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Abstract In austral winter, biological productivity at the Angolan shelf reaches its maximum. The
alongshore winds, however, reach their seasonal minimum suggesting that processes other than local
wind-driven upwelling contribute to near-coastal cooling and upward nutrient supply, one possibility
being mixing induced by internal tides (ITs). Here, we apply a three-dimensional ocean model to simulate
the generation, propagation, and dissipation of ITs at the Angolan continental slope and shelf. Model
results are validated against moored acoustic Doppler current profiler and other observations. Simulated
ITs are mainly generated in regions with a critical/supercritical slope typically between the 200- and
500-m isobaths. Mixing induced by ITs is found to be strongest close to the coast and gradually decreases
offshore thereby contributing to the establishment of cross-shore temperature gradients. The available
seasonal coverage of hydrographic data is used to design simulations to investigate the influence of
seasonally varying stratification characterized by low stratification in austral winter and high stratification
in austral summer. The results show that IT characteristics, such as their wavelengths, sea surface
convergence patterns, and baroclinic structure, have substantial seasonal variations and additionally
strong spatial inhomogeneities. However, seasonal variations in the spatially averaged generation, onshore
flux, and dissipation of IT energy are weak. By evaluating the change of potential energy, it is shown,
nevertheless, that mixing due to ITs is more effective during austral winter. We argue that this is because
the weaker background stratification in austral winter than in austral summer acts as a preconditioning
for IT mixing.

Plain Language Summary Tropical eastern boundary upwelling regions (e.g., on the
Angolan shelf and Peruvian shelf) usually have high biological productivity. Unlike further poleward,
tropical eastern boundary upwelling regions are often characterized by weak winds. Maximum biological
productivity on the Angolan shelf is observed in austral winter during periods of weak winds. Therefore,
other factors must contribute to the seasonality in the productivity. Mixing induced by internal tides is one
of these possible factors. We have designed numerical simulations to explore the generation, propagation,
and dissipation of internal tides on the Angolan continental slope and shelf. It is found that the internal
tides on the Angolan shelf indeed promote the appearance of cold water at the surface near the coast.
Furthermore, we explore the seasonal variations of the internal tides taking into account the seasonally
varying stratification at the continental slope and shelf. The results show that seasonal variations in the
tidal energy available for mixing on the shelf are weak, but mixing by the internal tides is, nonetheless,
more effective when the stratification is weak during austral winter. Therefore, a stronger impact of
internal tide mixing on sea surface temperature and biological productivity is suggested to occur in austral
winter.

1. Introduction

Tropical eastern boundary upwelling systems are characterized by rich marine ecosystems (Carr &
Kearns, 2003). They undergo strong intraseasonal to interannual variability dominantly associated with
equatorial forcing and are often subject to intense hypoxia (e.g., Bachelery et al., 2016; Echevin et al., 2008;
Mohrholz et al., 2008). The Angolan shelf hosts such a tropical eastern boundary upwelling system known
for its high biological productivity and fisheries (Gammelsroad et al., 1998; Jarre et al., 2015; Tchipalanga
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Figure 1. Climatological seasonal cycles of (a) SST (from MODIS satellite data), (b) meridional wind (from CCMP
data, northward is positive), and (c) SLA (from TOPEX/ERS merged data) in the area 11.7°-13.9°E and 9.6°-12.3°S.
Red/green lines indicate the near-coastal (water depth shallower than 400 m) and offshore (deeper than 400 m)
spatially averaged data; black line (labeled as “Initial”) in (a) indicates observed SST used as initial conditions for the
numerical simulations. (d) SST anomaly against mean SST observed by MODIS at 21:45 UTC July 20, 2013. White areas
mark no data due to clouds. (¢) ERS-1 SAR image acquired at 09:20 UTC January 12, 1996; red points indicate internal
tide fronts. (f) Topography used in the numerical simulations. S1 and S2 are the locations of the ADCP moorings; C1-
C3 are cross-shore sections; the square indicates the location of the SAR image shown in (e). Contours with numbers
are isobaths (unit: m). SST, sea surface temperature; SLA, sea level anomaly; SAR, synthetic aperture radar; ADCP,
acoustic Doppler current profiler.

et al., 2018). The tropical Angolan upwelling system is separated from the colder water south of it by the
Angola-Benguela Front located between 15° and 18°S (Tchipalanga et al., 2018). The climatological season-
al cycle of sea surface temperature (SST) in the tropical Angolan upwelling system (~11°S) is characterized
by lowest temperature during austral winter (June-September) and highest temperature during austral
summer (February-April) (Figure 1(a)). Northward (upwelling-favoring) winds are weakest during austral
winter (Figure 1(b)) (Ostrowski et al., 2009) and are thus not able to explain the enhanced cross-shore SST
gradient that develops between near-coastal (water depth shallower than 400 m) and offshore (deeper than
400 m) waters during that period (Figure 1(a)). The stratification in the Angolan upwelling region is strong-
ly affected by net surface heat, freshwater fluxes, and the coastally trapped waves (CTWs) that are forced
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remotely at the equator (Rouault, 2012). These CTWs, which can be identified in the sea level anomaly
(SLA), have a dominant semiannual cycle of poleward propagating upwelling and downwelling waves with
largest amplitudes near the coast (Figure 1(c)). The primary upwelling season during austral winter (e.g.,
low SST and high cross-shore SST gradient, see Figure 1(a)) is characterized by a depression of the SLA that
can be associated with a shallow thermocline and weak stratification. However, negative SST anomalies
(SSTAs) in a small stripe along the coast as observed in satellite data (MODIS, Figure 1(d)) and the associ-
ated near-coastal primary productivity maximum during that period cannot easily be explained. Therefore,
Ostrowski et al. (2009) hypothesized that other processes such as mixing induced by internal waves may
contribute to the near-coastal cooling and upward nutrient supply into the euphotic zone. Moored obser-
vations (Tchipalanga et al., 2018) seem to confirm such a hypothesis showing more internal wave activity
near the buoyancy frequency during austral winter compared to austral summer at the continental slope.
Nevertheless, it remains to be clarified how internal waves might affect hydrographic characteristics and
upward nutrient supply. On the Angolan shelf, shipboard acoustic backscatter images have revealed the
existence of tidally generated internal waves propagating from the shelf break toward the coast (Ostrowski
et al., 2009). They show well-developed trains of internal solitary waves (ISWs) during austral winter, while
in March internal waves were more incoherent and weaker. A synthetic aperture radar (SAR) image (Fig-
ure 1(e)) from the ERS-1 satellite taken in January (secondary upwelling season) shows surface signatures
of internal waves. The distances between two consecutive trains of ISWs (the white stripes parallel to the
coast, marked by red points) that correspond to the wavelength of the internal tides (ITs) are about 23, 21,
and 18 km, respectively.

