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ABSTRACT

The North Atlantic (NA) basin-averaged sea surface temperature (NASST) is often used as an index to

study climate variability in the NA sector. However, there is still some debate on what drives it. Based on

observations and climate models, an analysis of the different influences on the NASST index and its low-pass

filtered version, the Atlantic multidecadal oscillation (AMO) index, is provided. In particular, the relation-

ships of the two indices with some of its mechanistic drivers including the Atlantic meridional overturning

circulation (AMOC) are investigated. In observations, the NASST index accounts for significant SST vari-

ability over the tropical and subpolar NA. The NASST index is shown to lump together SST variability

originating from different mechanisms operating on different time scales. The AMO index emphasizes the

subpolar SST variability. In the climate models, the SST-anomaly pattern associated with the NASST index is

similar. The AMO index, however, only represents pronounced SST variability over the extratropical NA,

and this variability is significantly linked to the AMOC. There is a sensitivity of this linkage to the cold NA

SST bias observed in many climate models. Models suffering from a large cold bias exhibit a relatively weak

linkage between the AMOC and AMO and vice versa. Finally, the basin-averaged SST in its unfiltered form,

which has been used to question a strong influence of ocean dynamics on NA SST variability, mixes together

multiple types of variability occurring on different time scales and therefore underemphasizes the role of

ocean dynamics in the multidecadal variability of NA SSTs.

1. Introduction

The North Atlantic (NA) basin-averaged sea surface

temperature (NASST) is often used to discuss mecha-

nisms of SST variability over the NA region. An ex-

ample is the Atlantic multidecadal oscillation or

variability (AMO or AMV, AMO hereafter) index

(Kerr 2000; Knight et al. 2005), which is characterized by

multidecadal variations in NASST (e.g., Deser and

Blackmon 1993; Kushnir 1994; Kilbourne et al. 2008).

Climate variations over many regions have been linked

to the AMO index. Examples are Northeast Brazilian

and Sahel rainfall (Folland et al. 1986; Rowell et al.

1995), coastal climate around the NA (Enfield et al.

2001; Sutton and Hodson 2005), Atlantic hurricanes

(Goldenberg et al. 2001), and Arctic sea ice (Day et al.

2012; Swart et al. 2015).

The mechanism of the AMO is not clear (Zhang et al.

2019). It is still under debate what the relative role is of

processes such as stochastic atmospheric forcing, ocean

dynamics, air–sea interactions, or external forcing (e.g.,

Latif and Keenlyside 2011; Ting et al. 2014; Bellomo

et al. 2018). Moreover, in many studies the AMO is re-

garded as a physical mode with well-defined spatial

pattern and period and unique mechanism, which is not

justified on the basis of the current literature. ClimateCorresponding author: Jing Sun, jsun@geomar.de
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models suggest that the low-frequency SST variability

over the NA is partly related to the Atlantic meridional

overturning circulation (AMOC) (e.g., Delworth et al.

1993; Timmermann et al. 1998; Delworth and Mann

2000; Latif et al. 2004; Knight et al. 2005; Msadek et al.

2013; McCarthy et al. 2015; Kim et al. 2018a,b). In these

models, a strong AMOC is associated with an enhanced

northward heat transport, which leads to anomalously

warm NA SST and vice versa. Further, some previous

work has shown that the AMOC can drive a monopolar

SST anomaly pattern on multidecadal time scales that

bears resemblance to the well-known AMO ‘‘horse-

shoe’’ SST pattern (e.g., Knight et al. 2005; Danabasoglu

et al. 2012).

There are several methods of defining an AMO index

from SST observations. The traditional definition is

based on the area-weighted, linear detrended, and low-

pass filtered NA-averaged (08–608N) SST anomalies

(Enfield et al. 2001). The method of linear detrending

cannot cleanly separate the internal multidecadal vari-

ability from the nonlinear externally forced global-scale

signal including anthropogenic variability (Trenberth

and Shea 2006; Frankcombe and England 2015). Besides

linear detrending, other methods have been used to re-

move the global-scale externally forced signal, for ex-

ample by using global mean SST as a proxy (Trenberth

and Shea 2006; Mann and Emanuel 2006) or a signal-to-

noise ratio maximizing empirical orthogonal function

(EOF) analysis (Ting et al. 2009; Ruprich-Robert

et al. 2017).

Some studies suggest that an SST-based AMO defi-

nition is insufficient to understand the mechanism of the

AMO because it reflects multivariate low-frequency

variability involving, for example, changes in salinity,

ocean heat content, surface heat flux, subsurface tem-

perature, and so on (e.g., Zhang 2007; Wang et al. 2010;

Robson et al. 2012). A multivariate AMO index based

on multivariate empirical orthogonal function (MEOF)

analysis has been defined by Yan et al. (2019). Here we

stick to the SST and study in detail SST-based indices

defined over different regions and time scales with re-

spect to their relationships to different phenomena such

as the North Atlantic Oscillation (NAO) or El Niño–
Southern Oscillation (ENSO), and linkages to ocean

circulation. As SST is available for one and a half cen-

turies, it can be used to study North Atlantic variability

on time scales up to multidecadal.

In climate models, extratropical SST variability over

the NA is often related to the AMOC on multidecadal

time scales (Latif et al. 2004). Previous studies suggested

that the relationship between AMOC and NA SST

varies with latitude and time scale. At higher latitudes,

the AMOC tends to lead the SSTwith a longer lead time

than at lower latitudes (Zhang 2010; Wang and Zhang

2013). Several climate models studies have illustrated

that the AMOC-induced heat transport cannot directly

account for SST variability across the entire NA but

influences SST mostly over the subpolar region on lon-

ger time scales (Zhang and Zhang 2015). Further, it has

been suggested by several studies that multiyear to

multidecadal SST variability over the subpolar NA is

largely due to the delayed response of the oceanic wind-

driven and meridional overturning circulation to the

low-frequency portion of the NAO variability, which in

turn drive changes in meridional heat transport (Eden

and Willebrand 2001; Delworth et al. 2017).

With regard to tropical NA SST, some other mecha-

nisms are needed to explain the variability such as cloud

feedback (Brown et al. 2016; Yuan et al. 2016), local and

large-scale wind changes (Carton et al. 1996; Kushnir

et al. 2002; Hodson et al. 2014), changes in atmospheric

circulation and intertropical convergence zone (ITCZ)

shifts (Zhang andDelworth 2005; Robson et al. 2014), or

thermodynamic coupled processes such as the wind–

evaporation–SST (WES) feedback (Xie and Carton

2004; Amaya et al. 2017). Remote forcing by ENSO also

accounts for a significant fraction of tropical NA SST

variability (Enfield and Mayer 1997).

Recently, based on the simulations with atmosphere

models coupled to slab-ocean models, some studies

suggested that the AMO largely originates from sto-

chastic forcing by the atmosphere (Clement et al. 2015;

Cane et al. 2017), specifically the NAO.On the contrary,

other recent studies suggested that stochastic atmo-

spheric forcing alone cannot explain and ocean dy-

namics is crucial in generating NA SST multidecadal

variability (O’Reilly et al. 2016; Zhang et al. 2016;

Delworth et al. 2017; Zhang 2017; Garuba et al. 2018;

Wills et al. 2019). Again other studies argue that the

AMO ismostly driven by external forcing due to solar or

atmospheric aerosol loading variability (Otterå et al.

