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Abstract: Electromagnetic (EM) geophysical methods are well equipped to distinguish electrical
resistivity contrasts between freshwater-saturated and seawater-saturated formations. Beneath
the semi-arid, rapidly urbanizing island of Malta, offshore groundwater is an important potential
resource but it is not known whether the regional mean sea-level aquifer (MSLA) extends offshore.
To address this uncertainty, land-based alongshore and across-shore time-domain electromagnetic
(TDEM) responses were acquired with the G-TEM instrument (Geonics Ltd., Mississauga, ON,
Canada) and used to map the onshore structure of the aquifer. 1-D inversion results suggest
that the onshore freshwater aquifer resides at 424 m depth, underlain by seawater-saturated
formations. The freshwater aquifer thickens with distance from the coastline. We present 2D and
3D electromagnetic forward modeling based on finite-element (FE) analysis to further constrain
the subsurface geometry of the onshore freshwater body. We interpret the high resistivity zones
that as brackish water-saturated bodies are associated with the mean sea-level aquifer. Generally,
time-domain electromagnetic (TDEM) results provide valuable onshore hydrogeological information,
which can be augmented with marine and coastal transition-zone measurements to assess potential
hydraulic continuity of terrestrial aquifers extending offshore.

Keywords: coastal hydro-geophysics; groundwater; mean sea-level aquifer; transient
electromagnetics

1. Introduction

Groundwater resources in many coastal regions worldwide are currently under stress because
of increasing population, agricultural demands, tourism and economic growth. Fresh groundwater
in coastal regions may be a resource that can help to mitigate the water scarcity experienced by
coastal communities [1]. However, several first-order questions need to be addressed before the fresh
groundwater can be used sustainably. There is a lack of understanding regarding the location, nature,
and geometry of coastal aquifer systems and their offshore connectivity. Large-scale desalination
of seawater is a technologically viable solution, but there are important energy and environmental
impacts that must be considered [2]. Terrestrial time-domain electromagnetic (TDEM) methods of
geophysical exploration employing a loop or grounded dipole source can be used to explore the
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onshore component of coastal aquifers that may extend offshore. TDEM methods are useful because
they have good depth penetration in saline environments compared to other geophysical techniques,
such as ground-penetrating radar (GPR) and electrical resistivity tomography (ERT). TDEM methods
are sensitive to electrical resistivity which, in turn, is diagnostic of important aquifer parameters such
as porosity, water saturation and salinity [3]. Transient electromagnetic (EM) methods respond to the
interaction between an applied time-varying magnetic flux and the geoelectrical structure beneath
the transmitter.

In order to interpret transient electromagnetic responses, the key physical mechanism is the
induction process governed by Faraday’s law, which is equivalent to diffusion into a conducting
medium of an image of the transmitter (TX) loop current. A fundamental overview of the physical
principles underlying the EM geophysical method is given elsewhere [4,5], and there are many reviews
related to near-surface applications of EM techniques, e.g., [6,7]. The TDEM method has been widely
used for groundwater studies [8-14], including coastal aquifer characterization. The EM methods
distinguish electrical conductivity contrasts between freshwater-saturated or brackish-water saturated
formations (resistivity ~10-100 Qdm, or more) and seawater-saturated formations (resistivity ~1-10 Om).
A hydraulic connection implies a continuous hydraulic pathway beneath the coastal zone, such that an
offshore aquifer could be recharged by its onshore counterpart, or depleted by pumping of its onshore
counterpart. Terrestrial EM geophysical surveys can provide valuable information about the existence
of such connections. This knowledge is important if we are to ensure the long-term sustainability
of groundwater resources and it can serve as a valuable constraint for hydrogeological modeling
studies. Onshore-offshore connectivity also has implications for possible onshore land subsidence
due to offshore drilling and extraction [15,16]. It should also be noted that the electromagnetic
method remains largely undeveloped for data acquisition in the important coastal shallow-water
transition zone.

This study is part of a multi-disciplinary project that aims to investigate potential onshore-offshore
groundwater aquifer connections based on terrestrial and offshore TDEM geophysical data from SE
Malta (Mediterranean Sea). Here we utilize 2D and 3D electromagnetic forward modeling based on
finite-element (FE) analysis to constrain the 3D geometry of the onshore freshwater body;, in this case,
the mean sea-level aquifer in SE Malta. To accomplish this objective, TDEM responses were acquired
with the Geonics G-TEM instrument. The analysis of the TDEM data generated geoelectrical models
that are used to better understand the variable coastal hydrogeology along a short segment of the
Maltese coastline. This helps to characterize the potential groundwater resources of the semi-arid,
rapidly urbanizing island of Malta. Future work, currently in the planning stages, will involve
conducting additional EM measurements both offshore and within the coastal transition zone.

