t .
2020�03�29 0 6 : 2 0 : 5 2 . 4 6 0 ERROR 1 ��� [ io�8080�exec�16] . e . s . d . c .

DockerComposeToolImplementation : docker�compose e x i t e d with e r r o r
code 1

2020�03�29 0 6 : 2 0 : 5 2 . 4 6 9 ERROR 1 ��� [ io�8080�exec�16] n . e . e . s . explorv iz .
ExplorVizManager : Error s t a r t i n g ExplorViz i n s t a n c e

Looking at the list of running Docker container, we notice a mismatch between Docker
and the view EaaS has on the situation. EaaS assumes that the instance isn’t running at all
because the docker-compose up command returned an error. However, all containers except
the frontend container — which failed to start because it binds to the address that is already
in use — are running and cannot be stopped from the EaaS interface. A server operator
has to manually stop the containers, but this isn’t trivially possible. Because the Docker
Compose files are automatically generated by EaaS and never saved to disk, we cannot
use docker-compose to stop the instance. However, we can manually stop and remove all
Docker containers belonging to this instance by executing the command docker ps -filter

name=eaas-0-40-* -aq | xargs docker rm -f. This is not a perfect solution, because other
Docker resources like the network remain. Further improvements might be necessary to
handle partial instance startup failures better and not let dysfunctional Docker resources
stay up permanently.

46



5.4. Results and Discussion

5.4.2 Threats to Validity

Several aspects might threaten the validity of our results.

Virtualized Environment Our scenarios were executed on a KVM server. In such a
virtualized environment, where the operating system doesn’t have dedicated access to
the hardware, our system shares some resources with other systems running on the same
virtualization host. That means performance measurements are impacted by the load other
systems are doing simultaneously. Since memory is a reserved resource in KVM, we believe
that our memory usage measurements in Scenario 3 are correct, but to increase the validity
of our results, the tests should be repeated in several, different environments, including
dedicated hardware.

Inadequate Selection of Scenarios The scenarios designed to test fault-tolerance have
been hand-picked with prior knowledge of implementation details. This might cause a
bias in our selection towards issues that we know our implementation handles gracefully,
instead of issues that are most likely to occur. Therefore, our scenarios might be insufficient
to represent real problems. Furthermore, we only tested for a small amount of error
conditions. These are certainly not enough to cover all aspects of a real-world deployment
of ExplorViz as a Service.

Small-Scale Application Our sample application is a very simple application without
external dependencies and can be run without needing any configuration. This makes
it trivial to package in a Docker image for EaaS submission. Bigger applications may
require access to external services like a database server, which we haven’t considered in
our evaluation, or face additional challenges when packaging them into a Docker image.
Additionally, the applications amount of code is small, resulting in visualization of only a
few components in ExplorViz. While the size of the visualized application is not relevant
to the CI scenarios, it might affect the memory usage of ExplorViz and change our results
of scenario 3. Validity of our results can be increased by trying to setup EaaS for bigger
applications.

47





Chapter 6

Related Work

Dynamic analysis is a topic of high interest. In this section we present related work that
covers the topics of software analysis and continuous integration and compare them to our
approach. As far as we are aware, there are no scientific publications covering software
platforms that keep a history of executable build images with the intent to let developers
analyze every build visually.

[Kupsch et al. 2017] introduce the concept of continuous assurance, whose goal is to
extend the continuous integration process with automated code analysis. For this purpose
they created the Software Assurance Marketplace (SWAMP) platform. Users can upload a
package of their softwares source code and SWAMP will automatically run a variety of
static analysis tools to find issues. SWAMP integrates with both integrated development
environments such as Eclipse and CI tools and can be used as a hosted cloud service or
downloaded to be run locally. This work is very similar to ours, also following the approach
to upload a package to a hosted service, but focuses on running static analysis tools and
combining their results instead of performing dynamic analysis. The authors found that
a key to the successful use of code analysis is to reduce obstacles for the programmers,
which is something that we tried to do with our approach as well.

[Pina and Cadar 2015] research an approach to dynamically analyze software in their
production deployment. This is different from our approach as we visualize builds packaged
in a way specifically made for the purpose of visualization. To do so, they use existing
debugging tools like Valgrind and address sanitizers. These tools incur a large performance
penalty and are therefore not usually applicable for production environments. The authors
propose a solution to reduce the performance overhead by doing partial dynamic analysis
checking, where only part of the execution is analyzed. Their results show that this multi-
version execution approach adds only little overhead and can be feasible for deployments.