2010; Booth et al. 2012). The role of aerosols in driving

NA SST during the instrumental record, however, has

been challenged by Zhang et al. (2013) by pointing out

differences between the climate model simulation re-

sults of Booth et al. (2012) and the observations.

In this study we provide an interpretation of the an-

nual basin-averaged NA SST, here referred to as

NASST index, as well as of its low-pass filtered version,

which serves as AMO index, and investigate the use-

fulness of the two indices in discussing origins of NA

SST variability. We mainly address two questions. First,

which processes contribute to the basin-averaged NA

SST and on which time scale? Second, can the AMO,

when defined by basin-averaged SST, be considered as a

physical mode with well-defined spatial pattern and
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period and unique mechanism? We study the influences

of the NAO, AMOC, subpolar gyre (SPG), ENSO, and

local and remote forcing on the SSTs over different re-

gions of theNA.Most of these aspects have been studied

previously and the results have been published in a

number of complementary papers, as described above.

Here, we investigate systematically how the different drivers

are reflected in the NASST index and in the AMO index,

two indices that arewidelyused in studies addressing climate

variability over the NA sector and beyond.

We make use of observations and simulations with a

number of climate models. Our focus is on internal

variability and we therefore removed from the obser-

vations an estimate of the externally forced signal.

Model data are from control runs without external

forcing. We find that when calculated from instrumental

SSTs, both the NASST index and the AMO index are

composed of SST variability originating from different

mechanisms operating on different time scales and

therefore do not record a single mode of the climate

system over the NA. In the climate models, there is a

clear time scale separation such that the AMO index

only describes SST variability over the extratropical

NA, and this is significantly linked to the AMOC.

The paper is organized as follows: the data, climate

models, and statistical methods used in this study are

briefly described in section 2. Section 3 provides the

results of our analysis pertaining to the SST variability

over the NA. A summary and discussion of the major

results are presented in section 4.

2. Material and methods

a. Data, climate models, and statistical methods

Observed SSTs during 1856–2010 with 28 3 28 reso-
lution are from the Extended Reconstructed Sea

Surface Temperature version 5 dataset (ERSST.v5,

Huang et al. 2017). The NASST index is defined here as

the annual SST anomalies over the NA averaged over

the region 08–608N, 7.58–758W. The same area average

with low-pass filtering (11-yr running mean) applied

serves as the AMO index. We use the station-based

NAO index from 1865 to 2010 (Hurrell et al. 2003;

https://climatedataguide.ucar.edu/climate-data/hurrell-

north-atlantic-oscillation-nao-index-station-based).

We analyze a multimillennial (3000 years long) pre-

industrial control integration of a version of the Kiel

Climate Model (KCM; Park et al. 2009). A list of refer-

ences of published studies employing different versions of

the KCM can be obtained from https://www.geomar.de/

en/research/fb1/fb1-me/research-topics/climate-modelling/

kcms/. The KCM version used here employs ECHAM5

(Roeckner et al. 2003) as the atmospheric component,

with a horizontal resolution of T42 (2.88 3 2.88) and 19

vertical levels. The ocean–sea ice component is NEMO

(Madec 2008) on a 28 Mercator mesh (ORCA2) horizon-

tally, with increased meridional resolution of 0.58 near the
equator and 31 vertical levels. The atmosphere model is

coupled to the ocean–sea ice model via OASIS (Valcke

et al. 2006). A surface freshwater-flux correction is applied

over the NA, which not only largely eliminates upper-

ocean salinity biases over that region but also considerably

reduces the cold NA SST bias that is common to many

climate models (Park et al. 2016).

Additionally, we analyze 14 preindustrial control in-

tegrations (model length varies from 500 to 1156 years;

Table 1) obtained from phase 5 of the Coupled Model

Intercomparison Project (CMIP5; Taylor et al. 2012).

These climate models are chosen because they provide

SST, sea level pressure (SLP), barotropic stream-

function, and meridional overturning streamfunction,

the four variables used in the analysis below. The data

from the CMIP5 models are linearly interpolated onto a

18 3 18 grid.
In the climatemodels, theNAO index is defined as the

time series (PC) of the leading EOF of SLP anomalies

over the North Atlantic region. The observed station-

based NAO index is selected because it is longer than

the PC-based NAO index, but the two indices are highly

correlated. The Niño-3 index is used to assess the in-

fluence of the eastern equatorial Pacific SST onNASST.

It is defined as the SST anomalies averaged over 58S–
58N and 908–1508W. The SST climatology is from the

NODC (Levitus) World Ocean Atlas 2018 (Locarnini

et al. 2018; https://www.nodc.noaa.gov/OC5/woa18/).

We use annual-mean data. All data are linearly de-

trended prior to the analyses except for the observed

SST, which is used after subtracting an estimate of the

TABLE 1. The 14 CMIP5 preindustrial control simulations used in

this study. Start and end times are given as YYYYMM.

CMIP5 ID Start time End time

ACCESS1.0 030001 079912

ACCESS1.3 025001 074912

CanESM2 201501 301012

CCSM4 080001 130012

CESM1-BGC 010101 060012

CNRM-CM5 185001 269912

FGOALS-s2 185001 235012

GISS-E2-R 398101 453012

INM-CM4 185001 234912

MPI-ESM-LR 185001 284912

MPI-ESM-MR 185001 284912

MPI-ESM-P 185001 300512

MRI-CGCM3 185101 235012

NorESM1-M 070001 120012
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global-scale external forcing signal. The detailed de-

scription of this method is given in section 2b. An

AMOC index is obtained from the climate models and

defined as the maximum of the overturning stream-

function in the Atlantic at 408N. Most of the over-

turning streamfunction indices from the CMIP5

models are taken at this latitude.

We calculate patterns of linear regression coefficients

of SST on the indices described above, where the indices

have been normalized by their respective standard de-

viation s. Pattern correlation is the Pearson product-

moment coefficient (Pearson 1895) of linear correlation

between two variables. An F test is used to test the sig-

nificance of the regression coefficients. The Student’s t

test and Monte Carlo simulation based on nonpara-

metric random phase (Ebisuzaki 1997) are applied to

test the significance of the correlation coefficients.

Cross-spectral analysis is used to investigate the rela-

tionship between two time series. The method provides

information about the relationship of two time series in

the frequency domain. The cross spectrum is defined as

the Fourier transform of the cross-covariance function.

The cross spectrum can be decomposed into its real part

(cospectrum) and its imaginary part (quadrature spec-

trum) from which the coherence and phase spectra are

obtained. To avoid ambiguity, the squared coherence is

used. The limiting value for the squared coherence for a

given a (e.g., a5 0.05 corresponds to a confidence level

of 95%) is given by

k2
(12a) 5 12a[2/(DoF22)]: (1)

DoF is the number of degrees of freedom determined by

the choice of the smoothing window (Thompson 1979).

We use theHammingwindow and set the window length

to 150 samples with an overlap of 80 samples (prein-

dustrial control runs) and to 40 samples with overlap of

20 samples (observations) (e.g., von Storch and Zwiers

2001). Welch’s method of overlapped averaged perio-

dogram was applied (Welch 1967).

b. Signal-to-noise maximizing EOF analysis

We follow the method of Ting et al. (2009) that is based

onhistorical runswith climatemodels to remove the global-

scale external forcing signal from the SST. We chose 33

CMIP5 historical simulations (only one realization of each

model) from 1850 to 2010 and the corresponding prein-

dustrial control integrations (Table 2). In this method, a

signal-to-noise maximizing EOF (S/N EOF) analysis is

applied to the global SSTs to estimate the externally forced

SST variability.We note that the CMIP5 historical runs are

only used in this study to remove the external forcing trend

and are not used in the subsequent analysis.