2. Characterization of Mean Sea-Level Aquifer and Study Area

The Maltese Islands, comprising of Malta, Gozo and Comino, are composed of marine sedimentary
rocks deposited between the Late Oligocene and Late Miocene epochs [17]. The five sedimentary
formations outcropping across the Maltese Islands include, from top to bottom: Upper Coralline
Limestone (162 m), Greensand (11 m), Blue Clay (75 m), Globigerina Limestone (207 m), and Lower
Coralline Limestone (up to 1 km, of which the top ~140 m is exposed) (numbers in brackets denote
maximum thickness) (see Figure 1a) [18,19]. This succession contains a range of lithologies and facies,
but overall it is dominated by marine carbonates of shallow water origin. The rock formations exhibit
a gentle regional flexure and normal faulting is widespread [20]. The older (Early Miocene) and
most widespread system of faults is oriented SW-NE and includes the Great Fault or Victoria Fault,
which is ~11 km long and traverses the entire width of the island. A younger system of faults (Late
Miocene-Early Pliocene) is present along the southern coastline and often cross-cuts pre-existing faults.
The longest of the younger faults is the NW-SE striking Maghlaq Fault. The climate of Malta is
semi-arid Mediterranean characterized by a hot, dry summer and a mild, humid winter. The mean
annual precipitation is 550 mm, which mainly falls between September and April [21,22].
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Figure 1. (a) Geological map of the island of Malta and an inset map showing location of Malta in the
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Mediterranean Sea as a red square. Modified from Geological Map of Maltese Islands, 1993 [19]. Black

lines denote faults. The lithological profile is provided in the right panel. Study site is shown as blue

square. (b) Detail of the study site in SE Malta; transect A is aligned NW-SE and B is aligned NE-SW.
Time-domain electromagnetic (TDEM) soundings are marked as squares with black squares inside;

the difference in colors denotes different acquisition dates. White symbols show TDEM sounding
locations from July 2018. Additional soundings investigated during June and July 2019 are indicated
by cyan and purple symbols, respectively.
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The Maltese Islands obtain ~55% of their potable water supply from groundwater, while the rest
comes from seawater desalination [22]. Aquifers are the primary source of portable water as there is no
appreciable surface water streamflow. The mean sea-level groundwater body lies within the pores and
fissures of Lower Coralline Limestone (LCL) in the interval where the formation sub-crops at sea-level
south of the Victoria fault [23]. The LCL formation is predominantly composed of an algal fossiliferous
limestone with sparse corals. The rocks exhibit moderate, irregular or channel-like permeability [24].
The primary porosity of LCL ranges between 7 and 20%, whereas its intrinsic permeability is low
(1077-107% m/s). Effective porosity and secondary permeability, both of which are dependent on
fissures and weathering, have values of 10-15% and 107® m/s [23,25]. The mean sea-level groundwater
body is in lateral and vertical contact with seawater. A body of fresh water in the form of a ‘lens’ floats
on saline water due to its lower density [26,27]. The thicker part of the lens is situated in the central
part of Malta, with its height decreasing towards the coastline. The mean-sea level groundwater is
not at rest, but flows horizontally outward from the thickest part. The aquifer is recharged by the
infiltration of rainwater in every winter, and groundwater is either discharged offshore at the coastline
or else removed by abstraction (pumpage) for agricultural purposes. The mean sea-level aquifer
(MSLA) has a mean thickness of 67.5 m and covers an area of >200 km? [28]. This water is mainly
abstracted for potable supply and agricultural use. A number of discontinuous perched aquifers with
a limited saturated thickness occur north of the Great Fault in the Upper Coralline Limestone above
the impermeable Blue Clay, and they are exclusively used for agricultural purposes.

The study site is situated on the SE coast of the island of Malta ~6 km SE of Valletta, the capital
city. The elevation of the study site is ~10 m above the sea surface (see Figure 1a). The rocks exposed at
the study site consist of the lower member of the Globigerina Limestone formation, which overlies
the upper members of the LCL formation. There is a geological well at 3.5 km west of the study site
that shows 35 m of Lower Globigerina above 34 m of Lower Coralline and the elevation of the well is
35 m [29]. There is another well drilled for hydrological purposes, located 2.5 km west of the study
site, where the top of the water table is 1 m above sea level [26].

3. Methods

This study utilizes the near-surface TDEM geophysical method to determine the geometry and
characteristics of the onshore MSLA along the coast at the survey site in SE Malta. The TDEM
measurements were carried out using the Geonics G-TEM system consisting of a portable
battery-operated transmitter-receiver (TX-RX) console, a TX antenna deployed as 4 turns of a 10 X 10 m
square loop of wire laid on the ground, a 0.6 m diameter RX rigid coil with pre-amplifier, and the
supporting cables. In field operations, the equipment was deployed as shown in Figure 2. In this
study, all soundings were acquired in the 20 time-gate mode, corresponding to investigation depths of
60-100 m. The 30-gate mode with longer acquisition time allowing for deeper exploration was not
used. The depth of investigation also depends on the TX power, which is a product of the loop size,
current, and its number of turns, in addition to the subsurface conductivity and the RX sensitivity [30].

