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Abstract
The Internet of Things adoption in the manufacturing industry allows enterprises to monitor their electrical power
consumption in real time and at machine level. In this paper, we follow up on such emerging opportunities for data acquisition
and show that analyzing power consumption in manufacturing enterprises can serve a variety of purposes. In two industrial
pilot cases, we discuss how analyzing power consumption data can serve the goals reporting, optimization, fault detection,
and predictive maintenance. Accompanied by a literature review, we propose to implement the measures real-time data
processing, multi-level monitoring, temporal aggregation, correlation, anomaly detection, forecasting, visualization, and
alerting in software to tackle these goals. In a pilot implementation of a power consumption analytics platform, we show
how our proposed measures can be implemented with a microservice-based architecture, stream processing techniques, and
the fog computing paradigm. We provide the implementations as open source as well as a public show case allowing to
reproduce and extend our research.
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1 Introduction

The immense electrical power consumption of the manu-
facturing industry (International Energy Agency 2019) is
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a considerable cost factor for manufacturing enterprises
and a serious problem for environment and society. Cor-
porate values, public relations, energy-related costs, and
legal requirements are therefore leading to an increas-
ing energy awareness in enterprises (Shrouf et al. 2017).
At the same time, trends toward the Industrial Internet
of Things, Industry 4.0, smart manufacturing, and cyber-
physical production systems allow to collect energy data
in real time and at machine level, from smart meters or
machine-integrated sensors (Shrouf et al. 2014; Mohamed
et al. 2019). Furthermore, research on big data provides
methods and technologies to analyze data of huge vol-
ume and high velocity, as it is the case with power
consumption data (Sequeira et al. 2014; Zhang et al.
2018). However, even though research suggests a variety
of goals and measures for analyzing power consumption
data, the full potential of available data is rarely exploited
(Shrouf and Miragliotta 2015; Bunse et al. 2011; Coore-
mans and Schönenberger 2019).

In our Industrial DevOps research project Titan (Has-
selbring et al. 2019), we work on methods and tools for
integrating and analyzing big data from Internet of Things
devices in industrial manufacturing. Analyzing power con-
sumption data in two enterprises of the manufacturing
industry serves as a case study. Both enterprises are project
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partners of wobe-systems and Kiel University in the Titan
project.

In this paper, we present the goals our studied enterprises
aim at to achieve by analyzing power consumption data and
propose a set of software-based measures that serve these
goals. As start, we conduct a literature review to identify
similar goals in related work, suggested measures for our
goals, and reported implementations in the literature. Our
proposed measures are compiled as part of the Titan project
from knowledge of domain experts within the studied pilot
cases as well as from our literature review. In a pilot
implementation, we show how our proposed measures can
be implemented in an Industrial DevOps analytics platform,
the Titan Control Center (Henning and Hasselbring 2021).
To summarize our contributions:

1. We identify the goals reporting, optimization, fault
detection, and predictive maintenance in our pilot cases.
Our literature review shows that the goals reporting
and optimization are subject of research in various
disciplines, whereas fault detection and predictive
maintenance based on industrial power consumption are
still in an early stage.

2. Based on suggestions from the domain experts in our
Titan project and results of our literature review, we pro-
pose the measures real-time data processing, multi-level
monitoring, temporal aggregation, correlation, anomaly
detection, forecasting, visualization, and alerting. Fur-
thermore, we provide a mapping of goals and measures
by rating the impact of measures on goals.

3. With our Titan Control Center (Henning and Has-
selbring 2021) analytics platform, we show how
our proposed measures can be implemented with
a microservice-based architecture, stream processing
techniques, and the fog computing paradigm. We pro-
vide the implementations as open source as well as a
public show case allowing to reproduce and extend our
research.

The remainder of this paper is structured as follows.
Section 2 summarizes the results of our literature review.
Section 3 briefly describes the current state of energy
monitoring in our studied pilot cases. Section 4 presents
the goals for analyzing power consumption data identified
in our pilot cases, followed by our proposed measures for
tackling these goals in Section 5. Section 6 shows how
our proposed measures can be implemented in an analytics
platform. Finally, Section 7 concludes this paper.

2 Literature review

Analyzing industrial energy data is an emerging field of
research. In this section, we highlight the findings of

our literature review regarding goals and measures for
analyzing power consumption data as well as related work
on implementing such measures.

2.1 Goals for analyzing power consumption data

A lot of research exists, in particular, on how energy data
analysis can contribute to reducing the energy usage in
manufacturing. For example, Vikhorev et al. (2013) point
out that making energy data available for production oper-
ators promotes energy awareness. Cagno et al. (2013)
show that a lack of energy consumption information pre-
vents implementation of energy-saving measures. Detailed
information is especially required at process and machine
level for optimizing energy consumption, as highlighted
by Thollander et al. (2015). For systematic monitoring
and optimizing energy consumption, enterprises are moving
towards establishing an energy management (Cooremans
and Schönenberger 2019). Implementing an energy man-
agement requires to reveal all energy consumptions within
the enterprise (Fiedler and Mircea 2012). Schulze et al.
(2016) identify organizational measures for implementing
an energy management in industry.

Increasing availability of smart meters and Internet
of Things (IoT) adoption in the manufacturing industry
(Industry 4.0) enable enterprises to collect energy data
in great detail (Shrouf and Miragliotta 2015; Miragliotta
and Shrouf 2013; Mohamed et al. 2019). This includes
commercial metering systems as well as prototypical low-
cost systems as proposed by Jadhav et al. (2021). Shrouf
and Miragliotta (2015) highlight several benefits of IoT
adoption for energy data obtained from reviewing literature
and information published by European manufacturing
enterprises. Tesch da Silva et al. (2020) present a systematic
literature review on energy management in Industry 4.0.

Implementing an energy management and analyzing
monitored energy data assist an enterprise in understanding
its energy consumption (Miragliotta and Shrouf 2013;
Vikhorev et al. 2013; Shrouf et al. 2017). It provides
insights into which devices, machines, and enterprise
departments use how much power and during which
times this power is consumed. Combined with information
about the production processes, reports can thus be used
to identify which processes consume how much power
(Herrmann and Thiede 2009). In this way, measures for
optimizing energy consumption can be evaluated and saving
potentials can be identified (Bunse et al. 2011).

