
Software Engineering for Computational Science:
Tests, Modules, Domain-Specific Languages, Flows

Wilhelm (Willi) Hasselbring
Software Engineering

http://se.informatik.uni-kiel.de

CRC 1404 FONDA, April 27th, 2021

Agenda

Agenda

1. Research Software
2. Research Software Engineering

– Automated testing
– Modular Software

• Modular commercial software
• Modular research software

– Domain-specific software engineering
– Flow-based programming

3. Summary & Outlook

2

Research Software

Research Software

• Research software is software
– that is employed in the scientific

discovery process or
– a research object itself.

• Computational science (also
scientific computing) involves the
development of research
software
– for model simulations and
– data analytics
to understand natural systems
answering questions that neither
theory nor experiment alone are
equipped to answer.

3

Characteristics of Research Software

Research Software

• Functional Requirements are not known up front
– And often hard to comprehend without some PhD in science

• Verification and validation are difficult,
– and strictly scientific

• Overly formal software processes restrict research

4

Characteristics of Research Software

Research Software

• Software quality requirements
– Jeffrey Carver and colleagues22 found that scientific software

developers rank the following characteristics as the most
important, in descending order [Carver et al. 2007]:

1. functional (scientific) correctness,
2. performance,
3. portability, and
4. maintainability.

• Research software in itself has no value
– Not really true for community software

• Few scientists are trained in software engineering
– Disregard of most modern software engineering methods and

tools

5

Sustainability of Research Software

Research Software

• Research software publishing practices in computer science and in
computational science show significant differences:
– computational science emphasizes reproducibility,
– computer science emphasizes reuse.

6

Lifespan of Github repositories cited in
computer science publications

Lifespan of Github repositories cited in
computational science publications

[Hasselbring et al. 2020a]

SE for Research Software ?

Research Software

Software Engineering and Computer Science for Generality [Randell 2018]:
• “That NATO was the sponsor of this conference marks the relative distance of

software engineering from computation in the academic context.
• The perception was that while errors in scientific data processing applications

might be a ‘hassle,’ they are all in all tolerable.
• In contrast, failures in mission-critical military systems might cost lives and

substantial amounts of money.
• Based on this attitude, software engineering—like computer science as a

whole— aimed for generality in its methods, techniques, and processes and
focused almost exclusively on business and embedded software.

• Because of this ideal of generality, the question of how specifically
computational scientists should develop their software in a well-engineered
way would probably have perplexed a software engineer, whose answer might
have been:
– ‘Well, just like any other application software.’ ”

7

Software Carpentry

Research Software

• Programming / Coding
– Fortran, C++, Python, R, etc
– Using compilers, interpreters, editors, etc

• Using version control (git etc)
• Team coordination (GitHub, Gitlab, etc)
• [Continuous integration (Jenkins, etc)]

8

https://software-carpentry.org/

So, SE for Computational Science

Research Software

[Johanson & Hasselbring 2018]:
• Among the methods and

techniques that software
engineering can offer to
computational science are
– testing without test oracles,
– modular software architectures,

and
– model-driven software engineering

with domain-specific languages.
• This way, computational science may achieve

maintainable, long-living software
[Goltz et al., 2015; Reussner et al. 2019],
– in particular for community software.

9

Agenda

Agenda

1. Research Software
2. Research Software Engineering

– Automated testing
– Modular Software

• Modular commercial software
• Modular research software

– Domain-specific software engineering
– Flow-based programming

3. Summary & Outlook

10

Testing the Untestable: Test Oracles?

Testing 11

Stimulus and observations:
– S is anything that can change the

observable behavior of the SUT f;
– R is anything that can be observed about

the system’s behavior;
– I includes f’s explicit inputs;
– O is its explicit outputs;
– everything not in S U R neither affects nor

is affected by f.
[Kanewala and Bieman 2014]

Metamorphic Testing

Testing

• The nature of research software is exploratory.
• Output is usually unknown and cost-intensive to compute.
• Hence it is challenging to validate using conventional testing

methodology
• Metamorphic Testing provides an approach for testing

software without test oracles
– Validating software by comparing outputs of multiple runs with

varying (morphed) input data
– The central element of metamorphic testing is the metamorphic

relation.
• The input data is morphed based on this property

– If the output is in accordance of the applied morphing to the input
data, the test is asserted.

