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ABSTRACT
Scalability is promoted as a key quality feature of modern big data
stream processing engines. However, even though research made
huge efforts to provide precise definitions and corresponding met-
rics for the term scalability, experimental scalability evaluations
or benchmarks of stream processing engines apply different and
inconsistent metrics. With this paper, we aim to establish general
metrics for scalability of stream processing engines. Derived from
common definitions of scalability in cloud computing, we propose
two metrics: a load capacity function and a resource demand func-
tion. Both metrics relate provisioned resources and load intensities,
while requiring specific service level objectives to be fulfilled. We
show how these metrics can be employed for scalability benchmark-
ing and discuss their advantages in comparison to other metrics,
used for stream processing engines and other software systems.

CCS CONCEPTS
• General and reference → Metrics; Measurement; • Software
and its engineering → Data flow architectures; Cloud computing;
Software performance.
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1 INTRODUCTION
Over the last decade, architectures, models, and algorithms for
processing continuous streams of data across multiple computing
nodes became an active field of research, both in academia and
industry. As a result, several state-of-the-art stream processing
engines such as Flink [3], Spark [21], Storm [18], or Kafka Streams
[17] emerged. All of these engines promote scalability as a key
feature to cope with the volume and velocity of big data workloads.
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Lots of research exists on improving performance, correctness,
or fault-tolerance of stream processing engines while preserving
this scalability. Empirical evaluations or benchmarks of different
engines or configurations are, therefore, often evaluating scalability
[7]. However, even though such studies share similar fundamental
understandings of scalability, they no not apply common metrics
or measurement methods for scalability. At the same time, research
in software performance engineering made huge efforts to provide
precise definitions and metrics for scalability in distributed systems
[1, 4, 9] and, more recently, in cloud computing [8, 14, 16].

The goal of this paper is to build a solid foundations for scalability
evaluations and benchmarks of stream processing engines. We
follow up on general definitions of scalability in cloud computing
and transfer them to stream processing. Based on these definitions,
we derive our two Theodolite scalability metrics:

(1) Our demand metric describes how resource demands evolve
with increasing load.

(2) Our capacity metric describes how load capacity evolves
with increasing provisioned resources.

After a brief summary on scalability and stream processing in
Section 2, we formally define our metrics in Section 3. We discuss
our proposed metrics in detail and compare them with scalability
metrics of related work in Section 4. Section 5 concludes this paper.

2 BACKGROUND
In this section, we summarize fundamental scalability definitions
and present how state-of-the art frameworks process continuous
streams of data in a distributed fashion.

2.1 Definition of Scalability
Initial definitions for scalability of distributed systems where pre-
sented by Bondi [1] and Jogalekar and Woodside [9], which were
later generalized by Duboc et al. [4]. More recently, such definitions
have been specified to target the peculiarities of scalability in cloud
computing [8, 14, 16].

A definition of scalability in cloud computing is, for example,
given by Herbst et al. [8], which states that “scalability is the ability
of [a] system to sustain increasing workloads by making use of
additional resources”. In a subsequent work [20], the authors further
specify this and highlight that scalability is characterized by the
following three attributes:

Load intensity is the input variable a system is subject to.
Scalability is evaluated within a range of load intensities.

Service levels objectives (SLOs) are measurable quality cri-
teria that have to be fulfilled for every load intensity.
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Provisioned resources can be increased to meet the SLOs if
load intensities increase.

A software system can be considered scalable within a certain
load intensity range if for all load intensities within that range
it is able to meet its service level objectives, potentially by using
additional resources. Such a definition targets both horizontal and
vertical scalability [20].

In cloud computing also the distinction between scalability and
elasticity is important. Elasticity also takes temporal aspects into
account and describes how fast and how precise a system adapts
its provided resources to changing load intensities [8]. Scalability,
on the other hand, is a prerequisite for elasticity, but only describes
whether increasing load intensities can be handled in principle.