The operating principle of TDEM is based on the EM induction process. An abrupt shut-off of
a steady value of TX current in the wire loop, according to Faraday’s law, generates an impulsive
electromotive force (emf) that drives eddy current flow in the conductive earth. After the shut-off,
the emf vanishes and the eddy currents start to decay. A weak secondary magnetic field is produced in
proportion to the deceasing amplitude of the eddy currents. The multi-turn receiver coil located at the
ground surface measures the time rate of change of the decaying secondary vertical magnetic field,
the decay rate being diagnostic of the subsurface electrical resistivity.
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Figure 2. Field deployment of Geonics G-TEM geophysical equipment in SE Malta.

3.1. Data Acquisition

The geophysical survey procedure was as follows. At each sounding location, the wire loop
was laid out on the ground. Then the RX coil with its pre-amplifier was set up in the center of the
wire loop, to achieve a central-loop sounding. The portable TX-RX console was set up immediately
outside the TX loop for convenience. A ramp-off current was passed through the wire loop using the
signal generator in the TX console. The resultant signal received by the RX coil was recorded by the
RX console, averaged over several thousand repetitions to improve signal-to-noise ratio. The overall
time to acquire each sounding response was ~5 min. Then the TX loop and RX coil were picked up,
along with the TX-RX console, and moved forward to the next sounding location. The center of the
RX coil represents the location of each sounding, the latter recorded by handheld GPS. The operating
frequency, i.e., the repetition rate of the TX on/off cycle, is in the kHz range (i.e., well outside the
main power supply at 50 Hz and cell phones at ~1 GHz.) The TDEM method is non-invasive, and no
significant environmental disturbance is made to natural flora, wildlife, or agriculture.

The two orthogonal transects acquired in SE Malta comprising a total of 23 TDEM central-loop
soundings in July 2018 are marked as black-and-white symbols in Figure 1b. Profile A is oriented from
SE to NW along the shoreline with a total length of 150 m, while profile B is aligned from NE to SW
with a length of 60 m (Figure 3). The two profiles cross each other at stations A7 and B4, respectively.
An additional dataset of 31 soundings (cyan and purple symbols in Figure 1b; see also Figure 3) was
added to this area from a second field survey conducted during June and July 2019. One of the 2019
soundings (station 431) was performed at the crossing point of the two previous transects (A, B) to
check signal repeatability. The 2019 survey was performed in order to expand the coverage of the
survey from the previous year. The rationale for adding more soundings is that the denser spatial
distribution of data enables us to better construct a fully 3D geoelectrical model.
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Figure 3. Location of TDEM soundings and four 2D transects are shown. A symbol denotes position
of each sounding and differences in colors refer to different measurement dates. TDEM soundings
deployed during July 2018, June 2019, and July 2019 are indicated by black-and-white, black-and-cyan
and black-and-purple symbols, respectively.

3.2. Data Analysis

3.2.1. D Inversion

The 1D inversion of G-TEM transient EM sounding curves is performed using the IXG-TEM
software from Interpex Limited (Golden, CO, USA). After importing a data file containing a measured
sounding curve, the software generates a consistent 1D smooth model of electrical resistivity vs.
depth, based on the iterative Occam regularization method [31]. The user is required to define the
minimum and maximum depths, and also the starting resistivity for initiating the model iterates. We
seek the 1D inverted model that gives a satisfactory fit to the TDEM data with minimal variation in
electrical resistivity between adjacent layers. Such a “smooth” model generally provides a preferable
representation of subsurface geoelectrical structures compared to a “rough” model that may fit the data
better but contains unrealistically large variations in resistivity between adjacent layers. An example
of an inversion to 100 m depth of G-TEM sounding from station A7 is shown in Figure 4. The data
points on the left indicate the Earth-response signal recorded by the RX coil as a function of time (in
ms) after current is shut off in the TX loop. The red line on the right indicates an initial guess of Earth
resistivity, which in this case is a uniform 10 (dm half-space. The dark green line on the right indicates
the calculated smooth depth profile of Earth resistivity, the predicted response of which (continuous
dark green curve passing through the data points on the left) best fits the observed response, subject to
the smoothness constraint. At this location, a high-resistivity zone of ~80-100 (dm appears at ~4-22 m
depth, underlain by a uniform low-resistivity zone of ~2-3 (dm.
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Figure 4. Example of G-TEM data shown as square symbols and the computed resistivity depth profile
displayed as a curve passing through all data points with root mean square (RMS) misfit 6.8% (left);
the fitted model is marked as the dark green line while the red line is the starting model (right).

3.2.2. D Forward Model Context

In this study, we used a well-tested, in-house FORTRAN program to compute 1D transient
responses based on a finite-radius, inductively-coupled loop source deployed over a layered earth.
For such a 1D model, the resistivity changes only in a vertical direction. A series of 1D responses at
different frequencies is computed using the well-known frequency-domain analytic solution [32,33].
The transient response is then obtained by taking an inverse Fourier transform of the frequency-domain
responses using a Padé summation method [34].

