Software Engineering for Computational Science:
Tests, Modules, Domain-Specific Languages, Flows

Wilhelm (Willi) Hasselbring

Software Engineering
http://se.informatik.uni-kiel.de

CRC 1404 FONDA, April 27th, 2021

S — A R SCHOOL FOR MARINE
Christian-Albrechts-Universitat zu Kiel DATA SCIENCE

Agenda

1. Research Software
2. Research Software Engineering

— Automated testing
— Modular Software

e Modular commercial software
e Modular research software

— Domain-specific software engineering
— Flow-based programming

3. Summary & Outlook

Agenda

de GESELLSCHAFT FUR
Research Software (S,P ‘ FORSCHUNGSSOFTWARE
* Research software is software

— that is employed in the scientific
discovery process or

— a research object itself.

 Computational science (also RESERRCH
scientific computing) involves the
development of research
software

— for model simulations and
— data analytics

to understand natural systems
answering questions that neither
theory nor experiment alone are
equipped to answer.

SOCIETY OF RESEARCH
SOFTWARE ENGINEERING

Research Software

Characteristics of Research Software

* Functional Requirements are not known up front

— And often hard to comprehend without some PhD in science

* Verification and validation are difficult,

— and strictly scientific

* Overly formal software processes restrict research

Vague idea of Develop piece Is this
what is needed of software what | want?

L Modify/extend [¢———

No
Looks
No like it.
Decide: Does it seem to
“That will do.” do what | expect!?

Research Software

Characteristics of Research Software

* Software quality requirements

— Jeffrey Carver and colleagues.found that scientific software
developers rank the following characteristics as the most
important, in descending order [Carver et al. 2007]:

1. functional (scientific) correctness,
2. performance,

3. portability, and

4. maintainability.

 Research software in itself has no value
— Not really true for community software

* Few scientists are trained in software engineering

— Disregard of most modern software engineering methods and
tools

Research Software

Sustainability of Research Software

e Research software publishing practices in computer science and in
computational science show significant differences:
— computational science emphasizes reproducibility,
— computer science emphasizes reuse.

200 — 1,600
180 H 1,400 |—
160 |-
1,200 |
140 |
8 100 |1 @ 1,000 |
S S
% 100 H % 800 |
2 - 8
9 80f @ 600|
60 H
‘ 400 |-
40 H —
o0 L H_ | [E L ‘ | |‘| 200
0 = |—| |— Ol @l = I_ - 0 I:I I:II:l =0 = =
1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9
Years Years
Lifespan of Github repositories cited in Lifespan of Github repositories cited in
computer science publications computational science publications

[Hasselbring et al. 2020a]

Research Software

SE for Research Software ?

Software Engineering and Computer Science for Generality [Randell 2018]:

 “That NATO was the sponsor of this conference marks the relative distance of
software engineering from computation in the academic context.

* The perception was that while errors in scientific data processing applications
might be a ‘hassle,” they are all in all tolerable.

* In contrast, failures in mission-critical military systems might cost lives and
substantial amounts of money.

* Based on this attitude, software engineering—like computer science as a
whole— aimed for generality in its methods, techniques, and processes and
focused almost exclusively on business and embedded software.

* Because of this ideal of generality, the question of how specifically
computational scientists should develop their software in a well-engineered
way would probably have perplexed a software engineer, whose answer might
have been:

— ‘Well, just like any other application software.” ”

Research Software

Software Carpentry

* Programming / Coding
— Fortran, C++, Python, R, etc

— Using compilers, interpreters, editors, etc
* Using version control (git etc)
 Team coordination (GitHub, Gitlab, etc)

e [Continuous integration (Jenkins, etc)]

Teaching basic lab skills

Sd[’ftwa re Ca rpe ntry for research computing

https://software-carpentry.org/

Research Software 8

So, SE for Computational Science

[Johanson & Hasselbring 2018]: Software Engineering for

 Among the methods and Computational Science:
techniques that software Past Present. Future
engineering can offer to
computational science are e

Wilbelm Hasselbring state-of-the-art software engineering practices are

— te sti ng wit h o ut te St o ra c I es’ Kiel University rarely adopted in computational science. To

Editors: understand the underlying causes for this situation

Jerﬁ‘ey,(.m"'er‘ and to identify ways to improve it, we conducted a

- m Od u Ia r SOftwa re a rc h Ite Ctu re S,]c:l;::é-]_’fcs.ua.edu: prmian literature survey on software engineering practices

damian@sourceryinstitute.org : - ’ . o .
AHAES R B in computational science. We identified 13 recurring

a n d key characteristics of scientific software

development that are the result of the nature of scientific challenges, the limitations of

— m od e I _d rive n softwa re e ngi n ee ri ng computers, and the cultural environment of scientific software development. Our

findings allow us to point out shortcomings of existing approaches for bridging the gap

Wit h d 0 m a i n _S pec ifi C Ia ngu ages between software engineering and computational science and to provide an outlook on
[T

promising research directions that could contribute to improving the current situation.

* This way, computational science may achieve
maintainable, long-living software
[Goltz et al., 2015; Reussner et al. 2019],

— in particular for community software.

Research Software

Agenda

1. Research Software

2. Research Software Engineering
— Automated testing
— Modular Software

e Modular commercial software
e Modular research software

— Domain-specific software engineering
— Flow-based programming

3. Summary & Outlook

Agenda

10

Testing the Untestable: Test Oracles?