2.2 Distributed Stream Processing
Modern stream processing engines [5] process data in jobs, where
a job is defined as a dataflow graph of processing operators. They
can be started with multiple instances (e.g., on different computing
nodes, containers, or with multiple threads). For each job, each
instance processes only a portion of the data. Whereas isolated
processing of data records is not affected by the assignment of
data portions to instances, processing that relies on previous data
records (e.g., aggregations over time windows) requires the man-
agement of state. Similar to the MapReduce programming model,
keys are assigned to records and the stream processing engines
guarantee that all records with the same key are processed by the
same instance. Hence, no state synchronization among instances
is required. If a processing operator changes the record key and
a subsequent operator performs a stateful operation, the stream
processing engine splits the dataflow graph into subgraphs, which
can be processed independently by different instances.

It is quite common that stream processing engines read and write
data from and to amessaging system. Somemessaging systems such
as Apache Kafka have the additional advantage that they already
partition data according to keys.

3 THE THEODOLITE SCALABILITY METRICS
In this section, we derive our Theodolite [7] scalability metrics
and show how they can be used to benchmark the scalability of
distributed stream processing engines.

3.1 Scalability in Stream Processing
As summarized in Section 2, scalability can be described by the
attributes load intensity, provisioned resources, and service level
objectives. In the following, we characterize these attributes in the
context of stream processing.

Load intensity. Load on a stream processing application corre-
sponds to messages coming from a central messaging system. Load
can have multiple dimensions, such as number of messages per
unit time or size of messages. Depending on the stream process-
ing engine, it is likely that they scale differently depending on the
load dimension. As stream processing engines employ partitioning
based on keys as primary means for parallelization, a sensible load
dimension is, for example, the number of distinct message keys
per unit time. We denote the set of possible load intensities for a

given dimension with 𝐿 and the range of load intensities scalability
should be evaluated for with �̂� ⊆ 𝐿.

Provisioned resources. Modern stream processing engines are
mainly scaled horizontally by varying the number of instances.
Traditionally, this is the amount of virtual or physical computing
nodes. Nowadays with containerized deployments, the underly-
ing hardware is further abstracted and stream processing engines
are often scaled with the amount of (e.g., Docker) containers. We
generalize different resource scaling options and denote the set of
resources that can be provisioned with 𝑅.

Service levels objectives (SLOs). From a user-perspective, often the
only requirement is that all1 messages are processed in time. As a
measure of this, we propose our lag trendmetric (Section 3.3), which
describes how the number of queued messages evolves. However,
also other or additional SLOs can be used.

We define the set of all SLOs as 𝑆 and denote an SLO 𝑠 ∈ 𝑆

as Boolean-valued function slo𝑠 : 𝐿 × 𝑅 → {false, true} with
slo𝑠 (𝑙, 𝑟 ) = true if a stream processing engine with 𝑟 resource
amounts does not violate SLO 𝑠 when processing load intensity 𝑙 .

3.2 Scalability Metrics
Based on the previous characterization of scalability, we propose
two functions as metrics for scalability. In many cases, both func-
tions are inverse to each other. However, we expect both metrics to
have advantages, as discussed in Section 4.2.

Resource Demand Metric. The first function maps load intensities
to the resources, which are at least required for processing these
loads. We denote the metric as demand : �̂� → 𝑅, defined as:

∀𝑙 ∈ �̂� : demand(𝑙) = min{𝑟 ∈ 𝑅 | ∀𝑠 ∈ 𝑆 : slo𝑠 (𝑙, 𝑟 ) = true}
The demand metric shows, for example, whether the resource

demand increases linearly, whether disproportionately many re-
sources are required (e.g., exponentially), or whether a system only
scales up to a certain point, i.e., there is a load which can not be
handled even though further resources are added.

Load Capacity Metric. Our second metric maps provisioned re-
source amounts to the maximum load, these resources can process.
We denote this metric as capacity : 𝑅 → �̂� , defined as:

∀𝑟 ∈ 𝑅 : capacity(𝑟 ) = max{𝑙 ∈ �̂� | ∀𝑠 ∈ 𝑆 : slo𝑠 (𝑙, 𝑟 ) = true}
Analogously to the demand metric, the capacity metric shows

at which rate processing capabilities increase with increasing re-
sources. It also allows determining whether a system only scales to
a certain point, which is when with additional resources, the load
capacity does not further increase or is even decreasing.