3.2.3. D and 3D Forward Model Context

This study also utilizes 2D and 3D forward modeling of transient EM responses to further constrain
the geometry of the onshore geoelectrical structure of the SE Malta aquifer system. The computation
of time-harmonic EM responses of aquifer geoelectrical models is performed using a finite-element
(FE) analysis of the governing Maxwell equations in the magnetoquasistatic regime. The FE
algorithm [35,36] generates a rectangular mesh that is used to discretize buried 1D, 2D and 3D
structures by defining rectangular prisms, or slabs, and assigning them certain dimensions, locations,
and electrical conductivities (the inverse of resistivity).

In our simulations, the G-TEM transmitter (TX) in ‘vertical dipole’ mode is approximated by 4
turns of a circular current loop with 5.64 m effective radius (equivalent to the in-field-survey of a
10 x 10 m square loop) lying on the air-earth interface at the origin of the computational grid. A single
receiver position is assigned to the center of the TX loop to simulate the central-loop configuration.
The resistivity model is discretized using 100 x 100 x 100 nodes of a uniform rectilinear mesh with
cell-size 0.8 x 0.8 x 0.8 m. The modeling-domain limits are {-40 m, 40 m}, {—40 m, 40 m} and {-20 m,
60 m} in the X, y and z directions, respectively. A typical mesh contributes roughly 4 million degrees of
freedom to the finite-element system of equations since there are four complex degrees of freedom
associated with each interior mesh node in the A, W formulation, described below. The CPU time
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required to compute a single controlled-source electromagnetic (CSEM) response for a model of this
size at one frequency on the Aspen Systems Texas A&M cluster is ~20 min.

The FE formulation is cast in terms of two Coulomb-gauged electromagnetic potentials, namely a
magnetic vector potential A and a scalar electric potential . The Coulomb gauge condition is applied,
V-A = 0. A set of known primary potentials (Ap, ¥}) is specified, which consists of the analytic
expression for electromagnetic induction in a homogeneous formation with ¢, constant (see [35,36].
Secondary potentials As and W are then defined according to A = A, + As and ¥ = Wp + W, in which
case the governing equations become

V2 A, — iwopigo (A + VW) = iwpoos(Ay + V), 1)

V- [—iwpoo(As + V)] = Viwpos(Ay + V)], @)

where 05 = 0 - 0) is the difference between the conductivity distribution ¢(r) whose response is
required and the background value ¢, whose response is known. The value of electric field E and the
induction field B are derived, after calculation of the Coulomb-gauged electromagnetic potentials,
according to

E = -iw(A+VVY), 3)

B=V-A )

The spatial derivatives in the above equations are performed numerically in the post-processing
stage of the algorithm.

To summarize, Maxwell’s equations are formulated in terms of frequency-domain magnetic vector
and electric scalar secondary potentials. The primary potentials are set by the aforementioned analytic
solution and added to the calculated secondary potentials in order to obtain the total response at
the prescribed frequency. At a given receiver location, such as the center of the TX loop, the total
vertical magnetic field component is computed by numerical differentiation of the computed potentials.
This procedure is repeated for a number of frequencies spanning several decades, building up the
frequency-domain response. For this study, responses are evaluated at 43 logarithmically-spaced
frequencies, at 6 frequencies per decade over the range 10'-108 Hz. After its inverse Fourier transform
into the time-domain, the resulting computed transient responses may be directly compared to the
G-TEM sounding curves measured in the field.

4. Results

4.1. D Scenario

First we analyze the transient EM soundings from the two orthogonal G-TEM transects of July
2018 comprising 23 locations along and across-shore SE Malta. The field dataset is divided into two
transects, labeled A and B. All soundings are plotted in terms of Earth-response voltage as a function
of time on a single log-log display for each transect (Figure 5a,b). This format illustrates the variability,
or scatter, in the temporal decay of the signals following shut-off in the TX current. A definition of
time gate is provided in Appendix A. At station A3, a distinctive and unusual decay curve is observed,
which is thought to be caused by effects of localized 3D subsurface structures of unknown origin. This
curve, plotted as blue dots in Figure 5a, is clearly distinguished from the other curves and it cannot
be fit by the response of a 1-D model. At A3, the unusual response—perhaps from inductive or IP
coupling to steel infrastructure—exhibits a sign reversal (from solid to open circles) after gate 13 of
the transient and it is not considered for further analysis. The central-loop response of a 1-D layered
model cannot generate such a sign change.
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Figure 5. G-TEM data from 23 soundings in SE Malta. (a) All 16 soundings in profile A; (b) soundings
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After examining the remaining 21 sounding curves comprising the alongshore profile, the responses
from the southernmost stations A2, and A4-A9 may be classified as one group since they exhibit
very similar decay patterns. A separate 1D inversion was performed for each of these soundings.
The resulting 1D resistivity models from each station were used as initial resistivity distributions in an
attempt to find a single 1D model that could fit these southernmost soundings. After many iterations
of computation and model adjustment using the 1-D analytic forward code, a simple 3-layer 1D model
was found to be the most consistent with the field responses (Figure 6, right). This resistivity model for
the southern section of profile A consists of a three layered-earth of 5.5 (dm and 25 Om resistivity with
4 and 15 m thicknesses, respectively, and including a basal resistivity of 1.8 (dm. The fit of this model
to the sounding curves A2, A4-A9 is shown in Figure 6, left.
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Figure 6. (left) 1D analytic forward result for station A2, A4 to A9 shown as the black solid line;

(right) The resistivity model corresponds to the response (sold line) displayed in the left panel.