Scientific e : Simulation and
, Artificial intelligence]
calculations modelling

Stimulus and observations:

— Sis anything that can change the
S f(7) R observable behavior of the SUT f;

— R is anything that can be observed about
the system’s behavior;

— lincludes f’s explicit inputs;
— O s its explicit outputs;

— everything not in S U R neither affects nor
is affected by f.

[Kanewala and Bieman 2014]

Testing 11

Metamorphic Testing

 The nature of research software is exploratory.
e Qutput is usually unknown and cost-intensive to compute.

* Hence it is challenging to validate using conventional testing
methodology

 Metamorphic Testing provides an approach for testing
software without test oracles
— Validating software by comparing outputs of multiple runs with
varying (morphed) input data

— The central element of metamorphic testing is the metamorphic
relation.

* The input data is morphed based on this property

— |If the output is in accordance of the applied morphing to the input
data, the test is asserted.

[Segura et al. 2020]

Testing

12

Metamorphic Testing for Ocean Models

Metamorphic testing may be defined as

flg@®) = r(f(®D)

* function undertest f:X- Y

Application under
Test

Original output

(x): Criginal
Input

is output
in accordance hix)
with the applied marphing gix)
to original input

Morphing Using
Metamorphic relations

Application under
p g morphed output Test Failed

Our Goal: To generate metamorphic test cases and metamorphic relations
automatically via machine learning for verifying Ocean System Model applications
SCHOOL FOR MARINE

[Hiremath et al. 2021]
I IAR DATA SCIENCE

Testing 13

HELMHOLTZ

Agenda

1. Research Software
2. Research Software Engineering

— Automated testing
— Modular Software

* Modular commercial software
e Modular research software

— Domain-specific software engineering
— Flow-based programming

3. Summary & Outlook

Agenda

14

Modular Commercial Software

Example: otto.de

Page Assembly Proxy
ﬁ //j'[}'r—ra
5
‘1" g | :‘c:U L
. o Q A > c) .
9 = 0] @®© S = c () o S . O 2
@) o Z §o] @) cll g 3 o = 2 g
| x o 3 = O o 3 5 S
| o (o) (] et 5 8 5 “ D 3 E
| ccg — e o £ c o Aé 8
‘ & S : :
o
m:;..e. U)

Backend Integration Proxy

Microservices: [Hasselbring 2016, 2018, Hasselbring & Steinacker 2017, Knoche & Hasselbring 2019]

Modular Software 15

Modular Commercial Software

Example: otto.de

Live-Deployments and Prio 1 Incidents per Week 2014-2017

-

()]

o

=

S~

%)

=

S 300 \

g N Incidents
5

& V ' == #iDeployments
a

*

srcos o Reliability

8 12 16 20 24 28 32 36 40 44 48 1 5 9 13 17 21 25 29 33 37 41 4549 1 5

2014 2015 2016 2017

Scalability, Agility and Reliability [Hasselbring & Steinacker 2017]

Modular Software 16

Agenda

1. Research Software
2. Research Software Engineering

— Automated testing
— Modular Software

e Modular commercial software
e Modular research software

— Domain-specific software engineering
— Flow-based programming

3. Summary & Outlook

Agenda

17

Modular Scientific Code

: - . . o soFTwame
Contents lists available at ScienceDirect i IMPACTS

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Eulerian-Lagrangian fluid dynamics platform: The ch4-project bl

Check for
updates

Enrico Calzavarini

Highlights

* Ch4-projectis a fluid dynamics code used in academia for the study of fundamental problems in fluid
mechanics.

* It has contributed to the understanding of global scaling laws in non-ideal turbulent thermal convection.

* It has been used for the characterisation of statistical properties of bubbles and particles in developed
turbulence.

e Itis currently employed for a variety for research projects on inertial particle dynamics and convective
melting.

e Its modular code structure allows for a low learning threshold and to easily implement new features.

Modular Software 18

Modular Scientific Code

[Calzavarini 2019]:

* “A dream for principal investigators in this field is to not have to
deal with different (and soon mutually incompatible) code
versions for each project and junior researcher in his/her own

group.
* Inthis respect an object-oriented modular code structure would
be the ideal one,

— but this makes the code less prone to modifications by the less experienced
users.

* The choice made here is to rely on a systematic use of C language
preprocessing directives and on a hierarchical naming convention
in order to configure the desired simulation setting in a module-
like fashion at compiling time.”

Modular Software

19

ECOLOMGICAL
INFORMATICS

Publishing Ocean Observation Data & Analytics

* Paper: [Johanson et al. 2017b] A4 A
* Code: https://github.com/cau-se/oceantea/ N Y
» Software service with data: https://oceantea.uni-kiel.de/

future ocean

Modeling Polyp Activity of Paragorgia arborea
Using Supervised Learning

Arne Johanson,® Sascha Flégel,b Wolf-Christian Dullo,?
Peter Linke,® Wilhelm Hasselbring®

@ Software Engineering Group, Kiel University, Germany
b GEOMAR Helmbholtz Centre for Ocean Research, Kiel, Germany

Abstract—While the distribution patterns of cold-water corals, such as Paragorgia ar-
borea, have received increasing attention in recent studies, little is known about their in
situ activity patterns. In this paper, we examine polyp activity in P. arborea using ma-
chine learning techniques to analyze high-resolution time series data and photographs
obtained from an autonomous lander cluster deployed in the Stjernsund, Norway. An
interactive illustration of the models derived in this paper is provided online as sup-
plementary material.