Literature focuses particularly on optimizing power
consumption for economical and ecological reasons (Bunse
et al. 2011; Miragliotta and Shrouf 2013; Shrouf et al. 2014;
Schulze et al. 2016; Shrouf et al. 2017). Mohamed et al.
(2019) report on opportunities provided by IoT energy data
for improving energy efficiency and reducing energy costs.
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Shrouf and Miragliotta (2015) focus on optimizing energy
usage to reduce costs and improve reputation, for example,
by reducing energy wastage and improving production
scheduling. In their systematic literature review on energy
management in Industry 4.0, Tesch da Silva et al. (2020)
outline methods for improving energy efficiency and point
out current limitations for their implementation.

In order to optimize the overall power consumption, it
can be expedient to optimize the operation of machines
in production individually. For example, Vijayaraghavan
and Dornfeld (2010) optimize the power consumption of
machine tools to reduce the power consumption of an entire
manufacturing system. Shrouf et al. (2014) optimize the
production scheduling of a single machine for minimizing
overall energy consumption costs.

A special optimization aspect is the reduction of peak
loads (Herrmann and Thiede 2009; Vikhorev et al. 2013;
Shrouf and Miragliotta 2015). In addition to the basic
price, which is fixed per month, and the price per kilowatt
hour, large-scale power consumers such as manufacturing
enterprises often have to pay a demand rate. The demand
rate depends on the maximum demand that occurs within
a billing period. In this way, grid operators expect to have
a load as uniformly as possible in the electricity grid
(Albadi and El-Saadany 2008). Demand peaks are therefore
disproportionately more expensive for the customer. Thus,
an optimization should aim to achieve a power consumption
as constant as possible, i.e., to distribute the demand evenly
over time (peak shaving). In order to achieve this, it is
necessary to identify periods during which relatively much
power is demanded. Likewise, it is important to discover
which consumers are responsible for the demand and to
what extent (Herrmann and Thiede 2009).

Other goals besides reporting and optimization can
only rarely be found in literature. Quiroz et al. (2018)
report how power consumption, which deviates from its
normal behavior, can be an indicator for a fault such as
a mechanical defect or faulty operation. Analyzing the
power consumption of machines can therefore be used to
automatically detect such faults and to react accordingly
(Vijayaraghavan and Dornfeld 2010; Mohamed et al. 2019).
Further, analyzing power consumption data may allow
to predict future faults such that necessary maintenance
actions can be taken (Shrouf et al. 2014; Mohamed et al.
2019).

2.2 Measures for analyzing power consumption data

Many studies consider near real-time processing of energy
data to be necessary (Vijayaraghavan and Dornfeld 2010;
Vikhorev et al. 2013; Sequeira et al. 2014; Herman et al.
2018; Liu and Nielsen 2018). Proposed implementations
are therefore often using stream processing techniques and

tools (see also the following Section 2.3). Several studies
point out that many types of power consumption analysis
require consumption data at different levels (Vikhorev
et al. 2013; Shrouf and Miragliotta 2015; Kanchiralla
et al. 2020). Whereas, for example, the effect of overall
power consumption optimizations can be evaluated with
data of the overall power consumption, detecting defects
in machines requires to acquire data at machine-level.
Moreover, different stakeholders are often interested in
power consumption reports of different granularity (Shrouf
et al. 2017). In addition to aggregating the power
consumption of multiple consumers to larger groups, it
is often required to aggregate multiple measurements of
the same consumer over time (Shrouf and Miragliotta
2015). Analyzing energy data often yields significantly
better results if, in addition to recorded power consumption,
further information is included such as operational and
planning data from the production as well as business data
(Vijayaraghavan and Dornfeld 2010; Shrouf et al. 2017).

Most approaches for energy analytics platforms and
energy management systems include data visualizations
(Fiedler and Mircea 2012; Vikhorev et al. 2013; Sequeira
et al. 2014; Zhang et al. 2018). Visualizations are often
realized as information dashboards, which contains multiple
components providing different types of visualization.
Individual components show, for example:

– the current status of power consumption as numeric
values or gauges (Rist and Masoodian 2019; Vikhorev
et al. 2013)

– the evolution of consumption over time in line charts
(Vikhorev et al. 2013; Sequeira et al. 2014; Fiedler and
Mircea 2012)

– the distribution among subconsumers and categories
(also in the course of time) (Vikhorev et al. 2013;
Masoodian et al. 2015)

– correlations of individual power consumer (Sequeira
et al. 2014; Masoodian et al. 2017)

– particular important values such as the peak load
(Vikhorev et al. 2013)

– detected anomalies (Chou et al. 2017)
– forecasted power consumption (Singh and Yassine

2018)

Research also exists on forecasting power consumption
or detecting anomalies in power consumption data. Both
practices are closely related. Methods for forecasting
and anomaly detection create models of the past power
consumption, explicitly or implicitly, and project it into
the future (forecasting (Martı́nez-Álvarez et al. 2015)) or
compare the actual power consumption with it (anomaly
detection (Chou and Telaga 2014; Liu and Nielsen 2018)).
Common approaches use statistical methods such as
ARIMA (Chujai et al. 2013) or kernel density estimation
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(Arora and Taylor 2016), machine learning methods such as
artificial neural networks (Din and Marnerides 2017; Zheng
et al. 2017), or a combination of both (Chou and Telaga
2014). Whereas much forecasting and anomaly detection
research exists on energy consumption of households
(Chujai et al. 2013; Liu and Nielsen 2018), buildings (Arora
and Taylor 2016; Chou and Telaga 2014), and electricity
grids (Din and Marnerides 2017; Zheng et al. 2017),
approaches regarding power consumption of industrial
production environments are rare due to their irregular
nature (Bischof et al. 2018). Liu and Nielsen (2018)
show how alerts could be triggered when anomalies are
detected.

2.3 Implementation of measures

Software systems for implementing such measures are
presented, for example, by Sequeira et al. (2014) and
Rackow et al. (2015). Yang et al. (2020) propose such a
system for accessing power consumption at a university
campus. However, these systems only focus on a subset of
measures proposed in this paper.

A couple of software architectures for implementing
energy data analysis are suggested. Several architectures
(Sequeira et al. 2014; Shrouf et al. 2017; Herman et al. 2018;
Liu and Nielsen 2018) follow the Lambda architecture
pattern (Marz and Warren 2015). Such architectures deploy
a speed layer for fast online processing and a batch
layer for correct offline processing of data. In our pilot
implementation (see Section 6), we pursue a more recent
architectural style of processing data exclusively online
(also referred to as Kappa architecture) (Kreps 2014)
by utilizing Apache Kafka’s capabilities for reprocessing
distributed, replicated logs (Wang et al. 2015). Additionally,
we combine this with the microservice architecture pattern
and design dedicated, encapsulated microservices per
analytics task. Benefits of using microservices and, in
particular, the associated concept of polyglot persistence
for analyzing industrial energy usage are highlighted by
Herman et al. (2018) and Henning et al. (2019).

