Modelling the abundance of 180180 in the atmosphere and its sensitivity to temperature and 0, photochemistry

Sergey Gromov¹ (sergey.gromov|a|mpic.de), Amzad H. Laskar², Rahul Peethambaran² and Thomas Rockmann²

¹ Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany ² Institute for Marine and Atmospheric Research Utrecht, Utrecht Univesrity, Netherlands

Abstract

Atmospheric temperature and ozone photochemistry are recognised to play dominant roles in setting the abundance of $^{18}O^{18}O$ isotopologues (expressed via Δ_{36}) of atmospheric oxygen. Here, we use the AC-GCM EMAC to simulate the abundance of atmospheric ¹⁸O¹⁸O in a most consistent to date kinetic chemistry modelling framework.

Extensive model diagnostics allow us quantifying contribution of various factors into changes in Δ_{36} since the last 60 years. It is shown that atmospheric dynamics is another fundamental ingredient of atmospheric Δ_{36} distribution.

We discuss potential applications of clumped O₂ composition for quantifying various atmospheric processes like decadal changes in tropospheric O₃ abundance or tropopause warming due to volcanism.

EMAC model / Setup and sensitivity experiments

We use the ECHAM/MESSy Atmospheric Chemistry (EMAC) model [1, v.2.52e]

- Based on ESCiMO CCMI setup [2] + output of the RC1-base-07 experiment 1960-2011, full chemistry, RCP6.0, no specified dynamics (nudging), assimilated SST/SIC, T42L90MA up to 80 km
- 18O18O and 17O17O isotopologues are explicitly simulated (advection + T-dependent equilibrium kinetics in MECCA-TAG submodel [3,4] verified against the fully resolved kinetic scheme of [5])
- Eight ¹⁸O¹⁸O counterparts are added to test the sensitivity of Δ_{36} to changes in temperature (T) and QQ+O(³P) exchange rate (k) T: ±4K globally (2x), -4K only in troposphere/overworld (2x) k: $\pm 10\%$ globally (2x), -10% only in troposphere/overworld (2x) Overworld criterion: 0₃ >145 ppbv at pressures <500 hPa
- Six diagnostic tracers recording equilibration temperature/pressure (ET/EP, glob./trop./overworld) weighted by the QQ+O(3P) rate
- One $^{18}O^{18}O$ counterpart tracer $^{C}\Delta_{36}$ reacting with average 1950–1960 "climatological" $O(^{3}P)$ to test for changes induced by growing O_{3}

Δ_{26} distribution: kinetics vs. transport

- Most of equilibration (absolute) occurs in the overworld (LMS, MS)
- Fraction of LMS-equilibrated O₂ exchanges with troposphere and vice versa
- Troposphere/overworld-only -4K sensitivity tracers allow deriving the fraction of Δ_{36} reset in/advected to respective domains (φ_{TROP} and φ_{OW})
- Simulated Δ_{26} and equilibration temperature correlate in the upper/middle stratosphere, but not in the LMS and troposphere due to transport
- => Estimates based on static T/rate distributions (e.g. [6]) are unrealistic!

Recovering temperatures from Δ_{36} signal?

- Δ_{36} is a composite signal of O_2 equilibrated in troposphere and overworld; input proportions depend on the domain (see Fig. on the left)
- T restored from simulated Δ_{ac} exhibits mixing effects (due to non-linear T-dependent equilibration kinetics, see [7])
- underestimation <1K in the troposphere (largest at tropical tropopause)
- overestimation >2K in the overworld
- effects are smallest in the LMS
- Tropospheric temperature can be roughly derived taking average "overworld" temperature of about -80°C, but not that of LMS or tropopause
- Long-term changes in restored T are seen only in troposphere

Δ_{36} sensitivities & short- and long-term excursions

Using the ensemble of counterpart tracers allows to test sensitivity of Δ_{26} to changes in atmospheric temperature and equilibration rate