Stratification on the continental slope/shelf off Angola varies seasonally (Kopte et al., 2017). These changes
are found to be a consequence of (1) the semiannual CTWs that are responsible for the upwelling and down-
welling seasons and (2) air-sea heat and freshwater fluxes and river run-off responsible for the presence of
warm, low-salinity waters at the surface during March/April and November/December (Kopte et al., 2017).
Such changes in stratification on the continental slope/shelf possibly affect the generation and propagation
of ITs. Therefore, there are two main goals of our study: first, to explore the dependence of variations of ITs
on the seasonally varying background stratification; second, to identify the role of mixing induced by ITs in
the appearance of cross-shore SST gradients being largest during austral winter. With this, we aim to shed
some light on the seasonal variability of biological productivity on the Angolan shelf.

Tidal-frequency internal waves, generated by barotropic tidal flow over topographic obstacles in a stably
stratified fluid, lead to local mixing near the generation site, both due to direct wave breaking (close to
topography) and enhanced rates of interaction with other internal waves (e.g., MacKinnon et al., 2017).
The interaction between low-mode ITs and large-amplitude topography, such as continental slopes, is
strongly dependent on stratification and the steepness of the topography (Cacchione & Wunsch, 1974; Hall
et al., 2013; Helfrich & Grimshaw, 2008; Johnston & Merrifield, 2003; Legg, 2014; Legg & Adcroft, 2003; Ma-
thur et al., 2014; Venayagamoorthy & Fringer, 2006). Hall et al. (2013) explored the reflection and transmis-
sion of incident low-mode ITs and found the fraction of energy transmitted to the coast depends, apart from
slope criticality, on the strength of the stratification on the continental shelf. For a comprehensive review of
internal wave generation and propagation on the continental slope/shelf including several two-dimensional
(2D) simulations for different topographies, please refer to Lamb (2014). Here, to study the IT on the Ango-
lan shelf, a 3D ocean model that can simulate the generation and propagation of ITs is applied. We use the
Massachusetts Institute of Technology General Circulation Model (MITgem, Marshall et al., 1997), which
is able to simulate multiscale processes and has been widely used in many fields of marine research. For
example, Buijsman et al. (2014) compare 3D and 2D simulations to examine the double-ridge IT interfer-
ence in Luzon Strait and find IT resonance in 3D simulations is several times stronger. Mohanty et al. (2017)
adopt in situ data collected during February 2012 to simulate ITs in the western Bay of Bengal and explore
their energetic characteristics. Vlasenko et al. (2014) also use observational data to conduct simulations and
investigate the 3D dynamics of ITs on the continental slope/shelf area of the Celtic Sea.

The outline of our study is as follows: Section 2 introduces the setup of the numerical simulations and
the measured data that are used to validate the model and to initialize its temperature and salinity fields.
Section 3 first shows the model validation and the results of a high-resolution model run to analyze the
generation and propagation of ITs on the shelf. Next, simulations initialized with temperature and salinity

ZENG ET AL.

30f 20



A
AUV
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Oceans 10.1029/2020JC016460

data from different months are conducted to investigate how the seasonal variation of IT energy and mix-
ing depend on the seasonally varying stratification. In Section 4, results are discussed and conclusions are
presented.

2. Data and Methods
2.1. Mooring Data

Two moorings S1 and S2 (Figure 1(f)) were deployed at the continental slope off Angola to measure the
velocity from July 2013 to October 2015. Mooring S1, a bottom shield located at 13.20°E, 10.70°S at 500-m
depth, corresponding to the steepest part of the continental slope, was equipped with a 75-kHz Teledyne
RDTI’s Workhorse Long Ranger acoustic Doppler current profiler (ADCP) that sampled every 2.5 min. Moor-
ing S2 was located at 13.00°E, 10.83°S at 1,200-m depth in a region of weak topographic slope and had an-
other upward looking 75-kHz Long Ranger ADCP installed at 500-m depth that sampled every hour. Both
ADCPs acquired velocity data up to about 40-m depth below the sea surface.

2.2. Measured Temperature and Salinity Data

The in situ temperature/salinity data are a combination of shipboard and glider hydrographic water-col-
umn profiles taken between the 200- and 800-m isobaths and between 11.50°S and 10.00°S (Tchipalanga
et al., 2018). There were 707 shipboard temperature/salinity profiles, among which 644 profiles were ac-
quired within the EAF-Nansen program from 1991 to 2015. Additionally, 52 profiles were extracted from
the input data set for the MIMOC climatology (Schmidtko et al., 2013) and 11 profiles were collected during
different R/V Meteor cruises (Kopte et al., 2017; Mohrholz et al., 2001, 2008, 2014). To complement the data
set, hydrographic profiles from an autonomous Slocum glider (Teledyne Webb Research, Glider IFMO03, de-
ployment-ID: ifm03_depl12) were used, which sampled 364 temperature/salinity profiles at around 11.00°S
from October to November 2015. These observed temperature/salinity data were horizontally averaged over
the study area and interpolated to derive a mean daily climatology with a vertical resolution of 5 m in the
upper 500 m below the sea surface (Kopte et al., 2017). The daily data were temporally averaged to derive
monthly fields that are used to initialize the simulations case 0-12 (introduced later) aimed at studying the
seasonal variability.

2.3. MITgcm Model Setup

Figure 1(f) shows the model domain (11.7°-13.9°E, 9.6°-12.3°S) used for all simulations. The MITgcm uses
finite volume methods and orthogonal curvilinear coordinates horizontally. It permits nonuniform vertical
spacing and we use an enhanced vertical resolution (5 m) spanning the strongly stratified near-surface lay-
ers with coarser resolution (150 m) near the sea bottom.