Big data analytics of energy consumption heavily relies
on cloud computing (Shrouf et al. 2014; Herman et al.
2018; Sequeira et al. 2014; Mohamed et al. 2018; Yang
et al. 2020). Sequeira et al. (2014) propose cloud connector
software components for integrating data from energy
meters. Recent studies suggest to apply fog computing for
integrating production data in general (Qi and Tao 2019)
and energy consumption data in particular (Mohamed et al.
2019). Our pilot implementation follows the suggestions of
Pfandzelter and Bermbach (2019) to deploy data analytics
using stream processing in the cloud and data preprocessing
and event processing in the fog. Szydlo et al. (2017) present
how data transformation at fog computing nodes can be

implemented using flow-based programming and graphical
dataflow modeling.

3 Studied pilot cases

In this section, we give a brief overview of our two
studied pilot cases. Both pilot cases are enterprises of the
manufacturing industry.

The first studied enterprise is a newspaper printing
company. It is characterized by high requirements on
production speed and the fact that production downtimes
are extremely critical. The company has to print and deliver
daily newspapers for the next day within only a few hours
during the night. If newspapers would be printed too late,
they are not up to date anymore and could no longer be
sold. Production failures would therefore be associated with
significant economic damage. The characteristic production
times, with peaks in the nights before working days, are
reflected, for example, in the power consumption of the
air compressors as depicted in Fig. 1. In addition to
daily newspaper printing, the company prints advertising
supplements, weekly newspapers, and customer magazines
to utilize production capacity.

The second studied enterprise is a manufacturer of
optical inspection systems for non-man-size pipelines and
wells. This enterprise is characterized by a high vertical
range of manufacturing. Thus, its production environment
operates a wide range of machines, some of which are
largely autonomous, others are primarily user-controlled.
Furthermore, the manufacturer operates a rather large
data center which runs software for its administration,
development, and production. In this paper, we focus on
power consumption of the production processes and not on
the power consumption of inspection systems themselves.

Both enterprises already have the necessary physical
infrastructure to record electrical power consumption in
production and query it during operation. Electricity meters
already capture the required data with great detail, that is,
at machine level and with high frequency. We therefore
do not include approaches and techniques for acquiring
power consumption data in this paper. However, both
companies do not yet exploit the full potential of the
recorded and stored data. Currently, they analyze the data
mainly by hand and only at certain times. Much of the
information hidden in power consumption data is therefore
not revealed yet. The reasons for this cannot be found in
missing interest, but in a lack of applicable technologies.
Currently, the production operators use software provided
by metering device manufactures, for example, to visualize
the stored data. However, this software does not meet all
requirements. For example, the amount of visualized data
is too large, making it hard to extract the really important
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Fig. 1 Power consumed for
generating compressed air in the
newspaper printing company
over a period of 2.5 weeks. The
curve shows a weekly pattern
and reflects the company’s
operating hours with constant
low consumption at the weekend
and peak loads at night

information. Another issue is the integration of different
types of electricity meters. Although standardized protocols
exist, many metering devices and systems do not apply
them.

4 Goals for analyzing power consumption
data

In this section, we identify motivations for analyzing power
consumption data in our studied pilot cases. We classify
these motivations into the four goal categories reporting,
optimization, fault detection, and predictive maintenance.
Our literature review (see Section 2) suggests that these
goals also occur in other manufacturing enterprises as
similar motivations can be found in related studies. In the
following, we describe each goal category in detail.

4.1 Reporting

In both studied enterprises, comprehensive reporting is par-
ticularly required for an (ISO 50001 2018) certification.
The ISO 50001 standard specifies requirements for orga-
nizations and businesses for establishing, implementing,
and improving an energy management system. It describes
a systematic approach to support organizations in contin-
uously improving their energy efficiency. In order to be
certified to use an energy management system in compli-
ance with ISO 50001, enterprises commission accredited
certification bodies to perform regular independent audits
(Jovanović and Filipović 2016). These certifications are
usually not required by law, but serve as evidence that a
company is making efforts to save energy.

Both companies consider sustainability as an important
pillar of their corporate philosophy. ISO 500001 certifi-
cation allows them to demonstrate their efforts in saving
energy to customers and other stakeholders. Moreover, in
Germany, where both enterprises are located, ISO 50001
certification enables cost savings as such a certification is a
prerequisite for manufacturing enterprises with high power

consumption to reduce regulatory charges (e.g., reducing
the EEG surcharge (Bundesamt für Wirtschaft und Aus-
fuhrkontrolle (BAFA) 2020)). Certification is even essential
for the manufacturer of optical inspection systems. Its cus-
tomers are mainly public authorities, which often require
ISO 50001 certification in their calls for tender.

Reports for ISO 50001 certification are required to
justify irregular or increasing power consumption. This is in
particular challenging for the newspaper printing company,
where power consumption highly depends on the production
utilization and external influences. Hence, this company
requires to perform complex analyses for their reports,
such as correlations with external data from the production
and the environment. Moreover, the ISO 50001 standard
requires that reports on the enterprise’s energy consumption
are available for customers, stakeholders, employees, and
management.

4.2 Optimization

The ecological and economical motivations for optimizing
energy consumption presented in our literature review (see
Section 2) also apply to both our pilot cases. We identify
the following types of optimizing power consumption in the
studied enterprises.

Optimization of Overall Consumption For optimizing the
overall power consumption, a first step is to identify energy-
inefficient machines and devices. This knowledge can then
be used to replace them with more energy-efficient ones
or retrofitting them accordingly. Furthermore, time periods
should be detected in which devices consume energy,
although it would not be necessary. Typical examples of
unnecessary energy consumption are keeping machines in
standby mode or lighting workplaces outside of working
hours, but also less apparent saving potential is expected to
be discovered.