12

[Segura et al. 2020]

Metamorphic Testing for Ocean Models

Testing 13

Our Goal: To generate metamorphic test cases and metamorphic relations
automatically via machine learning for verifying Ocean System Model applications
[Hiremath et al. 2021]

Agenda

Agenda

1. Research Software
2. Research Software Engineering

– Automated testing
– Modular Software

• Modular commercial software
• Modular research software

– Domain-specific software engineering
– Flow-based programming

3. Summary & Outlook

14

Modular Commercial Software

Modular Software

Example: otto.de

15

Microservices: [Hasselbring 2016, 2018, Hasselbring & Steinacker 2017, Knoche & Hasselbring 2019]

Ba
ck

of
fic

e

Sh
op

pa
ge

s

Se
ar

ch
 &

 N
av

ig
at

io
n

Pr
od

uc
t

Pr
om

ot
io

n

O
rd

er

U
se

r

Af
te

rS
al

es

Au
th

In
si

gh
ts

Li
nk

 H
an

dl
er

Tr
ac

ki
ng

Page Assembly Proxy

Backend Integration Proxy

Modular Commercial Software

Modular Software

Example: otto.de

16

Scalability, Agility and Reliability [Hasselbring & Steinacker 2017]

Reliability

Agenda

Agenda

1. Research Software
2. Research Software Engineering

– Automated testing
– Modular Software

• Modular commercial software
• Modular research software

– Domain-specific software engineering
– Flow-based programming

3. Summary & Outlook

17

Modular Scientific Code

Modular Software

Highlights

• Ch4-project is a fluid dynamics code used in academia for the study of fundamental problems in fluid
mechanics.

• It has contributed to the understanding of global scaling laws in non-ideal turbulent thermal convection.
• It has been used for the characterisation of statistical properties of bubbles and particles in developed

turbulence.
• It is currently employed for a variety for research projects on inertial particle dynamics and convective

melting.
• Its modular code structure allows for a low learning threshold and to easily implement new features.

18

Modular Scientific Code

Modular Software

[Calzavarini 2019]:
• “A dream for principal investigators in this field is to not have to

deal with different (and soon mutually incompatible) code
versions for each project and junior researcher in his/her own
group.

• In this respect an object-oriented modular code structure would
be the ideal one,
– but this makes the code less prone to modifications by the less experienced

users.

• The choice made here is to rely on a systematic use of C language
preprocessing directives and on a hierarchical naming convention
in order to configure the desired simulation setting in a module-
like fashion at compiling time.”

19

Publishing Ocean Observation Data & Analytics
• Paper: [Johanson et al. 2017b]
• Code: https://github.com/cau-se/oceantea/
• Software service with data: https://oceantea.uni-kiel.de/

[Johanson et al. 2017b]
Modular Software

[Johanson et al. 2016a]
19

Modular Scientific Software

Modular Software

OceanTEA: Microservice-based Architecture

21

OceanTEA: [Johanson et al. 2016a]

<<microservice>>
SpatialAnalysis

<<web browser>> Oceanographic
Time Series Exploration and

Analysis Client

<<executionEnvironment>>
NodeJS (REST Wrapper)

<<executionEnvironment>>
R

<<database>>
RDS Data Storage

<<executionEnvironment>>
JavaScript

<<microservice>>
Time Series Pattern Discovery

<<executionEnvironment>>
Python

<<database>>
NetflixAtlas

API Gateway

<<microservice>>
Univariate Time Series

Management

<<microservice>>
Multivariate Time Series

Management

<<executionEnvironment>>
NodeJS

<<database>>
JSON Data Storage

<<executionEnvironment>>
Python

<<database>>
Pickle Data Storage

<<database>>
NumPy Array Storage

<<microservice>>
Time Series Conversion

(TEOS-10)

<<executionEnvironment>>
NodeJS (REST Wrapper)

<<executionEnvironment>>
Hosted C Environment

<<microservice>>
User Authentication

<<service>>
GoogleMaps

Data Exchange

RESTRESTRESTREST

HTTP,REST

REST

Migrating toward Microservices

Modular Software

[Knoche & Hasselbring 2018, Krause et al. 2020]

22

Live Trace Visualization Tool

Modular Software

• Program- and system
comprehension for software
engineers

• Started as a Ph.D project in 2012
• Open Source from the beginning

(Apache License, Version 2.0)
• Continuously extended over the

years
• [Fittkau et al. 2013, 2015a-d, 2017;