We find that the best predictor of the degree of extension of the coral polyps is cur-

e—e Observations — 1 Feature — 2 Features — 6 Features e—o Decision Boundary

I
imiiaT l | w‘ | ‘ j \!“H “ l; |
i iihi e e i i i LR
M RARRARRRRALERAAL

lgz:fzjoﬁjiﬂ %—DG-UQ
i W
Ci Gl ol

12-06-11 12-06-12

p Extension
°
=

12-06-10

» Extension

12 06-14 12-06-15 12-06-16

Date

KIEL MARINE SCIENCES

[Johanson et al. 2017b]

Modular Software

Manage Time Series Time

Introduction

Tempora

Whie the distribution patterns of cold-ater coral, such as Paragorgia ihis paper.

arborea, have received increasing affention n recent studies, e s

P arborea Actily

We fng that the best predictor of the degree of extension of he coral

Known about thelr I silu activly patterns. I our paper Modeiing Polyp polyps Is current difection wih a 1ag of ree hours. Olher variabies
Acinty of Paragorgia arborea Using Supervised Learming, we examine. hat are not directly associated wih water currents, such as

airect vicinty of the corals
Our results show that the actvity pattems of the £ arborea polyps are
‘governed by the strong (idalcurrent regime of the Stiemsund. It
appears that P arborea does not react fo shorter changes in the.

polyp actvity in P

analyze high-resolution time series data and pholographs obtained

salinty, offer much
actiiy. Interestingly. the degree of poly

p extension can be predicted

from an autonomous lander cluster depioyed n the Stiemsund, Norway. - more refably by sampiing the laminar lows inthe water colurn above

P an nte of

Model Properties

Features.
0 Temperature (cons)
O Temperature (cons), 2 lag
[0 Temperature (cons) ah lag
O Temperature (cons) 4h iag
0 salinty (abs)
0 saiinty (abs.), 2n lag
0 salinty (abs) 3n lag
0 salinty (2bs.), 4h lag
O o_e-gensty
0 o_e-density 2hlag
O o_e-gensty. anlag

in ste than by samping

0 o_6-densty, an lag
01 Directon up. PC1

) Directon up, 2h lag, PC1
A Direction up, 3h lag, PC1
00 Directon up, 4h lag, PC1
00 Velocity up. PC1

03 Velocty up. 21 lag. PC1
9 Velosity up, 3h lag, PC1
03 Velociy up. 4n lag. PC1
& Direction doun, PC1

01 Direction coun, PC2.

Seed for RNG (1eave blank for random model)

the

0 Direction down, PC3
] Direction down, 2n lag. PC1
0 Direction down, 20 lag, PC2
0 Direction down, 2 ag, PC3
0 Direction down, 31 lag, PC1
0 Direction down, 3 lag, PC2
O Direction down, 3 lag, PC3
& Direction down, 4h lag, PC1
& Drection down, 4n lag, P2
0 Direction down, 4 lag, PC3
O Velocity donn, PC1

O T T

Precictions

"
T
n\‘“ “L‘
o

'\»

(TR

il
| ” M “‘ |

w “
|

e —

ﬂ

LA ‘ﬂ‘” i
I \ h ‘\

Wil the large-scale patter of the idalcycle fsellIn order 1o oplimize:

nufrient uptake

in accordance

0 Velocity down, PC2
00 velosty down, PC3

0 Velocity down, 2h lag, PCT
2 Velosiy down, 2h lag, PC2
O Velocty down, 2n lag, PC3
00 Velosiy down, 3h lag, PC1
O3 Velocty down, 3n lag. PC2
O Velocity down, 3h lag, PC3
O3 Velocty down, 4n lag. PCT
O Velocity down, 4h lag, PC2
00 Velosiy down, 4h lag, PC3

©.8653846153846154
acy: 0.8537200302325552

1.5512363639611007
-2.0734940068895236
1.856997302027925

1.0 L -
§ 08 Model ulth 6 features
2 06 \ e oy & stz
& 04 coettictonts
“:’L 0.2 Intercept: 1.256553429553916

[Johanson et al. 2016a]

19

Modular Scientific Software

OceanTEA: Microservice-based Architecture

<<web browser>> Oceanographic
Time Series Exploration and
Analysis Client

<<service>>
Google Maps)

<<executionEnvironment>>

JavaScript
HTTP, REST
Network Border 5
i , REST I
<<microservice>> API Gateway
User Authentication

| REST REST REST REST
[| | |

<<microservice>> <<microservice>> <<microservice>> <<microservice>> <<microservice>>

Time Series Conversion
(TEOS-10)