We used the same procedure to analyze the sounding curves from all 21 stations comprising
the reduced SE Malta 2018 dataset and the additional 31 soundings from the field survey conducted
during June and July 2019. Another unusual decay curve is found at station 432 (black squares,
Figure 7). At the late-time of this sounding, the observed signal decays significantly slower compared
to neighboring stations, i.e., station 433, which is located only 15 m to the north. The anomalous
response may be due to the effects of a localized highly-conductive body; this will be discussed later.
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Figure 7. Decay curves of some measured G-TEM soundings at the western section of study

area. An unusual decay at station 432 denoted as black squares may be due to a localized highly-

conductive body.
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After investigating all of the decay curves, we observe certain systematics in the spatial variability
in the measured responses. Over distances of a few tens of meters, for example, it is shown below that
the lateral changes in subsurface resistivities in the across-shore direction are much stronger than those
in the alongshore direction. As regards the locations of soundings and similarity of decay patterns,
many of the more recently acquired soundings are similar to those of the earlier acquired transects A
and B. For example, consider soundings 430 and 429, which are situated 15 and 25 m south of station
B3, respectively (see Figure 3). The responses from these three stations, along with that of station 428,
can be sorted as one group due to their similar decay pattern. The best-fitting 1D model of these four
stations, whose response is illustrated as the thin black line in Figure 8, consists of a three layered-earth
of 5.5 (dm and 18.2 Odm resistivity with 4 and 12 m thicknesses, respectively; with the basal resistivity
of 1.8 Om. This model is displayed as the column beneath station B3 in Figure 9b.

[ . 428
<>\2> O 429
103 \o O 430
- X & B3
e
o
-4 | X
— 10 \0
E NS
> I
o b
()] \
£ 105 &
o E &
o Y
2 &
S N
wv
[} ]06 - <>\
bl g O\
- N
Q\
i B
107 | N
- ]
0 4 8 12 16 20
gate

Figure 8. 1D forward modeling result for station 428, 429, 430 and B3 shown as a black line (see column
beneath B3 in Figure 9b for the model.).

From the 1-D forward modeling results, two pseudo-2D resistivity models have been constructed
and they are depicted in Figure 9. These models are obtained by merging, or “stitching”, the 1D
forward model results from groups of adjacent stations. With regards to the alongshore profile shown
at the top, the upper-layer resistivity value is constant and it exhibits no variation in thickness observed
along the 150 m transect. In the very near surface, from the surface to 34 m depth, the uppermost
layer represents a spatial average over a heterogeneous region and we do not attempt to interpret
this layer. The second layer spans the depth range 4-19 m in the SE part of the profile, but the layer
becomes thinner and slightly more conductive in the NW part. A huge contrast in vertical resistivity
variations of maximum 0.1 Om beneath the sounding A1l compared with a neighboring sounding A2
is suggestive of structure with very low resistivity at depth, such as steel infrastructure. The lateral
variations in resistivity of geological origin are much stronger in the across-shore transect, shown at
the bottom. The top layer of this profile becomes slightly less resistive and thicker towards the coast.
In contrast, the underlying resistive zone becomes thinner as the sounding location is located closer to
the sea.
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Figure 9. Stitched version of resistivity profiles obtained from 1D forward modeling results of the 2018
(a) alongshore Profile A and (b) across-shore Profile B surveys. The white line provides a rough guide
to the geometry of the thinning of the freshwater lens towards the coast, where it becomes brackish to
mildly saltwater.

In Figure 10, another set of pseudo-2D resistivity models, corresponding to TDEM profiles C and
D (see Figure 3), are obtained by combining 1D forward model results from the 2018 and 2019 datasets.
These models enable visualization of the resistivity structure in the western and northern parts of the
study area. The model from profile C shown at the top (Figure 10a) is located ~30 m west of Profile A.
Profile C runs NW-SE alongshore and intersects profile B at station B7 (Figure 3). The resistivity model
of this transect appears to be similar to that of Profile A. However, the resistivity values of the second
and basal layers are higher in Profile C due to its greater distance inland, i.e., away from the seawater.
The second layer of Profile C is also thicker compared to that of Profile A. Lateral heterogeneity of
resistivity at depth of ~17.5 m to 60 m can be observed in the SE part of this transect similar to that of
Profile A beneath soundings 432 and 433. The across-shore resistivity distribution in the northern part
of the study area, labeled Profile D, is shown in Figure 10b. Profile D is located 90 m northward from
the intersection of transects A and B. There is no significant change in either the thickness or resistivity
of the uppermost structure of this profile as compared to Profile B. With respect to the middle, resistive
layer along Profile D, the shape is comparable to the resistive zones found in Profile B, except they are
less resistive and somewhat thinner.
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Figure 10. Stitched version of resistivity models from (a) Profile C along the western boundary and
(b) Profile D in the northern part of the study site. The white line provides a rough guide to the geometry
of the thinning of the freshwater lens towards the coast, where it becomes brackish to mildly saltwater.

