Supplement of Atmos. Chem. Phys., 21, 5777–5806, 2021 https://doi.org/10.5194/acp-21-5777-2021-supplement © Author(s) 2021. CC BY 4.0 License. ## Supplement of ## Effects of prescribed CMIP6 ozone on simulating the Southern Hemisphere atmospheric circulation response to ozone depletion Ioana Ivanciu et al. Correspondence to: Ioana Ivanciu (iivanciu@geomar.de) The copyright of individual parts of the supplement might differ from the article licence. **Figure S1.** Latitude-height zonal wind difference between REF and NoODS (a, b and c) and between REF and NoGHG (d, e and f) for October (a and d), November (b and e) and December (c and f) in m s⁻¹ (color shading). Stippling masks values that are not significant at the 95% confidence interval. The overlaying contours mark the 1978-2002 climatology of each respective month from REF. Figure S2. Latitude-height December difference between REF and NoODS in the eddy heat flux (a, in K m s $^{-1}$), the eddy momentum flux (b, in m 2 s $^{-2}$), the divergence of the EP flux (c, in m s $^{-1}$ day $^{-1}$), the meridional residual velocity (d, in cm s $^{-1}$), the vertical residual velocity (e, in mm s $^{-1}$) and in the dynamical heating rate (f, in K day $^{-1}$) for the period 1978-2002 (color shading). Contours in each panel show the corresponding climatology from REF. Stippling masks values that are not significant at the 95% confidence interval. **Figure S3.** Polar stereographic maps of the October 70 hPa temperature trends for the individual members of INTERACT O_3 (a-c) and FIXED O_3 (d-f) in K dec^{-1} for the period 1958-2002 (color shading). The contours show the October climatological temperature in each simulations. Stippling masks regions where the trends are not significant at the 95% confidence level. **Figure S4.** Polar stereographic maps of the October (a and b) and November (c and d) 100 hPa trends in SW heating rate for INTERACT O_3 (a and c) and FIXED O_3 (b and d) in K day⁻¹ dec⁻¹ for the period 1958-2002. Stippling masks regions where the trends are not significant at the 95% confidence level. Figure S5. Seasonal cycle of the polar cap $(65^{\circ}S-90^{\circ}S)$ temperature trend for the individual members of INTERACT O_3 (a-c) and FIXED O_3 (e-g) and for IGRA (d) and ERA5 (h) for the period 1958-2002 in K dec^{-1} (color shading). Stippling masks regions where the trends are not significant at the 95% confidence level. The overlaying contours show the corresponding climatological seasonal cycle. The letter corresponding to each month marks the middle of that month. Figure S6. Seasonal cycle of the 50° S- 70° S zonal wind trend for the individual members of INTERACT O_3 (a-c) and FIXED O_3 (d-f) for the period 1958-2002 in m s⁻¹ dec⁻¹ (color shading). Stippling masks regions where the trends are not significant at the 95% confidence level. The overlaying contours show the corresponding climatological seasonal cycle. The letter corresponding to each month marks the middle of that month. Figure S7. Timeseries of INTERACT O_3 (a, b) and FIXED O_3 (c, d) 100 hPa polar cap $(70^\circ S-90^\circ S)$ temperature (a, c, in K) and SW heating rate (b, d, in K day⁻¹) anomalies with respect to the 1958-2013 climatology for each austral spring day. Figure S8. Latitude-height trends in October (a and b) and November (c and d) dynamical heating rate (in K day $^{-1}$ dec $^{-1}$) in INTERACT O_3 (a and c) and FIXED O_3 (b and d) for the period 1958-2002 (color shading). Stippling masks the trends that are not significant at the 95% confidence interval. The overlaying contours in each panel show the corresponding climatologies.