Optimization of Peak Loads Being large-scale power con-
sumers, both studied pilot cases have to pay a demand rate
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based on the maximum demand within a billing period.
Thus, demand peaks are disproportionately more expen-
sive. An optimization aim is therefore to achieve a power
consumption as constant as possible, i.e., to distribute the
demand evenly over time (peak shaving). In order to achieve
this, it is necessary to identify periods during which rela-
tively much power is demanded. Likewise, it is important
to discover which power consumers are responsible for
the demand and to what extent. This includes, on the one
hand, the identification of large consumers in general but,
on the other hand, also demand fluctuations of individual
devices. Based on this information, production processes
can be modified such that, for instance, multiple machines
with a high inrush current are not started at the same time.
Reducing the overall energy consumption is highly related
to reducing peak loads. If measures are taken to replace
devices, this has an effect on both optimization goals. For
example, if devices that are unnecessarily operated standby
during load peaks are turned off during these periods, not
only demand peaks are reduced, but also the enterprise’s
power consumption in total.

Optimization on Machine-Level Similar to what we present
in Section 2, it is reasonable to optimize the operation of
machines or production processes to optimize the overall
power consumption or peak loads. A potential power saving
measure in the newspaper printing company exists in the
printing process. The number of newspapers produced per
unit time depends directly on the operating speed of the
printing presses. To determine an optimal printing speed,
several other factors are also taken into account, such
as reliability, which decreases when increasing production
speed. With monitoring and analyzing the printing presses’
power consumption, the company can also include energy-
related costs when determining the production speed.

4.3 Fault Detection

The studied enterprises report that a power consumption
of machines, deviating from their normal behavior can be
an indicator for a fault such as a mechanical defect or
faulty operation. Analyzing the power consumption can
therefore be used to automatically detect such faults and
to react accordingly. A typical case of anomalous power
consumption is a strong increase, for example, when a
defect occurs suddenly. A decrease of power consumption
can also be such an indicator as parts of a machine may
no longer be operated due to a defect. Less noticeable
is a slight deviation over a longer period of time, for
example, if several minor defects occur over time. Detecting
deviations or a long-term trend in regularly fluctuating
power consumption is even more challenging.

The central compressed air supply in the newspaper
printing company is an example for fault detection using
power consumption data. An extensive pipe network
supplies various areas of the production environment and
finally individual machines with compressed air. The
compressed air distribution network leaks regularly, causing
air to escape. These leaks do not necessarily become
apparent directly, but should still be repaired. As leaks
result in higher power consumption of the air compressors,
power consumption data can provide an instrument for
leak detection. However, since power consumption of the
air compressors is subject to strong, irregular fluctuations
(see Fig. 1), an increase in power consumption does not
immediately become apparent. This may be solved by
considering the power consumption only in idle times,
for example, during the weekend. An increase in power
consumption over several weekends may thus be an
indication of a leak. Figure 2 shows the average power
consumption between Saturday 12:00 and Sunday 12:00 for
each weekend in 2017 and 2018. The course shows a steady
increase in 2017 due to leaks in the compressed air supply.
In early 2018, the company repaired several leaks, causing
a tangible reduction in power consumption.

4.4 Predictivemaintenance

With regular, time-based maintenance intervals, machines
and devices are often maintained even though there is no
actual need for it. This means that components and oper-
ating materials are replaced since their expected operating
time expires, although they are still functioning and could
actually continue operating. Predictive maintenance is an
approach that aims for performing maintenance actions only
if it would otherwise results in defects or limitations in
performance or quality (Yan et al. 2017). The difficulty is
therefore to decide when maintenance is really necessary.
For this purpose, sensor data of the machine and its environ-
ment are collected and automatically analyzed (Yan et al.
2017). Our literature review (see Section 2) suggests that
power consumption can be such data.

We distinguish between predictive maintenance and
fault detection as while fault detection aims to detect
errors after they occurred, predictive maintenance refers
to the detection of errors before they occur. Nevertheless,
predictive maintenance is closely related to fault detection
as occurring faults often cause further faults. Therefore,
early fault detection may allow future faults to be detected
and appropriate preventive measures to be taken.

An example for predictive maintenance using power
consumption are cooling circuits as used in the studied
enterprises. Such circulation systems typically include
a filter through which coolant is pumped to remove
impurities. These filters need to be replaced regularly. The
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Fig. 2 Stand-by power
consumption for generating
compressed air in the newspaper
printing company at weekends
over a period of two years

electrical power consumption of the pump indicates the
resistance within the circulation system and, thus, how
polluted the filter is. Increased power consumption can
therefore serve for detecting an upcoming filter change.
Lower power consumption can also provide information.
It may indicate that not enough coolant is in the circuit
(referred to as dry run) and, thus, coolant needs to be
refilled.

5Measures for analyzing power
consumption data

In this section, we discuss software-based measures
for analyzing power consumption data that support in
achieving the goals defined in the previous section. Based
on our literature review in Section 2 and knowledge
from domain experts within our studied pilot cases, we
suggest the following measures: real-time data processing,
multi-level monitoring, temporal aggregation, correlation,
anomaly detection, forecasting, visualization, and alerting.
Different use cases weight goals differently and measures
vary in their importance for the individual goals. We
therefore rate the impact of each measure on each
goal and visualize these impacts on radar charts shown
in Fig. 3. In the following, we briefly describe each
measure and characterize how each measure affects each
goals.

5.1 Near real-time data processing

Near real-time (also referred to as online) data processing
describes approaches, where data are immediately pro-
cessed after their recording. It contrasts batch (also referred
to as offline) processing, which first collects recorded data
and then processes all the collected data only at certain
times. Whereas near real-time data processing is usually
more difficult to design and implement than batch process-
ing, it yields immediate results and, thus, allows to react
immediately on these results.

Data processing in near real-time supports primarily
the goals optimization (see Fig. 3b), fault detection
(see Fig. 3c), and predictive maintenance (see Fig. 3d)
(Vijayaraghavan and Dornfeld 2010; Shrouf and Miragliotta
2015). Power consumption can be efficiently optimized
if the effectiveness of energy-saving actions are evaluated
immediately. The sooner a fault is detected and reported,
the faster it can be reacted to the fault and, therefore,
the more valuable its detection is. Predictive maintenance
requires processing monitoring data in real time as
otherwise the time for maintenance may be determined
after the maintenance should have already been performed
(Sahal et al. 2020). Although a real-time overview of the
enterprise’s energy usage at any time is not required for
ISO 50001 audits, it assists in reporting (see Fig. 3a)
the power consumption, for example, to the management
(Miragliotta and Shrouf 2013).

5.2 Multi-level monitoring

We suggest to organize power consumers in a hierarchical
model, where groups of devices and machines are further
grouped into larger groups (Henning and Hasselbring 2020).
Multiple such models have to be maintained in parallel. For
example, it is reasonable to organize devices by their type
(e.g., all air compressors), but also to organize them by their
physical location (e.g., a certain shop floor).

