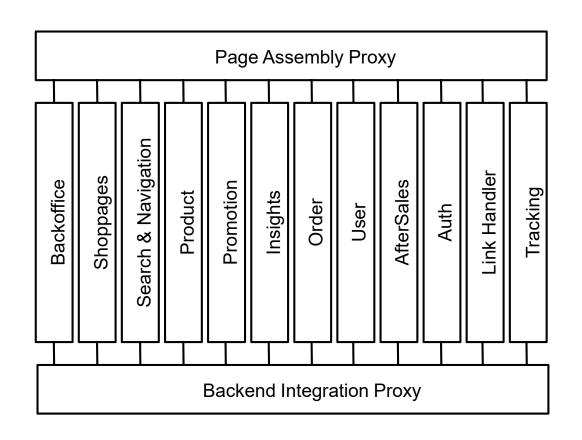
Drivers and Barriers for Microservice Adoption

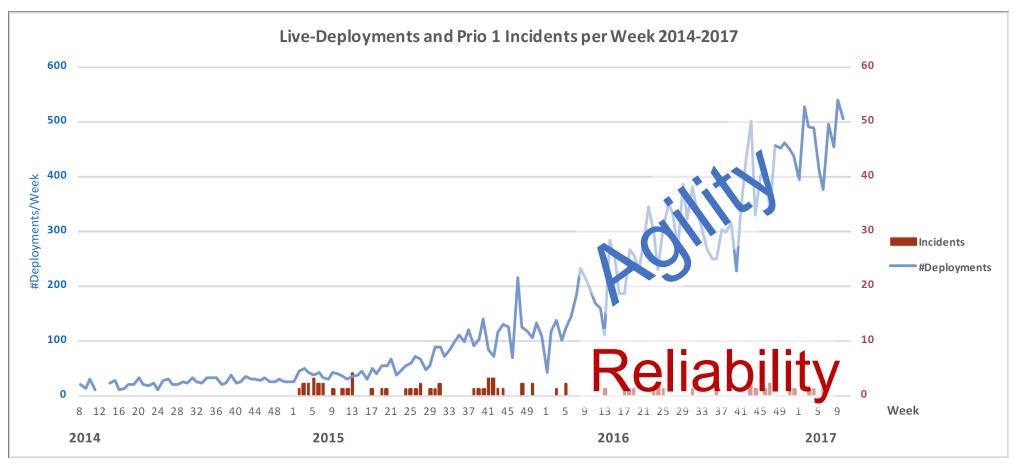
Holger Knoche, Wilhelm Hasselbring Software Engineering Group Kiel University

11th EMISA Workshop, May 21st, 2021



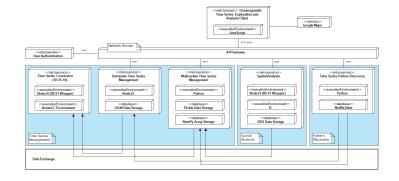
Motivation: Success Stories

Example: otto.de

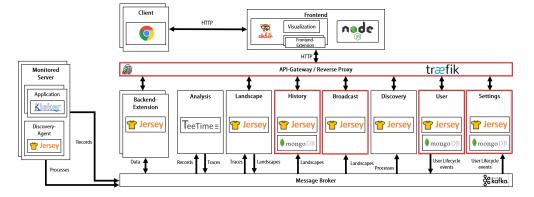


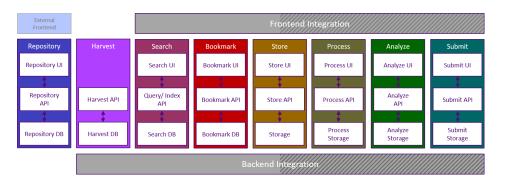
Microservices: [Hasselbring 2016, 2018, Hasselbring & Steinacker 2017]

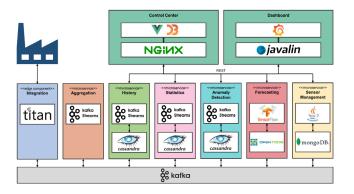
Both Agile and Reliable



Scalability, Agility and Reliability [Hasselbring & Steinacker 2017]


Does this also work in other Domains?