Univariate Time Series
Management

Multivariate Time Series
Management

Spatial Analysis

Time Series Pattern Discovery

<<executionEnvironment>> <<executionEnvironment>> <<executionEnvironment>> <<executionEnvironment>> <<executionEnvironment>>
NodeJS (REST Wrapper) NodeJS Python NodeJS (REST Wrapper) Python
<<executionEnvironment>> <<database>> <<database>> <<executionEnvironment>> <<database>>
Hosted C Environment JSON Data Storage Pickle Data Storage R NetflixAtlas
3 4
<<database>> <<database>>
NumPy Array Storage RDS Data Storage
A A
Time Series Spatial Pattern
Management Analysis Discovery
Data Exchange (2

OceanTEA: [Johanson et al. 2016a]

Modular Software

X

A

~

future ocean
KIEL MARINE SCIENCES

21

Migrating toward Microservices

FOCUS: MICROSERVICES

Using
Microservices
for Legacy
Software
Modernization

Holger Knoche and Wilhelm Hasselbring, Kiel University

Microservices promise high maintainability,
making them an interesting option for
software modernization. This article presents
a migration process to decompose an
application into microservices, and presents
experiences from applying this process
in a legacy modernization project.

Modular Software

reduce coordination effort and im-
prove team productivity.

It is therefore not surprising that
companies are considering micro-
service adoption as a viable option
for modernizing their existing soft-
ware assets. Although some compa-
nies have succeeded in a complete
rewrite of their applications,? incre-
mental approaches are commonly
preferred that gradually decompose
the existing application into micro-
services.3 Other approaches to
modernization—e.g., restructuring
and refactoring of existing legacy
applications—are also valid options.*
However, decomposing a large, com-
plex application is far from trivial.
Even seemingly easy questions like
“Where should T start?” or “What
services do I need?” can actually be
very hard to answer.

In this article, we present a pro-
cess to modernize a large existing
software application using micro-
service principles, and report on ex-
periences from implementing it in an
ongoing industrial modernization
project. We particularly focus on the
process of actually decomposing the

IEEE SOFTWARE

[Knoche & Hasselbring 2018, Krause et al. 2020]

22

-XP

@ \/|Z Live Trace Visualization Tool

Prog ram- and System https://www.explorviz.net

. https://github.com/ExplorViz
comprehension for software
engineers

Started as a Ph.D project in 2012

Open Source from the beginning
(Apache License, Version 2.0)

Continuously extended over the
years

[Fittkau et al. 2013, 2015a-d, 2017;
Krause et al. 2018, 2020;
Zirkelbach et al. 2019, 2020;
Hasselbring et al. 2020c]

Modular Software 23

—XDlarV

EXpl@rViZ Visualization Discovery

[+

3D Application Visualization

=

Open All Components Search Entity...

Sntoootri i, .

BusoHulned

Rebrigour

unsate

5,
s, 1‘0@’.
&

& admin ~

20000
& —— |
£ o T/ - .l[Tl *T——j____i__ﬁr_____“—r—_“{‘_‘—————_____*
E 0
12:50:45 12:50:55 12:51:05 1251115 12:51:25 12:51:35 12:51:45 1251:55 1252:05 125215
Time
@© 2013 - 2019 by the ExplorViz project v1.3.0

Modular Software

% \V/|Z Some VR Extensions

—XP

[HMD Visualization] [Leap Motion Sensor]

[HMD Visualization] [Vive Controllers]

User 1

VR Controller [Application-Level J

ooooooooooooo))

VR Controller

Controller Ray

[Landscape-Level J

Modular Software 25

EXD\ s \VZ Legacy Layered Architecture

Server
I (
Monitored Server GWT [
Analysis Client
— | TCP Visualization HTTP
Application — —

¢

|
o L Feature
Monitoring

Filesystem

Modular Software

\/|Z New Modular Architecture

-XDl @

Modular Software

More details in [Zirkelbach et al. 2019, 2020]

P——
Client Erontend
HTTP m e
< > Visualization n \'d [od
% i 5
R HTTPit
Monitored API-Gateway / Reverse Proxy tra_ofl k
Server 7 A 7 Y At 'Y)
1 \ 4 v) 4 A v L 4
. . 1
Application Analysis Landscape User Discovery Settings Broadcast History
y R Backend-
Kieker ecords ;
1 = Extension
Discovery ﬁ TeeTimes= ﬁ ﬁ ﬁj ﬁj ﬁ
-Agent
<r . mongo) mongo . mongo
) 1 1 User T User 1 1
Data Traces | JLandscapes
1 Records "Traces d p 3 events events Landscapes Landscapes
> Message Broker §€l€8fka@
Processes I

27

EXD\ s \VZ Legacy Layered Architecture

Server
I (
Monitored Server GWT [
Analysis Client
— | TCP Visualization HTTP
Application — —

¢

|
o L Feature
Monitoring

Please go to Filesystem
https://menti.com

Modular Software

Migrating Computational Science Models ?

The software architecture of climate models
[Alexander & Easterbrook 2015]

CESM1 -BGC

oooooooooooooooooooo

cou ler

MCT shared utilitie:
Iand \\
CLM4
sea ice
CICE4

Figure 1. Architecture diagram for CESM1-BGC.

GFDL-ESM2M

@\“\\ @ SIS

mu,,.e, /\\\\

FMS

Figure 2. Architecture diagram for GFDL-ESM2M.

Modular Software

GISS-E2-R-TCADI

atmosphere

Mmiel;@

\
s arCuSies COLLI:,;;:\'-\O

Figure 3. Architecture diagram for GISS-E2-R-TCADI.