4.2. D and 3D Scenarios

In the previous section, we used the analytic solution of the TDEM forward problem to determine
stitched 1D resistivity depth-profiles across the SE Malta study area. In this section, we use the FE
analysis to compute frequency-domain responses of 2D and 3D models. The time-domain response
is obtained by splining the frequency-domain response evaluated at each of the designated discrete
frequencies. Subsequently, the set of time-domain responses are used as the input from which we
develop a series of 2D and 3D forward model iterative adjustments. The best 2D and 3D models that
result from this analysis are then further evaluated and interpreted. The adjustments are made by trial
and error since insufficient computational resources are available to achieve an automated inversion
process. Since a single forward run takes ~14 h of CPU time on our computational platform, and an
automated inversion would require many thousands of forward runs, even with a highly efficient
algorithm it is envisioned that both coarse-grained and fine-grained massive parallelization are a
prerequisite for a fully 3D inversion. Such algorithmic development is beyond the scope of this study,
but is definitely recommended for future work.

Figure 11 shows FE-calculated responses at two stations based on the fully 2-D model constructed
from the stitched 1-D resistivity models shown in Figure 9. The calculated response at station A7
obtains from the alongshore 2D resistivity model in Figure 9a. This model allows spatial variations
in resistivity only in the SE-NW direction. That criterion is kept for all soundings along Profile A.
Similarly, the 2D lateral resistivity distribution used to compare with the observed soundings at each
station along Profile B is based on the across-shore transect shown in Figure 9b. The yellow dots in
Figure 11, left, represent the field response actually measured at station A7. The modeling result of the
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alongshore 2D structure, computed using the 3D FE code, is marked as the solid line. Another sounding
at the intersection of the two transects, namely station B4, is displayed in green diamonds in Figure 11,
right, with the corresponding across-shore 2-D model response shown by the solid line.

I !
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Figure 11. 2D modeling results of station A7 and B4 from left to right. A computed step-off voltage
from 3D forward modeling code at cross-section point of two transects is shown as a black line.

At the bottom of Figure 12, the step-off voltage response as a result of 3D forward modeling was
computed at station locations A7 and B4. The 3D model shown at the top of Figure 12 is constructed by
combining the 2D models from the three transects, namely Profiles A, B (in Figure 9) and C (Figure 10a).
For the sake of better visualization, only a local portion of the complete 3D model that is indicative of
the structure beneath station A7 is illustrated within the modeling-domain limits of {-40 m, 40 m},
{—40 m, 40 m} and {0 m, 60 m} in the x, y and z directions, respectively. Part of the model that is above
ground surface up to 20 m high is also excluded for better visualization; the size of 10 X 10 m square
TX loop is shown for scaling. The complete 3D model representing the subsurface structure beneath
SE Malta, covering a surface area of 16,500 m?, is depicted in Figure 13. Some of the sounding points
are included to better indicate the location and orientation of the 3D model with respect to the G-TEM
survey layout. A brief sensitivity analysis is provided in Appendix B.

The computed misfit at each sounding location is plotted in terms of relative error, visualized using
various circle sizes, for the 1D, 2D and 3D models. These misfit circles are shown in black, blue, and red,
respectively (Figure 14). The misfits of the responses at gate 1 and 2 for all soundings are excluded from
the display since the amplitude of the early-time responses is very large. The relative errors of the 2D
model are shown only at the 21 stations of the reduced SE Malta 2018 dataset located along transects A
and B. The reader should note that the misfit of the preferred 3D model at a given station may exceed
the misfit of the 1D model at that station. The important point is that a single 3D model has been found
that fits all the observations reasonably well, sometimes at the cost of locally increasing the misfit
compared to a 1D model that strictly applies only to an individual station. The actual geoelectrical
structure of the Earth is 3D rather than locally 1D beneath the G-TEM measurement stations.
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Figure 12. (a) 3D resistivity model showing the subsurface geoelectrical distribution beneath A7 and B4;
(b) The computed step-off voltage according to the resistivity model in (a) is displayed as a black line.
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Figure 14. Misfit of 1D, 2D and 3D models, from left to right. Size of circle represents a relative error
for each sounding. Only 21 points of misfits are shown for 2D model along 2018 dataset.
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5. Discussion

The results presented in this study suggest that the structure of the mean sea-level groundwater
aquifer near the shore in SE Malta exhibits a lenticular shape, with decreasing thickness towards the
coast. The combination of TDEM models derived from the summer 2018 and 2019 datasets shows
distinct high-resistivity zones. These are interpreted as the signature of a brackish water-saturated
geological medium, in this case corresponding to the LCL formation hosting the mean sea-level
groundwater body.

