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de GESELLSCHAFT FUR
Research Software (S,P ‘ FORSCHUNGSSOFTWARE
* Research software is software

— that is employed in the scientific
discovery process or

— a research object itself.

 Computational science (also RESERRCH
scientific computing) involves the
development of research
software

— for model simulations and
— data analytics

to understand natural systems
answering questions that neither
theory nor experiment alone are
equipped to answer.

SOCIETY OF RESEARCH
SOFTWARE ENGINEERING
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Characteristics of Research Software

* Functional Requirements are not known up front

— And often hard to comprehend without some PhD in science

* Verification and validation are difficult,

— and strictly scientific

* Overly formal software processes restrict research

Vague idea of Develop piece Is this
what is needed of software what | want?

L Modify/extend [¢———

No
Looks
No like it.
Decide: Does it seem to
“That will do.” do what | expect!?
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Characteristics of Research Software

* Software quality requirements

— Jeffrey Carver and colleagues.found that scientific software
developers rank the following characteristics as the most
important, in descending order [Carver et al. 2007]:

1. functional (scientific) correctness,
2. performance,

3. portability, and

4. maintainability.

 Research software in itself has no value
— Not really true for community software

* Few scientists are trained in software engineering

— Disregard of most modern software engineering methods and
tools

Research Software



Sustainability of Research Software

e Research software publishing practices in computer science and in
computational science show significant differences:
— computational science emphasizes reproducibility,
— computer science emphasizes reuse.
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[Hasselbring et al. 2020a]
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SE for Research Software ?

Software Engineering and Computer Science for Generality [Randell 2018]:

 “That NATO was the sponsor of this conference marks the relative distance of
software engineering from computation in the academic context.

* The perception was that while errors in scientific data processing applications
might be a ‘hassle,” they are all in all tolerable.

* In contrast, failures in mission-critical military systems might cost lives and
substantial amounts of money.

* Based on this attitude, software engineering—like computer science as a
whole— aimed for generality in its methods, techniques, and processes and
focused almost exclusively on business and embedded software.

* Because of this ideal of generality, the question of how specifically
computational scientists should develop their software in a well-engineered
way would probably have perplexed a software engineer, whose answer might
have been:

— ‘Well, just like any other application software.” ”

Research Software



Software Carpentry

* Programming / Coding
— Fortran, C++, Python, R, etc

— Using compilers, interpreters, editors, etc
* Using version control (git etc)
 Team coordination (GitHub, Gitlab, etc)

e [Continuous integration (Jenkins, etc)]

Teaching basic lab skills

Sd[’ftwa re Ca rpe ntry for research computing

https://software-carpentry.org/
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So, SE for Computational Science

[Johanson & Hasselbring 2018]: Software Engineering for

 Among the methods and Computational Science:
techniques that software Past Present. Future
engineering can offer to
computational science are e

Wilbelm Hasselbring state-of-the-art software engineering practices are

— te sti ng wit h o ut te St o ra c I es’ Kiel University rarely adopted in computational science. To

Editors: understand the underlying causes for this situation

Jerﬁ‘ey,(.m"'er‘ and to identify ways to improve it, we conducted a

- m Od u Ia r SOftwa re a rc h Ite Ctu re S, ]c:l;::é-]_’fcs.ua.edu: prmian literature survey on software engineering practices

damian@sourceryinstitute.org : - ’ . o .
AHAES R B in computational science. We identified 13 recurring

a n d key characteristics of scientific software

development that are the result of the nature of scientific challenges, the limitations of

— m od e I _d rive n softwa re e ngi n ee ri ng computers, and the cultural environment of scientific software development. Our

findings allow us to point out shortcomings of existing approaches for bridging the gap

Wit h d 0 m a i n _S pec ifi C Ia ngu ages between software engineering and computational science and to provide an outlook on
[ T

promising research directions that could contribute to improving the current situation.

* This way, computational science may achieve
maintainable, long-living software
[Goltz et al., 2015; Reussner et al. 2019],

— in particular for community software.
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Testing the Untestable: Test Oracles?

Scientific e : Simulation and
, Artificial intelligence ]
calculations modelling

Stimulus and observations:

— Sis anything that can change the
S f(7) R observable behavior of the SUT f;

— R is anything that can be observed about
the system’s behavior;

— lincludes f’s explicit inputs;
— O s its explicit outputs;

— everything not in S U R neither affects nor
is affected by f.

[Kanewala and Bieman 2014]

Testing 11



Metamorphic Testing

 The nature of research software is exploratory.
e Qutput is usually unknown and cost-intensive to compute.

* Hence it is challenging to validate using conventional testing
methodology

 Metamorphic Testing provides an approach for testing
software without test oracles
— Validating software by comparing outputs of multiple runs with
varying (morphed) input data

— The central element of metamorphic testing is the metamorphic
relation.