UVic ESCM 2 9

-

ocean
mMoMm2
BGC
@

Figure 4. Architecture diagram for UVic ESCM 2.9.

atmosphere

D
land =~

shared utilities'

N

=
c

29

Agenda

1. Research Software
2. Research Software Engineering

— Automated testing
— Modular Software

e Modular commercial software
e Modular research software

— Domain-specific software engineering
— Flow-based programming

3. Summary & Outlook

Agenda

30

The Sprat Approach: Hierarchies of DSLs

>

Deployment Language Engineer

Ecosystem Language Engineer

>

_

PDE Language Engineer

Domain-specific software engineering

Deployment Specification -

Ansible Playbook DSL

«refery

=
]

1

X

Deployment Engineer

Simulation Specification -

Sprat Ecosystem DSL

«generatey

X

Stock Assessment Scientist

Ecosystem Model -

Sprat PDE DSL, embedded in C++

«includey»

X

Ecological Modeler

FEM PDE Solver -

Sprat PDE DSL, embedded in C++

X

Numerical Mathematician

[Johanson & Hasselbring 2014a,b, 2016b]

31

Evaluation of the Sprat e %ng’g%

* Controlled experiments with domain scientists [Johanson & Hasselbring 2017]
* Expert interviews and benchmarks [Johanson et al. 2016b]
 The Sprat Marine Ecosystem Model:

Original scientific contributions to Ecological Modeling [Johanson et al. 20173a]

The Sprat Model
Growth

Controlled by Controlled by

Time/Temp. Biomass Uptake
Reproduction

Metabolic Costs

et N S Background Mortality TRANSATLANTIC RESEARCH SCHOOL
Metabolic Rate Costs
Fishing
Movement
Active Passive Predation (Opportunistic)

Reactive Predictive Intake Losses \&
= GEOMAR

Biogeochemical Ocean Model

Zooplankton Currents Temperature

Domain-specific software engineering 32

Outlook: OceanDSL

* OceanDSL — Domain-Specific Languages for Ocean
Modeling and Simulation DFG

* Provide an infrastructure for building modular and
testable ocean modeling and simulation software

* |nitial focus on configuration and parametrization DSLs
[Jung et al. 2021]

Biogeochemical Transport
Model Specification
Biologist/ C A U
Chemist BGC-DSL Transport-DSL Oceanographer

Kiel University
Y Christian-Albrechts-Universitat zu Kiel

Genera ted BGC and Transport Model
Simulation Configuration

Simulation-DSL Marine Scientist \
A \

Deployment DSL Deplgyment

Y

Deployment Specification |—

Domain-specific software engineering 33

Agenda

1. Research Software
2. Research Software Engineering

— Automated testing
— Modular Software

e Modular commercial software
e Modular research software

— Domain-specific software engineering
— Flow-based programming

3. Summary & Outlook

Agenda

34

Workflow Control-Flow Patterns

| |1 I 11
| | || |
i i) o (0 | ()
i D 1 | | < |
| K O 1 &] —(c) |
|
e o ©_ N R @]
—— I____——————————————'|
| i | | |
)) K | (e |
g c e} punp EDp ERIHEwS. ch),;,
| |l 1 L l
R B N O________ o ® &]
——————————————————————————————— B e el il |
: Yes : : Yes :
I I |
| Cr > =) ¥ (A)8)=)»o(o) |
l |
| | |

Control-flow patterns UML activity diagram:

(a) Sequence; (b) Parallel Split; (c) Synchronisation; (d) Exclusive Choice; (e) Simple Merge;
(f) Multi Merge; (g) Arbitrary Cycle; (h) Multiple Instance with a prior design-time
knowledge; (i) Multiple Instance with a prior run-time knowledge; and (j) Milestone.

[Butt and Fitch 2021]

Flow-based programming

35

Scientific Workflows

From the D-Grid project WISENT on e-Science for Energy Meteorology

[Hasselbring et al. 2006]

=

FTP transfer
Archived GRIE
data

FTP transfer NRT
GRIE data

Workflows
WRF

GrdFTP transfer
™| NCEP GFS data

Postprocessing and Yisualization

GridFTP transfer |
GRID product

J

HUGIN/TWPP |

GridFTP transfer
netCDF wrout

Preprocessing {(WPS)

=

L=

ungrib. exe

=

geogrid.exe

metgrid, exe

]

ARW WRF solver

=
s

wrf exe

=
a=)

real.exe

From the control-flow patterns, only Parallel Split and Synchronisation (aka Fork/Join).

No Exclusive Choices o

Flow-based programming

r Loops.