Krause et al. 2018, 2020;
Zirkelbach et al. 2019, 2020;
Hasselbring et al. 2020c]

23

https://www.explorviz.net
https://github.com/ExplorViz

3D Application Visualization

Modular Software 24

Some VR Extensions

Modular Software 25

Server

Feature

Filesystem

Visualization

Analysis

Legacy Layered Architecture

Modular Software 26

Monitored Server

Application

Monitoring

Client

TCP HTTP

New Modular Architecture

Modular Software 27

More details in [Zirkelbach et al. 2019, 2020]

Processes

Message Broker

Monitored
Server

Application

Discovery
-Agent

Client

Records
Analysis

TracesRecords

API-Gateway / Reverse Proxy

Backend-
Extension

Data

HTTP

HTTP
Frontend

Visualization

Extension

Settings Broadcast History

LandscapesLandscapesUser
events

Landscape

Traces Landscapes

DiscoveryUser

User
events

Server

Feature

Filesystem

Visualization

Analysis

Legacy Layered Architecture

Modular Software 28

Monitored Server

Application

Monitoring

Client

TCP HTTP

Please go to
https://menti.com

Migrating Computational Science Models ?

Modular Software

The software architecture of climate models
[Alexander & Easterbrook 2015]

29

Agenda

Agenda

1. Research Software
2. Research Software Engineering

– Automated testing
– Modular Software

• Modular commercial software
• Modular research software

– Domain-specific software engineering
– Flow-based programming

3. Summary & Outlook

30

The Sprat Approach: Hierarchies of DSLs

Domain-specific software engineering 31

[Johanson & Hasselbring 2014a,b, 2016b]

Evaluation of the Sprat

Domain-specific software engineering 32

Biogeochemical Ocean Model

Currents TemperatureZooplankton

The Sprat Model

Movement

PassiveActive

PredictiveReactive

Reproduction

Background Mortality
Metabolic Costs

Net Swimming
Costs

Resting
Metabolic Rate

Fishing

Predation (Opportunistic)

Intake Losses

Growth

Controlled by
Time/Temp.

Controlled by
Biomass Uptake

• Controlled experiments with domain scientists [Johanson & Hasselbring 2017]
• Expert interviews and benchmarks [Johanson et al. 2016b]
• The Sprat Marine Ecosystem Model:

Original scientific contributions to Ecological Modeling [Johanson et al. 2017a]

Outlook: OceanDSL

Domain-specific software engineering

• OceanDSL – Domain-Specific Languages for Ocean
Modeling and Simulation

• Provide an infrastructure for building modular and
testable ocean modeling and simulation software

• Initial focus on configuration and parametrization DSLs
[Jung et al. 2021]

33

Agenda

Agenda

1. Research Software
2. Research Software Engineering

– Automated testing
– Modular Software

• Modular commercial software
• Modular research software

– Domain-specific software engineering
– Flow-based programming

3. Summary & Outlook

34

Workflow Control-Flow Patterns

Flow-based programming 35

Control-flow patterns UML activity diagram:
(a) Sequence; (b) Parallel Split; (c) Synchronisation; (d) Exclusive Choice; (e) Simple Merge;
(f) Multi Merge; (g) Arbitrary Cycle; (h) Multiple Instance with a prior design-time
knowledge; (i) Multiple Instance with a prior run-time knowledge; and (j) Milestone.

[Butt and Fitch 2021]

Scientific Workflows

Flow-based programming 36

From the control-flow patterns, only Parallel Split and Synchronisation (aka Fork/Join).
No Exclusive Choices or Loops.

From the D-Grid project WISENT on e-Science for Energy Meteorology
[Hasselbring et al. 2006]

Data Analysis Workflows in FONDA

Flow-based programming 37

Ulf Leser @ GIBU 2021

Flow-based programming 38

[Hasselbring et al. 2021], see also https://www.industrial-devops.org/

Flow-based programming 39

[Henning et al. 2021]

Developing Analysis Workflows in FONDA

Flow-based programming 40

Ulf Leser @ GIBU 2021

Summary

Summary

• Modularity is essential for maintainability, scalability and agility
– also for reusability
– also for testability
– So, microservices could be a beneficial architectural style for research

software, too.