Some experience with research software


OceanTEA [Johanson et al. 2016]

ExporViz [Fittkau et al. 2017] [Zirkelbach et al. 2019] [Hasselbring et al. 2020]

GeRDI [Tavares de Sousa et al. 2018]

Titan [Henning & Hasselbring 2021]

Enterprise Modelling and Information Systems Architectures (EMISAJ) International Journal of Conceptual Modeling

Home

About ▼

Current

Archives

Announcements

Home / Archives / Vol. 14 (2019) / Research Article

Drivers and Barriers for Microservice Adoption – A Survey among Professionals in Germany

Holger Knoche

University of Kiel

http://orcid.org/0000-0002-0282-8632

Wilhelm Hasselbring

University of Kiel

DOI: https://doi.org/10.18417/emisa.14.1

Keywords: Microservice architecture, Survey, Software modernization, Microservice adoption

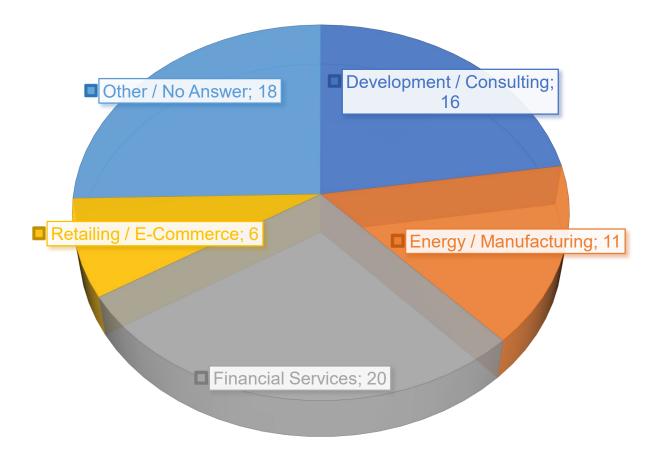
△ PDF

Published

2019-01-04

Issue

Vol. 14 (2019)


Section

Research Article

Demographics

RESPONDENTS AND INDUSTRIES

Usage of Microservices

Microservices are already used to a considerable extent in practice.

Usage of Microservices

- 27% of the respondents reported to use Microservices to a large extent
- Highest percentage (83%) in Retail / E-Commerce
- Lowest percentage (10%) in Financial Services

Drivers for Microservice Adoption

The main drivers for Microservice adoption are Scalability, Maintainability and Time to Market.

Drivers for Microservice Adoption

- Scalability was crucial for 34% of the respondents and relevant for 46% of the respondents
- Maintainability was crucial for 29% and relevant for 57%
- Short Time to Market was crucial for 31% and relevant for 51%

- Runners-up were:
 - Enabler for Continuous Delivery and DevOps (14% / 45%)
 - Suitability for Cloud and Containers (15% / 35%)

Barriers for Microservice Adoption

The main barriers for Microservice adoption are insufficient skills as well as resistances.

Barriers to Microservice Adoption

- Insufficient ops skills were rated critical by 16% and relevant by 46% of the respondents
- Ops resistances were rated critical by 14% and relevant by 47%
- Insufficient developer skills were rated critical by 20% and relevant by 34%
- Compliance and regulations were also important for specific industries (17% / 23%)
- Technical challenges were considered manageable

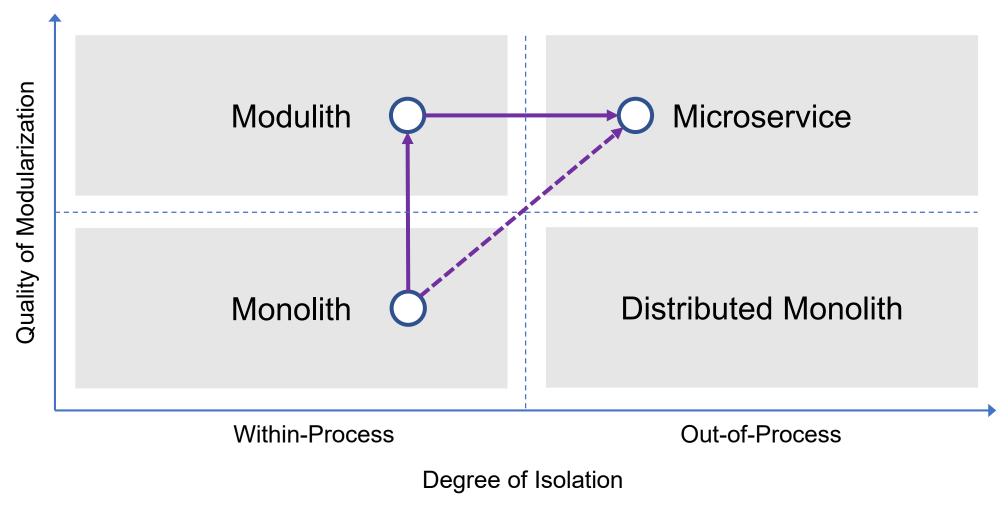
Microservices for Modernization

67% of the respondents stated that here are plans to introduce microservices to existing software assets.