Initial conditions are no-flow and horizontally uniform stratification. Figures 2(a) and 2(b) show the ob-
servational temperature and salinity data of July and March. The calculated buoyancy frequency is shown
in Figures 2(c) and 2(d). The terrain data coming from the GEBCO data set (General Bathymetric Chart
of the Oceans, https://www.gebco.net/data_and_products/historical_data_sets/#gebco_2014) with a high
resolution of 1/120° x 1/120° are employed after interpolated onto the model grid. The shallowest water
depth in the study area is 1 m. Boundary conditions are no-slip at the bottom, no-stress at the surface, and
no buoyancy flux through the surface or the bottom. All simulations are forced by eight barotropic tides (K1,
01, P1, Q1, M2, S2, K2, and N2) from July 15 to 30, 2013 at open boundaries. The amplitudes and phases
of these tides are extracted from the regional solution for Africa provided by the Oregon State University
inverse barotropic tidal model (OTIS, http://people.oregonstate.edu/~erofeevs/Afr.html) (Egbert & Erofee-
va, 2002). Furthermore, a sponge boundary treatment with a width of 50 grid points is imposed in which
velocity, sea surface elevation, temperature, and salinity are damped to the boundary values. For further
details about the sponge layers, see Z. Zhang et al. (2011). Note that the “whole domain” in the following
refers to the domain excluding the sponge layers.
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Figure 2. Initial vertical profiles of (a) temperature, (b) salinity, and (c) buoyancy frequency in the study area for March (dotted lines) and July (solid lines); (d)
buoyancy frequency derived from observations. Vertically averaged observed and simulated velocities over 40-455 m depth at the mooring positions: alongshore
velocity at (e) S1 and (g) S2 and cross-shore velocity at (f) S1 and (h) S2 (see Figure 1(f) for the locations). Positive alongshore velocity is directed equatorward
and positive cross-shore velocity is directed onshore (both rotated by —34° due to the local inclination of the coast).

The MITgcm itself provides several vertical turbulence parameterization schemes. The KL10 scheme (Kly-
mak & Legg, 2010) is designed to represent mixing in the “interior” ocean. However, it requires a very high
resolution and is not recommended for simulating ITs at the resolution we use. Here, we choose the KPP
scheme (Large et al., 1994), which has also been successfully applied to the simulation of ITs (see examples
in Dorostkar et al., 2017; Han & Eden, 2019). In the KPP scheme, mixing in the interior (below the surface
mixed layer) consists of a background viscosity/diffusivity (assumed constant and representing unresolved
processes) and a viscosity/diffusivity based on shear instability which is modeled as a function of the Rich-
ardson number (Ri) (Large et al., 1994). By examining the vertical profile of Ri in the study area, we iden-
tified almost no boundary layer at the surface or the bottom in our simulations. For the horizontal mixing
scheme, we select the Leith scheme (Leith, 1996) as suggested by Guo & Chen (2012). The full form of Leith
viscosity is used to provide enough viscous dissipation to damp vorticity and divergence at the grid scale.

‘We use a latitude/longitude grid and conduct total 14 cases. Case 0 is designed to explore the generation and
propagation of ITs and uses the July stratification (Figures 2(a) and 2(b)) as an initial condition. The horizon-
tal resolution is approximately 250 m X 250 m, which is adequate for 3D simulations of the ITs in this area,
although not sufficient to capture nonhydrostatic effects that are the basis for the generation of ISWs (e.g.,
Apel, 2003; Brandt et al., 1997). Cases 1-12, designed to explore the influence of seasonally varying stratifi-
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Table 1

Amplitude of M2 and K1 Tidal Current Velocity at Station S1

cation on the IT characteristics, correspond to 12 months employing 12
monthly initial temperature and salinity fields. To save on computational

Velocity amplitude (cm s™)

cost, the horizontal resolution of these 12 simulations is set to approxi-

mately 500 m X 500 m. The reduced resolution is found to be suitable to

— <L analyze ITs, which is tested by comparing the results of case 0 and case 7
Tide Alongshore  Crossshore  Alongshore Crossshore  as shown below. All simulations run for 15 days, which includes a spring
Model 129 e ol o tide e'tnd paFt ofa n.eap tide. Note that the same t.1da1 forcing is useid. for' all
the simulations to isolate the effect of the changing seasonal stratification

Observation 1.48 1.39 0.24 0.29

on the model results. The interval of output is 1 h and the data from the

first 3 days are not included in the analysis. Apart from these 13 simu-
lations, we also run a case (case 13) the same as case 0 but without tidal
forcing to see how much influence the diffusion due to the background mixing of the KPP scheme has. To sat-
isfy the Courant-Friedrichs-Lewy condition, the time step is set to 5 s for cases 0/13 and 10 s for cases 1-12.

3. Results
3.1. Model Validation

In a first step, the high-resolution case initialized using the July stratification (case 0) is validated. Both sim-
ulated and observed velocities at the mooring locations are averaged over the depth range set by the obser-
vation limits (40-455 m) and compared over the same period (Figures 2(e)-2(h)). For location S1, the model
results are generally consistent with the moored data, despite some longer-period variations superposed on
the tidal currents in the observations. However, the cross-shore model velocity is a few hours ahead of that
in the observations over the last 3 days. At station S2, there is a difference in the mean alongshore velocity
of around 3.5 cm s~ between model and observations, which likely corresponds to the presence of an along-
shore current in the observations associated with the weak poleward Angola Current or intraseasonal and/
or seasonal variability (Kopte et al., 2017) that are not related to tidal dynamics. For the cross-shore velocity,
the simulated phase also leads that in the observations during the last few days. One possible reason for
the differences between model and observations is that the topography (GEBCO) might not fully reflect the
regional topography. For example, the measured water depths at S1 and S2 are 494 and 1,227 m while in the
simulation they are 441 and 1,184 m, respectively.

We conducted harmonic analysis of both modeled and observed vertically averaged velocity of station S1.
Due to the limited temporal range in the model (from July 18 to 30), only M2 and K1 tidal parameters are
acquired (Table 1). The amplitude of M2 and K1 in observations and model agree well, with observed am-
plitudes being slightly larger.