* The input data is morphed based on this property

— |If the output is in accordance of the applied morphing to the input
data, the test is asserted.

[Segura et al. 2020]

Testing
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Metamorphic Testing for Ocean Models

Metamorphic testing may be defined as

flg@®) = r(f(®D)

* function undertest f:X- Y

Application under
Test

Original output

(x): Criginal
Input

is output
in accordance hix)
with the applied marphing gix)
to original input

Morphing Using
Metamorphic relations

Application under
p g morphed output Test Failed

Our Goal: To generate metamorphic test cases and metamorphic relations
automatically via machine learning for verifying Ocean System Model applications
SCHOOL FOR MARINE

[Hiremath et al. 2021]
I IAR DATA SCIENCE
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Modular Commercial Software

Example: otto.de

Page Assembly Proxy
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Backend Integration Proxy

Microservices: [Hasselbring 2016, 2018, Hasselbring & Steinacker 2017, Knoche & Hasselbring 2019]
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Modular Commercial Software

Example: otto.de

Live-Deployments and Prio 1 Incidents per Week 2014-2017
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Scalability, Agility and Reliability [Hasselbring & Steinacker 2017]
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Modular Scientific Code

: - . . o soFTwame
Contents lists available at ScienceDirect i IMPACTS

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Eulerian-Lagrangian fluid dynamics platform: The ch4-project bl

Check for
updates

Enrico Calzavarini

Highlights

* Ch4-projectis a fluid dynamics code used in academia for the study of fundamental problems in fluid
mechanics.

* It has contributed to the understanding of global scaling laws in non-ideal turbulent thermal convection.

* It has been used for the characterisation of statistical properties of bubbles and particles in developed
turbulence.

e Itis currently employed for a variety for research projects on inertial particle dynamics and convective
melting.

e Its modular code structure allows for a low learning threshold and to easily implement new features.

Modular Software 18



Modular Scientific Code

[Calzavarini 2019]:

* “A dream for principal investigators in this field is to not have to
deal with different (and soon mutually incompatible) code
versions for each project and junior researcher in his/her own

group.
* Inthis respect an object-oriented modular code structure would
be the ideal one,

— but this makes the code less prone to modifications by the less experienced
users.

* The choice made here is to rely on a systematic use of C language
preprocessing directives and on a hierarchical naming convention
in order to configure the desired simulation setting in a module-
like fashion at compiling time.”

Modular Software
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ECOLOMGICAL
INFORMATICS

Publishing Ocean Observation Data & Analytics

* Paper: [Johanson et al. 2017b] A4 A
* Code: https://github.com/cau-se/oceantea/ N Y
» Software service with data: https://oceantea.uni-kiel.de/

future ocean

Modeling Polyp Activity of Paragorgia arborea
Using Supervised Learning

Arne Johanson,® Sascha Flégel,b Wolf-Christian Dullo,?
Peter Linke,® Wilhelm Hasselbring®

@ Software Engineering Group, Kiel University, Germany
b GEOMAR Helmbholtz Centre for Ocean Research, Kiel, Germany

Abstract—While the distribution patterns of cold-water corals, such as Paragorgia ar-
borea, have received increasing attention in recent studies, little is known about their in
situ activity patterns. In this paper, we examine polyp activity in P. arborea using ma-
chine learning techniques to analyze high-resolution time series data and photographs
obtained from an autonomous lander cluster deployed in the Stjernsund, Norway. An
interactive illustration of the models derived in this paper is provided online as sup-
plementary material.

We find that the best predictor of the degree of extension of the coral polyps is cur-
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[Johanson et al. 2017b]
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Modular Scientific Software

OceanTEA: Microservice-based Architecture

<<web browser>> Oceanographic
Time Series Exploration and
Analysis Client

<<service>>
Google Maps )

<<executionEnvironment>>

JavaScript
HTTP, REST
Network Border 5
i , REST I
<<microservice>> API Gateway
User Authentication

| REST REST REST REST
[ | | |

<<microservice>> <<microservice>> <<microservice>> <<microservice>> <<microservice>>

Time Series Conversion
(TEOS-10)

Univariate Time Series
Management

Multivariate Time Series
Management

Spatial Analysis

Time Series Pattern Discovery

<<executionEnvironment>> <<executionEnvironment>> <<executionEnvironment>> <<executionEnvironment>> <<executionEnvironment>>
NodeJS (REST Wrapper) NodeJS Python NodeJS (REST Wrapper) Python
<<executionEnvironment>> <<database>> <<database>> <<executionEnvironment>> <<database>>
Hosted C Environment JSON Data Storage Pickle Data Storage R NetflixAtlas
3 4
<<database>> <<database>>
NumPy Array Storage RDS Data Storage
A A
Time Series Spatial Pattern
Management Analysis Discovery
Data Exchange ( 2

OceanTEA: [Johanson et al. 2016a]

Modular Software

X

A

~

future ocean
KIEL MARINE SCIENCES
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Migrating toward Microservices

FOCUS: MICROSERVICES

Using
Microservices
for Legacy
Software
Modernization

Holger Knoche and Wilhelm Hasselbring, Kiel University

Microservices promise high maintainability,
making them an interesting option for
software modernization. This article presents
a migration process to decompose an
application into microservices, and presents
experiences from applying this process
in a legacy modernization project.

