Developing Domain-Specific Languages for Ocean Modeling

EMLS'21 - Project OceanDSL

Reiner Jung, Sven Gundlach, Serafim Simonov, Wilhelm Hasselbring

Kiel-University

23rd February 2021

Introduction

CAU

- Project Goal: DSLs to support Ocean Modeling
- Domain analysis: Thematic Analysis [Braun and Clarke 2006]
- Example: Configuration and Parameterization DSL

What is Ocean Modeling?

Different Scales in Modeling

[MITgcm Project 2020]

Fluxes of Heat, Carbon and Oxygen at SWOT Scales

[Smith and Abernathey 2017]

Jung, Gundlach, Simonov, Hasselbring

Simplified Ocean Modeling Process

Jung, Gundlach, Simonov, Hasselbring

Domain Characteristics

CAU

Models

- Long-living systems
- Implemented in Fortran 77, 90, C++ and Python
- Feature management by #ifdef

Editors

- Vi, Vim, Emacs and Xcode
- In general no IDEs
 (except Emacs, and PyCharm in rare cases)

Build system

• make, cmake, shell scripts, perl

DSLs in Ocean Modeling

- External DSLs, e.g., Dusk/Dawn MeteoSwiss [MeteoSwiss 2020]
- Embedded DSLs, e.g., Psyclone [Adams et al. 2019]

Views & Aspects

- Transport Model Specification
- Bio-geo-chemical Modeling
- Configuration and Parameterization
- Deployment

Configuration Header

CAU

include size

barotropic_gyre : mitgcm

Global Parameters and Features

```
CAU
```

features ALLOW_FRICTIONHEATING

```
parameters
PARM01:
    viscAh = 4.E2
    f0 = 1.E-4
    beta = 1.E-11
    rhoConst = 1000.0
    gBaro = 9.81
```

```
Modules
```



```
module cost:
                                    diagnostics:
  features ALLOW_EGM96_ERROR_COV
                                       diagMdsDir = "some-dir"
  cost nml:
                                       format = net.cdf
     mult_atl = 0.
                                       diagSt_regMaskFile = "regMask_lat24.bin"
                                       set_regMask(1:3) = [1, 1, 1]
     mult_test = 0.
                                       val_regMask(1:3) = [1., 2., 3.]
                                       "first-out.log":
                                          logmode = snap
                                          frequency = 10
                                         missing_value = 5.0
                                          fields(1:2) = [ SDIAG1, SDIAG2 ]
                                          levels(1:2) = \lceil 1, 2 \rceil
```

Summary

- Introduced the domain of ocean modeling
 - Main process
 - Domain properties
- Presented the configuration and parameterization DSL

Questions

Language related aspects

- Which syntactical style should we use?
 - YAML, CPP, C, Python
 - Familarity might be relevant
 - Structures must be as clear and simple
- How could we address modularization of the configuration?
 - Include, override, interfaces, immutuals

Technical and social aspects

- How to introduce DSLs into the domain?
 - Are there methods from other domains which we could use here?
 - What are usual methods and arguments to hinder the introduction of DSL?
 - How can we address them?
- How to organize maintenance after the project ends?
 - How to motivate institutions to commit themselves?
 - How to minimize maintenance?

Bibliography I

- Adams, S.V. et al. (2019). "LFRic: Meeting the challenges of scalability and performance portability in Weather and Climate models." In: *Journal of Parallel and Distributed Computing* 132, pp. 383–396. DOI: 10.1016/j.jpdc.2019.02.007.
- Braun, Virginia and Victoria Clarke (2006). "Using thematic analysis in psychology." In: Qualitative Research in Psychology 3.2, pp. 77–101. DOI: 10.1191/1478088706qp063oa.
- MeteoSwiss (2020). Dawn Compiler toolchain to enable generation of high-level DSLs for geophysical fluid dynamics models. URL: https://github.com/MeteoSwiss-APN/dawn.
- MITgcm Project (2020). MITgcm user manaual. URL:
 - https://mitgcm.readthedocs.io/en/latest/overview/overview.html.
- Smith, Shafer and Ryan Abernathey (2017). Fluxes of Heat, Carbon and Oxygen at SWOT Scales. URL: https://swot.jpl.nasa.gov/documents/1521/.