Intra-oceanic submarine arc evolution recorded in an ~1-km-thick rear-arc succession of distal volcaniclastic lobe deposits.

Johnson, Kyle, Marsaglia, Kathleen M., Brandl, Philipp A. , Barth, Andrew P., Waldman, Ryan, Ishizuka, Osamu, Hamada, Morihisa, Gurnis, Michael and Ruttenberg, Ian (2021) Intra-oceanic submarine arc evolution recorded in an ~1-km-thick rear-arc succession of distal volcaniclastic lobe deposits. Open Access Geosphere, 17 (4). pp. 957-980. DOI 10.1130/GES02321.1.

[thumbnail of GS2321_SuppFigS1.pdf]
Preview
Text
GS2321_SuppFigS1.pdf - Supplemental Material
Available under License Creative Commons: Attribution-Noncommercial 4.0.

Download (93kB) | Preview
[thumbnail of 957.pdf]
Preview
Text
957.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial 4.0.

Download (6MB) | Preview

Supplementary data:

Abstract

International Ocean Discovery Program (IODP) Expedition 351 drilled a rear-arc sedimentary succession ~50 km west of the Kyushu-Palau Ridge, an arc remnant formed by rifting during formation of the Shikoku Basin and the Izu-Bonin-Mariana arc. The ~1-km-thick Eocene to Oligocene deep-marine volcaniclastic succession recovered at Site U1438 provides a unique opportunity to study a nearly complete record of intra-oceanic arc development, from a rear-arc perspective on crust created during subduction initiation rather than supra-subduction seafloor spreading. Detailed facies analysis and definition of depositional units allow for broader stratigraphic analysis and definition of lobe elements. Patterns in gravity-flow deposit types and subunits appear to define a series of stacked lobe systems that accumulated in a rear-arc basin. The lobe subdivisions, in many cases, are a combination of a turbidite-dominated subunit and an overlying debris-flow subunit. Debris flow–rich lobe-channel sequences are grouped into four, 1.6–2 m.y. episodes, each roughly the age range of an arc volcano. Three of the episodes contain overlapping lobe facies that may have resulted from minor channel switching or input from a different source. The progressive up-section coarsening of episodes and the increasing channel-facies thicknesses within each episode suggest progressively prograding facies from a maturing magmatic arc. Submarine geomorphology of the modern Mariana arc and West Mariana Ridge provide present-day examples that can be used to interpret the morphology and evolution of the channel (or channels) that fed sediment to Site U1438, forming the sequences interpreted as depositional lobes. The abrupt change from very thick and massive debris flows to fine-grained turbidites at the unit III to unit II boundary reflects arc rifting and progressive waning of turbidity current and ash inputs. This interpretation is consistent with the geochemical record from melt inclusions and detrital zircons. Thus, Site U1438 provides a unique record of the life span of an intra-oceanic arc, from inception through maturation to its demise by intra-arc rifting and stranding of the remnant arc ridge.

Document Type: Article
Keywords: Island arc, Izu-Bonin-Mariana, volcaniclastic, turbidites, geochemistry
Research affiliation: OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-MUHS > Marine Mineralische Rohstoffe
OceanRep > GEOMAR > FB4 Dynamics of the Ocean Floor > FB4-MUHS
Main POF Topic: PT8: Georesources
Refereed: Yes
Open Access Journal?: Yes
Publisher: GSA (Geological Society of America)
Projects: IODP
Expeditions/Models/Experiments:
Date Deposited: 27 May 2021 13:38
Last Modified: 07 Feb 2024 15:48
URI: https://oceanrep.geomar.de/id/eprint/52661

Actions (login required)

View Item View Item