The S/N EOF method assumes that the covariance

matrix of K number multimodel ensemble mean (XM)

can be separated into two parts: one is the forced re-

sponse (XF) and the other the internal climate vari-

ability in the kth ensemble integration (Xk
N) or

atmospheric noise:

X
M
5X

F
1

1

K
�
K

k51

Xk
N : (2)

If we apply a standard EOF method to the ensemble

mean, the covariance matrix of the ensemble mean CM

consists of the covariance of the forced response CF and

that of the noise CN :

C
M
5C

F
1

C
N

K
: (3)

The standard EOF methodology is not well suited

to separate the forced response from the noise.

Therefore, the prewhitening procedure is applied to

reduce the noise contamination in the ensemble mean.

This procedure involves a transformation of the co-

variance matrix. That is, the covariance matrix is

diagonalized:

FTC
N
F5KI, (4)

where F is the prewhitening operator and I is the identity

matrix. If prewhitening is applied, the eigenvectors of

the prewhitened CM will be identical to those of the

prewhitened CF . The noise covariance matrix CN is es-

timated from the preindustrial control runs which, by

definition, only yield the internal variability of the sys-

tem. We then perform the singular value decomposition

(SVD) of CN :

C
N
5E

N
L

N
PT

N , (5)

where EN represents the eigenvectors matrix of CN and

LN is the diagonal matrix of the square root of the cor-

responding eigenvalues. The prewhitening of the en-

semble mean can be expressed as

X0
M 5FTX

M
5

ffiffiffiffi

K
p

L21
N ET

NXM
: (6)

Then an EOF analysis is performed on the transformed

data matrix X0
M. It can be shown that the leading EOF

has the maximum signal-to-noise ratio and the first PC

represents the time evolution of the most dominant

forced response (Venzke et al. 1999). The PC1 (Fig. 1a)

is taken as the time series of the forced SST response and

the internal (unforced) components of the SST indices

obtained by subtracting the PC1.
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3. Results

a. SST indices

The external forcing component of theNASST index, as

calculated by using the S/N EOF method, is shown in

Fig. 1a. We note that the forced signal calculated by ap-

plying the S/N EOF method is rather different from a

linear trend and exhibits a strong increase after 1980.

Figures 1b–d depict some of the indices that are used in the

subsequent regression analyses. The NAO index, NASST

index, and AMO index calculated from observations are

shown in Fig. 1b. The NAO indexes obtained from both

observations and the climate models are inverted and the

regression analyses are performed with these inverted in-

dices. We depict from the KCM the NASST index, AMO

index, NAO index (Fig. 1c), and AMOC index (Fig. 1d).

The indices from the preindustrial control integration of

the KCM are shown for the model years 2075–2235, which

are chosen since this period has the highest covariancewith

the observed AMO index. The KCM’s AMOC index ex-

hibits pronounced multidecadal variability that is consis-

tent with that in the KCM’s AMO index.

b. Regression patterns

Figure 2 depicts the spatial SST-anomaly patterns

derived from observations and the climate models,

which are obtained by regressing the SSTs onto the

standardized indices. The explained variances are given

by the contours. The map of local SST regression coef-

ficients on the NASST index (Fig. 1b) derived from

observations (Fig. 2a) depicts the well-known basinwide

positive SST anomalies over the NA, withmaxima in the

subpolar and tropical NA and a pronounced minimum

between the twomaxima in the western half of the basin.

The SST-anomaly pattern derived from regression onto

the AMO index, which by definition largely reflects the

low-frequency SST variability, is similar but emphasizes

more the subpolar anomalies (Fig. 2b). Explained

TABLE 2. The 33 CMIP5 historical (HIS) and preindustrial control (PI) simulations (with original resolution) used in the signal-to-noise

maximizing EOF analysis. Start and end times are given as YYYYMM.

CMIP5 ID HIS start time HIS end time PI start time PI end time Atmosphere resolution Ocean resolution

ACCESS1.0 185001 200512 030001 079912 1.258 3 1.8758 0.38–18 3 18
ACCESS1.3 185001 200512 025001 074912 1.258 3 1.8758 0.38–18 3 18
BCC-CSM1.1 185001 201012 000101 050012 2.88 3 2.88 0.38–18 3 18
BCC-CSM1.1-m 185001 201012 000101 040012 2.88 3 2.88 0.38–18 3 18
CanESM2 185001 200512 201501 301012 2.88 3 2.88 0.98 3 1.48
CCSM4 185001 200512 080001 130012 0.948 3 1.258 0.27–0.58 3 1.18
CESM1-BGC 185001 200512 010101 060012 0.948 3 1.258 0.38–18 3 18
CESM1-CAM5 185001 200512 000101 031912 0.948 3 1.258 0.38–18 3 18
CESM1-FASTCHEM 185001 200512 007001 029112 0.948 3 1.258 0.38–18 3 18
CESM1-WACCM 185001 200512 009601 029512 1.98 3 2.58 0.38–18 3 18
CMCC-CESM 185001 200512 432401 449312 3.48 3 3.758 0.58–28 3 28
CMCC-CM 185001 200512 155001 187912 0.758 3 0.758 0.58–28 3 28
CMCC-CMS 185001 200512 368401 418312 3.718 3 3.758 0.58–28 3 28
CNRM-CM5 185001 200512 185001 269912 1.48 3 1.48 0.38–18 3 18
CNRM-CM5.2 185001 200512 185001 225912 1.48 3 1.48 1.38 3 1.98
GFDL CM3 186001 200512 000101 080012 28 3 2.58 0.38–18 3 18
GFDL-ESM2G 186101 200512 000101 050012 28 3 2.58 0.375–0.58 3 18
GISS-E2-H 185001 200512 241001 294912 28 3 2.58 0.38–18 3 18
GISS-E2-H-CC 185001 201012 208101 233112 28 3 2.58 0.38–18 3 18
GISS-E2-R 185001 200512 398101 453012 28 3 2.58 18 3 1.258
GISS-E2-R-CC 185001 201012 205001 230012 28 3 2.58 18 3 1.258
HadGEM2-CC 185901 200512 185912 209912 1.258 3 1.8758 0.38–18 3 18
HadGEM2-ES 185901 200512 185912 243605 1.258 3 1.8758 0.38–18 3 18
INM-CM4 185001 200512 185001 234912 1.58 3 28 0.58 3 18
IPSL-CM5A-LR 185001 200512 180001 279912 1.98 3 3.758 28 3 28
IPSL-CM5B-LR 185001 200512 183001 212912 1.98 3 3.758 28 3 28
MIROC5 185001 201012 200001 266912 1.48 3 1.48 0.5–1.48 3 1.48
MPI-ESM-LR 185001 200512 185001 284912 1.878 3 1.8758 1.58 3 1.58
MPI-ESM-MR 185001 200512 185001 284912 1.878 3 1.8758 0.48 3 0.48
MPI-ESM-P 185001 200512 185001 300512 1.878 3 1.8758 1.58 3 1.58
MRI-CGCM3 185001 200512 185101 235012 1.128 3 1.1258 0.58 3 18
NorESM1-M 185001 200512 070001 120012 1.98 3 2.58 18 3 1.18
NorESM1-ME 185001 200512 090101 115212 1.98 3 2.58 0.58 3 18

15 JULY 2020 SUN ET AL . 6029

D
ow

nloaded from
 http://journals.am

etsoc.org/jcli/article-pdf/33/14/6025/4957680/jclid190158.pdf by H
ELM

H
O

LTZ-ZEN
TR

U
M

 FU
ER

 user on 10 August 2020



variances in the regressionmap associatedwith theNASST

index (Fig. 2a) are larger over the tropicalNAthanover the

subpolar NA. The explained variances over the tropical

NA are considerably smaller in the regression map asso-

ciated with the AMO index with a maximum of 0.2 as

compared to 0.5 in theNASST-SST regressionmap. This is

consistent with Zhang (2017) reporting that the low-

frequency SST anomalies associated with the AMO are

most pronounced in the subpolarNAregionwhile the high-

frequency NA SST varies primarily in the tropical NA,

adding noise to the basin-averaged index definition (Wills

et al. 2019). The AMO index explains slightly less variance

in SST over the subpolar NA (Fig. 2b) than the NASST

index (Fig. 2a), and the regressions are slightly smaller with

the exception of the Labrador Sea, where they are larger.