Modular Software

reduce coordination effort and im-
prove team productivity.

It is therefore not surprising that
companies are considering micro-
service adoption as a viable option
for modernizing their existing soft-
ware assets. Although some compa-
nies have succeeded in a complete
rewrite of their applications,? incre-
mental approaches are commonly
preferred that gradually decompose
the existing application into micro-
services.3  Other approaches to
modernization—e.g., restructuring
and refactoring of existing legacy
applications—are also valid options.*
However, decomposing a large, com-
plex application is far from trivial.
Even seemingly easy questions like
“Where should T start?” or “What
services do I need?” can actually be
very hard to answer.

In this article, we present a pro-
cess to modernize a large existing
software application using micro-
service principles, and report on ex-
periences from implementing it in an
ongoing industrial modernization
project. We particularly focus on the
process of actually decomposing the

IEEE SOFTWARE

[Knoche & Hasselbring 2018, Krause et al. 2020]
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-XP

@ \/|Z Live Trace Visualization Tool

Prog ram- and System https://www.explorviz.net

. https://github.com/ExplorViz
comprehension for software
engineers

Started as a Ph.D project in 2012

Open Source from the beginning
(Apache License, Version 2.0)

Continuously extended over the
years

[Fittkau et al. 2013, 2015a-d, 2017;
Krause et al. 2018, 2020;
Zirkelbach et al. 2019, 2020;
Hasselbring et al. 2020c]
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% \V/|Z Some VR Extensions

—XP

[HMD Visualization] [Leap Motion Sensor]

[HMD Visualization] [Vive Controllers]

User 1

VR Controller [ Application-Level J

ooooooooooooo ))

VR Controller

Controller Ray

[ Landscape-Level J

Modular Software 25




EXD\ s \VZ Legacy Layered Architecture

Server
I (
Monitored Server GWT [
Analysis Client
— | TCP Visualization HTTP
Application — —

¢

|
o L Feature
Monitoring

Filesystem

Modular Software



\/|Z New Modular Architecture

-XDl @

Modular Software

More details in [Zirkelbach et al. 2019, 2020]
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EXD\ s \VZ Legacy Layered Architecture

Server
I (
Monitored Server GWT [
Analysis Client
— | TCP Visualization HTTP
Application — —

¢

|
o L Feature
Monitoring

Please go to Filesystem
https://menti.com
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Migrating Computational Science Models ?

The software architecture of climate models
[Alexander & Easterbrook 2015]

CESM1 -BGC

oooooooooooooooooooo

cou ler

MCT shared utilitie:
Iand \\
CLM4
sea ice
CICE4

Figure 1. Architecture diagram for CESM1-BGC.

GFDL-ESM2M

@\“\\ @ SIS

mu,,.e, /\\\\

FMS

Figure 2. Architecture diagram for GFDL-ESM2M.

Modular Software

GISS-E2-R-TCADI

atmosphere
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Figure 3. Architecture diagram for GISS-E2-R-TCADI.
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Figure 4. Architecture diagram for UVic ESCM 2.9.
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The Sprat Approach: Hierarchies of DSLs

>

Deployment Language Engineer

Ecosystem Language Engineer

>

_

PDE Language Engineer

Domain-specific software engineering

Deployment Specification -

Ansible Playbook DSL

«refery

=
]

1

X

Deployment Engineer

Simulation Specification -

Sprat Ecosystem DSL

«generatey

X

Stock Assessment Scientist

Ecosystem Model -

Sprat PDE DSL, embedded in C++

«includey»

X

Ecological Modeler

FEM PDE Solver -

Sprat PDE DSL, embedded in C++

X

Numerical Mathematician

[Johanson & Hasselbring 2014a,b, 2016b]
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Evaluation of the Sprat e %ng’g%

* Controlled experiments with domain scientists [Johanson & Hasselbring 2017]
* Expert interviews and benchmarks [Johanson et al. 2016b]
 The Sprat Marine Ecosystem Model:

Original scientific contributions to Ecological Modeling [Johanson et al. 20173a]

The Sprat Model
Growth

Controlled by Controlled by

Time/Temp. Biomass Uptake
Reproduction

Metabolic Costs

et N S Background Mortality TRANSATLANTIC RESEARCH SCHOOL
Metabolic Rate Costs
Fishing
Movement
Active Passive Predation (Opportunistic)

