SUPPORTING INFORMATION A production method under surveillance: Laboratory pilot-scale simulation of CH₄-CO₂ exchange in a natural gas hydrate reservoir Katja Heeschen^{1*} Christian Deusner² Erik Spangenberg¹ Mike Priegnitz¹ Elke Kossel² Bettina Strauch¹ Nikolaus Bigalke^{2, 3} Manja Luzi-Helbing¹ Matthias Haeckel² Judith M. Schicks¹ Heeschen et al. (2021) Engery & Fuels; https://pubs.acs.org/doi/10.1021/acs.energyfuels.0c03353. Number of pages: 7 Number of figures: 4 Number of tables: 0 Fig. S1 Phase and component distributions during depressurization in E1; a) CH₄ and CO₂ distribution at t_1 (before depressurization) between a gas phase (partition coefficient = 0) and a gas hydrate phase (partition coefficient = 1); CH₄ and CO₂ distribution at given constraints (blue: water availability; grey: phase saturation; yellow: effluent gas composition); grey: possible CH₄:CO₂ partition states based on phase saturation constraints assuming an error of \pm 2.5% ($S_w + S_g + S_{gh} =$ 0.975 to 1.025) (dark grey) or an error of \pm 10% (light grey). The overlay of all given constraints results in overall possible CH₄ and CO₂ distributions as shown by red areas (Light red: Error \pm 10%, bright red: Error \pm 2.5%). b) Phase and component inventories based on possible partition states prior to depressurization at t_2 of experiment E1; Gas hydrate (GH) and gas phase CH₄:CO₂ ratios refer to the average of the bright red region for partitioning coefficients in the upper diagram (upper bar chart); the lower bar chart shows the theoretical CH₄:CO₂ gas hydrate composition that would be in equilibrium with the detected gas phase; numbers in red show the CH₄:CO₂ molar ratios in the corresponding phase; c ,d) show the corresponding results at time t₂. Fig. S2 Phase and component distributions during depressurization in E2; a) CH_4 and CO_2 distribution at t_1 (before degassing) between gas phase (partition coefficient = 0) and gas hydrate phase (partition coefficient = 1); b) Phase and component inventories based on overall possible partition states prior to depressurization at t_1 of experiment E2; For further details see Supplementary Fig. S1. Fig. S 3 Temperature evolution during the five injection intervals and equilibration periods in experiment E1 (supplement to the top panel of Figure 5 in the main manuscript). While on the left the complete temperature ranges are plotted, the figures on the right show more detailed changes in the temperature range of 7 - 12 °C. In Fig. S3 d (injection interval 4) the negative excursion of temperatures in T0, T1 is due to a strong temporary pressure decrease (p= 3.5 MPa) at the outlet with subsequent degassing and gas hydrate decomposition. Fig. S 4 Temperature evolution during the first injection interval $(0-4\,h)$ and equilibration period (up to 14 h) of experiment E1 visualized as 2D - heat maps. Temperatures between $13.5-33^{\circ}$ C are summarized in one color.