36

Data Analysis Workflows in FONDA

reads [
[Alalelels]
(s]alcial

reads [™

AIARIELE]
[Slalc]al
A]

[Gls]) sls]
[ale]l _rla]

DNA from DNA from
normal cancer
Quality Quality
control control

Read Read
Mapping

Mapping

Joint
realignment

] T

SNV Calling StrV Calling CNV Calling
FreeBayes novoBreak CNANorm
. v v
Annotation Annotation Annotation
Annovar CNVAnotator

-l
F |

IIJ’J

Flow-based programming

|1 I

SNPeff

Diff

W"J'“ AN,

III [l'l“ I‘

I"} I I‘IIl!F l‘l "Tllu

|

[

II|I iy

[I|I| | “

0 T T

Current Older
Topographic scene scenes
Maps ! !
Ortho- ,| Coregis-
G Thth recfication tration
model l l
Clippingand Clippingand
correction correction
Pixel Pixel
classification SAVI/ NOVI SAVI/ NOWI classification
\J . L//
Classified Classified
pixel) pixel
Accurracy Diff
assessment

UIf Leser @ GIBU 2021

Control Flow Versus Data Flow in Distributed
Systems Integration: Revival of Flow-Based
Programming for the Industrial Internet of
Things

Wilhelm Hasselbring, Kiel University, 24118 Kiel, Germany

I Ad
Maik Wojcieszak, CTO Wobe-Systems GmbH, 24145 Kiel, Germany |ﬁler"et compu“"g

Schahram Dustdar, TU Wien, 1040 Vienna, Austria

[Hasselbring et al. 2021], see also https://www.industrial-devops.org/

Flow-based programming 38

Journal of Data, Information and Management
https://doi.org/10.1007/542488-021-00043-5

ORIGINAL ARTICLE

®

Check for
updates
. . .
Goals and measures for analyzing power consumption data in
. .
manufacturing enterprises
Soren Henning' © . Wilhelm Hasselbring’ - Heinz Burmester? - Armin Mobius® - Maik Wojcieszak®
Real-Time Real-Time
Processing Processing
Visual- Temporal Visual- Temporal
ization Aggregation jzation Aggregation
W
¥
Forecasting Correlation Forecasting Correlation
Anomaly Anomaly
Detection Detection
(a) Reporting (b) Optimization
Real-Time Real-Time
Processing Processing
S R v o Meting A Nomong
N / N
/s
Visual- Temporal Visual- /| Temporal
ization Aggregation ization y Aggregation
S/
p /N
p R 2 R
Forecasting Y Correlation Forecasting Correlation
Anomaly Anomaly [H e n n i ng et a I R 202 1]
Detection Detection
(c) Fault Detection (d) Predictive Maintenance

Flow-based programming 39

Developing Analysis Workflows in FONDA

Like software in the 70ties!
— No standardized architectural components
— No established abstractions with common APIs

Programs tightly tied to software infrastructure
Low productivity — “Software crisis”

FONDA's overall goal

How can we increase human productivity
in the creation, maintenance, and execution of DAWs
for large-scale scientific data analysis?

How can we increase portability, adaptability, and
dependability of DAWs and DAW infrastructures?

UIf Leser @ GIBU 2021

Flow-based programming

40

Summary

Summary

Modularity is essential for maintainability, scalability and agility
— also for reusability
— also for testability

— So, microservices could be a beneficial architectural style for research
software, too.

However, domain-specific software engineering approaches are
required for computational science

— Implausible to modernize legacy scientific code

When researching data analysis workflows in FONDA,

— | suggest to emphasize data flow over control flow [Hasselbring et al. 2021]
Open Science also for Computer Science / Software Engineering
research itself

— “Eat your own dog food”
— Follow the FAIR principles [Hasselbring et al. 2020b]

41

References

[Alexander & Easterbrook 2015] K. Alexander and S. M. Easterbrook: “The software architecture of climate models”, In:
Geosci. Model Dev., 8, 1221-1232, 2015. DOI http://doi.org/10.5194/gmd-8-1221-2015

[Butt and Fitch 2021] A.S. Butt, P. Fitch: “A provenance model for control-flow driven scientific workflows”. In: Data &
Knowledge Engineering, 131-132, 2021, DOI https://doi.org/10.1016/j.datak.2021.101877

[Calzavarini 2019] E. Calzavarini: “Eulerian—Lagrangian fluid dynamics platform: The ch4-project”. In: Software Impacts 1,
2019. DOI https://doi.org/10.1016/j.simpa.2019.100002

[Carver et al. 2007] J.C. Carver et al., “Software Development Environments for Scientific and Engineering Software: A
Series of Case Studies,” Proc. 29th Int'l Conf. Software Eng. (ICSE 07), 2007, pp. 550-559. DOI
https://doi.org/10.1109/ICSE.2007.77

[Fittkau et al. 2013] F. Fittkau, J. Waller, C. Wulf, W. Hasselbring: “Live Trace Visualization for Comprehending Large
Software Landscapes: The ExplorViz Approach®, In: 1st IEEE International Working Conference on Software
Visualization (VISSOFT 2013). DOI https://doi.org/10.1109/VISSOFT.2013.6650536

[Fittkau et al. 2015a] F. Fittkau, S. Roth, W. Hasselbring: “ExplorViz: Visual Runtime Behavior Analysis of Enterprise
Application Landscapes®, In: 23rd European Conference on Information Systems (ECIS 2015). DOI
https://doi.org/10.18151/7217313

[Fittkau et al. 2015b] F. Fittkau, A. Krause, W. Hasselbring: “Hierarchical Software Landscape Visualization for System
Comprehension: A Controlled Experiment”. In: 3rd IEEE Working Conference on Software Visualization, 2015. DOI
https://doi.org/10.1109/VISSOFT.2015.7332413

[Fittkau et al. 2015c] F. Fittkau, A. Krause, W. Hasselbring: “Exploring Software Cities in Virtual Reality”, In: 3rd IEEE
Working Conference on Software Visualization, 2015. DOI https://doi.org/10.1109/VISSOFT.2015.7332423