• However, domain-specific software engineering approaches are
required for computational science
– Implausible to modernize legacy scientific code

• When researching data analysis workflows in FONDA,
– I suggest to emphasize data flow over control flow [Hasselbring et al. 2021]

• Open Science also for Computer Science / Software Engineering
research itself
– “Eat your own dog food”
– Follow the FAIR principles [Hasselbring et al. 2020b]

41

References

42

[Alexander & Easterbrook 2015] K. Alexander and S. M. Easterbrook: “The software architecture of climate models”, In:
Geosci. Model Dev., 8, 1221–1232, 2015. DOI http://doi.org/10.5194/gmd-8-1221-2015

[Butt and Fitch 2021] A.S. Butt, P. Fitch: “A provenance model for control-flow driven scientific workflows”. In: Data &
Knowledge Engineering, 131–132, 2021, DOI https://doi.org/10.1016/j.datak.2021.101877

[Calzavarini 2019] E. Calzavarini: “Eulerian–Lagrangian fluid dynamics platform: The ch4-project”. In: Software Impacts 1,
2019. DOI https://doi.org/10.1016/j.simpa.2019.100002

[Carver et al. 2007] J.C. Carver et al., “Software Development Environments for Scientific and Engineering Software: A
Series of Case Studies,” Proc. 29th Int'l Conf. Software Eng. (ICSE 07), 2007, pp. 550–559. DOI
https://doi.org/10.1109/ICSE.2007.77

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, W. Hasselbring: “Live Trace Visualization for Comprehending Large
Software Landscapes: The ExplorViz Approach“, In: 1st IEEE International Working Conference on Software
Visualization (VISSOFT 2013). DOI https://doi.org/10.1109/VISSOFT.2013.6650536

[Fittkau et al. 2015a] F. Fittkau, S. Roth, W. Hasselbring: “ExplorViz: Visual Runtime Behavior Analysis of Enterprise
Application Landscapes“, In: 23rd European Conference on Information Systems (ECIS 2015). DOI
https://doi.org/10.18151/7217313

[Fittkau et al. 2015b] F. Fittkau, A. Krause, W. Hasselbring: “Hierarchical Software Landscape Visualization for System
Comprehension: A Controlled Experiment”. In: 3rd IEEE Working Conference on Software Visualization, 2015. DOI
https://doi.org/10.1109/VISSOFT.2015.7332413

[Fittkau et al. 2015c] F. Fittkau, A. Krause, W. Hasselbring: “Exploring Software Cities in Virtual Reality”, In: 3rd IEEE
Working Conference on Software Visualization, 2015. DOI https://doi.org/10.1109/VISSOFT.2015.7332423

[Fittkau et al. 2015d] F. Fittkau, S. Finke, W. Hasselbring, J. Waller: “Comparing Trace Visualizations for Program
Comprehension through Controlled Experiments”, In: 23rd IEEE International Conference on Program
Comprehension (ICPC 2015), May 2015, Florence. DOI https://doi.org/10.1109/ICPC.2015.37

[Fittkau et al. 2017] F. Fittkau, A. Krause, W. Hasselbring: “Software landscape and application visualization for system
comprehension with ExplorViz”, In: Information and Software Technology. DOI 10.1016/j.infsof.2016.07.004

https://doi.org/10.1109/ICPC.2015.37

References

43

[Goltz et al., 2015] U. Goltz et al., “Design for Future: Managed Software Evolution,” Computer Science - Research and
Development, vol. 30, no. 3, 2015, pp. 321–331. DOI https://doi.org/10.1007/s00450-014-0273-9

[Hasselbring 2006] W. Hasselbring, and others: “WISENT: e-Science for Energy Meteorology”. In: Proceedings of 2nd IEEE
International Conference on e-Science and Grid Computing (e-Science'06). pp. 93-100. DOI
https://doi.org/10.1109/E-SCIENCE.2006.156

[Hasselbring 2016] W. Hasselbring, “Microservices for Scalability (Keynote Presentation),” In: 7th ACM/SPEC
International Conference on Performance Engineering (ACM/SPEC ICPE 2016), March 15, 2016 , Delft, NL. DOI
https://doi.org/10.1145/2851553.2858659

[Hasselbring 2018] W. Hasselbring, “Software Architecture: Past, Present, Future,” In: The Essence of Software
Engineering. Springer, pp. 169-184. 2018. DOI 10.1007/978-3-319-73897-0_10

[Hasselbring et al. 2020a] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “Open Source Research Software”.
In: Computer, 53 (8), pp. 84-88. 2020. DOI https://doi.org/10.1109/MC.2020.2998235

[Hasselbring et al. 2020b] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “From FAIR Research Data toward
FAIR and Open Research Software”, it - Information Technology, 2020. DOI https://doi.org/10.1515/itit-2019-0040

[Hasselbring et al. 2020c] W. Hasselbring, A. Krause, C. Zirkelbach: “ExplorViz: Research on software visualization,
comprehension and collaboration”. Software Impacts, 6, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100034.