3.3 Lag Trend Metric
The lag of a stream processing job describes how many messages
are queued in the messaging system, which have not been processed
yet. Our lag trendmetric describes the average increase (or decrease)
of the lag per second. It can be measured by monitoring the lag and
1Note that in stream processing the requirement to process all messages is often
relaxed to preferably all to increase performance.
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Figure 1: Scalability of Kafka Streams and Flink with our
Theodolite scalability metrics

computing a trend line using linear regression. The slope of this
line is the lag trend.

The lag trendmetric can be used to define an SLO,whose function
evaluates to true if the lag trend does not exceed a certain threshold.
Ideally, this threshold should be 0 as a non-positive lag trend means
that messages can be processed as fast as they arrive. However,
it could make sense to allow for a small increase as even when
observing an almost constant lag, a slightly rising or falling trend
line will be computed due to outliers.

We expect that in most cases, checking the lag trend alone suf-
fices as an SLO. The architectures of modern stream processing
engines make it unlikely that SLOs such as a maximum tolerable
processing latency can be fulfilled by scaling provisioned resources.

3.4 Benchmarking Example
In the following, we show how our proposed metrics can be used for
benchmarking scalability of stream processing engines. We employ
our Theodolite benchmarking framework [7] to benchmark the
scalability of Kafka Streams and Flink. The Theodolite framework
tests a set of load intensities against a set of resource amounts and
validates whether configured SLOs are met. Hence, it approximates
our proposed scalability metrics.

Figure 1 shows the benchmark results of both engines for our
demand metric as well as for the capacity metric. Load intensities �̂�
are specified as messages with distinct keys per second. Provisioned
resources 𝑅 are specified as number of stream processing engine
instances, each executed in an own Kubernetes Pod, restricted to
one CPU core. We use only one SLO, which is based on our lag
trend metric and evaluates to true if the lag trend does increase by
more than 2 000 records per second. The shown benchmark results
are extensions of the downsampling benchmarks from our previous
study [7], which also provides further information regarding the
experimental setup.

4 DISCUSSIONWITH RELATED METRICS
In this section, we discuss our proposed scalability metrics and
relate them to metrics in related work on evaluating scalability.

4.1 Scalability as a Function
As in most studies [2, 15, 19], both our metrics describe scalability
as a function instead of a scalar. Sanders et al. [16] highlight that
scalability is a function as usually capacity does not grow at a

constant rate with additional resources [2, 7, 19]. However, they
remark that scalability can be measured as a scalar within a range.

A downside of having a functionmetric is that it makes it difficult
to create a rating, which orders systems by their scalability. Such a
rating is desired for benchmarking scalability of different stream
processing engines. A possible solution is to cluster systems with
similar functions (e.g., systems that scale linearly) and then compare
their derivative or axis intersection.

The Universal Scalability Law [6] describes a general perfor-
mancemodel of system scalability. It is based on the assumption that
scalability of arbitrary systems can be described using a non-linear
rational function with two system-specific coefficients, represent-
ing contention and coherency. If applicable to stream processing,
these coefficients could serve to rate engines. However, it remains
unclear how well these coefficients can be derived from empirical
measurements when considering capacity as discrete values.

4.2 Function of Load vs. Function of Resources
While with our demand metric, scalability is described as a function
of load, our capacity metric describes it as a function of resources.
Although often both metric functions are inverse to each other,
each metric has specific advantages.

We observe that in experimental studies, evaluating scalability
as a function of resources is more frequent than evaluations as
a function of load [2, 10, 15, 19]. An issue with those metrics is
that they contradict common scalability definitions, which concern
the system’s behavior if subject to increasing load (see Section 2).
Our demand metric overcomes this and shows explicitly whether a
system is able to handle increasing load intensities.

The main advantage of our capacity metric on the other hand
is that it allows to express situations where capacity drops with
increasing resources. This can occur if coordination between in-
stances outweigh parallelization benefits [6] or if particular resource
configurations are overly efficient.