The regression patterns associated with the observed

NASST index and the observed AMO index share some

similarities with the tripolar SST-regression pattern as-

sociated with the inverted NAO index (Fig. 2c): there

are two maxima, one in the subpolar and the other in

the subtropical NA, and a minimum between them.

However, the minimum in the regression pattern asso-

ciated with the NAO index is much more pronounced

being negative. The pattern correlation between the

NASST index–related (Fig. 2a) and the NAOindex re-

lated SST-regression pattern (Fig. 2c) amounts to 0.71,

suggesting the NASST index–related pattern is signifi-

cantly influenced by SST variability that is directly re-

lated to the NAO. The relationship between the NAO

and NA SST on interannual time scales is known to be

local in nature and largely originating from the action of

the NAO-related surface heat fluxes (Frankignoul 1985;

Cayan 1992). Anomalous Ekman transport also con-

tributes to the generation of SST anomalies over the NA

(Marshall et al. 2001). The pattern correlation between

the regression patterns associated with the AMO index

(Fig. 2b) and the NAO index (Fig. 2c) only amounts to

0.34, indicating that the AMO index–related pattern is

less influenced by the NAO than the NASST index–

related pattern and the ocean dynamics may be needed

to explain the AMO index–related pattern.

The SST-regression pattern associated with the

NASST index calculated from the preindustrial control

integration of the KCM (Fig. 2d) captures the general

spatial structure derived from the observations (Fig. 2a),

but the KCM’s SST anomalies are smaller over the

tropical NA. In the observations, the explained vari-

ances in the NASST index–related pattern are larger

over the tropical NA than over the subpolar NA, which

also is the case in the KCM (Fig. 2d) and in the CMIP5

models’ ensemble mean (see below; Fig. 2h). We note

that the explained variance in most of the CMIP5

models exceeds 0.4 over limited regions of the tropical

FIG. 1. (a) The externally forced component of the observed NA

SST variability estimated by the S/NEOF. The blue curve indicates

the forced component of observed NASST index (annual) and the

black dashed curve indicates the forced component of observed

AMO index (low-pass). (b) Observed indices. The blue curve in-

dicates the NASST index 1854–2010, the black dashed curve indi-

cates the AMO index 1859–2005, and the green curve indicates the

station-based NAO index 1865–2010 (sign-reversed). (c) 160 years

(model years 2075–2235, during which the covariance with the

observed AMO index is maximum from the 3000-yr-long prein-

dustrial control integration of the KCM). The blue curve indicates

the NASST index, the black dashed curve indicates the AMO in-

dex, and the green curve indicates the PC-based NAO index (sign-

reversed). (d) Same time span as in (c), but for the AMOC index in

the KCM. The NASST index is defined as the annual SST anom-

alies over theNA averaged over the region 08–608N, 7.58–758Wand

the AMO index as the low-pass filtered (applying an 11-yr running

mean)NASST index. TheAMOC index is defined as themaximum

of the overturning streamfunction in the Atlantic at 408N. The

NAO index in observations is defined as the difference of nor-

malized SLP between Lisbon and Reykjavik. The NAO index in

the KCM is defined as the first PC of SLP in the NA.
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NA and can be up to 0.6 (not shown). The explained

variance exceeds 0.2 over the subpolar NA inmost of the

CMIP5 models with values up to 0.4 in limited regions

(not shown), indicating a robustness of the pattern

across the CMIP5 models. When calculating the SST

regression on the KCM’s AMO index (Fig. 2e), tropical

NA SST anomalies are largely absent south of about

308N. The ensemble-mean SST-regression pattern as-

sociated with the AMO index calculated from the 14

preindustrial control integrations of the CMIP5 models

(Fig. 2i) is similar to that derived from the KCM in

structure andmagnitude.Most importantly, there are no

signals over the tropical NA and significant SST anom-

alies with explained variances exceeding 10% are re-

stricted to the mid- and high-latitude NA. Although the

explained variances may become smaller when a

multimodel ensemble average is calculated, they are only

slightly smaller relative to those in the KCM, indicating a

robustness of the AMO index-related pattern across the

CMIP5 model ensemble. We note that there are large

differences among the individual regression patterns as-

sociated with the AMO index across the CMIP5 model

ensemble, but all patterns derived from the individual

models exhibit relatively small SST anomalies over the

tropical NA (not shown).

The regression pattern of the SST on the NAO index

derived from the KCM (Fig. 2f) is consistent with that

calculated from observations (Fig. 2c) featuring the tri-

polar SST-anomaly pattern. Compared with observa-

tions, the explained variances are smaller over the

subpolar and tropical NA and larger over the midlati-

tude NA. The CMIP5 ensemble-mean NAO–SST

FIG. 2. (a) SST-anomaly pattern derived from regression onto the annual NASST index 1854–2010 in ERSST v5. (b) SST-anomaly

pattern derived from regression onto the AMO index (low-pass filtered NASST index; see text for definition) during 1859–2005 in ERSST

v5. (c) SST-anomaly pattern (sign-reversed) derived from regression onto the annual NAO index in 1865–2010. (d) As in (a), but for the

regression coefficients calculated from the KCM. (e) As in (b), but for the regression coefficients calculated from the KCM. (f) As in (c),

but for the regression coefficients calculated fromKCM(sign-reversed). (g) SST-anomaly pattern derived from regression onto the annual

AMOC index calculated from the KCM. (h) As in (a), but for the ensemble mean of regression coefficients calculated from 14 CMIP5

preindustrial control simulations. (i) As in (b), but for the ensemble mean of regression coefficients calculated from 14 CMIP5 prein-

dustrial control simulations. (j) As in (c), but for the ensemble mean of regression coefficients calculated from 14 CMIP5 preindustrial

control simulations (sign-reversed). (k) As in (g), but for the ensemble mean of regression coefficients calculated from 14 CMIP5 pre-

industrial control simulations. Note that the ensemble means from the CMIP5 models are calculated by averaging the regressions and

explained variances from the individual models. Color shading indicates regressions; contours explaine variance. Dots means the re-

gression is not significant at the 95% level, and the dots do not show in the CMIP5 ensemblemean. The regression coefficients correspond

to a 1s change of the corresponding indices.
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regression map (Fig. 2j) is characterized by similar re-

gression coefficients and explained variances compared

to those from the KCM. Overall, we conclude from both

the observations and the climate models that the

NASST index–related SST-anomaly pattern is strongly

influenced by the NAO, whereas the AMO index–

related pattern is less influenced by the NAO and only

well developed over the extratropical NA. This suggests

that the ocean dynamics play an important role in

the AMO.