[Hasselbring et al. 2021] W. Hasselbring, M. Wojcieszak, S. Dustdar: “Control Flow Versus Data Flow in Distributed
Systems Integration: Revival of Flow-Based Programming for the Industrial Internet of Things”. In: IEEE Internet
Computing, 2021. DOI https://doi.org/10.1109/MIC.2021.3053712

[Hasselbring & Steinacker 2017] W. Hasselbring, G. Steinacker: “Microservice Architectures for Scalability, Agility and
Reliability in E-Commerce”, In: Proceedings of the IEEE International Conference on Software Architecture (ICSA
2017), April 2017, Gothenburg, Sweden. DOI https://doi.org/10.1109/ICSAW.2017.11

[Henning et al. 2021] S. Henning, W. Hasselbring, H. Burmester, A. Möbius, M. Wojcieszak: “Goals and measures for
analyzing power consumption data in manufacturing enterprises”. In: Journal of Data, Information and
Management, 2021. DOI https://doi.org/10.1007/s42488-021-00043-5

https://doi.org/10.1109/ICSAW.2017.11

References

44

[Hiremath et al. 2021] D.J. Hiremath, M. Claus, W. Hasselbring, and W. Rath: “Towards Automated Metamorphic Test
Identification for Ocean System Models”. In: Proceedings of the 6th International Workshop on Metamorphic
Testing. IEEE, June 2021.. (in press)

[Johanson & Hasselbring 2014a] A. Johanson, W. Hasselbring: “Hierarchical Combination of Internal and External
Domain-Specific Languages for Scientific Computing”. In: International Workshop on DSL Architecting & DSL-Based
Architectures (DADA'14), 2014, pp. 17:1-17:8. DOI https://doi.org/10.1145/2642803.2642820

[Johanson & Hasselbring 2014b] A. Johanson, W. Hasselbring: “Sprat: Hierarchies of Domain-Specific Languages for
Marine Ecosystem Simulation Engineering”. In: Spring Simulation Multi-Conference (SpringSim 2014), April 2014,
Tampa, Florida, USA, pp. 187-192. DOI https://dl.acm.org/doi/abs/10.5555/2665008.2665034

[Johanson et al. 2016a] A. Johanson, S. Flögel, C. Dullo, W. Hasselbring: “OceanTEA: Exploring Ocean-Derived Climate
Data Using Microservices”. In: Sixth International Workshop on Climate Informatics (CI 2016), September 2016,
Boulder, Colorado. DOI https://doi.org/10.5065/D6K072N6

[Johanson et al. 2016b] A. Johanson, W. Hasselbring, A. Oschlies, B. Worm: “Evaluating Hierarchical Domain-Specific
Languages for Computational Science: Applying the Sprat Approach to a Marine Ecosystem Model”. In: Software
Engineering for Science. CRC Press. 175-200.

[Johanson et al. 2017a] A. Johanson, A. Oschlies, W. Hasselbring, A. Worm: “SPRAT: A spatially-explicit marine ecosystem
model based on population balance equations”, In: Ecological Modelling, 349, pp. 11-25, 2017. DOI
https://doi.org/10.1016/j.ecolmodel.2017.01.020

[Johanson et al. 2017b] A. Johanson, S. Flögel, C. Dullo, P. Linke, W. Hasselbring: “Modeling Polyp Activity of Paragorgia
arborea Using Supervised Learning”, In: Ecological Informatics, 39, pp. 109-118, 2017. DOI
https://doi.org/10.1016/j.ecoinf.2017.02.007.