[Fittkau et al. 2015d] F. Fittkau, S. Finke, W. Hasselbring, J. Waller: “Comparing Trace Visualizations for Program
Comprehension through Controlled Experiments”, In: 23rd IEEE International Conference on Program
Comprehension (ICPC 2015), May 2015, Florence. DOI

[Fittkau et al. 2017] F. Fittkau, A. Krause, W. Hasselbring: “Software landscape and application visualization for system
comprehension with ExplorViz”, In: Information and Software Technology. DOI 10.1016/j.infsof.2016.07.004

42

https://doi.org/10.1109/ICPC.2015.37

References

[Goltz et al., 2015] U. Goltz et al., “Design for Future: Managed Software Evolution,” Computer Science - Research and
Development, vol. 30, no. 3, 2015, pp. 321-331. DOI https://doi.org/10.1007/s00450-014-0273-9

[Hasselbring 2006] W. Hasselbring, and others: “WISENT: e-Science for Energy Meteorology”. In: Proceedings of 2nd IEEE
International Conference on e-Science and Grid Computing (e-Science'06). pp. 93-100. DOI
https://doi.org/10.1109/E-SCIENCE.2006.156

[Hasselbring 2016] W. Hasselbring, “Microservices for Scalability (Keynote Presentation),” In: 7th ACM/SPEC
International Conference on Performance Engineering (ACM/SPEC ICPE 2016), March 15, 2016, Delft, NL. DOI
https://doi.org/10.1145/2851553.2858659

[Hasselbring 2018] W. Hasselbring, “Software Architecture: Past, Present, Future,” In: The Essence of Software
Engineering. Springer, pp. 169-184. 2018. DOI 10.1007/978-3-319-73897-0_10

[Hasselbring et al. 2020a] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “Open Source Research Software”.
In: Computer, 53 (8), pp. 84-88. 2020. DOI https://doi.org/10.1109/MC.2020.2998235

[Hasselbring et al. 2020b] W. Hasselbring, L. Carr, S. Hettrick, H. Packer, T. Tiropanis: “From FAIR Research Data toward
FAIR and Open Research Software”, it - Information Technology, 2020. DOI https://doi.org/10.1515/itit-2019-0040

[Hasselbring et al. 2020c] W. Hasselbring, A. Krause, C. Zirkelbach: “ExplorViz: Research on software visualization,
comprehension and collaboration”. Software Impacts, 6, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100034.

[Hasselbring et al. 2021] W. Hasselbring, M. Wojcieszak, S. Dustdar: “Control Flow Versus Data Flow in Distributed
Systems Integration: Revival of Flow-Based Programming for the Industrial Internet of Things”. In: IEEE Internet
Computing, 2021. DOI https://doi.org/10.1109/MIC.2021.3053712

[Hasselbring & Steinacker 2017] W. Hasselbring, G. Steinacker: “Microservice Architectures for Scalability, Agility and
Reliability in E-Commerce”, In: Proceedings of the IEEE International Conference on Software Architecture (ICSA
2017), April 2017, Gothenburg, Sweden. DOI

[Henning et al. 2021] S. Henning, W. Hasselbring, H. Burmester, A. Mobius, M. Wojcieszak: “Goals and measures for
analyzing power consumption data in manufacturing enterprises”. In: Journal of Data, Information and
Management, 2021. DOI https://doi.org/10.1007/s42488-021-00043-5

43

https://doi.org/10.1109/ICSAW.2017.11

References

[Hiremath et al. 2021] D.J. Hiremath, M. Claus, W. Hasselbring, and W. Rath: “Towards Automated Metamorphic Test
Identification for Ocean System Models”. In: Proceedings of the 6th International Workshop on Metamorphic
Testing. IEEE, June 2021.. (in press)

[Johanson & Hasselbring 2014a] A. Johanson, W. Hasselbring: “Hierarchical Combination of Internal and External
Domain-Specific Languages for Scientific Computing”. In: International Workshop on DSL Architecting & DSL-Based
Architectures (DADA'14), 2014, pp. 17:1-17:8. DOI https://doi.org/10.1145/2642803.2642820

[Johanson & Hasselbring 2014b] A. Johanson, W. Hasselbring: “Sprat: Hierarchies of Domain-Specific Languages for
Marine Ecosystem Simulation Engineering”. In: Spring Simulation Multi-Conference (SpringSim 2014), April 2014,
Tampa, Florida, USA, pp. 187-192. DOI https://dl.acm.org/doi/abs/10.5555/2665008.2665034

[Johanson et al. 2016a] A. Johanson, S. Flégel, C. Dullo, W. Hasselbring: “OceanTEA: Exploring Ocean-Derived Climate
Data Using Microservices”. In: Sixth International Workshop on Climate Informatics (Cl 2016), September 2016,
Boulder, Colorado. DOI https://doi.org/10.5065/D6K072N6

[Johanson et al. 2016b] A. Johanson, W. Hasselbring, A. Oschlies, B. Worm: “Evaluating Hierarchical Domain-Specific
Languages for Computational Science: Applying the Sprat Approach to a Marine Ecosystem Model”. In: Software
Engineering for Science. CRC Press. 175-200.

