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Research Software

Research Software

• Research software is software 
– that is employed in the scientific 

discovery process or
– a research object itself. 

• Computational science (also 
scientific computing) involves the 
development of research 
software
– for model simulations and 
– data analytics
to understand natural systems 
answering questions that neither 
theory nor experiment alone are 
equipped to answer.
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Characteristics of Research Software

Research Software

• Functional Requirements are not known up front
– And often hard to comprehend without some PhD in science

• Verification and validation are difficult, 
– and strictly scientific

• Overly formal software processes restrict research
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Characteristics of Research Software

Research Software

• Software quality requirements
– Jeffrey Carver and colleagues22 found that scientific software 

developers rank the following characteristics as the most 
important, in descending order [Carver et al. 2007]:

1. functional (scientific) correctness,
2. performance,
3. portability, and
4. maintainability.

• Research software in itself has no value
– Not really true for community software

• Few scientists are trained in software engineering
– Disregard of most modern software engineering methods and 

tools
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Sustainability of Research Software

Research Software

• Research software publishing practices in computer science and in 
computational science show significant differences: 
– computational science emphasizes reproducibility, 
– computer science emphasizes reuse.
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Lifespan of Github repositories cited in 
computer science publications

Lifespan of Github repositories cited in 
computational science publications

[Hasselbring et al. 2020a]



SE for Research Software ?

Research Software

Software Engineering and Computer Science for Generality [Randell 2018]:
• “That NATO was the sponsor of this conference marks the relative distance of 

software engineering from computation in the academic context. 
• The perception was that while errors in scientific data processing applications 

might be a ‘hassle,’ they are all in all tolerable. 
• In contrast, failures in mission-critical military systems might cost lives and 

substantial amounts of money.
• Based on this attitude, software engineering—like computer science as a 

whole— aimed for generality in its methods, techniques, and processes and 
focused almost exclusively on business and embedded software.

• Because of this ideal of generality, the question of how specifically 
computational scientists should develop their software in a well-engineered 
way would probably have perplexed a software engineer, whose answer might 
have been: 
– ‘Well, just like any other application software.’ ”
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Software Carpentry

Research Software

• Programming / Coding
– Fortran, C++, Python, R, etc
– Using compilers, interpreters, editors, etc

• Using version control (git etc)
• Team coordination (GitHub, Gitlab, etc)
• [Continuous integration (Jenkins, etc)]
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https://software-carpentry.org/



So, SE for Computational Science

Research Software

[Johanson & Hasselbring 2018]:
• Among the methods and 

techniques that software 
engineering can offer to 
computational science are
– testing without test oracles,
– modular software architectures, 

and
– model-driven software engineering

with domain-specific languages.
• This way, computational science may achieve 

maintainable, long-living software 
[Goltz et al., 2015; Reussner et al. 2019], 
– in particular for community software.
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Testing the Untestable: Test Oracles?

Testing 11

Stimulus and observations: 
– S is anything that can change the 

observable behavior of the SUT f; 
– R is anything that can be observed about 

the system’s behavior; 
– I includes f’s explicit inputs; 
– O is its explicit outputs; 
– everything not in S U R neither affects nor 

is affected by f.
[Kanewala and Bieman 2014]



Metamorphic Testing 

Testing

• The nature of research software is exploratory.
• Output is usually unknown and cost-intensive to compute.
• Hence it is challenging to validate using conventional testing 

methodology
• Metamorphic Testing provides an approach for testing 

software without test oracles
– Validating software by comparing outputs of multiple runs with 

varying (morphed) input data
– The central element of metamorphic testing is the metamorphic 

relation.
• The input data is morphed based on this property 

– If the output is in accordance of the applied morphing to the input 
data, the test is asserted.
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[Segura et al. 2020] 



Metamorphic Testing for Ocean Models

Testing 13

Our Goal: To generate metamorphic test cases and metamorphic relations 
automatically via machine learning for verifying Ocean System Model applications
[Hiremath et al. 2021]
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Modular Commercial Software

Modular Software

Example: otto.de
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Microservices: [Hasselbring 2016, 2018, Hasselbring & Steinacker 2017, Knoche & Hasselbring 2019]
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Modular Commercial Software

Modular Software

Example: otto.de
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Scalability, Agility and Reliability [Hasselbring & Steinacker 2017]

Reliability
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Modular Scientific Code

Modular Software

Highlights

• Ch4-project is a fluid dynamics code used in academia for the study of fundamental problems in fluid 
mechanics.