Based on the preferred 3D TDEM model in Figure 13, the top layer up to 5 m deep is interpreted
as the overlaying Globigerina Limestone and there is no geophysical indication of freshwater in this
low-resistivity formation. We also find that the depth to the top of LCL and water table in the study
area is 4-5 m. Our study is in good agreement with a regional groundwater modeling study (MARSOL,
2015) of the South Malta region which points out that the elevation of the top of the formation holding
fresh groundwater is in the range +20 to —20 m with reference to mean sea level [37]. The zones of high
resistivity below the depth of 4-5 m in the 2D and 3D models are indicative of a (moderately brackish)
freshwater-bearing formation with resistivity in the range p ~10-100 Om (i.e., the purple-blue-cyan
colors in Figure 13). The steeper base compared to the gentler top of the groundwater body is consistent
with the geometry of a Ghyben-Herzberg-type lens. Below the freshwater region, from depths ~13-22m
down to the TDEM depth of investigation at 60 m, the underlying rocks situated beneath sea level are
much less resistive, attaining values p ~1.25-2.5 (0m (i.e., the green-yellowish green colors in Figure 13).
These low resistivity (conductive) zones are indicative of a seawater-saturated formation. The shallow
resistive freshwater lens sits on top of a more conductive formation, the latter being indicative of
lateral landward movement of saltwater, i.e., intrusion. The boundary between the zones of high and
low resistivity indicates the presence of the interface or transition zone along the two across-shore
transects. Within the areas closest to the shoreline a mixing zone of freshwater and seawater appears
to be present. Zones of moderate resistivity p ~5 (dm are observed along the northeastern parts of the
across-shore transects by the coast and this could be indicative of brackish groundwater.

In order to assess the groundwater quality implications of our model, we calculate the bulk
resistivity of the fluid-saturated rock using Archie’s law [38] for various porosities of limestone assuming
that all pore spaces are filled with freshwater with resistivity of 2 (dm. This latter value is equal to the
water resistivity found in a well located 2.5 km inland. For porosities of 10% and 15% we find 126.2 and
60.8 Oim, respectively, as the formation bulk resistivity. These values of estimated resistivity are slightly
higher than the range of those in the 3-D TDEM model (p ~10-100 Om). In addition, we have estimated
bulk resistivity for saturated limestone filled with seawater of 0.2 (Om with 10%, and 15% porosities.
These are 12.6 and 6.1 (dm, respectively, which is also slightly higher than our model’s prediction of low
resistivity seawater-saturated formations of 1.25-2.5 (dm. As we move inland, our values are consistent
with the borehole’s fluid resistivity saturating a formation of 10 to 15% porosity. Closer to the shoreline,
the TDEM bulk resistivity is lower, reflecting more brackish water. Thus, the groundwater freshens
as we move inland. Of course, Archie’s law is not a perfect petrophysical model for the fractured
limestone lithology, since the law was founded on lab measurements made on clean sandstone cores,
but an Archie-type calculation should be approximately correct.

To assess confidence in the spatial structure of our model, we also consider which of the model
slabs indicative of the freshwater-bearing formation are best resolved based on the sensitivity analysis
(see Appendix B for details). At the lower frequency of 100 Hz, the best-resolved slab is slab 3;
whereas the responses from slabs 5, 6 and 7 are more sensitive to perturbations in their resistivity
than the responses of slabs 1 and 2. At the high frequency 1 MHz, the misfit-change distribution
indicates that changing a slab’s resistivity affects only the sounding that is situated directly over that
slab. Slab 6 seems to be the most well-resolved slab at the intermediate frequency 31.6 kHz. Slabs
located further inland appear to be not as well resolved as those closer to the sea. The latter are thin and
more conductive relative to the thicker, more resistive inland slabs and it is well known that terrestrial
TDEM better resolves thin conductive layers.
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We do not have sufficient data coverage to infer a possible offshore extension of the freshwater
aquifer at the SE Malta study site. The landward encroachment of seawater decreases the resistivities
of the near-coastline region and possibly interacts with the fresh groundwater of the MSLA. There
are unpublished ground-penetrating radar (GPR) data that appear to show infiltrated meteoric water
trapped in fractures above water table in some areas of the study site [39]. More across-shore
measurements throughout Malta are recommended in order to investigate the lateral subsurface
geoelectrical variation in the direction perpendicular to the coast.