For comparison over the whole domain, we first contrast the simulated SSTA after 20 M2 tidal cycles (20T,
hereafter a M2 tidal cycle is denoted by “T”) (Figure 3(a)) with observed values (Figure 1(d)). Both the sat-
ellite data and our simulated results reveal lower SST showing some patchiness along the coast. We then
calculate sea surface velocity divergence (SSVD) after 20T to locate the IT fronts (Z. Zhang et al., 2011). In
the north square at around 10.50°S (Figure 3(b)), the distance between two consecutive wave fronts is about
10 km (this can be more clearly seen in Figure 4(a)), which is about half that in the SAR image (Figure 1(e)).
This is because the IT wavelength has a seasonality associated with seasonal variations of the stratification
that will be discussed later.

3.2. Generation and Propagation of Internal Tides

We calculate the slope criticality « to identify the generation sites. « is the ratio of the topographic slope to
the internal wave characteristic slope, which is used to predict the behavior of incident waves approaching
a topographic slope from offshore (Gilbert & Garrett, 1989; Nash et al., 2004):
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Figure 3. (a) SST anomaly and (b) SSVD after 20T. (c) SSVD variance over the last 2T. (d) Slope criticality for M2 tide.
(e) Mean of the smallest 10% of the Richardson number and (f) mean of the largest 10% of the diffusion coefficient
for temperature at 10-m depth over the last 2T. All panels are results from case 0. Contours with numbers are isobaths
(unit: m). Squares in (b) and (c) mark regions of enhanced SSVD signals and SSVD variance, respectively. SST, sea
surface temperature; SSVD, sea surface velocity divergence.

where H is the water depth, x the cross-slope distance, w the angular frequency of the wave, f the inertial
frequency, and N is the buoyancy frequency. @ < 1, @ = 1, and «a > 1, respectively, means subcritical, criti-
cal, and supercritical topography. Upslope propagating incident waves are transmitted upslope into waves
with shorter wavelength if @ < 1 and are reflected back if « > 1 (Lamb, 2014). Nonlinear and/or viscous
effects are enhanced when o ~ 1 (Dauxois et al., 2004). When barotropic tides propagate over a near-critical
or supercritical slope, internal wave/tidal beams are produced due to the interactions between tides and
topography (Shaw et al., 2009) and the conversion from barotropic energy to baroclinic energy is especially
effective. In our simulations forced by barotropic tides, one may expect enhanced transfer of barotropic tidal
energy to ITs in near-critical regions. As the hydrostatic approximation is adopted in our simulations, the
term (N® - w®) in (1) is replaced by N 2 We use N from the horizontally homogeneous initial field at the local
water depth and the M2 tidal period to derive « for case 0 (Figure 3(d)). The main critical and supercritical
regions are between 200- and 500-m depth along the continental slope. In Figure 3(b), the ITs are mainly
on the shelf shallower than 400 m and the wave fronts are generally parallel to the isobaths. Therefore, the
generation sites of the ITs are considered to be located along the isobaths of around 400 m. This will be
further tested by evaluating the energetics of the ITs.
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Figure 4. (a) Cross-shore baroclinic velocity and (d) temperature anomaly along section C1 after 20T (case 0);
contoured lines with numbers in (a) are isotherms (unit: °C). (b) Squared cross-shore velocity shear (SCVS) and (c)
buoyancy frequency temporally averaged over the last 2T. Overlaid black solid lines originating at the critical point
(black dot) are primary M2 tidal beams allowing reflections at the surface and at the bottom. The dashed lines are
secondary M2 tidal beams starting at another generation point further offshore. The inverted triangles indicating the
location of high baroclinic velocity are discussed in the text.

By comparing the SSTA in Figure 3(a) with the SSVD in Figure 3(b), it is evident that regions with higher
SSTA correspond to regions with enhanced SSVD signals (the two squares in Figure 3(b)). Here, we regard
the SSVD variance as a quantitative measure of IT activity and acquire it over the last 2T (Figure 3(c)),
then we calculate the spatial correlation between the SSVD variance and SSTA to quantify their relation.
According to Chen (2015), the Pearson’s correlation coefficient of spatial correlation comprises two parts:
an indirect correlation dependent on the spatial contiguity and a direct correlation free of spatial distance.
We follow the method of Chen (2015) and acquire the direct spatial correlation coefficient between the
SSVD variance and SSTA, which is —0.75. Following Chen (2015), we obtain the goodness-of-fit for the
regression analysis of spatial cross correlation, R, with R(SSVD variance to SSTA) being 0.26 and R(SSTA to
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SSVD variance) being 0.59 representing the explained variance of one parameter by the other. We repeat this
calculation for cases 1-12, and all direct spatial correlation coefficients are larger than 0.66, which implies
a strong relation between IT activity and sea surface cooling. Furthermore, we analyzed the model’s Ri and
the diffusion coefficient for temperature (diffusivity). For most of the grid points, the minimum/maximum
value of Ri/diffusivity appears at 10-m depth. Figures 3(e) and 3(f) show the mean of the smallest 10% of Ri
and the largest 10% of the diffusion coefficient at 10-m depth over the last 2T. The Ri/diffusivity is smaller/
larger on the shelf than offshore regions. The direct spatial correlation coefficients between SSTA and Ri/
diffusivity are 0.60 and —0.59, respectively. As the KPP scheme includes a contribution to mixing based on
Ri (Large et al., 1994), the results provide evidence that ITs locally cause mixing resulting in near-coastal
sea surface cooling.

We select several cross-shore sections indicated in Figure 1(f) to focus on emerging horizontal gradients as
well as to explore the local variations of dynamic and hydrographic properties. Figure 4(a) shows baroclinic
velocity and isotherms after 20T along section C1. Four locations with relatively high baroclinic velocity
formed by the onshore propagating ITs are indicated by inverted triangles in Figure 4(a). At these locations,
the direction of baroclinic velocity near the sea surface and bottom is opposite to that in the mid layers.
Consistently, the isotherms bend between the upper and the mid layers and between the mid and deeper
layers, giving the impression of predominantly second baroclinic mode waves. The distances between two
consecutive inverted triangles are 11.2, 9.7, and 7.2 km as they shoal from water depths of 112 to 44 m.