[Costin et al. 2016] presents an automated framework that uses dynamic analysis on
firmware images to find security vulnerabilities. This is done by fully emulating the system
to execute the firmware and then leveraging existing static and dynamic analysis tools to
discover vulnerabilities. Their framework is targeted at finding as many issues as possible
across a large number of projects, whereas our approach concentrates more closely on
different versions of the same project. Their results show that dynamic analysis can be
successfully employed to find issues in software.

49



6. Related Work

Apart from publications, there are some notable tools that are relevant to the topic of
dynamic analysis.

SonarQube1 is a platform for continuous inspection of the source code. It tracks software
quality metrics over time and is highly related to our work as it similarly integrates into
the continuous integration process, however it uses static analysis tools to detect issues and
determine the software quality.

A notable mention is InspectIT2 as a direct competitor of ExplorViz. Like ExplorViz, it
is run alongside the application and offers a number of instrumentations like inspecting
SQL Statements and HTTP Requests. Their equivalent to the Kieker monitoring agent is
IspectIT Ocelot, which is used in the same way and fulfills the same fundamental task of
instrumenting the application.

1https://www.sonarqube.org/, accessed 2020-04-10
2https://inspectit.rocks/, accessed 2020-04-10

50

https://www.sonarqube.org/
https://inspectit.rocks/


Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we presented the ExplorViz as a Service platform to run ExplorViz visu-
alization for build artifacts and in turn make it possible to use dynamic analysis and
software visualization for continuous integration. Docker makes up the foundation of our
approach, allowing us to store and run build artifacts long after they were built, without
any environmental constraints. Proceeding to the implementation, the Vaadin framework
enabled us to rapidly develop a rich user interface. To evaluate this implementation, we
conducted a feasibility experiment in which we tested the system in a number of scenarios.
Our results indicate that EaaS as a whole works as we envisioned it, successfully enabling
dynamic analysis in continuous integration builds, but there are shortcomings. The require-
ment of full access to a Docker daemon during the build excludes some CI environments.
Furthermore, our evaluation is unsuitable to determine the practicability of the system in a
production setting over a longer period of time.

7.2 Future Work

In the future, ExplorViz as a Service could become one of the primary ways to run
ExplorViz visualizations. More so, it might make dynamic analysis more popular in
continuous integration. The long-term goal is to make ExplorViz more accessible for a
larger number of projects. We discuss several approaches to make the use of EaaS more
viable.

Scale Using Multiple Docker Endpoints The EaaS server does not take control of the
Docker endpoint configuration for docker-java and docker-compose. Instead, a single end-
point can be configured through environment variables. Therefore, all build images are
stored on a single host system. Because ExplorViz and the build image are run from the
same docker-compose file, all ExplorViz instances also have to run on the same host. As we
have seen in our evaluation, each ExplorViz visualization requires a considerable amount
of resources. The available memory on the host will most likely be the limiting factor for
running more visualizations.

51



7. Conclusions and Future Work

To achieve a higher number of visualizations running in parallel, the server needs
to handle the endpoint configuration and allow server operators to configure multiple
Docker endpoints. We can then distribute ExplorViz instances across multiple hosts to
spread the resource usage evenly and increase the number of concurrent visualizations.
One challenge to this are the build images, which have to be stored on the same host system
they are running from. Several solutions are possible, each with their own drawbacks.
The server could either store new build images on all endpoints or copy build images to
the selected endpoint just before it is needed. The former approach would waste a lot of
storage space, the latter leads to a significant increase in startup-time for visualizations. A
future implementation has to evaluate these approaches and possibly other considerations.

ExplorViz Authentication Backed by EaaS Users Right now, each ExplorViz instance has
its own user management. This is because ExplorViz was developed to be used standalone.
The ExplorViz versions launched by ExplorViz as a Service are completely unmodified
official releases of ExplorViz, which are not aware of EaaS and no integration between the
two exist. New ExplorViz instances are started on-the-fly for each visualization and no
persistent data is kept. This makes the user management built into ExplorViz pointless, as
users are expected to always log in with the default credentials.