Reactive Predictive Intake Losses \&
= GEOMAR

Biogeochemical Ocean Model

Zooplankton Currents Temperature
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Outlook: OceanDSL

* OceanDSL — Domain-Specific Languages for Ocean
Modeling and Simulation DFG

* Provide an infrastructure for building modular and
testable ocean modeling and simulation software

* |nitial focus on configuration and parametrization DSLs
[Jung et al. 2021]

Biogeochemical Transport
Model Specification
Biologist/ C A U
Chemist BGC-DSL Transport-DSL Oceanographer

Kiel University
Y Christian-Albrechts-Universitat zu Kiel

Genera ted BGC and Transport Model
Simulation Configuration

Simulation-DSL Marine Scientist \
A \

Deployment DSL Deplgyment

Y

Deployment Specification |—
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Workflow Control-Flow Patterns

| |1 I 11
| | || |
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Control-flow patterns UML activity diagram:

(a) Sequence; (b) Parallel Split; (c) Synchronisation; (d) Exclusive Choice; (e) Simple Merge;
(f) Multi Merge; (g) Arbitrary Cycle; (h) Multiple Instance with a prior design-time
knowledge; (i) Multiple Instance with a prior run-time knowledge; and (j) Milestone.

[Butt and Fitch 2021]

Flow-based programming
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Scientific Workflows

From the D-Grid project WISENT on e-Science for Energy Meteorology

[Hasselbring et al. 2006]

=

FTP transfer
Archived GRIE
data

FTP transfer NRT
GRIE data

Workflows
WRF

GrdFTP transfer
™| NCEP GFS data

Postprocessing and Yisualization

GridFTP transfer |
GRID product

J

HUGIN/TWPP |

GridFTP transfer
netCDF wrout

Preprocessing {(WPS)

=

L=

ungrib. exe

=

geogrid.exe

metgrid, exe

]

ARW WRF solver

=
s

wrf exe

=
a=)

real.exe

From the control-flow patterns, only Parallel Split and Synchronisation (aka Fork/Join).

No Exclusive Choices o

Flow-based programming

r Loops.
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Data Analysis Workflows in FONDA

reads [
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(s]alcial

reads [™

AIARIELE]
[Slalc]al
A]

[Gls] ) sls]
[ale]l _rla]

DNA from DNA from
normal cancer
Quality Quality
control control

Read Read
Mapping

Mapping

Joint
realignment

] T

SNV Calling StrV Calling CNV Calling
FreeBayes novoBreak CNANorm
. v v
Annotation Annotation Annotation
Annovar CNVAnotator

-l
F |

IIJ’J

Flow-based programming
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Control Flow Versus Data Flow in Distributed
Systems Integration: Revival of Flow-Based
Programming for the Industrial Internet of
Things

Wilhelm Hasselbring, Kiel University, 24118 Kiel, Germany

I Ad
Maik Wojcieszak, CTO Wobe-Systems GmbH, 24145 Kiel, Germany |ﬁler"et compu“"g

Schahram Dustdar, TU Wien, 1040 Vienna, Austria

[Hasselbring et al. 2021], see also https://www.industrial-devops.org/
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Journal of Data, Information and Management
https://doi.org/10.1007/542488-021-00043-5

ORIGINAL ARTICLE

®

Check for
updates
. . .
Goals and measures for analyzing power consumption data in
. .
manufacturing enterprises
Soren Henning' © . Wilhelm Hasselbring’ - Heinz Burmester? - Armin Mobius® - Maik Wojcieszak®
Real-Time Real-Time
Processing Processing
Visual- Temporal Visual- Temporal
ization Aggregation  jzation Aggregation
W
¥
Forecasting Correlation Forecasting Correlation
Anomaly Anomaly
Detection Detection
(a) Reporting (b) Optimization
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Developing Analysis Workflows in FONDA

Like software in the 70ties!
— No standardized architectural components
— No established abstractions with common APIs

Programs tightly tied to software infrastructure
Low productivity — “Software crisis”

FONDA's overall goal

How can we increase human productivity
in the creation, maintenance, and execution of DAWs
for large-scale scientific data analysis?

How can we increase portability, adaptability, and
dependability of DAWs and DAW infrastructures?

UIf Leser @ GIBU 2021

Flow-based programming
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Summary

Summary

Modularity is essential for maintainability, scalability and agility
— also for reusability
— also for testability

— So, microservices could be a beneficial architectural style for research
software, too.

However, domain-specific software engineering approaches are
required for computational science

— Implausible to modernize legacy scientific code

When researching data analysis workflows in FONDA,

— | suggest to emphasize data flow over control flow [Hasselbring et al. 2021]
Open Science also for Computer Science / Software Engineering
research itself

— “Eat your own dog food”
— Follow the FAIR principles [Hasselbring et al. 2020b]
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