The topography is subcritical onshore of the critical point (o = 1) at 13.22°E (black dot in Figure 4(a)) and
supercritical offshore of that point. We calculate M2 tidal beams (Holloway & Merrifield, 1999) emanating
from this point (solid lines in Figure 4(a) emerging from the critical point) and allow reflection at the sea
surface and bottom. Note that the stratification used in the calculation is averaged over the last 2T, thus
the stratification varies horizontally. Baroclinic velocity is enhanced along the upward beam emitted from
the critical point, which suggests that when the barotropic tide arrives in the vicinity of the critical point,
barotropic energy is converted into baroclinic energy effectively, resulting in the generation of ITs. In ad-
dition to the primary beam, a secondary beam (dashed lines in Figure 4(a)) comes from a farther offshore
generation site. Along this beam, the baroclinic velocity is also strengthened. As the ITs propagate onshore,
vertical shear of horizontal velocity increases. The squared cross-shore velocity shear temporally averaged
over the last 2T is shown in Figure 4(b). Higher values near the coast results in smaller Ri and larger temper-
ature diffusion (Figures 3(e) and 3(f)). Locally, stratification becomes weaker and the pycnocline broadens
(Figure 4(c)). In the initial profile of the buoyancy frequency, the maximum value 1.86 X 107 s™* appears
at 22.5-m depth. At that depth, the temporally averaged buoyancy frequency over the last 2T is reduced to
1.51 X 107 57" at 13.53°E (water depth 24 m) while it remains 1.84 x 107 5™ at 13.20°E (water depth 289 m).
Consequences of mixing are also seen from the change of temperature. Figure 4(d) shows the temperature
anomaly after 20T relative to its initial value. Water becomes colder near the sea surface (about 0-20 m
depth depending on the location) while it becomes warmer below (about 25-45 m depth). The near-surface
cooling is enhanced closer to the coast where SSTs decrease by more than 1°C.

3.3. Seasonal Variability of Internal Tides

The spatially averaged stratification varies significantly from austral winter to austral summer (Figure 2(d)).
During austral winter, the pycnocline is weak and shallow. The maximum buoyancy frequency is less than
1.8 x 107 57" in July. The strongest stratification is present during March when the buoyancy frequency can
reach 3.4 X 107> s™. We select March (case 3) and July (case 7) as extreme months to compare their results.

Before comparing, it is necessary to validate our choice of a reduced resolution by comparing the results
of case 0 and case 7. The only difference between them is the horizontal resolution and the time step (Sec-
tion 2.3). The spatial distributions of the SSVD variance are very similar (Figures 3(c) and 5(a)). We use
the same squares to mark the regions with enhanced SSVD variance in Figures 3(c) and 5(a). The spatially
averaged SSVD variances over the north/south squares of case 0 are 3.18 X 10” s and 1.92 x 107 s,
while in case 7 they are 2.89 x 107 s and 1.76 x 107 572, respectively. Larger values in case 0 are a direct
consequence of its higher resolution (due to better resolved internal waves, bathymetry, and less numerical
dissipation). We conclude, also by comparing Figure 4 with the left column of Figure 6, that the resolution
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reduction does not significantly change the results and, in particular, it should not affect the comparisons
among cases 1-12.

The distribution of « of cases 7 and 3 is shown in Figures 5(c) and 5(d). The main generation site is along the
400-m isobath at the continental slope in both cases. However, in March, the supercritical region is slightly
enlarged. Additionally, some small supercritical regions in water depths shallower than 100 m appear that
are not present in July. For the deep basin, the distribution of « for the 2 months appears to be very similardue
to the vertical distribution of buoyancy frequency in deep layers being similar. Overall, the difference in slope
criticality is small throughout the year, which is also seen from the spatially averaged value (see below). The
two regions of enhanced SSVD variance in March (Figure 5(b), marked by two squares) differ from those
in July (Figure 5(a)). Both of them are limited to shallower depths (shallower than 50 m) and the northern
one is 0.5° farther north (around 10.10°S) while the southern one shifts 0.2° southward (around 11.50°S).
Then, we select a typical snapshot of baroclinic velocity along section C1 (Figures 6(a) and 6(b)). To focus on
near-surface variability, velocity and isotherms are only shown in the upper 150 m. The wavelengths of ITs
are substantially larger in March, which can be seen by the larger distances between two consecutive loca-
tions of high baroclinic velocity (marked by two inverted triangles in Figure 6(b)). Note that the simulated
wavelength in March is more consistent with the SAR image (Figure 1(e)) that is taken in January. In March,
the amplitudes of baroclinic velocities and isotherm displacements are smaller. The vertical structure of the
baroclinic current in March differs from that in July, as it changes direction with depth more than twice from
surface to bottom with the isotherms also correspondingly changing curvature. This suggests a dominance
of higher baroclinic modes in March forming a well-developed IT beam reflecting at the surface and at the
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bottom, while in July second baroclinic mode waves dominate on the shelf. Moreover, the occurrence of M2
tidal beams is also different. The second beam is much weaker in March and hard to identify in the vertical
distribution of baroclinic currents while in July two beams can be clearly identified. The temporally averaged
squared cross-shore velocity shear (Figures 6(c) and 6(d)) on the shelf is elevated in July. In accordance with
the chosen KPP mixing scheme, the enhanced velocity shear and reduced stratification results in stronger
mixing in July, thus having larger impact on the initial hydrographic fields. The buoyancy frequency reaches
its maximum at 22.5-m depth in the initial profile in both July (1.86 x 107 s™) and March (3.40 x 1072 s™).
At that depth, in the last 2T, the maximum temporally averaged buoyancy frequency at 13.55°E (water depth
23 m) decreases to 1.53 x 10 s in July and 3.2 x 107 s™' in March, corresponding to a decrease of 16%
and 6% relative to the initial values (Figures 6(e) and 6(f)), respectively. Also, compared to the initial values

ZENG ET AL. 11 of 20



A
AUV
ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Oceans 10.1029/2020JC016460

(20.18°C in July and 26.56°C in March), temperature near the surface decreases by up to 0.96°C in July and
0.87°C in March (Figures 6(g) and 6(h)).