• It has contributed to the understanding of global scaling laws in non-ideal turbulent thermal convection.
• It has been used for the characterisation of statistical properties of bubbles and particles in developed 

turbulence.
• It is currently employed for a variety for research projects on inertial particle dynamics and convective 

melting.
• Its modular code structure allows for a low learning threshold and to easily implement new features.
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Modular Scientific Code

Modular Software

[Calzavarini 2019]:
• “A dream for principal investigators in this field is to not have to 

deal with different (and soon mutually incompatible) code 
versions for each project and junior researcher in his/her own 
group. 

• In this respect an object-oriented modular code structure would 
be the ideal one, 
– but this makes the code less prone to modifications by the less experienced 

users. 

• The choice made here is to rely on a systematic use of C language 
preprocessing directives and on a hierarchical naming convention 
in order to configure the desired simulation setting in a module-
like fashion at compiling time.”
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Publishing Ocean Observation Data & Analytics
• Paper: [Johanson et al. 2017b]
• Code: https://github.com/cau-se/oceantea/
• Software service with data: https://oceantea.uni-kiel.de/

[Johanson et al. 2017b]
Modular Software

[Johanson et al. 2016a] 
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Modular Scientific Software

Modular Software

OceanTEA: Microservice-based Architecture
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OceanTEA: [Johanson et al. 2016a]
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Migrating toward Microservices

Modular Software

[Knoche & Hasselbring 2018, Krause et al. 2020]

22



Live Trace Visualization Tool

Modular Software

• Program- and system 
comprehension for software 
engineers

• Started as a Ph.D project in 2012
• Open Source from the beginning 

(Apache License, Version 2.0)
• Continuously extended over the 

years
• [Fittkau et al. 2013, 2015a-d, 2017; 

Krause et al. 2018, 2020; 
Zirkelbach et al. 2019, 2020;
Hasselbring et al. 2020c]
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https://www.explorviz.net
https://github.com/ExplorViz



3D Application Visualization

Modular Software 24



Some VR Extensions

Modular Software 25
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Modular Software 26
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New Modular Architecture

Modular Software 27

More details in [Zirkelbach et al. 2019, 2020] 
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Migrating Computational Science Models ?

Modular Software

The software architecture of climate models 
[Alexander & Easterbrook 2015] 
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The Sprat Approach: Hierarchies of DSLs

Domain-specific software engineering 31

[Johanson & Hasselbring 2014a,b, 2016b]



Evaluation of the Sprat

Domain-specific software engineering 32

Biogeochemical Ocean Model
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The Sprat Model
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• Controlled experiments with domain scientists [Johanson & Hasselbring 2017]
• Expert interviews and benchmarks [Johanson et al. 2016b]
• The Sprat Marine Ecosystem Model:

Original scientific contributions to Ecological Modeling [Johanson et al. 2017a]



Outlook: OceanDSL

Domain-specific software engineering

• OceanDSL – Domain-Specific Languages for Ocean 
Modeling and Simulation

• Provide an infrastructure for building modular and 
testable ocean modeling and simulation software

• Initial focus on configuration and parametrization DSLs 
[Jung et al. 2021]
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Workflow Control-Flow Patterns

Flow-based programming 35

Control-flow patterns UML activity diagram: 
(a) Sequence; (b) Parallel Split; (c) Synchronisation; (d) Exclusive Choice; (e) Simple Merge; 
(f) Multi Merge; (g) Arbitrary Cycle; (h) Multiple Instance with a prior design-time 
knowledge; (i) Multiple Instance with a prior run-time knowledge; and (j) Milestone.

[Butt and Fitch 2021]



Scientific Workflows

Flow-based programming 36

From the control-flow patterns, only Parallel Split and Synchronisation (aka Fork/Join).
No Exclusive Choices or Loops.

From the D-Grid project WISENT on e-Science for Energy Meteorology 
[Hasselbring et al. 2006]



Data Analysis Workflows in FONDA

Flow-based programming 37

Ulf Leser @ GIBU 2021



Flow-based programming 38

[Hasselbring et al. 2021], see also https://www.industrial-devops.org/



Flow-based programming 39

[Henning et al. 2021]



Developing Analysis Workflows in FONDA

Flow-based programming 40

Ulf Leser @ GIBU 2021



Summary

Summary

• Modularity is essential for maintainability, scalability and agility
– also for reusability
– also for testability
– So, microservices could be a beneficial architectural style for research 

software, too.

• However, domain-specific software engineering approaches are 
required for computational science
– Implausible to modernize legacy scientific code

• When researching data analysis workflows in FONDA,
– I suggest to emphasize data flow over control flow [Hasselbring et al. 2021]

• Open Science also for Computer Science / Software Engineering 
research itself
– “Eat your own dog food”
– Follow the FAIR principles [Hasselbring et al. 2020b]
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