Besides monitoring groups of consumers, for example,
via sub-distribution units, data for groups can also be
obtained by aggregating the consumption of all its partial
consumers. In particular, this is necessary for devices which,
for reasons of redundancy, have more than one power
supply. Here, the overall machine’s power consumption
is usually more important than the power consumption
of the individual power supplies. Comparing the power
consumption monitored by sub-distribution units with
aggregated data of all known sub-consumers may reveal
consumptions, which were unknown so far.

Hierarchical models of power consumers particularly
support reporting (see Fig. 3a) as they offers insights at
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Fig. 3 Impact rating of the
proposed measures for the four
goals presented in Section 4. The
larger its distance from the radar
chart’s center is, the higher a
measure’s impact was weighted
on the corresponding goal
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which times which consumers or groups consume how
much power. Power consumption can be optimized (see
Fig. 3b) on machine-level as well as on aggregated data (see
Section 2). Furthermore, our literature review shows that
also fault detection (see Fig. 3c) and predictive maintenance
(see Fig. 3d) may be performed on different levels.

5.3 Temporal aggregation

Temporal aggregation refers to summarizing multiple
measurements of the same consumer over time to one
data point. It serves for: (1) reducing the number of data
points for storage and (2) simplifying data analysis by
providing a more abstract view on the data. Therefore,
temporal aggregation supports humans in comprehending
the monitored power consumption data and, thus, reporting
(see Fig. 3a) as well as manual identifying optimization
potentials. Also automatic data processing for optimization
(see Fig. 3b), fault detection (see Fig. 3c), and predictive
maintenance (see Fig. 3d) may benefit from aggregated
data. We distinguish two different kinds of temporal
aggregation as described in the following.

Aggregating TumblingWindows The first kind is to collect
and aggregate all measurements in consecutive, non-
overlapping, fixed-sized time windows (tumbling windows
(Carbone et al. 2019)). An appropriate size for such

windows is, for example, 5 minutes so that every 5 minutes
a new aggregation result is computed representing the
average, minimal, and maximal power consumption over
the previous 5 minutes. The number of data points can thus
be massively reduced, which is required for several forms
of storing, analyzing, and visualizing data. We suggest to
perform multiple such aggregations (e.g., for time windows
of size 1 minute, 5 minutes, and 1 hour) and store their
aggregation results for different durations. This allows to
store more recent (and more interesting) data with more
detail than data from the previous months or years.

Aggregating Temporal Attributes The second kind of
temporal aggregation is to aggregate all data points having
the same temporal attribute such as day of week or
hour of day. The set of aggregated data points allows to
model or identify seasonality. For example, aggregating all
measurements recorded at the same day of week allows to
show the average power consumption course over a week.
Likewise, aggregating based on the hour of the day allows
to obtain the average course of a day.

5.4 Correlation

Our literature review (see Section 2) shows how operational
and planning data from the production as well as
business data can be included in different types of power
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consumption analysis. Furthermore, it is reasonable to
correlate the power consumption of different consumers as
their power consumption may depend on each other if their
production processes are depended (Bischof et al. 2018).

Correlating power consumption data with production
data supports reporting (see Fig. 3a) as it allows for better
understanding the power consumption. Management levels
might be interested in a correlation with business data as
this allows to report about, for example, the energy costs per
produced unit. In particular, correlation can serve as trigger
for optimization (see Fig. 3b), fault detection (see Fig. 3c),
and predictive maintenance (see Fig. 3d). If, for example,
the power consumption of a machine increases rapidly while
also the production speed increases, the increasing power
consumption was most likely not caused by a fault. If,
however, the production speed remains constant and no
other production data justifies the increase, a fault detection
could be triggered. Correlations of power consumption
of different consumers are interesting for reporting, but
also for optimizations, in particular for reducing load
peaks.

5.5 Anomaly detection

Anomaly detection (also referred to as outlier detection)
describes methods for automatically finding unexpected
pattern in data (Chandola et al. 2009). We suggest to employ
anomaly detection techniques to discover time periods,
during which power consumption is unexpectedly high or
low, like it is done for energy consumption of building or
household in related work (see Section 2). This includes
continuously computing anomaly scores for observed power
consumption and comparing these anomaly scores with
previously defined thresholds. We suggest to apply anomaly
detection both on monitored and aggregated data (see
Section 5.2).

Primarily, anomaly detection serves as a measure for
the goal of fault detection (see Fig. 3c). Faults in devices,
machines, or production processes are deviations from the
desired behavior and, thus, anomalous behavior of power
consumption may indicate an occurring fault. Detecting
anomalies in power consumption exclusively in relation
to time is often not sufficient. The consumption of
many devices is subject to external influences such as
temperature (Liu and Nielsen 2018) and, especially in
production environments, the operating times of machines
do not follow daily or weekly patterns (Bischof et al.
2018). Correlating power consumption with environmental,
operational, and planing data (see Section 5.4) therefore
assists in detecting anomalies.

Furthermore, anomaly detection allows to identify
potential applications of optimization (see Fig. 3b) and
predictive maintenance (see Fig. 3d) and supports in

explaining power consumption behavior in reporting (see
Fig. 3a).

5.6 Forecasting

As highlighted in our literature review (see Section 2), ana-
lyzing power consumption data allows to make predictions
about the future power consumption. Similar to anomaly
detection, predicting power consumption in industrial pro-
duction poses additional challenges in contrast to predicting
power consumption of households, buildings, or electricity
grids. To cope with the irregular nature of industrial power
consumption, correlation with environmental, operational,
and planning data (see Section 5.4) promises to create more
accurate models.

Forecasting the power consumption of machines in addi-
tion to the overall production environment supports opti-
mization (see Fig. 3b) as it allows to detect load peaks
before they actually occur. Thus, production operators may
take appropriate countermeasures such as replanning pro-
duction processes. Making predictions about the future
status of the production environment is required for pre-
dictive maintenance. Thus, forecasting power consumption
enables predictive maintenance (see Fig. 3d) based on power
consumption data. Fault detection (see Fig. 3c) based on
anomaly detection often relies on forecasts by comparing
the actual consumption with the expected (i.e., forecasted)
one. Furthermore, forecasting can be used in reporting (see
Fig. 3a) as it supports planing and decision making for
business and production operation.