[Johanson et al. 2017a] A. Johanson, A. Oschlies, W. Hasselbring, A. Worm: “SPRAT: A spatially-explicit marine ecosystem
model based on population balance equations”, In: Ecological Modelling, 349, pp. 11-25, 2017. DOI
https://doi.org/10.1016/j.ecolmodel.2017.01.020

[Johanson et al. 2017b] A. Johanson, S. Flégel, C. Dullo, P. Linke, W. Hasselbring: “Modeling Polyp Activity of Paragorgia
arborea Using Supervised Learning”, In: Ecological Informatics, 39, pp. 109-118, 2017. DOI
https://doi.org/10.1016/j.ecoinf.2017.02.007.

[Johanson & Hasselbring 2017] A. Johanson, W. Hasselbring: “Effectiveness and efficiency of a domain-specific language
for high-performance marine ecosystem simulation: a controlled experiment”, In: Empirical Software Engineering
22 (8). pp. 2206-2236, 2017. DOI

44

https://doi.org/10.1007/s10664-016-9483-z

References

[Johanson & Hasselbring 2018] A. Johanson, W. Hasselbring: “Software Engineering for Computational Science: Past,
Present, Future”, In: Computing in Science & Engineering, 2018. DOI https://doi.org/10.1109/MCSE.2018.021651343

[Jung et al. 2021] R. Jung, S. Gundlach, S. Simonov, W. Hasselbring: “Developing Domain-Specific Languages for Ocean
Modeling”. In: Software Engineering 2021 Satellite Events, http://ceur-ws.org/Vol-2814/

[Kanewala and Bieman 2014] U. Kanewala and J.M. Bieman, “Testing Scientific Software: A Systematic Literature Review,”
Information and Software Technology, 56(10), 2014, . DOI https://doi.org/10.1016/j.infsof.2014.05.006

[Knoche and Hasselbring 2018] H. Knoche and W. Hasselbring, “Using Microservices for Legacy Software Modernization
IEEE Software, 35 (3). pp. 44-49. 2018. DOI https://doi.org/10.1109/MS.2018.2141035.

[Knoche and Hasselbring 2019] H. Knoche and W. Hasselbring, “Drivers and Barriers for Microservice Adoption - A Survey
among Professionals in Germany,” Enterprise Modelling and Information Systems Architectures (EMISAJ) -
International Journal of Conceptual Modeling, 14 (1). pp. 1-35. 2019. DOI https://doi.org/10.18417/emisa.14.1.

[Krause et al. 2020] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, D. Kroger: “Microservice Decomposition via Static
and Dynamic Analysis of the Monolith”. In: IEEE International Conference on Software Architecture (ICSA 2020). pp.
9-16 . DOI https://doi.org/10.1109/ICSA-C50368.2020.00011.

[Randell 2018] B. Randell: 50 years of Software Engineering. May 2018, https://arxiv.org/abs/1805.02742

[Reussner et al. 2019] R. Reussner, M. Goedicke, W. Hasselbring, B. Vogel-Heuser, J. Keim, L. Martin, L. (Eds.): “Managed
Software Evolution”, Springer, 2019. DOI https://doi.org/10.1007/978-3-030-13499-0

[Segura et al. 2020] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen. “Metamorphic Testing: Testing the Untestable”, IEEE
Software, 37(3):46-53,May 2020. DOI https://doi.org/10.1109/MS.2018.2875968.

[Zirkelbach et al. 2019] Zirkelbach, C., Krause, A. und Hasselbring, W.: “Modularization of Research Software for

Collaborative Open Source Development”, In: The Ninth International Conference on Advanced Collaborative
Networks, Systems and Applications (COLLA 2019), June 30 - July 04, 2019, Rome, Italy.

[Zirkelbach et al. 2020] Zirkelbach, C., Krause, A. und Hasselbring, W.: “The Collaborative Modularization and
Reengineering Approach CORAL for Open Source Research Software”. In: International Journal On Advances in
Software, 13 (1&2). pp. 34-49.

45

	Software Engineering for Computational Science: �Tests, Modules, Domain-Specific Languages, Flows�����
	Agenda
	Research Software
	Characteristics of Research Software
	Characteristics of Research Software
	Sustainability of Research Software
	SE for Research Software ?
	Software Carpentry
	So, SE for Computational Science
	Agenda
	Testing the Untestable: Test Oracles?
	Metamorphic Testing
	Metamorphic Testing for Ocean Models
	Agenda
	Modular Commercial Software
	Modular Commercial Software
	Agenda
	Modular Scientific Code
	Modular Scientific Code
	Foliennummer 20
	Modular Scientific Software
	Migrating toward Microservices
	 Live Trace Visualization Tool
	 3D Application Visualization
	 Some VR Extensions
	 Legacy Layered Architecture
	 New Modular Architecture
	 Legacy Layered Architecture
	Migrating Computational Science Models ?
	Agenda
	The Sprat Approach: Hierarchies of DSLs
	Evaluation of the Sprat
	Outlook: OceanDSL
	Agenda
	 Workflow Control-Flow Patterns
	Scientific Workflows
	Data Analysis Workflows in FONDA
	Foliennummer 38
	Foliennummer 39
	Developing Analysis Workflows in FONDA
	Summary
	References
	References
	References
	References