3.4. Internal Tide Energetics

We calculate several parameters of the IT energy budget. At each grid point, the conversion rate from baro-
tropic to baroclinic tides (i.e., internal wave energy generation, hereafter called “energy generation”) C for a
specific tidal frequency 6 is (Buijsman et al., 2012, 2014; Niwa & Hibiya, 2004)

1 Ty

C=— Py (—H.t) Wy (—H.1)dr, )
4

where pj (—H ,t) is the pressure perturbation at the bottom, —H, and wy the vertical component of baro-
tropic tidal flow. Ty is usually a multiple of the tidal period and here we choose 10T around spring tide. The
pressure perturbation is the instantaneous pressure p, (z,t) (calculated from the instantaneous salinity and

temperature) minus p_o(z) (the temporally averaged pressure) and p_o(t):

Py(2) = po(2:1) = po(2) = o 1): ®3)

Here, p_o(t) is calculated through the baroclinicity condition:

2o(t) = [ pole0) = pole)J @

where 7) is the instantaneous sea surface elevation. The bottom boundary condition is

Wme(—Hst) = Uy - V(—H), 3

where u,, is the horizontal barotropic velocity vector. The vertically integrated baroclinic energy flux F is
given by

B = ) o) ®
0

where uj (z,t) is the horizontal velocity perturbation calculated as the instantaneous horizontal velocity

u(z,t) minus the temporally averaged velocity u_g(z) and the temporally varying barotropic velocity u_o(t):

u'g(z,t) = u(z,t)—u—g(z)—u—o(z). @)

Note that all variables above vary horizontally. Figures 5(e) and 5(f) show the distributions of energy gen-
eration and vertically integrated energy flux for the eight tides. High energy generation is mainly found
along the 400-m isobath, both for July and March. However, there are spatial differences. Although the area
of high energy generation at around 10.35°S in March is more extended than the one at about 10.55°S in
July, most of the energy generated there in March propagates offshore rather than onshore. By contrast, the
percentage of the energy propagating onshore is higher in July. That might explain why there are stronger
SSVD signals at about 10.60°S (the northern square in Figure 5(a)) in July than in March. Nevertheless,
there is not always a correspondence between enhanced energy flux and SSVD signals. For example, a large
part of energy at around 10.44°S propagates offshore in March (Figure 5(f)) but there is no obvious SSVD in
this region (Figure 5(b)). One likely reason is smaller wave amplitudes and longer wavelengths which result
in weaker SSVD fields in areas with larger depth compared to areas on the shelf.

Next, we calculate the energy dissipation. In steady state with ITs composed of nearly sinusoidal waves, the
energy budget can be written as (Kelly & Nash, 2010; Nash et al., 2005)
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C-V-F=D. ®

where D represents all processes removing energy from the ITs (Alford et al., 2015), including dissipation
and transfer of energy to higher-frequency waves. In our simulations, energy transferred to small scales by
nonlinearity is dissipated rather than balanced by dispersion due to the coarse resolution, and D approxi-
mately represents local dissipation of IT energy. Mathematically, the dissipation term D is calculated as the
energy generation minus the divergence of energy flux and thus includes all other terms not accounted for
in the simplified energy budget. We calculate D for the two cases (Figures 5(g) and 5(h)) and find that the
distributions show high spatial variability. In July, relatively high values are found at around 10.60°S near
the generation sites while in March they are more concentrated at about 10.40°S in depths greater than
1,000 m.

We now consider seasonal variations of IT energy. The vertically integrated seasonal energy flux along sec-
tion C1 is calculated (Figure 7(a)) and the critical/supercritical points (o > 1) are marked for each month
(black dots). Generally, one may expect that energy is generated near the critical/supercritical region and
propagate away in two opposite directions. However, except for June and July, the energy flux is toward the
coast in the area with a water depth larger than 400 m (the main generation sites). This behavior is quite
unusual regarding the whole domain (Figures 5(e) and 5(f)). Therefore, we select two other cross-shore
sections C2 and C3 (Figure 1(f); C3 is 10 km north of C1) to compare the results (Figures 7(b) and 7(c)).
The seasonal cycle of energy flux differs substantially from section to section: for section C2, maximum flux
divergence at the shelf break is in February/March and October/November; for section C3, the maximum
occurs in June to September. These differences indicate high spatial variability in the seasonal energy flux
distribution.
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Next, we calculate the onshore energy flux for the whole domain. For every grid point, we determine the
shortest distance to the coast. The corresponding direction is regarded as the onshore direction. If there is
the same shortest distance to different grid points at the coast, we use the average direction. Meanwhile,
we classify each grid point in the whole domain according to its water depth and divide the number of grid
points shallower than a certain depth by the total number of grid points (not including land grid points).
In this way, the relative number of grid points is 0 at the coast and 1 at the deepest grid point. The onshore
energy flux as a function of months and the relative number of grid points is shown in Figure 7(d) (note
that the right side corresponds to the coast). Although the flux shows strong seasonal variability for a certain
cross-shore section, the spatially averaged flux over the whole domain changes only weakly throughout the
year.

Therefore, we calculate the seasonal energy generation anomaly (value of each month minus the tempo-
rally averaged value over the year), dissipation anomaly, and slope criticality as functions of the relative
number of the grid points (Figures 8(a)-8(c)). The temporally averaged values of energy generation and dis-
sipation are shown in Figure 8(d). Energy generation mostly occurs in water depths between 200 and 500 m
for all months and its seasonal variability mainly appears in regions shallower than 1,000-m depth, which
reflects that generation sites lie approximately along the 400-m isobaths. Both the maximum and minimum
values appear in austral winter but total energy generation between 100 and 1,000 m does not vary signifi-
cantly over the year. During austral winter, the depth range of enhanced values of generation (larger than
6 x 10° W m™) is narrower (around 300-500 m), which suggests that energy generation is more spatially
confined. For the whole domain, the seasonal variations of energy generation is small compared to the
temporally averaged values (cf., Figures 8(a) and 8(d)). Existing seasonal variations in the energy generation
(Figure 8(a)) are due to the seasonally varying stratification associated with the initial temperature and sa-
linity fields taken from observations that result in slightly varying supercritical/critical regions (Figure 8(c)).

Energy dissipation is more uniform over all depth ranges than energy generation. The highest temporally
averaged value appears between 0 and 50 m (Figure 8(d)), a region that shows particularly weak seasonality
(Figure 8(b)). A strong seasonal cycle of dissipation is found for areas with water depths between 50 and
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100 m as well as between 100 and 1,000 m. While in the shallower depth range maximum dissipation is
found during February/March and October/November, for the deeper depth range maximum dissipation
appears during June-August.