By unifying the user management of EaaS and the ExplorViz instances, we could imple-
ment authentication for ExplorViz. Then users would need to enter their EaaS credentials
when opening a visualization and we could block access if they don’t have the rights to ac-
cess the corresponding project. We could possibly implement this behavior by replacing the
user-service of ExplorViz. This microservice handles all login- and authentication-related
requests in ExplorViz. By writing a custom microservice we can delegate all login requests
to the EaaS server, which would be extended with an authentication API.

Robustness and Production Considerations In our evaluation, we hand-picked a few
error cases we believe to be probable occurrences in real-world usage. These hand-crafted
scenarios are certainly insufficient to fully evaluate the system. More thorough tests must
be performed to ensure viability for a larger number of projects. This can be done by setting
up EaaS for several Java applications that have a long development history and trying to
submit builds of a wide range of revisions. In particular, attention must be paid how often
the EaaS setup in the repository must be updated and what other problems occur.

Regarding production environments, our implementation is unable to fulfill certain
requirements that will arise in such a setting over longer time. Management of build images
is insufficient. Images could be deleted by accident, for example when pruning unused
images from the host. Furthermore, there is no way to move build images to a different
host, which means all previous builds will be lost when changing the host EaaS is running
on.

52



Bibliography

[Bolduc 2016] C. Bolduc. Lessons learned: using a static analysis tool within a continu-
ous integration system. In: 2016 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). 2016, pages 37–40. (Cited on page 11)

[Brandtner et al. 2014] M. Brandtner, E. Giger, and H. Gall. Supporting continuous
integration by mashing-up software quality information. In: 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). 2014, pages 184–193. (Cited on page 23)

[Costin et al. 2016] A. Costin, A. Zarras, and A. Francillon. Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces. In: Proceedings of the
11th ACM on Asia Conference on Computer and Communications Security. ASIA CCS
’16. Xi’an, China: Association for Computing Machinery, 2016, pages 437–448. url:
https://doi.org/10.1145/2897845.2897900. (Cited on page 49)

[Fittkau et al. 2017] F. Fittkau, A. Krause, and W. Hasselbring. Software landscape and
application visualization for system comprehension with explorviz. Information and
Software Technology 87 (2017), pages 259–277. url: http://www.sciencedirect.com/science/

article/pii/S0950584916301185. (Cited on pages 1, 8)

[Hilton et al. 2016] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig. Usage, costs,
and benefits of continuous integration in open-source projects. In: Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering. ASE 2016.
Singapore, Singapore: Association for Computing Machinery, 2016, pages 426–437. url:
https://doi.org/10.1145/2970276.2970358. (Cited on page 11)

[Kieker Project 2013] Kieker Project. Kieker user guide. Apr. 2013. url: http://kieker-

monitoring.net/documentation/. (Cited on pages 7, 36)

[Kupsch et al. 2017] J. A. Kupsch, B. P. Miller, V. Basupalli, and J. Burger. From continuous
integration to continuous assurance. In: 2017 IEEE 28th Annual Software Technology
Conference (STC). 2017, pages 1–8. (Cited on page 49)

[Petersen 2020] J. E. Petersen. Thesis artifacts for: enabling dynamic analysis and software
visualization in continuous integration platforms. Apr. 2020. url: https://doi.org/10.5281/

zenodo.3746968. (Cited on pages 23, 34, 35)

[Pina and Cadar 2015] L. Pina and C. Cadar. Towards deployment-time dynamic analysis
of server applications. In: Proceedings of the 13th International Workshop on Dynamic
Analysis. WODA 2015. Pittsburgh, PA, USA: Association for Computing Machinery,
2015, pages 35–36. url: https://doi.org/10.1145/2823363.2823372. (Cited on page 49)

53

https://doi.org/10.1145/2897845.2897900
http://www.sciencedirect.com/science/article/pii/S0950584916301185
http://www.sciencedirect.com/science/article/pii/S0950584916301185
https://doi.org/10.1145/2970276.2970358
http://kieker-monitoring.net/documentation/
http://kieker-monitoring.net/documentation/
https://doi.org/10.5281/zenodo.3746968
https://doi.org/10.5281/zenodo.3746968
https://doi.org/10.1145/2823363.2823372