We next investigate the role of the AMOC in the NA

SST variability. Figure 2g shows the SST regressions on

the AMOC index calculated from the KCM. The

AMOC-related SST regression pattern exhibits large

positive SST anomalies over the mid- and high-latitude

NA, especially over the subpolar region, but hardly any

anomalies over the tropical NA. Such a structure is also

observed in the ensemble-mean AMOC-related SST

regression pattern derived from the CMIP5 models, but

the regression coefficients and explained variances are

relatively small (Fig. 2k) in comparison to the KCM.

Previous studies show that the NA SST variability is not

robust and varies considerably between climate models.

For example, some of the CMIP5 models exhibit the

largest explained variances with values of up to 0.4 over

the eastern NA (not shown) whereas the ensemble-

mean explained variances are on the order of 0.1

(Fig. 2k). One reason for the model differences could be

the cold NA SST bias observed in the vast majority of

the CMIP5 models that varies among the models (Ba

et al. 2014; Keenlyside et al. 2016; Zhang and Wang

2013), which will be investigated below. Although the

regression patterns in the individual CMIP5 models

differ from each other considerably (not shown), the

ensemble-mean AMOC-related SST-anomaly pattern

supports the KCM’s result that the AMOC only influ-

ences the extratropical NA SST.

In the KCM, the AMO index–related SST-regression

pattern (Fig. 2e) is similar to the AMOC index–related

SST-regression pattern (Fig. 2g), suggesting a major

influence of the AMOC on the AMO. The temporal

correlation between the AMO index and the annual

AMOC index amounts to 0.70 at zero lag and to 0.75

when the AMOC index leads by two years. In compar-

ison to the AMOC index–related pattern, the SST

anomalies associated with the AMO index–related

pattern extend farther south straddling the equatorial

NA. In the CMIP5 models, the similarity between the

AMO index–related and AMOC index–related SST-

regression patterns is not as striking as in the KCM, but

the CMIP5 models (Figs. 2i,k) agree with the KCM in

that the largest regressions are seen over the extra-

tropical NA and that the SST anomalies associated with

the AMO index extend farther south. This suggests that

the AMO index is composed of variability that addi-

tionally to the influence of the AMOC reflects tropical

NA SST variability that is not related to the AMOC.

c. Time scale separation of North Atlantic SST
variability

From the above regression analysis, we find that both

the tropical and extratropical NA SST can be influenced

by different factors. To identify these factors and their

contributions over different parts of NA, another two

SST indices are calculated: an extratropical NA SST

index (E-NASST index hereafter) defined as the area-

averaged SST over 408–608N, 7.58–758W and a tropical

NA SST index (T-NASST index hereafter) defined as

the area-averaged SST over 08–208N, 7.58–758W. Cross-

spectral analysis is performed between the NASST in-

dex and T-NASST index and between the NASST index

and E-NASST index (Fig. 3). In the observations, the

NASST index is highly coherent with the T-NASST in-

dex on basically all time scales but with smaller squared

coherence at periods longer than decadal (Fig. 3a). The

squared coherence spectrum calculated between the

NASST index and the E-NASST index fluctuates con-

siderably with time scale (Fig. 3b), with peaks on interan-

nual, decadal, andmultidecadal time scale, andpronounced

minima in between. We note the increase of the squared

coherence toward longer periods in Fig. 3b.

In contrast to the observations, the climate models

yield a clear time scale separation. In the KCM

(Figs. 3c,d), the NASST index and the T-NASST index

exhibit the highest squared coherence at the interannual

to decadal time scale. The NASST index and the

E-NASST index exhibit the largest squared coherence

at the multidecadal time scale. We note that the NASST

index and the T-NASST index are almost in phase at

interannual time scales. At multidecadal time scales, the

NASST index slightly lags the E-NASST index. We

depict the power spectra of the three KCM indices in

Fig. 4. The spectrum of the NASST index (Fig. 4a) ex-

hibits increasing power toward longer time scales and

features a peak at periods of about 30–50 years. In

contrast, the spectrum of the T-NASST index exhibits

largest power on short time scales and is basically flat on

decadal and longer time scales (Fig. 4b). The spectrum

of the E-NASST index (Fig. 4c) is steeper than that of

the NASST index and also exhibits the multidecadal

peak. Thus, among the three indices it is the E-NASST

index that most robustly records multidecadal SST

variability.

Recent studies suggest that SST anomalies in the

midlatitudes can propagate into the tropics through

cloud feedback (Brown et al. 2016; Yuan et al. 2016).
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FIG. 3. Cross-spectral analysis between the NASST index and the SST indices, T-TASST (08–208N, 7.58–758W)

and E-NASST (408–608N, 7.58–758W). Annual data are used. (a) Squared coherence (blue) and phase spectra

(orange stars) between the NASST index and T-NASST index calculated from observations 1854–2010. (b) As in

(a), but with the E-NASST index. (c),(d) As in (a) and (b), but for the KCM. The phase only is shown when the

squared coherence exceeds the 95% confidence level (black dotted line). A phase lag of zero indicates that the two

time series are in phase (orange dotted line) while a positive (negative) phase lag indicates that the NASST index

leads (lags). (e) Squared coherence (gray lines) between NASST index and T-NASST index in the 14 CMIP5

preindustrial control runs; the thick black line indicates the ensemble mean of the squared coherence. (f) As in (e),

but with the E-NASST index. Blue dashed curves indicate one standard deviation of the squared coherence across

CMIP5 models. Black dashed curves indicate the ensemble mean 95% confidence level of the square coherence.
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We performed cross-spectral analysis between the

T-NASST index and the E-NASST index (not shown).

In both observations and in the KCM, the E-NASST

index leads the T-NASST index by about (1/2)p at in-

terannual to decadal time scales but the squared co-

herence is far below the 95% confidence level. This

suggests that the southward propagation of the SST

anomalies is not a main factor contributing to the NA

SST variability.

The ensemble-mean squared coherence between the

NASST index, the T-NASST index, and the E-NASST

index derived from the preindustrial control runs with

the CMIP5 models (Figs. 3e,f) is similar to that obtained

from the KCM. To visualize the ensemble spread, one

standard deviation of the squared coherence and an

averaged 95% confidence level (note that the length of

the chosen model simulations varies) are also shown.

Thus, there is a clear time scale separation in both the

KCM and the CMIP5 models: the NASST index only is

highly coherent with the T-NASST index on the inter-

annual time scale. On the other hand, the NASST index

only exhibits significant squared coherence with the

E-NASST index on the multidecadal time scale. In

conclusion, in the models the SST variability over the

NA associated with the NASST index can be separated

roughly into two components: a tropical component

governed by interannual variability and an extratropical

component governed by multidecadal variability. These

results are consistent with Fig. 2 where the multidecadal

NA SST variability, as expressed by the AMO index,

mainly exists in the extratropical NA.

d. AMOC influence on NA SST variability

To further investigate the AMOC influence on NA

SST, cross-spectral analysis is conducted between the

AMOC index and the T-NASST index and between the

AMOC index and the E-NASST index (Fig. 5). Since

AMOC observations are limited, we only use model

data in this analysis. The results obtained the KCM

(Figs. 5a,b) yield a very clear picture: the T-NASST in-

dex is unrelated to the AMOC index at all time scales,

while the E-NASST index is highly coherent with the

AMOC index on multidecadal time scale with the

AMOC index consistently leading. The KCM’s results

are supported by the ensemble-mean coherence spec-

trum derived from the preindustrial control runs with

the CMIP5 models (Figs. 5c,d). Although model spread

is large, the ensemble-mean squared coherence between

the AMOC index and the E-NASST index is relatively

high at the multidecadal time scale. Thus, the multi-

decadal extratropical NA SST variability in the models

has a strong link to the AMOC.

e. Influence of model bias

As noted above, the relationship betweenAMOC and

NA SST varies among the CMIP5 models. In many

models, the displacement of the North Atlantic Current

in the CMIP5 models results in a cold SST bias over the

extratropical NA (Drews and Greatbatch 2016, 2017).