4. Discussion and Conclusions

Tidally generated internal waves play an important role in providing energy for turbulent mixing in the
ocean (Munk & Wunsch, 1998). On the Angolan shelf, mixing processes related to ITs are thought to repre-
sent a vital controlling factor for biological productivity (Ostrowski et al., 2009) and water mass properties
(Tchipalanga et al., 2018). The results of case 0, a high-resolution simulation for July, are used to study the
generation of IT, its onshore propagation, and its impact on mixing and water mass properties. The main
generation sites of the ITs are along the continental slope between the 200- and 500-m isobaths. During aus-
tral winter, the distance between two consecutive fronts is about 10 km along section C1 (Figure 4(a)). En-
hanced baroclinic velocities along tidal beams suggests the appearance of ITs on the shelf and are the result
of the interaction of the barotropic tide with critical/supercritical topography (Lamb, 2014). Beside the pri-
mary M2 IT beam originating at the upper critical point of the main supercritical region at the continental
slope, a secondary M2 tidal beam is identified along section C1 (Figure 4(a)) originating farther offshore. It
modulates the vertical structure of the baroclinic current and likely contributes to the formation of the sec-
ond-mode ITs. As the ITs propagate onshore, the cross-shore velocity shear increases (Figure 4(b)), which
results in enhanced near-coastal mixing. Consistently, the temperature/density is decreased/increased in
a near-surface layer and increased/decreased beneath it with the temperature/density anomalies increas-
ing toward the coast. Note that if there were no tidal forcing, the waters at the surface would cool less in
near-coastal regions than in regions far from the coast over time due to spatially uniform vertical mixing of
the horizontally homogeneous initial temperature profile (Davidson et al., 1998). To verify that the model
background diffusion can be indeed neglected against tidal mixing, we examine the temperature anomaly
after a period of 20T on the westward extended section C1 (west to 11.5°E) of case 13, a model run without
tidal forcing. Changes in temperature are less than 0.03°C in the whole domain with maxima in tempera-
ture anomaly profiles being smaller near the coast (not shown). This implies that the background diffusion
in our simulations is not a significant contributor to the stratification changes of cases 0-12. The stronger
cooling of SST near the coast in our simulation is thus a consequence of the ITs.

As mentioned above, the high productivity during austral winter is not supported by upwelling due to up-
welling-favoring winds, which are in their weakest phase during that period. Here, we have explored the
possibility that seasonal stratification variations impact IT activity representing a mechanism that supports
seasonal variability in near-coastal SSTAs and primary productivity. The total energy generation at the main
generation site differs only slightly between July and March (Figure 8(a)), which suggests the seasonal vari-
ability of energy generation is weak. The energy dissipation and onshore flux show seasonal variability with
high spatial variability in the whole domain (Figures 5(e)-5(h)) but the spatially averaged onshore energy
flux is only slightly enhanced in austral winter representing a period of weaker stratification (Figure 7(d)).
Hall et al. (2013), based on 2D continental slope/shelf simulations, found that stronger stratification on the
shelf favors onshore energy flux, while for weaker stratification the energy flux is substantially reduced.
In their weak stratification case, the pycnocline is at the depth of the critical slope at around 600-m depth
with very weak or no stratification on the shelf. However, on the Angolan shelf, the pycnocline is always
shallower than 40 m and the main IT activity occurs shallower than 200 m. In fact, even the relatively weak
stratification in austral winter is still strong enough to be favorable for M2 tidal energy transmission onto
the Angolan shelf (Figure 2(d)). However, in terms of the energy budget, our results show only a weak
seasonality in the spatially averaged energy generation at the continental slope, energy flux onto the shelf,
and dissipation near the coast. Nevertheless, some IT characteristics show seasonal variability: the SSVD
shows stronger signals along the shelf in July compared to March (Figures 5(a) and 5(b)) which is generally
consistent with the observations of Ostrowski et al. (2009) that ITs/internal waves are more coherent and
have larger amplitudes in austral winter compared to austral summer.
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To address the identified seasonality in changes of hydrographic properties, we calculate the potential en-
ergy (PE) change (i.e., the PE at the end of the model runs minus the initial PE) as an integral measure of
mixing occurring during the model runs. For each water column, the PE is

PE = j'zdp(z,t)gzdz, 9)

where p(z,t) is the density, g the gravitational acceleration, and d is a predefined depth no more than the
local water depth. The initial PE is computed from the initial fields for each case (see Section 2.2) that are
derived from observations. Although the observed seasonal stratification used in the simulations is mod-
ulated by tidal mixing, this effect should be small as the observed data used to derive the climatology are
from hydrographic water-column profiles taken between the 200- and 800-m isobaths, while the strongest
simulated tidal mixing occurs in regions shallower than 50-m water depth. The PE at the end of the model
runs is a temporally averaged value over the last 2T of each case. Figure 9(a) shows the PE change over the
whole water column and over the upper 20 m temporally averaged over all months (cases 1-12). The PE
change over the whole water column is large in the area of the upper continental slope and shelf. It shows
a narrow local maximum at about 400-m depth which corresponds to the region where the slope is critical/
supercritical for all months. When looking at PE change over the upper 20 m, it becomes evident that most
of the PE change occurs away from the surface layer. It shows a maximum close to the coast in water depths
shallower than 50 m, which is very much in accordance with the SSTA also temporally averaged over all
months (cases 1-12) revealing enhanced values in water depths shallower than 50 m as well, with the max-
imum anomaly at the coast (Figure 9(a)). The simulated mean difference between SSTA at the coast and
further offshore is about 0.4°C defining a near-coastal cross-shore SST gradient that is established due to IT
mixing (Figure 9(a)).

The seasonal cycle of the PE change over the whole water column on the shelf (0-200 m depth) is charac-
terized by a maximum in July (main upwelling season during austral winter) with a secondary maximum
in December/January (secondary upwelling season) (Figure 9(b)). Minima occur in March (main down-
welling season) and November (secondary downwelling season). The maximum in austral winter is pre-
sumably because the greater baroclinic velocity shear (Figures 6(c) and 6(d)) in combination with weaker
stratification (Figures 6(e) and 6(f)) leads to lower Richardson numbers and enhanced mixing according to
the applied KPP scheme. The PE change at the location of critical/supercritical slope at about 400-m depth
(IT generation sites) is characterized instead by a weak seasonal cycle (Figure 9(b)), which is in agreement
with a permanent criticality of the continental slope (Figure 8(c)) associated with the weaker seasonal cycle
of the stratification at that depth (Figure 2(d)). As the spatially averaged energy generation shows weak
seasonal variations, the amount of energy on the shelf available for mixing is similar throughout the year.

