Temporal dynamics of surface ocean carbonate chemistry in response to natural and simulated upwelling events during the 2017 coastal El Niño near Callao, Peru

Shao-Min Chen^{1, 2}, Ulf Riebesell¹, Kai G. Schulz³, Elisabeth von der Esch¹, Eric P. Achterberg¹, and Lennart T. Bach⁴

Correspondence to: Shao-Min Chen (shaomin.chen@dal.ca)

Table S1: The drawdown of surface DIC, DIN and PO₄³⁻ (µmol L⁻¹) in the mesocosms from t13 to t24 following OMZ water addition and the molar ratio of DIC: DIN and DIN: PO₄³⁻ (mol: mol) drawdown. The DIC concentration in µmol L⁻¹ was estimated by applying an approximate seawater density of 1.025 kg L⁻¹ (T = 20 °C, S = 35 psu, P = 5 dbar). M3 and M4 were excluded from the calculations for each treatment ("Low DIN" and "Very Low DIN", n = 3) due to their unique carbonate chemistry responses (in bold).

	M1	M2	M3	M4	M5	M6	M7	M8	Low DIN	Very Low DIN
ΔDIC	134.8	169.9	44.3	9.1	127.2	162.6	148.3	92.7	160.3 ± 11.0	118.2 ± 22.5
ΔDIN	1.7	3.5	6.2	1.1	1.6	4.6	3.9	0.9	4.0 ± 0.6	1.4 ± 0.4
ΔPO_4^{3-}	0.1	0.4	0.4	0.1	0.2	0.4	0.4	0.2	0.4 ± 0.0	0.2 ± 0.1
$\Delta DIC: DIN$	80.1	49.2	7.1	8.3	77.4	35.0	37.9	101.9	40.7 ± 7.5	86.5 ± 13.5
Δ DIN: PO ₄ ³ -	16.8	8.6	15.5	11.0	8.2	11.6	9.8	4.5	10.0 ± 1.5	9.9 ± 6.3

¹GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

²Department of Earth and Environmental Sciences, Dalhousie University, Halifax, Canada

³Centre for Coastal Biogeochemistry, School of Environment, Science and Engineering, Southern Cross University, Lismore, Australia

⁴ Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania, Australia

Figure S1: Temporal dynamics of depth-integrated bottom pH_T (a), TA (b), pCO_2 (c) and DIC (d). The error ribbons present the propagated standard uncertainties of the calculations. Abbreviation: OWA, OMZ water addition. SA, salt addition.

Figure S2: Temporal dynamics of depth-integrated pH_T (a), TA (b), pCO_2 (c) and DIC (d) averaged over the entire water column (0-17 m). The error ribbons present the propagated standard uncertainties of the calculations. Abbreviation: OWA, OMZ water addition. SA, salt addition.