To investigate the influence of the cold SST bias on the

relationship betweenAMOCandNASST in the CMIP5

models, we choose the three models (CanESM2,

CESM1-BGC, and CNRM-CM5) exhibiting the largest

SST bias over the extratropical NA (Fig. 6a), and the

three models (FGOALS-s2, GISS-E2-R, and MPI-

ESM-MR) exhibiting the smallest SST bias over that

region (Fig. 6b). Clearly, the models with the smallest

SST bias show high squared coherence at the multi-

decadal time scale (Fig. 6c). On the other hand, the

models with the largest SST bias disagree more among

each other, lack high squared coherence at the multi-

decadal time scale, and mostly show high squared co-

herence on the centennial time scale (Fig. 6d). As

mentioned above, we use here a freshwater-flux

FIG. 4. (a) The power spectrum of NASST index (08–608N, 7.58–758W) in the KCM. The power spectrum is shown in the blue curve, the

dashed pink curve represents the theoretical red noise spectrum, and the dashed red curve represents the 95% confidence level. Both the x

axis and y axis use logarithmic scales, and the x axis shows the period in years. (b) As in (a), but for T-TASST (08–208N, 7.58–758W). (c) As

in (a), but for E-NASST (408–608N, 7.58–758W).
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corrected KCM version with much reduced cold SST

bias over the extratropical NA relative to the standard

version. The correctedKCMversion exhibits high squared

coherence between the AMOC index and the E-NASST

index atmultidecadal time scale, as shown above (Fig. 5b),

which is consistent with the three CMIP5 models ex-

hibiting the smallest cold SST bias (Fig. 6c).

f. Lagged NA SST response to NAO variability

TheNAO is another important factor that contributes

to the NA SST variability. According to the discussion

around Fig. 2, the NAO can induce a tripolar SST-

anomaly pattern via anomalous surface heat fluxes.

Cross-spectral analysis between the NAO index and the

SST indices, T-NASST and E-NASST, is performed

(Fig. 7). It should be mentioned that the NAO index

used in the two cross-spectral analyses has not been

inverted, because we wish to show the influence of the

positive NAO phase on the NA SST variability. The

results obtained from the observations and the climate

models differ considerably. Considering the NAO index

and the T-NASST index, we find in observations an

enhanced squared coherence and an out-of-phase rela-

tionship at the biennial period (Fig. 7a). Additionally,

there is a pronounced peak of the squared coherence

between the NAO index and the T-NASST index with

an out-of-phase relationship at a period of 15 years

(Fig. 7a). Neither in the KCM (Fig. 7c) nor in the CMIP5

models (in the ensemble mean; Fig. 7e) is such a decadal

peak found. We note that in the KCM’s preindustrial

control run the spectrum of the NAO index is consistent

with white noise (not shown).

We next consider the relationship between the NAO

index and the E-NASST index (Figs. 7b,d,f). Previous

FIG. 5. Cross-spectral analysis between the AMOC index and the SST indices, T-TASST (08–208N, 7.58–758W)

and E-NASST (408–608N, 7.58–758W). Annual data are used. (a) Squared coherence (blue) and phase spectra

(orange stars) between the AMOC index and T-NASST index in the KCM. (b) As in (a), but with the E-NASST

index. The phase only is shown when the squared coherence exceeds the 95% confidence level (black dotted line).

A phase lag of zero indicates that the two time series are in phase (orange dotted line) while a positive (negative)

phase lag indicates that the AMOC index leads (lags). (c),(d) As in (a) and (b), but for 14 CMIP5 preindustrial

control runs. Blue dashed curves indicate one standard deviation of the squared coherence across CMIP5 models.

Black dashed curves indicate the ensemble mean 95% level of the square coherence.
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work by Eden and Willebrand (2001) suggested a two–

time scale response of the NA ocean circulation to NAO

variability that could influence SST over the extratropical

NA: a fast barotropic response due to anomalous Ekman

transport (intraseasonal time scale) and a delayed baro-

clinic response (time scale of 6–8 years) due to enhanced

meridional overturning and a spinup of the subpolar gyre.

The slow response is somewhat suggested by the obser-

vations, as the NAO index leads the E-NASST index at

the multidecadal time scale (not shown), but the instru-

mental record is short and squared coherence at the

multidecadal time scale, though enhanced, does not ex-

ceed the 95%confidence level (Fig. 7b). The fast response

is not resolved by annual mean data.

The slow response is clearly simulated by the KCM, as

suggested by the high squared coherence between the

NAO index and the E-NASST index (Fig. 7d) as well as

the high squared coherence between the AMOC index

and the E-NASST index (Fig. 5b). In the KCM, the

NAO index leads the E-NASST index by about (1/4)p,

amounting to about 6–8 years. This time lag is consistent

with that derived from the ocean model simulations in

Eden and Willebrand (2001). Due to the large spread,

the ensemble-mean squared coherences derived from

the CMIP5 models (Fig. 7f) are insignificant at all

time scales.

We conclude from the above analysis that the SST-

anomaly pattern associated with the North Atlantic

basin-averaged SST index (NASST index), which is

based on annual data, lumps together tropical and

extratropical SST variability although the two are re-

lated to different mechanisms. Climate models suggest

that the extratropical part of the SST-anomaly pattern

associated with the NASST index is linked to multi-

decadal AMOC variability. On the other hand, the

models suggest that the tropical part is governed by in-

terannual SST variability that is unrelated to the

AMOC. The AMO index, defined as the low-pass fil-

tered NASST index, only tracks extratropical NA

SST variability in the climate models, although the

FIG. 6. Ensemble-mean long-term annual SST bias relative to Levitus climatology calculated from a selection of

preindustrial control simulations with CMIP5models: (a)mean SST bias from the three CMIP5models (FGOALS-

s2, GISS-E2-R, andMPI-ESM-MR) exhibiting the smallest SST bias over theNorthAtlantic and (b)mean SST bias

from the three CMIP5 models (CanESM2, CESM1-BGC, and CNRM-CM5) exhibiting the largest SST bias over

the North Atlantic. (c) Squared coherence between the AMOC index and the E-NASST index in the CMIP5

models with the smallest SST bias (colored lines) and the ensemblemean of thesemodels (thick black line). Amean

95% confidence level is shown as the gray dashed line. (d) As in (c), but for the CMIP5 models with the largest SST

bias. The phase is not shown in (c) and (d).
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FIG. 7. Cross-spectral analysis between the NAO index and the SST indices, T-NASST (08–208N, 7.58–758W) and