5.7 Visualization

According to our literature review in Section 2, we
propose to visualize analyzed power consumption data in
information dashboards. This way, visualizations integrate
individual measures proposed in this chapter and serve as
a link between data analysis and the users. Dashboards
should be dynamic and interactive in the sense that they
are updating their visualized data continuously and let users
interact with them (Rist and Masoodian 2019). For example,
dashboards may start with a rough outline of the overall
production’s power consumption but allow users to zoom
in and show specific machines and time periods in detail.
We summarize typical visualizations for an industrial power
consumption dashboard in Section 2.2.

As state-of-the-art libraries and frameworks for data
visualization are largely based on web technologies
(Bostock et al. 2011), it is reasonable to implement
dashboards as web applications. This has the additional
advantage that the visualization is user-friendly accessible
since it does not have further requirements on software or
hardware infrastructure than a web browser.
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First and foremost, dashboards enable reporting (see
Fig. 3a) on power consumption. Appropriate visualization
allows to understand how power consumption is composed,
observe changes in power consumption over time, and
compare the power consumption of different machines and
production processes. Enterprises may provide different
dashboards for different stakeholders to only show the
information, which is relevant for the corresponding target
audience (Shrouf and Miragliotta 2015). Visualizations
assist in optimization (see Fig. 3b) as they allow to identify
optimization potentials and enable operators to check
whether optimization actions are effective. Furthermore,
interactive visualizations can motivate, trigger, and enable
energy saving actions (Rist and Masoodian 2019). A
dashboard may also show information concerning fault
detection (see Fig. 3c) and predictive maintenance (see
Fig. 3d) and provide means to verify whether faults and
maintenance actions are detected successfully (Shrouf and
Miragliotta 2015).

5.8 Alerting

Industrial production becomes increasingly autonomous
(Lasi et al. 2014). Permanently observing a dashboard (see
Section 5.7) and waiting for faults or necessary maintenance
to be detected can therefore be a tedious work. Instead,
it would be convenient to automatically notify production
operators when faults are detected or maintenance actions
have to be taken (see Figs. 3c and 3d). Depending on their
frequency and severity, such notifications and alerts may
be sent via email or messenger. For reporting (see Fig. 3a)
purposes, such notifications may additionally be displayed
in a dashboard. Furthermore, operators may be notified if
optimization potential is detected (see Fig. 3b), for example,
by generating an alert if a load peak is about to occur.

6 Pilot implementation of themeasures

In this section, we show how the measures proposed in
Section 5 can be implemented in a software architecture that
adopts the microservice architecture pattern, big data stream
processing techniques, and fog computing. In our Titan
project on Industrial DevOps (Hasselbring et al. 2019), we
develop methods and techniques for integrating Industrial
Internet of Things big data. A major emphasis of the project
is to make produced data available to various stakeholders
in order to facilitate a continuous improvement process. The
Titan Control Center1 is our open source pilot application
for integrating, analyzing, and visualizing industrial big data

1https://github.com/cau-se/titan-ccp

from various sources within industrial production (Henning
and Hasselbring 2021).

The architecture of the Titan Control Center follows
the microservice pattern (Newman 2015). It consists of
loosely coupled components (microservices) that can be
developed, deployed, and scaled independently of each
other (Hasselbring and Steinacker 2017). Our architecture
features different microservices for different types of
data analysis. Individual microservices do not share any
state, run in isolated containers (Bernstein 2014), and
communicate only via the network. This allows each
microservice to use an individual technology stack, for
example, to choose the programming language or database
system that fits the service’s requirements best. In a previous
publication (Henning et al. 2019), we show how these
architecture decisions facilitate scalability, extensibility, and
fault tolerance of the Titan Control Center.

Figure 4 shows the Titan Control Center architecture. It
contains the microservices Aggregation, History, Statistics,
Anomaly Detection, Forecasting, and Sensor Management.
In addition to these microservices, our architecture com-
prises components for data integration, data visualization,
and data exchange.

The Titan Control Center is deployed following the
concepts of edge and fog computing (Garcia Lopez et al.
2015; Bonomi et al. 2012). In particular suited for Internet
of Things (IoT) data streams, with edge and fog computing
data is preprocessed at the edges of the network (i.e.,
physically close to the IoT devices), whereas complex
data analytics are performed in the cloud (Pfandzelter and
Bermbach 2019). In order to facilitate scalability and fault
tolerance, the Titan Control Center microservices for data
analysis and storage are deployed in a cloud environment.
This can be a public, private, or hybrid cloud, which
allows elastic increasing and decreasing of computing
resources. On the other hand, software components for
integrating power consumption data into the Titan Control
Center are deployed within the production. This includes
querying or subscribing to electricity meters, format and
unit conversions, filtering, but also aggregations to reduce
the amount of data points. We employ our Titan Flow
Engine (Hasselbring et al. 2019) for this purpose. It allows
graphical modeling of data flows in industrial production
according to flow-based programming (Morrison 2010).
With the Titan Flow Engine individual processing steps are
implemented in so-called bricks, which are connected via
a graphical user interface to flows. This enables production
operators to reconfigure power consumption data flows, for
example, to integrate new electricity meters, without having
advanced programming skills.

All communication among microservices as well as
between the data integration and microservices takes place
asynchronously via a messaging system. We use Apache

https://github.com/cau-se/titan-ccp
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Fig. 4 Microservice-based pilot architecture of the Titan Control Center for analyzing electrical power consumption

Kafka (Kreps et al. 2011) in our pilot implementation.
Moreover, the Titan Control Center features two single-
page applications that visualize analyzed data and allows for
configuring the analyses.

In the following, we present how each measure proposed
in Section 5 can be implemented using the Titan Control
Center.

6.1 Near real-time data processing

Power consumption data is processed in near real time at
all architectural levels of the Titan Control Center. This
start by the ingestion of monitoring data and immediate
filter, convert, and aggregate operations in the Titan Flow
Engine at the edge. The final integration step is sending
the monitoring data to the messaging system. Following the
publish–subscribe pattern, microservices subscribe to this
data stream and are notified as soon as new data arrive. In
the same way, individual microservices communicate with
each other asynchronously. Apache Kafka as the selected
messaging system is proven for high throughput and low
latency (Goodhope et al. 2012). Within microservices, we
process data using stream processing techniques (Cugola
and Margara 2012). This implies that microservices
continuously calculate and publish new results as new data
arrive. For implementing stream processing architectures in
most of the microservices we use Kafka Streams (Sax et al.
2018). As all computations are performed in near real time,
also the visualizations can be updated continuously. Hence,
the visualization applications (see Section 6.7) periodically
request new data from the individual services.