Bibliography

[Qigang and Sun 2012] L. Qigang and X. Sun. Research of web real-time communication
based on web socket. International Journal of Communications, Network and System Sciences
05 (Jan. 2012), pages 797–801. (Cited on page 22)

[Rad et al. 2017] B. B. Rad, H. J. Bhatti, and M. Ahmadi. An introduction to docker and
analysis of its performance. In: IJCSNS International Journal of Computer Science and
Network Security, VOL.17 No.3. Mar. 2017, pages 228–235. (Cited on page 9)

[Sengupta and Roychoudhury 2011] B. Sengupta and A. Roychoudhury. Engineering multi-
tenant software-as-a-service systems. In: Proceedings of the 3rd International Workshop
on Principles of Engineering Service-Oriented Systems. PESOS ’11. Waikiki, Honolulu, HI,
USA: Association for Computing Machinery, 2011, pages 15–21. url: https://doi.org/10.
1145/1985394.1985397. (Cited on page 1)

[Soares and Preguiça 2018] J. Soares and N. Preguiça. Database engines on multicores
scale: a practical approach. In: Proceedings of the 30th Annual ACM Symposium on Applied
Computing. SAC ’15. Salamanca, Spain: Association for Computing Machinery, 2018,
pages 2335–2340. url: https://doi.org/10.1145/2695664.3200145. (Cited on page 6)

[Spring Project 2020] Spring Project. Spring petclinic repository. 2020. url: https://github.com/
spring-projects/spring-petclinic. (Cited on pages 13, 33)

[Van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A framework
for application performance monitoring and dynamic software analysis. In: Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering (ICPE 2012).
Boston, Massachusetts, USA, April 22–25, 2012: ACM, Apr. 2012, pages 247–248. (Cited
on pages 1, 7)

[Zhao et al. 2019] N. Zhao, V. Tarasov, A. Anwar, L. Rupprecht, D. Skourtis, A. Warke,
M. Mohamed, and A. Butt. Slimmer: weight loss secrets for docker registries. In: 2019
IEEE 12th International Conference on Cloud Computing (CLOUD). 2019, pages 517–519.
(Cited on page 17)

[Zirkelbach et al. 2019] C. Zirkelbach, A. Krause, and W. Hasselbring. Modularization of
research software for collaborative open source development. In: The Ninth International
Conference on Advanced Collaborative Networks, Systems and Applications (COLLA 2019).
June 2019. url: http://eprints.uni-kiel.de/46777/. (Cited on pages 8, 21)

54

https://doi.org/10.1145/1985394.1985397
https://doi.org/10.1145/1985394.1985397
https://doi.org/10.1145/2695664.3200145
https://github.com/spring-projects/spring-petclinic
https://github.com/spring-projects/spring-petclinic
http://eprints.uni-kiel.de/46777/

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Document Structure

	2 Foundations and Technologies
	2.1 Application Framework Spring Boot
	2.2 Relational Database H2
	2.3 Web Application Framework Vaadin
	2.4 Monitoring Framework Kieker
	2.5 ExplorViz
	2.6 Container Platform Docker
	2.6.1 API client docker-java
	2.6.2 Docker Compose

	2.7 Continuous Integration
	2.7.1 GitHub Actions
	2.7.2 Travis CI Build Service

	2.8 Spring PetClinic

	3 Approach
	3.1 Deployment
	3.2 Build Packaging
	3.2.1 Docker Images
	3.2.2 Base Images
	3.2.3 Build Submission

	3.3 User Interface
	3.4 Running Visualizations
	3.4.1 Docker Integration
	3.4.2 Docker Compose Definition
	3.4.3 Container Log Output


	4 Implementation
	4.1 Web Interface
	4.1.1 RichList Component
	4.1.2 Layout
	4.1.3 Authentication
	4.1.4 User Management

	4.2 Build Submission API
	4.2.1 Secrets
	4.2.2 Submission Script

	4.3 Running Visualizations
	4.3.1 Running Docker-Compose
	4.3.2 Running the Build Image
	4.3.3 Frontend Access
	4.3.4 Logs


	5 Evaluation
	5.1 Goals
	5.2 Methodology
	5.3 Experiment
	5.3.1 Experimental Setup
	5.3.2 Scenarios
	5.3.3 Execution of the Experiment

	5.4 Results and Discussion
	5.4.1 Scenarios
	5.4.2 Threats to Validity


	6 Related Work
	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