6. Conclusions

This study demonstrates the utility of the TDEM geophysical method along with 1D, 2D and
3D forward modeling as a means to study coastal freshwater aquifers in water-scarce regions. Here
we image the geometry of the onshore aquifer within the permeable Lower Coralline Limestone
formation along the SE Malta coast. Our results show 2D and 3D resistivity models found by iterative
adjustments of FE forward modeling. The final preferred 3D model provides information to depth of
60 m, covering an area of ~16,500 m? and shows diagnostic spatial variations in subsurface electrical
resistivity. The geophysical modeling provides a basis for determining important characteristics of the
MSLA that fit our observations, namely the decreasing thickness of fresh groundwater bodies towards
the coastline. Zones of fresh groundwater have been identified, but these are located preferentially
inland from the coast. Thus, there is no indication from the electromagnetic data of a robust offshore
extension of the MSLA at this location. However, it is argued that method that we used can be applied
across the entire Maltese archipelago to better constrain the geometry, dimensions and distribution of
terrestrial and coastal aquifers providing valuable information for future water management of the
stressed groundwater reserves of Malta.
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Appendix A. Receiver Gates and Time

The G-TEM receiver records the characteristics of transient response by sampling it at 20 or 30
sequential time intervals or gates. The gates are logarithmically-spaced times that fill the measurement
period and their widths (separation) exponentially increase with time [40]. Table A1 lists the center time
of each gate that occurs after TX shut-off for repetition rate of 237.5 Hz at 20-gates acquisition mode.
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Table A1l. Gate center times.

Gate Time Gate Time
(us) (us)
1 6.813 11 77.94
2 8.688 12 99.38
3 11.13 13 126.7
4 14.19 14 166.4
5 18.07 15 206
6 23.06 16 262.8
7 29.44 17 355.2
8 37.56 18 427.7
9 47.94 19 545.6
10 61.13 20 695.9

Appendix B. Sensitivity Analysis

It is of interest to examine which of the slabs indicative of the freshwater-bearing formation
responds most sensitively to the time-domain electromagnetic excitation. Conducting a sensitivity
analysis provides information about how small perturbations to an independent variable, in this case a
slab resistivity, affect the 3D model’s overall misfit. Herein, the resistivity of each slab is subjected to a
5% decrease and the 3D response re-computed, with only one slab changed at a time. We compute the
vertical magnetic fields at three different frequencies to determine the changes in subsequent responses
after each slab’s resistivity is changed compared with the responses of the unperturbed preferred model
shown in Figure 13. The choices of 100 Hz, 31.6 kHz, and 10 MHz generate low, medium, and high
frequency responses, respectively. Seven slabs with various resistivities ranging from 8.3 to 100 (dm are
chosen and the corresponding seven sounding locations on the surface nearest the center of each slab
are selected for monitoring the change of computed responses (see Figure Al). For example, station B7
is underlain by slab 1, station B4 overlies slab 2, station B3 is above slab 3, and so on. The computed
misfit resulting from a model that includes a perturbation in a slab’s resistivity is displayed in terms of
relative change, illustrating using a color plot for the three different frequencies in Figure A2.

Figure Al. Illustration of the location of selected slabs (numbered 1-7) that are suggestive of a
water-bearing formation, and the TDEM sounding locations where the sensitivity analysis is performed.
Value of unperturbed resistivity is shown for each slab.
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At low frequency (100 Hz), Figure A2 top left, the changes in frequency-domain responses at each
station are mainly due to the directly underneath slab and to the neighboring slabs. This is indicated
by the larger values of percentage misfit mainly along the diagonal of the plot. An exception is the
change caused by decreasing in resistivity of slab 1 that did not appreciably affect the misfit at any
of the 7 stations. Surprisingly, the sounding 494, beneath slab 5, is most sensitive to the decrease of
resistivity of slab 3 at frequency of 100 Hz. At moderate frequency (31.6 kHz), Figure A2 top right, slab
1 has a minor impact on the data if its resistivity decreases. The misfit plot shows how the change
in one slab’s resistivity affects almost all the surrounding stations by different amounts. Moreover,
the change in resistivity of slab 6 has a large effect on observed responses at the soundings A16 and
484, located above slabs 6 and 7, respectively. At high frequency 10 MHz, bottom left of Figure A2,
the misfit-change distribution indicates that decreasing a slab’s resistivity is likely to affect only the
sounding that situated over that slab. This result is not surprising since the footprint of a TDEM
sounding is smallest at high frequencies.

100 Hz 31.6 kHz

=

n i

B7 B4 B3 B2 494 A16 484 B7 B4 B3 B2 494 Al16 484
station

-

slab number

10 MHz

slab 7
slab 6
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misfit [%]

i 0.50

045
Figure A2. Response misfits for 100 Hz, 31.6 kHz and 10 MHz. Color plot denotes a relative change

0.40
035
in percentage misfit for examples of seven soundings after each slab’s resistivity decreases by 5%.

0.30
0.25
0.20
0.15
0.10
0.05
0.0

slab number

B7 B4 B3 B2 494 Al6 484
station

The white region in each plot signifies that there is no effect from perturbation to a particular slab
detected by that sounding location. The misfits over 0.25% at each frequency are considered significant
by rough estimation, and this will affect the 1D, 2D and 3D modelling misfits of transient EM responses
in Figure 14.
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