6.2 Multi-level monitoring

The Aggregation microservice (Henning and Hasselbring
2019) of the Titan Control Center computes the power
consumption for groups of machines by aggregating the
power consumption of the individual subconsumers. This
microservice subscribes to the stream of power consumption
measurements coming from sensors, aggregates these
measurement continuously according to configured groups,
and publishes the aggregation results via the messaging
system as if they were real sensor measurements. In addition
to sensor measurements, however, these data are enriched
by summary statistics of the aggregation.

As proposed in Section 5.2, the Aggregation microser-
vice supports aggregating sensor data in arbitrary nested
groups and multiple such nested group structures in paral-
lel. In one of our studied enterprises, we integrate power
consumption data of different kinds of sensors, which pro-
vide data in different frequencies. An important requirement
for the Aggregation service was therefore to support dif-
ferent sampling frequencies. Furthermore, besides the focus
on scalability throughout the entire Control Center archi-
tecture, an important requirement for this microservice is
to reliably handle downtimes and out-of-order or late arriv-
ing measurements. Therefore, it allows to configure the
required trade-off between correctness, aggregation latency,
and performance (Henning and Hasselbring 2020).

The Sensor Management microservice of the Titan Con-
trol Center allows to assign names to sensors and arrange
these sensors in nested groups. For this purpose, the
Titan Control Center’s visualization components provides a
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corresponding user interface. The Sensor Management ser-
vice stores these configuration in a MongoDB (MongoDB
2019) database. It publishes changes of group configura-
tions via the messaging system such that the Aggregation
service (and potentially other services) are notified about
these reconfigurations. The Aggregation service is designed
in a way that, when receiving reconfigurations, it immedi-
ately starts aggregating measurements according to the new
group structure. Further, as aggregations are performed on
measurement time and not on processing time, it supports
reprocessing historical data.

6.3 Temporal aggregation

Both types of temporal aggregations discussed in
Section 5.3 are supported by the Titan Control Center. As
both types serve different purposed, they are implemented
in individual microservices. Both services subscribe to
input streams, which provide monitored power consump-
tion from sensors as well as aggregated power consumption
for groups of machines.

Aggregating Tumbling Windows The History microservice
receives incoming power consumption measurements and
continuously aggregates all data items within consecutive,
non-overlapping, fixed-sized windows. The results of these
aggregations are stored to an Apache Cassandra (Lakshman
and Malik 2010) database as well as published for other
services. The History service supports aggregations for
multiple different window sizes in parallel, allowing to
generate time series with different resolutions. To prevent
the amount of stored data from becoming too large, time
series of different resolutions are assigned different times to
live. Thus, the Titan Control Center allows, for example, to
store raw measurements captured with high frequency for
only one day, but aggregated values in minute resolution for
years. Window sizes and times to live can be individually
configured according to requirements for trackability and
availability of storage infrastructure.

Aggregating Temporal Attributes The Statistics microser-
vice aggregates power consumption measurements by a
temporal attribute (e.g., day of week) to determine an aver-
age course of power consumption, for example, per week
or per day. These statistics are continuously recomputed,
stored in a Cassandra database, and published for other ser-
vices, whenever new input data arrives. In our studied pilot
cases we found out that in particular the average consump-
tions over the day, the week, and the entire year allow to
detect pattern in the consumption. Furthermore, aggregating
temporal attributes such as the month of the year over one
year allows to observe how monthly peak loads evolve over
time.

6.4 Correlation

The Titan Control Center provides different features for
correlating power consumption data. One of these features
is graphical correlation of power consumption of different
machines or machine groups. Our visualization component
(see Section 6.7) provides a tool, which allows a user to
compare the power consumption of multiple consumers in
time series plots (see Fig. 5). It displays multiple time series
plots below each other, each containing multiple time series.
The user can zoom into the plots and shift the displayed time
interval. All charts are synchronized by the time domain,
thus zooming or shifting one plot also effects the others
(Johanson et al. 2016). This tool allows operators to analyze
interesting points in time (such as outtakes or load peaks) in
more detail.

Together with the newspaper printing company, we
implemented a first proof of concept for correlating real-
time production data with power consumption data. We
correlated the printing machines’ power consumption with
their printing speed. For this purpose, we integrated the
production management system using the Titan Flow
Engine and visualized both types of data in our visualization
component. Even though we were able to show the
feasibility of such a real-time correlation, we identified that
for in-depth analyses, power consumption data with higher
accuracy is required. Similarly, we prototypically correlated
the power consumption of air conditioning systems with
weather data. We identified a high impact of the outside
temperature on the power consumed for cooling and,
thus, use weather data as a feature for our forecasting
implementations (see Section 6.6).

6.5 Anomaly detection

The Titan Control Center envisages individual microser-
vices for independent anomaly detection tasks and, hence,
allows to choose an appropriate technique for each task.
This includes individual techniques for different production
environments and even for different machines.

With our pilot implementation, we already provide an
Anomaly Detection microservice, which detects anomalies
based on summary statistics of the previous power
consumption. These statistics (e.g., per hour of week)
are continuously recomputed by the Stats microservice
(see Section 6.3) for each machine and machine group
and published via the Control Center’s messaging system.
Our Anomaly Detection microservice subscribes to this
statistics data stream and joins it with the stream of
measurements (from real machines or aggregated groups
of machines). Ultimately, this means each incoming
measurement is compared to the most recent summary
statistics of the corresponding point in time and machine.
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Fig. 5 Screenshot showing the
graphical correlation of power
consumption using the Titan
Control Center

If the measured power consumption deviates to much
from the average consumption of the respective hour and
weekday, it is considered as an anomaly. More precisely,
for a measurement x and summary statistics providing the
arithmetic mean μ and standard deviation σ , the service
computes the absolute distance from the arithmetic mean
d = |x − μ| and tests if d < kσ , where k is the
configurable number of standard deviations. All detected
anomalies are again published to a dedicated data stream
via the messaging system, allowing other microservices
to access detected anomalies. Moreover, the microservice
stores all detected anomalies in a Cassandra database.

The currently implemented method for detecting anoma-
lies is rather simple. It does not require complex model
training or manual modeling, but is not able to consider
trends, seasonality over larger time periods, or external
variables. We are working on extending our pilot imple-
mentation, in order to join the measurement stream with
the data stream published by the forecasting service (see
Section 6.6). This implementation will consider measure-
ments as anomalies if they deviate too much from the
prediction, which is a common approach for anomaly detec-
tion.