[Johanson & Hasselbring 2017] A. Johanson, W. Hasselbring: “Effectiveness and efficiency of a domain-specific language
for high-performance marine ecosystem simulation: a controlled experiment”, In: Empirical Software Engineering
22 (8). pp. 2206-2236, 2017. DOI https://doi.org/10.1007/s10664-016-9483-z

https://doi.org/10.1007/s10664-016-9483-z

References

45

[Johanson & Hasselbring 2018] A. Johanson, W. Hasselbring: “Software Engineering for Computational Science: Past,
Present, Future”, In: Computing in Science & Engineering, 2018. DOI https://doi.org/10.1109/MCSE.2018.021651343

[Jung et al. 2021] R. Jung, S. Gundlach, S. Simonov, W. Hasselbring: “Developing Domain-Specific Languages for Ocean
Modeling”. In: Software Engineering 2021 Satellite Events, http://ceur-ws.org/Vol-2814/

[Kanewala and Bieman 2014] U. Kanewala and J.M. Bieman, “Testing Scientific Software: A Systematic Literature Review,”
Information and Software Technology, 56(10), 2014, . DOI https://doi.org/10.1016/j.infsof.2014.05.006

[Knoche and Hasselbring 2018] H. Knoche and W. Hasselbring, “Using Microservices for Legacy Software Modernization
IEEE Software, 35 (3). pp. 44-49. 2018. DOI https://doi.org/10.1109/MS.2018.2141035.

[Knoche and Hasselbring 2019] H. Knoche and W. Hasselbring, “Drivers and Barriers for Microservice Adoption - A Survey
among Professionals in Germany,” Enterprise Modelling and Information Systems Architectures (EMISAJ) -
International Journal of Conceptual Modeling, 14 (1). pp. 1-35. 2019. DOI https://doi.org/10.18417/emisa.14.1.

[Krause et al. 2020] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, D. Kröger: “Microservice Decomposition via Static
and Dynamic Analysis of the Monolith”. In: IEEE International Conference on Software Architecture (ICSA 2020). pp.
9-16 . DOI https://doi.org/10.1109/ICSA-C50368.2020.00011.

[Randell 2018] B. Randell: 50 years of Software Engineering. May 2018, https://arxiv.org/abs/1805.02742
[Reussner et al. 2019] R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser, J. Keim, L. Märtin, L. (Eds.): “Managed

Software Evolution”, Springer, 2019. DOI https://doi.org/10.1007/978-3-030-13499-0
[Segura et al. 2020] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen. “Metamorphic Testing: Testing the Untestable”, IEEE

Software, 37(3):46-53,May 2020. DOI https://doi.org/10.1109/MS.2018.2875968.
[Zirkelbach et al. 2019] Zirkelbach, C., Krause, A. und Hasselbring, W.: “Modularization of Research Software for

Collaborative Open Source Development”, In: The Ninth International Conference on Advanced Collaborative
Networks, Systems and Applications (COLLA 2019), June 30 - July 04, 2019, Rome, Italy.

[Zirkelbach et al. 2020] Zirkelbach, C., Krause, A. und Hasselbring, W.: “The Collaborative Modularization and
Reengineering Approach CORAL for Open Source Research Software”. In: International Journal On Advances in
Software, 13 (1&2). pp. 34-49.

	Software Engineering for Computational Science: �Tests, Modules, Domain-Specific Languages, Flows�����
	Agenda
	Research Software
	Characteristics of Research Software
	Characteristics of Research Software
	Sustainability of Research Software
	SE for Research Software ?
	Software Carpentry
	So, SE for Computational Science
	Agenda
	Testing the Untestable: Test Oracles?
	Metamorphic Testing
	Metamorphic Testing for Ocean Models
	Agenda
	Modular Commercial Software
	Modular Commercial Software
	Agenda
	Modular Scientific Code
	Modular Scientific Code
	Foliennummer 20
	Modular Scientific Software
	Migrating toward Microservices
	 Live Trace Visualization Tool
	 3D Application Visualization
	 Some VR Extensions
	 Legacy Layered Architecture
	 New Modular Architecture
	 Legacy Layered Architecture
	Migrating Computational Science Models ?
	Agenda
	The Sprat Approach: Hierarchies of DSLs
	Evaluation of the Sprat
	Outlook: OceanDSL
	Agenda
	 Workflow Control-Flow Patterns
	Scientific Workflows
	Data Analysis Workflows in FONDA
	Foliennummer 38
	Foliennummer 39
	Developing Analysis Workflows in FONDA
	Summary
	References
	References
	References
	References