E-NASST (408–608N, 7.58–758W). Annual data are used. (a) Squared coherence (blue) and phase spectra (orange

stars) between the NAO index and T-NASST index calculated from observations 1865–2010. (b) As in (a), but with

the E-NASST index. (c),(d) As in (a) and (b), but for the KCM. The phase only is shown when the squared

coherence exceeds the 95% confidence level (black dotted line). A phase lag of zero indicates that the two time

series are in phase (orange dotted line) while a positive (negative) phase lag indicates that the NAO index leads

(lags). (e),(f) Squared coherence (gray lines) between NAO index and T-NASST index in the 14 CMIP5 prein-

dustrial control runs; the thick black line indicates the ensemble mean of the squared coherences. Blue dashed

curves indicate one standard deviation of the squared coherence across CMIP5 models. Black dashed curves in-

dicate the ensemble mean 95% confidence level of the square coherence.
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extratropical NA area is small in comparison to the full

NA area over which the AMO index is defined. In the

climate models, the SST variability associated with the

AMO index is clearly linked to the AMOC. This link is

very clear in the KCM. The CMIP5models considerably

differ among each other, which could be due to varying

model biases over the NA (Fig. 6), but the ensemble-

mean results also point toward the picture suggested by

the KCM. The overturning observations at 268N only

starting in 2004 are too limited to draw robust conclu-

sions about the connection between the AMO and

the AMOC.

g. SPG influence on NA SST

Eden and Willebrand (2001) suggested that the de-

layed ocean circulation response to the NAO variability

not only is related to the AMOC but also could be

caused by an adjustment of the subpolar gyre. To in-

vestigate the importance of the subpolar gyre for theNA

SST variability we compute from the climate models a

subpolar gyre index (SPG index) defined as the inverted

area average of the barotropic streamfunction over the

region 508–588N, 268–428W.The SPG index calculated in

this way is highly correlated with the PC1 of EOF1

calculated from the barotropic streamfunction over the

same region, with a correlation coefficient of up to 0.92.

The cross-spectral analysis results between the SPG in-

dex and the SST indices, T-NASST and E-NASST, are

shown in Fig. 8. In the KCM, the T-NASST index is not

strongly linked to the SPG index on any time scale

(Fig. 8a), which is consistent with the CMIP5 preindus-

trial control runs (Fig. 8c). The E-NASST index, on

the other hand, exhibits highly significant squared co-

herence with the SPG index in the KCM on the

FIG. 8. Cross-spectral analysis between the SPG index and the SST indices, T-TASST (08–208N, 7.58–758W) and

E-NASST (408–608N, 7.58–758W). Annual data are used. (a) Squared coherence (blue) and phase spectra (orange

stars) between the SPG index and T-NASST index in the KCM. (b) As in (a), but with the E-NASST index. The

phase only is shown when the squared coherence exceeds the 95% confidence level (black dotted line). A phase lag

of zero indicates that the two time series are in phase (orange dotted line) while a positive (negative) phase lag

indicates that the SPG index leads (lags). (c),(d) As in (a) and(b), but for 14 CMIP5 preindustrial control runs. Blue

dashed curves indicate one standard deviation of the squared coherence across CMIP5models. Black dashed curves

indicate the ensemble mean 95% confidence level of the square coherence.
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multidecadal time scale, with the SPG index leading

by several years (Fig. 8b). The CMIP5 models some-

what support this result, as expressed by the en-

hanced ensemble-mean squared coherence between the

E-NASST index and the SPG index at multidecadal

time scale (Fig. 8d), but the ensemble-mean squared

coherence is not as large as in the KCM.We note that in

the KCM (Fig. 9a) and also on average in the CMIP5

models (Fig. 9b), a stronger AMOC is associated with an

enhanced subpolar gyre. This is demonstrated by the

regressions of the barotropic streamfunction (PSI) on

the AMOC index. The strengthened subpolar gyre will

enhance the northward heat transport into the extra-

tropical NA, which leads to warmer SSTs over the sub-

polar NA and at least partly explains the relationship

between the SPG index and the E-NASST index ob-

served in the models (Figs. 8b,d).

h. Tropical Pacific influence on NA SST variability

Previous studies have shown that the tropical Atlantic

SST variability is strongly related to local trade wind

changes (e.g., Carton et al. 1996; Kushnir et al. 2002) and

the wind–evaporation–SST (WES) feedback (Xie and

Philander 1994). This picture is supported by the local

correlation coefficients between SST and surface wind

speed anomalies calculated from the KCM. The corre-

lations between the two quantities over the tropical NA

are relatively large and typically amount to about 20.6

in the region 158–308N (not shown). Besides the locally

generated surface wind variability, ENSO has been

shown to exert robust remote impacts on the SST over

the tropical NA (Enfield and Mayer 1997). To study the

ENSO influence on NA SST, we use the Niño-3 index

and perform cross-spectral analysis with the T-NASST

index and the E-NASST index. Figures 10a and 10b

show the results derived from the observations. ENSO is

highly coherent with T-NASST at interannual time

scales, with ENSO leading (Fig. 10a). We note the large

peak around a period of 15 years that also is seen in the

coherence spectrum computed from theNAO index and

the T-NASST index (Fig. 7a). The peak at interannual

time scales (Fig. 10a) can also be found in the KCM

(Fig. 10c) and in the ensemble-mean coherence spec-

trum calculated from the CMIP5 models (Fig. 10e).

The relationship between the Niño-3 index and the

E-NASST index differs between the observations and

the climate models. In the observations, there is statis-

tically significant squared coherence at interannual time

scales. This is the case neither in the coherence spec-

trum calculated from the KCM (Fig. 10d) nor in the

ensemble-mean coherence spectrum calculated from

the CMIP5 models (Fig. 10f). We conclude that the re-

mote forcing by ENSO is an important component of

tropical NA SST variability. It remains unclear to which

extent ENSO also drives extratropical NA SST vari-

ability. The observations suggest some influence, which,

however, is not supported by the climate models inves-

tigated in this study.

4. Summary and discussion

In this study, observations and climate model simu-

lations are analyzed to aid interpretation of the North

Atlantic averaged sea surface temperature (NASST).

We investigate two indices: an annual index, termed the

NASST index, and a low-pass filtered index that serves

FIG. 9. (a) Barotropic streamfunction (PSI) anomalies pattern derived from regression onto the annual AMOC

index calculated from the KCM. (b) As in (a), but calculated by the ensemble mean of 14 CMIP5 preindustrial

control simulations. Note that the ensemble mean from the CMIP5 models is calculated by averaging the regres-

sions and explained variances from the individual models. Color shading indicates regressions; contours explain

variance. Dots mean the regression is not significant at 95% confidence level, and the dots do not show in the

CMIP5 ensemble mean. The regression coefficients correspond to a 1s change of the corresponding indices.
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FIG. 10. Cross-spectral analysis between the Niño-3 index and the SST indices, T-TASST (08–208N, 7.58–758W)

and E-NASST (408–608N, 7.58–758W). Annual data are used. (a) Squared coherence (blue) and phase spectra

(orange stars) between the NASST index and T-NASST index calculated from observations 1854–2010. (b) As in

(a), but with the E-NASST index. (c),(d) As in (a) and (b), but for the KCM. The phase only is shown when the

squared coherence exceeds the 95% confidence level (black dotted line). A phase lag of zero indicates that the two

time series are in phase (orange dotted line) while a positive (negative) phase lag indicates that the Niño-3 index

leads (lags). (e) Squared coherence (gray lines) between the Niño-3 and T-NASST index in the 14 CMIP5 pre-

industrial control runs; the thick black line indicates the ensemble mean of the squared coherence. (f) As in (e), but

with the E-NASST index. Blue dashed curves indicate one standard deviation of the squared coherence across

CMIP5 models. Black dashed curves indicate the mean 95% confidence level of the square coherence.
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as theAMO index. The SST-anomaly pattern associated

with the observed AMO index is similar to the pattern

associated with the observed NASST index but high-

lights the extratropical SST variability. Moreover, in

observations, the NASST index-related pattern is sig-

nificantly influenced by SST variability that is directly

related to the NAO, whereas the AMO index-related

pattern is much less influenced by the NAO. In obser-

vations there is some weak evidence for the NAO

leading the extratropical NA SST at the multidecadal

time scale, suggesting a delayed ocean circulation in-

fluence on NA SST.