6.6 Forecasting

Similar to anomaly detection, we envisage individual Fore-
casting microservices for different types of forecasts, for
example, used for different power consumers. Forecasting
benefits notably from the microservice pattern since tech-
nologies used for forecasting often differ from the ones used
for implementing web systems. The Titan Control Center
supports arbitrary Forecasting microservices, each using its
own technology stack. The only requirement for a Fore-

casting service is that it is able to communicate with other
services via the messaging system.

Our pilot implementation already features a microservice
that performs forecasts using an artificial neural network
with TensorFlow (Abadi et al. 2016). This neural network
is trained offline using historical data and mounted into the
microservice at start-up. During operation, the Forecasting
microservice subscribes to the stream of measurements
(again monitored or aggregated) and feeds each incoming
measurement into the neural network. The forecast results
are stored in an OpenTSDB (The OpenTSDB Authors 2018)
time series database and published to a dedicated stream via
the messaging system.

In a first proof of concept, we build and trained such
neural networks together with the newspaper printing
company. We selected a set of machines in the company
with different power consumption patterns and trained
individual networks per machine. These neural networks
use not only the historical power consumption of their
machines as input, but also the power consumption of
other machines as well as environmental data, such as the
outside temperature. We deploy individual instances of our
Forecasting microservice for each neural network, allowing
for individual forecasts of each machine.

6.7 Visualization

As suggested in Section 5.7, the Titan Control Center fea-
tures web applications for visualizing power consumption
data. Since visualization serves as a measure to integrate
the results of other measures, we also regard the visualiza-
tion software components as integration of the individual
analysis microservices. The Titan Control Center provides
two single-page applications for visualization: a graphical
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Fig. 6 Screenshot of the Titan
Control Center

user interface, tailored to the specific functions of the Titan
Control Centers, and a dashboard for simple, but highly
adjustable data visualizations. In the following, we describe
both applications and their corresponding use cases.

ControlCenter The Titan Control Center user interface2 serves
to provide a consistent access to all functionalities of the
Titan Control Center. This includes visualizing the analysis
results of microservices, but also control functions for con-
figuring microservices. The user interface is implemented
with Vue.js (You 2019) and D3 (Bostock et al. 2011).

Figure 6 shows a screenshot of the Titan Control Center’s
summary view. It consists of several components which
collect and show the individual analysis results for the
entire production. A time series chart displays the power
consumption in course of time. This chart is interactive,
allowing to zoom and shift the displayed time interval.
Colored arrows indicate how the power consumption
evolved within the last hour, the last 24 hours, and the
last 7 days. A histogram shows a frequency distribution
of metered values serving to detect potential for load
peak reduction. A pie chart breaks down the total power

2We provide a public show case of the Titan Control Center at http://
samoa.se.informatik.uni-kiel.de:8185.

consumption into subconsumers. Line charts display the
average course of power consumption over the week or
the day, as provided by the Statistics microservice (see
Section 6.3). The visualizations are periodically updated
with new data. This causes, for example, the time series
diagram to shift forward continuously and the arrows to
change color and direction.

Apart form this summary view, our pilot implementation
also provides the described types of visualization for
individual machines and groups of machines. Starting
from an overview of the total power consumption, a
user can thus navigate through the hierarchy of all
consumers. Furthermore, the single-page application allows
to graphically correlate data (see Section 6.4) and to
configure machines and machines groups maintained by the
Sensor Management service. Visualizations of forecasts and
detected anomalies are currently under development.

Dashboard The second application is a pure visualization
dashboard implemented with Grafana (Grafana Labs 2020)
(see Fig. 7). It provides a set of common visualizations such
as line charts, bar charts, and gauges. As presented in Fig. 7,
we mainly display time series charts as bar or line charts.
The dashboard is highly adjustable, meaning that users

http://samoa.se.informatik.uni-kiel.de:8185
http://samoa.se.informatik.uni-kiel.de:8185
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Fig. 7 Screenshot of the Titan
dashboard implemented with
Grafana (Wetzel 2019)

can add, modify, and rearrange chart components. Such
adjustments can be performed graphically and only require
usage of provided interfaces. Thus, especially IT savvy
production operators can customize dashboards. Moreover,
they can create own dashboards and share them among
users. In this way individual dashboards, for example, for
management and production operators can be implemented.

In contrast to the Control Center, this dashboard does not
provide any control functions (e.g., for sensor configura-
tion) and no complex interactive visualizations (e.g., the
comparison tool). Thus, it only serves as an extension to
the Control Center, allowing for visual analysis and report-
ing. In particular, this dashboard covers use cases, where
power consumption data should be integrated in existing
dashboards (as it is the case in one studied enterprise) or if
dashboards should be customized by production operators.

6.8 Alerting

Altering in the Titan Control Center is implemented using
the Titan Flow Engine in the integration component. All
messages that are published to the messaging system can
again be consumed by the Titan Flow Engine and processed

in flows. This way, production operators can create
and adjust alerting flows directly within the production
environment. Our pilot implementation already provides
a flow that sends an email whenever an anomaly in
power consumption is reported. In dedicated bricks, the
operator can filter the types of anomaly an alert should
be generated for and configure how the email should
be sent (e.g., message and receiver). The flow engine
allows to model flows that perform arbitrary actions
in the production environment when alerts are received.
This includes communications with machines again, for
example, to show alerts on machine monitors.

7 Conclusions and future work

In a pilot study with two manufacturing enterprises, we
identify that analyzing power consumption data promises to
achieve goals of categories such as reporting, optimization,
fault detection, and predictive maintenance. In an additional
literature review, we observe that research of various disci-
plines suggests measures for achieving these goals. Based
on this literature review and expert knowledge within our
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pilot cases, we suggest to implement the following mea-
sures in software for achieving these goals: real-time data
processing, multi-level monitoring, temporal aggregation,
correlation, anomaly detection, forecasting, visualization,
and alerting. Finally, we show how microservices, stream
processing, and fog computing can serve for implementing
the proposed measures in a power consumption analytics
platform.

For future work, we plan to take advantage of the
modular architecture of the Titan Control Center by
extending our pilot implementations. In particular, ongoing
research focuses on developing more precise forecast
and anomaly detection approaches as well as detailed
visualizations. Further, we plan to conduct extensive
evaluations in our studied enterprises.
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