Microservices for Modernization

Improved Maintainability is the key driver for modernizing existing assets with Microservices.

Microservices for Modernization



- Improved Maintainability was stated as the primary modernization goal by 82% of the respondents
- Runners-up were Time to Market (61%) and Scalability (51%)
- 85% of the respondents would also replace parts of the existing application by microservices
- But: 79% considered incorporating transactional boundaries into service design important (52%) or very important (27%)

See also [Knoche & Hasselbring 2018, Krause et al. 2020]

Future Work: Migration Matrix

References

[Fittkau et al. 2017] F. Fittkau, A. Krause, W. Hasselbring: "Software landscape and application visualization for system comprehension with ExplorViz", In: Information and Software Technology. DOI https://doi.org/10.1016/j.infsof.2016.07.004

[Hasselbring 2016] W. Hasselbring, "Microservices for Scalability (Keynote Presentation)," In: 7th ACM/SPEC International Conference on Performance Engineering (ACM/SPEC ICPE 2016), March 15, 2016, Delft, NL. DOI https://doi.org/10.1145/2851553.2858659

[Hasselbring 2018] W. Hasselbring, "Software Architecture: Past, Present, Future," In: The Essence of Software Engineering. Springer, pp. 169-184. 2018. DOI https://doi.org/10.1007/978-3-319-73897-0 10

[Hasselbring & Steinacker 2017] W. Hasselbring, G. Steinacker: "Microservice Architectures for Scalability, Agility and Reliability in E-Commerce", In: Proceedings of the IEEE International Conference on Software Architecture (ICSA 2017), April 2017, Gothenburg, Sweden. DOI https://doi.org/10.1109/ICSAW.2017.11

[Hasselbring et al. 2020] W. Hasselbring, A. Krause, C. Zirkelbach: "ExplorViz: Research on software visualization, comprehension and collaboration". Software Impacts, 6, 2020. DOI https://doi.org/10.1016/j.simpa.2020.100034

[Henning & Hasselbring 2021] S. Henning, W. Hasselbring: "The Titan Control Center for Industrial DevOps Analytics Research". Software Impacts, 7. 2021. DOI https://doi.org/10.1016/j.simpa.2020.100050.

[Johanson et al. 2016] A. Johanson, S. Flögel, C. Dullo, W. Hasselbring: "OceanTEA: Exploring Ocean-Derived Climate Data Using Microservices". In: Sixth International Workshop on Climate Informatics (CI 2016), September 2016, Boulder, Colorado. DOI https://doi.org/10.5065/D6K072N6

[Knoche & Hasselbring 2018] H. Knoche and W. Hasselbring, "Using Microservices for Legacy Software Modernization IEEE Software, 35 (3). pp. 44-49. 2018. DOI https://doi.org/10.1109/MS.2018.2141035.

[Knoche and Hasselbring 2019] H. Knoche and W. Hasselbring, "Drivers and Barriers for Microservice Adoption - A Survey among Professionals in Germany," Enterprise Modelling and Information Systems Architectures (EMISAJ, 14 (1). pp. 1-35. 2019. DOI https://doi.org/10.18417/emisa.14.1.

[Krause et al. 2020] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, D. Kröger: "Microservice Decomposition via Static and Dynamic Analysis of the Monolith". In: IEEE International Conference on Software Architecture (ICSA 2020). pp. 9-16. DOI https://doi.org/10.1109/ICSA-C50368.2020.00011.

[Tavares de Sousa et al. 2018] N. Tavares de Sousa, W. Hasselbring, T. Weber, D. Kranzlmüller: "Designing a Generic Research Data Infrastructure Architecture with Continuous Software Engineering", In: 3rd Workshop on Continuous Software Engineering (CSE 2018), March 2018, Ulm, Germany.

[Zirkelbach et al. 2019] Zirkelbach, C., Krause, A. und Hasselbring, W.: "Modularization of Research Software for Collaborative Open Source Development", In: The Ninth International Conference on Advanced Collaborative Networks, Systems and Applications (COLLA 2019), June 30 - July 04, 2019, Rome, Italy.