The seasonal cycle of the SSTA is in general agreement with the seasonal cycle of the PE change over the
upper 20 m (Figure 9(c)). Strongest cooling in water depths shallower than 50 m is found in July (austral
winter) in correspondence to the period of strongest PE change. Similarly strong cooling of the near-coast-
al water is found during the secondary upwelling season in December/January, with weakest cooling in
March and October/November, representing the main and secondary downwelling seasons, respectively.
The peak-to-trough amplitude of the seasonal cycle of the near-coastal SSTA is about 0.4°C. Further off-
shore (50-400 m depth), there is a similar seasonal cycle in PE change and SSTA, but with smaller ampli-
tude (about 0.2°C for SSTA).

Overall, the background stratification shows a substantial seasonal variability (Figure 2(d)), which results
in a seasonality of some IT characteristics (Figure 6). However, the background stratification primarily
represents the preconditioning for the mixing and is the reason, in our simulations, for the seasonal cycle of
the spatially averaged PE change in the upper ocean on the shelf. The weaker stratification that eventually
causes stronger mixing on the shelf and particularly near the coast results in larger near-coastal SSTAs and
thus in enhanced cross-shore SST gradients in the main and secondary upwelling seasons compared to the
main and secondary downwelling seasons characterized by stronger stratification.

It is concluded that with about the same amount of IT energy available on the shelf throughout the year, the
water column can be much more effectively mixed during months with a weak stratification, for example,
during July, compared to months with a strong stratification, for example, during March. The strongest
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Figure 9. (a) Annual mean PE change over the whole water column (black solid line, left axis) and over the upper

20 m (black dashed line, left axis) and annual mean SST anomaly (blue solid line, right axis). Note that the black solid
and dashed lines are identical for water depths shallower than 20 m. Vertical black dashed lines with numbers are
isobaths (unit: m). (b) PE change over the whole water column as function of month of the year averaged in the area
with water depths shallower than 200 m (solid line) and at the depth of maximum PE change over the whole water
column at a water depth about 400 m (region of critical/supercritical slope). (c) PE change over the upper 20 m (black,
left axis) and SST anomaly (blue, right axis) as function of month of the year averaged in the area 0-50 m water depth
(solid lines) and 50-400 m water depth (dashed lines). PE, potential energy; SST, sea surface temperature.

near-surface mixing thereby always occurs close to the coast in water depths shallower than 50 m resulting
in larger negative SSTAs along the coast being most pronounced during austral winter.

Since the availability of satellite retrievals of winds, SST, and chlorophyll, it has become evident that in
tropical upwelling regions equatorward of about the 20° circle of latitude, the seasonal variability of surface
productivity and cross-shore SST gradients is often in opposition with the seasonal variability of alongshore
wind stress (e.g., Thomas et al., 2001). For example, the tropical eastern boundary upwelling system off
Peru (6°-18°S) shows a seasonal maximum of chlorophyll and cross-shore temperature gradient during
austral summer, when the alongshore winds reach a seasonal minimum (Echevin et al., 2008). It is possible
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that the interplay between ITs and the seasonal cycle of stratification also contributes to the seasonality of
near-coastal cooling and upward nutrient flux in other tropical upwelling regions.

Our work provides a preliminary framework for understanding the 3D generation and propagation of ITs
and their seasonal variations on the Angolan shelf. Yet there are still relevant processes that need to be ad-
dressed in future work. For example, our limited model resolution does not allow for nonhydrostatic short
internal solitary waves to develop. These nonlinear ISWs, which are suggested to vary seasonally along the
Angolan shelf (Ostrowski et al., 2009), are missing in our simulations. They develop from the disintegration
of ITs (Apel, 2003; Lamb, 2004) and may affect surface cooling and nutrient supply to the euphotic zone
by the formation of wave-driven overturning circulations or by elevated velocity shear and wave breaking
(Vlasenko & Hutter, 2002; S. Zhang et al., 2015). Resolving ISWs would likely not significantly impact the
total energy dissipation on the shelf (Lamb, 2014), but it could affect the distribution of the dissipation both
horizontally and vertically. However, ISW simulations would require a horizontal resolution of few meters,
which cannot be achieved in the current 3D model framework, and 2D simulations are likely a better op-
tion to address the potential role of ISWs in the upward nutrient supply on the Angolan shelf. On the other
hand, observational estimates of mixing parameters in the Angolan upwelling region are urgently required
to validate our model results. Measurements by microstructure shear sensors that can be used to estimate
the dissipation rate of turbulent kinetic energy and turbulent eddy diffusivities are now possible for periods
of up to 1 month using autonomous observatories (e.g., Merckelbach et al., 2019). From such data sets, the
variability of mixing parameters and associated vertical turbulent heat and nutrient fluxes in the upwelling
region could be determined (see Schafstall et al., 2010). Furthermore, these data sets could also yield further
insight into the validity of our model approach, that is, the neglection of higher-resolution nonhydrostatic
effects, and the appropriateness of the applied KPP mixing scheme.

Of course, the realism of our 3D simulations could be improved by the inclusion of wind, buoyancy forc-
ing, a realistic boundary circulation, and CTWs, which would make it possible to study the variability of IT
mixing during specific climatic events such as Benguela Nifios and Nifias. Indeed, as the resolution of 3D
circulation models improves, our results suggest that including tides explicitly (or improved parameteriza-
tions of tidal mixing) in such models could lead to significant improvement in their overall performance.

Data Availability Statement

The SAR image was acquired by the ERS-1 satellite and is downloaded from https://earth.esa.int/web/
guest/missions/esa-operational-eo-missions/ers/instruments/sar/applications/tropical/-/asset_publish-
er/tZ7pAG6SCnM8/content/upwelling-angola. The MODIS SST data are downloaded from https://po-
daac-opendap.jpl.nasa.gov/opendap/allData/modis. The sea level anomaly from TOPEX/ERS merged data
is downloaded from http://apdrc.soest.hawaii.edu/datadoc/aviso_topex_mon_clima.php. The meridional
wind from CCMP data is downloaded from http://data.remss.com/ccmp/v02.0/. The MITgcm code and
related input files in our work can be accessed at https://doi.org/10.5281/zenod0.4422439.
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