The Universal Scalability Law [6] uses the scale-up metric. It is a
function of resources and describes the relative capacity, defined as
the percentage increase in capacity of 𝑛 resources in comparison
to 1 resource. Such normalization based on a reference value (e.g.,
1 instance or a certain load intensity) can be applied to both our
metrics. It could allow to exclude resource efficiency of systems.

4.3 Resources as a Function of Load
With our demand scalability metric, we describe scalability as how
resource demands evolve with increasing load intensities. Accord-
ing to our definition of scalability, it is also sensible to describe it
as how service levels evolve with increasing load intensity. For ex-
ample, Kossmann et al. [12] evaluate how the amount of processed
records evolve with increasing load of cloud services for transac-
tion processing. Their study shows that while for some systems
the throughput grows proportionally with increasing load, thus, all
records are processed (SLO is met), for other systems, the amount
of processed messages does not further increase (SLO is not met).

The authors evaluate cloud services, which are automatically
scaled in the background by the cloud provider. In such deploy-
ments, measuring how the underlying resource demands evolve
does usually not provide much benefit as resource scaling is out
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of the user’s control. When considering manual resource scaling
deployments, however, provisioned resources are explicitly chosen
to meet SLOs. Thus, we expect it to be more relevant to measure
how resource demands evolve.

4.4 Capacity as Discrete Values
With our capacity scalability metric, we propose to determine the
load capacity as a discrete value from a given set of load intensities.
In many scalability studies, however, capacity is measured as a
continuous value. While this might be feasible for databases [13]
or batch processing [6], we consider it to be difficult to achieve in
stream processing. To determine capacity as a continuous value,
we observe basically two options, both having weaknesses.

The first option is to generate a constant load and measure the
throughput, i.e., how much of this load is processed. Although not
explicitly described, it looks like this technique was applied in the
scalability evaluations of stream processing engines by Karakaya
et al. [10] and Nasiri et al. [15] A first weakness of this approach
is that the generated load must be sufficiently high as otherwise
the throughput would be bounded by the generated load intensity
instead of by the capacity of the provisioned resources. Further, it
is unclear how much higher the load has to be. As the throughput
may vary strongly [7, 11], it may temporarily be higher than the
generated load, causing the stream processing engine to not operate
at its maximum. Finally, this approach is based on the assumption
that for a given amount of provisioned resources the throughput is
always the same, independent of the generated load. However, this
assumption is questionable, unless explicitly evaluated. It is likely
that a high load on the messaging system also influences response
times or chunk sizes.

A second option to measure load capacity as continuous val-
ues is to steadily increase the load intensity for a given resource
amount and determine at which load intensity SLOs are not ful-
filled anymore. A similar method is taken by Karimov et al. [11] for
their sustainable throughput metric. A weakness of this approach
is that dependencies between different load intensities are difficult
to rule out. We observe that even with constant load the through-
put of stream processing engines varies strongly and, additionally,
increases after some warm-up period [7]. To determine a reason-
able load capacity, the monitored throughput has therefore to be
averaged over some period of time. Furthermore, when increasing
the load without restarting experiments, stream processing engines
or related software infrastructure might perform optimizations for
lower load intensities, which are not ideal for higher loads.

Whenmeasuring scalability with our proposed metrics, we there-
fore strongly recommend to evaluate the slo𝑠 functions in isolated
experiments for one resource configuration and a constant load.

5 CONCLUSIONS AND FUTUREWORK
With this paper, we propose twometrics for scalability of distributed
stream processing engines, derived from common scalability defini-
tions. While our demand metric describes how resource demands
evolve with increasing load, our capacity metric describes how load
capacity evolves with increasing provided resources. Both metrics
share the explicit definition of SLOs that always have to be ful-
filled and the definition of load intensity and provisioned resources

as discrete spaces. We discuss advantages of these decisions in
comparison to other metrics as well as compared to each other.

We expect these metrics to lay a solid foundation for benchmark-
ing scalability of stream processing engines. For future work, we
also plan to evaluate whether the Universal Scalability Law can be
applied to create a ranking of such engines.
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