- Strong T sensitivity (-0.02 %/+1K) compared to that for rate (-0.00125%/+1%)
- Sensitivities are similar in all domains (stronger only for -4K@atm in LMS)
- Troposphere- and overworld-only sensitivities are additive => allows studying contributions of different vertical/zonal domains
- Annual variation in Δ_{26} increases with altitude <= dampened equilibration rates and increased mixing in the troposphere

Short-term (several years) lowering in Δ_{36} coincide with large eruptions

- Recorded T signal (via historical SST forcing) is most pronounced in the upper troposphere
- Largest A decrease up to 0.03% in the TP seen after Mt. Pinatubo (1990) eruption
- Local signals are stronger than those shown for domain integrals

Long-term (1950–2011) change in Δ_{36} is of O_3 origin

- Decadal trend (-0.03%/60 yrs) in Δ_{36} is seen only in tropospheric domain and coincides with increase in exchange rate / tropospheric $O(^{3}P)$ (~+7%) and O_{3} (~+15%)
- T- and P-equilibration tracers indicate the shift of O₂ equilibration into the troposphere (warming for tropospheric share of Δ_{36} and cooling for the overworld)
- LMS and whole-atmosphere (ATM) O₂ equilibration rate, however, decreases (?)

Annual zonal averages of the local Δ_{36} value (left) and its fraction equilibrated in the troposphere (right). Left and right panels present the 1960 values and 2010-1960 absolute changes, respectively.

Ensemble of Δ_{36} sensitivity values simulated for perturbed T and QQ+O(3P) rate conditions globally, in the troposphere and overworld. Results for reference and climatological O(3P) conditions are shown in black and red, respectively.

Equilibration temperature and pressure (ET/EP tracers, left panels), O(3P) burden and isotope exchange turnover time (T) over selected domains simulated in EMAC. Superscripts S,T,C denote sensitivities in troposphere, overworld and to climatological O(3P).

References

1. Jöckel, P., et al.: The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone

Annual averages of the zonal/vertical integrals related to Δ_{36} simulated in EMAC.

 Σ denotes sum over the given domain. TROP₁₀₀ is troposphere under 100 hPa.

- from the surface to the mesosphere, Atmos. Chem. Phys., 6, 5067-5104, doi: 10.5194/acp-6-5067-2006, 2006 2. Jöckel, P., et al.: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel
- System (MESSy) version 2.51, *Geosci. Model Dev.*, 9, 1153-1200, doi: <u>10.5194/gmd-9-1153-2016</u>, 2016.
- 3. Gromov, S., et al.: A kinetic chemistry tagging technique and its application to modelling the stable isotopic composition of atmospheric trace gases, *Geosci. Model Dev.*, 3, 337-364, doi: 10.5194/gmd-3-337-2010, 2010.
- 4. Sander, R., et al.: The atmospheric chemistry box model CAABA/MECCA-4.0gmdd, Geosci. *Model Dev.*, 2018, 1–31, doi: <u>10.5194/gmd-2018-201</u>, 2019 (in print).
- 5. Yeung, L. Y., Ash, J. L., and Young, E. D.: Rapid photochemical equilibration of isotope bond ordering in O₂, J. Geophys. Res. Atm., 119, 10552-10566, doi: 10.1002/2014jd021909, 2014.
- 6. Yeung, L. Y., et al.: Isotopic ordering in atmospheric O₂ as a tracer of ozone photochemistry and the tropical
- atmosphere, J. Geophys. Res. Atm., 121, 12,541-512,559, doi: doi: 10.1002/2016JD025455, 2016.
- 7. Wang, Z., Schauble, E. A., and Eiler, J. M.: Equilibrium thermodynamics of multiply substituted isotopologues of molecular gases, Geochim. Cosmochim. Acta, 68, 4779-4797, doi: 10.1016/j.gca.2004.05.039, 2004.

non-linearity error in $T_{\Delta 36}$ (w.r.t. $ET_{\Delta 36}$) (°C) Annual zonal average of the non-linearity error in T restored from simulated Δ_{36} in

-60 -30 0 30 60

latitude (°N)

-60 -30 0 30 60

latitude (°N)