By using cross-spectral analysis, we argue that the two

basin-averaged NA SST indices, the NASST index and

the AMO index, are not appropriate to address the

mechanisms of NA SST variability because relevant

mechanisms operate on different time scales and over

different regions of the NA. We thus conclude that

neither NASST nor AMO constitutes a physical mode

with a well-defined pattern and period and unique

mechanism. Since observations are limited and to obtain

further insight into the origin of NA SST variability,

heavy use was made of data from preindustrial control

integrations of the Kiel Climate Model (KCM) and of

models participating in phase 5 of the Coupled Model

Intercomparison Project (CMIP5). In the models, con-

sistent with observations, the NASST index, is shown to

be composed of SST variability originating from differ-

ent factors: the NAO, AMOC, SPG, and ENSO. The

SST variability associated with the AMOC is restricted

to the mid- and high-latitude NA and the multidecadal

time scale, consistent with previous studies using dif-

ferent climate models (Delworth and Zeng 2016;

Delworth et al. 2016; Zhang 2017; Wills et al. 2019). In

line with this result, the AMO-related SST-anomaly

pattern is similar to the AMOC-related SST-anomaly

pattern in the models.

It is known from observations that the NAO plays an

important role in North Atlantic SST variability on

different time scales, especially on intraseasonal to in-

terannual time scales. In the KCM, we also find a clear

link of the extratropical NA SST to the NAO at the

multidecadal time scale. The connection between the

NAO and the extratropical NA SST in the KCM is

through the SPG and theAMOC. The spread among the

CMIP5 models is so large that in the ensemble mean,

there is only a weak connection between the NAO and

the extratropical NA SST at any time scale. In the KCM

as well as in the CMIP5 models, SPG and AMOC var-

iability is significantly linked at the multidecadal time

scale. An SPG influence on extratropical NA SST on

intermediate time scale has been previously suggested in

several studies (e.g., Curry and McCartney 2001; Eden

and Jung 2001; Sun et al. 2015; Reintges et al. 2016;

Nigam et al. 2018; Martin et al. 2019; Wills et al. 2019)

and there is some weak evidence for the link in the cli-

mate models investigated in this study.

One limitation is the lack of sufficiently long instru-

mental observations, which inhibits, for example, in-

vestigating the influence of the AMOC on NA SST at

time scales longer than interannual. Moreover, the SST

observations are not long enough to estimate robust

statistics and links of the NASST and AMO indices to

the SST in different regions of the NA. For this reason,

we are heavily relying on climate models that are known

to suffer from large SST biases over the NA (e.g., Zhang

and Zhao 2015). In particular, most CMIP5 models

exhibit a large cold SST bias of several degrees Celsius

over the northwest corner region of the NA. We show

that the cold bias has a major influence on the origin of

multidecadal NA SST variability. CMIP5 models with a

small bias exhibit a robust link between the AMOC and

extratropical NA SST at the multidecadal time scale,

while the relationship is less robust in the models

exhibiting a large cold bias.

The cold bias problem is the major reason why we

made extensive use of a freshwater flux-corrected ver-

sion of the KCM that exhibits relatively little SST bias

over the tropical and extratropical NA. The corrected

KCM simulates enhanced ocean dynamics in the NA in

comparison to the uncorrected version exhibiting large

SST biases (Park et al. 2016), such as more realistic SPG

and deep convection sites. Consistent with the CMIP5

models, the correctedKCM simulates a pronounced link

between AMOC and extratropical NA SST on multi-

decadal time scales, while this link is much weaker in the

uncorrected KCM (not shown). One implication of this

result could be that relative to the real world, the

AMOC influence on extratropical NA SST is strongly

underestimated in models exhibiting a large cold SST

bias, which would have relevance to decadal predict-

ability of extratropical NA SST and related quantities.

By using very large ensembles, Smith et al. (2019) show

that decadal climate is more predictable over the NA

sector than previously thought. They discuss the signal-

to-noise paradox meaning that a climate model can

predict the real world better than itself despite being an

imperfect representation of the real world and a perfect

representation of itself. We hypothesize that the skill of

decadal predictions may be maintained at a similar level

as in Smith et al. (2019), but with a smaller ensemble size

if SST bias over the NA is reduced.We also note that the

CMIP5 models exhibit a large spread with respect to the

origin of NA SST variability.

One final implication of our study concerns the on-

going debate about the role of ocean dynamics in driving
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multidecadal climate variability over the NA sector.

One aspect of this debate is around the SST-anomaly

pattern associated with the NASST index derived from

observations (Fig. 2a), which can be reproduced in

simulations in which an atmospheric general circulation

model is coupled to a slab ocean model without active

ocean dynamics (Clement et al. 2015; Cane et al. 2017;

Zhang 2017; Delworth et al. 2017). Clement et al. (2015)

interpret the AMO as the response of the upper ocean

mixed layer to heat-flux forcing by the atmosphere,

which is associated with the NAO. Some of the confu-

sion about the importance of ocean dynamics in NA

SST variability may arise from the choice of the SST

index. The mechanistic drivers influencing the NASST

index can be thermodynamic and dynamic in nature.

Furthermore, the different drivers operate on different

time scales. Clement et al. (2015) use the NASST index

to discuss the role of ocean dynamics in NA SST, which

is based on annual SSTs, and this index has been shown

here to lump together SST variability of different origin.

The climate models used here suggest that the AMO

index, which is defined in this study as the low-pass fil-

tered NASST index, may be a better choice to identify

ocean dynamical effects on NA SST.

However, when calculated from the short instrumen-

tal observations, the SST-anomaly pattern associated

with the AMO index still resembles the pattern associ-

ated with the NASST index and likely contains large

components from atmospheric heat-flux forcing, ocean

dynamical heating, and external forcing. The E-NASST

(extratropical NA SST) index, which is based on annual

data, could be used instead of the AMO index to obtain

some hint from instrumental SSTs about the ocean-

circulation influence on NA SST. This is because the

multidecadal SST variability in many climate models

mainly exists over the extratropical NA and is strongly

linked to the AMOC and SPG, whereas the NASST

index also includes the tropical NA SST variability that

is mostly related to atmospheric heat-flux forcing in the

models. Thus, on the one hand the E-NASST index

strongly reflects the effects of the ocean circulation on

multidecadal SST variability and on the other hand

avoids the high-frequency tropical NA SST ‘‘noise.’’

The E-NASST index therefore avoids the low-pass

filter, which can reduce the temporal variability and

make statistical tests less stringent (Ebisuzaki 1997).

However, a more detailed approach is required instead

of simple spatial averaging to clearly separate the dif-

ferent factors influencing NA SST, which would include

other variables and more advanced statistical methods

such as singular value decomposition (SVD) targeted

at investigating the covariance between variables and

regions.
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