
Collaborative Program
Comprehension based on

Augmented Reality

Master’s Thesis

Malte Hansen

July 6, 2021

Kiel University

Department of Computer Science

Software Engineering Group

Advised by: Prof. Dr. Wilhelm Hasselbring
Alexander Krause, M.Sc.

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel, 6. Juli 2021

iii

Abstract

The complexity of software systems increases and thereby maintainability and extensibility
become more and more important. Thus, it is crucial to have tools at hand which facilitate
program comprehension for various use cases. As complex commercial software systems
are developed by large teams with changing team members, it is desirable for such tools to
enable and promote collaboration among the involved software professionals.

In this thesis, we present a collaborative visualization approach for program compre-
hension which employs augmented reality (AR). We integrate our approach by means of
an extension to ExplorViz, a web-based open source research and software visualization
tool. To achieve AR, we combine printed markers and commercial off-the-shelf mobile
devices, i.e. tablet computers and smartphones. For the visualization, we supplement the
live camera feed of the employed devices with 3D software models which are aligned with
the markers. We provide users with various options to adapt the visualization and retrieve
information about the runtime behavior of a software system. The state of the 3D soft-
ware models can be synchronized between multiple users, thus enabling for collaborative
program comprehension.

We gathered preliminary feedback about our approach in a pilot study. Subsequently, a
case study with 20 study participants, who solved program comprehension tasks in teams
of two, was conducted. The study was conducted remotely due to the COVID-19 pandemic.
Hence, our approach is evaluated in diverse environments with a wide range of mobile
devices and browsers. The results indicate that collaborative program comprehension
by means of an AR software visualization on mobile devices is a promising addition to
existing visualization approaches. The comprehensive feedback of the case study also
reveals possible adjustments to the implemented approach. We use the gathered feedback
to present ideas for the further extension of our approach and conclude by presenting
relevant topics for future work.

v

Acknowledgments

First of all, I would like to thank Prof. Dr. Wilhelm Hasselbring for his support and for
making my master thesis possible. The collaboration of the Software Engineering Group
with the adesso SE also opened up further opportunities for me. In this context, I would
like to thank Uwe Lutter for the thematic collaboration and the valuable experiences which
I gained during my six months as a student employee at the adesso SE in Hamburg.

I would also like to specifically thank Alexander Krause and Stefan Carstensen for the
supervision of my thesis. I look back on many interesting discussions which significantly
supported the development of my approach and the elaboration of my thesis. In addition, I
am grateful for the technical discussions with the developers of BIMSWARM and ExplorViz
which provided me with new insights and ideas.

Furthermore, I thank all probands of my case study for their voluntary participation
and the use of their time for the evaluation of my approach. I appreciate the extensive and
helpful feedback that reached me.

Moreover, I would like to thank my family and friends for their interest in my work
and constant support throughout the course of my thesis.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Document Structure . 2

2 Goals 3
2.1 G1: Concept for a Collaborative Augmented Reality Approach 3
2.2 G2: Development & Integration of the Collaborative Augmented Reality

Approach . 3
2.3 G3: Evaluation of the Collaborative Augmented Reality Approach 4

3 Foundations and Technologies 5
3.1 Building Information Modeling . 5
3.2 BIMSWARM . 5
3.3 Extended Reality . 7

3.3.1 Augmented Reality . 8
3.3.2 Virtual Reality . 8

3.4 Web Technologies . 9
3.4.1 AR.js . 9
3.4.2 WebXR . 9
3.4.3 Hammer.JS . 10
3.4.4 WebRTC . 10

3.5 ExplorViz . 10
3.5.1 Architecture . 11
3.5.2 Landscape and Application View . 12

4 Related Work 15
4.1 ExplorViz . 15
4.2 SkyscrapAR . 17
4.3 IslandViz . 18

5 Concept 21
5.1 Classification . 21
5.2 Use Cases . 22
5.3 Required Equipment . 23

5.3.1 Tablet Computers . 23
5.3.2 Markers . 23

ix

Contents

5.3.3 Deployment Infrastructure . 25
5.4 Representation . 25
5.5 Incorporation with existing Implementation 27
5.6 Software Technologies . 27

6 Implementation 29
6.1 AR.js . 29
6.2 Markers . 31
6.3 Visualization . 32
6.4 Touch Gestures . 34

6.4.1 Pinch . 35
6.4.2 Rotate . 36
6.4.3 Pan . 36

6.5 Zoom Feature . 37
6.6 Heat Map . 38
6.7 Settings . 40
6.8 Collaboration . 41

6.8.1 Collaboration Interface . 41
6.8.2 Ping Feature . 42

6.9 Deployment . 43
6.10 Instrumentation of BIMSWARM . 44

7 Evaluation 47
7.1 Goals . 47
7.2 Methodology . 47
7.3 Experiment . 48

7.3.1 Setup . 48
7.3.2 Introduction to ExplorViz . 50
7.3.3 Introduction to BIMSWARM . 50
7.3.4 Assignments . 51
7.3.5 Survey . 52

7.4 Pilot Study . 56
7.5 Results . 57
7.6 Discussion . 59
7.7 Threats to Validity . 63

8 Conclusions and Future Work 65
8.1 Conclusions . 65
8.2 Future Work . 65

Bibliography 67

x

Contents

Appendix A 71

Appendix B 75

xi

Chapter 1

Introduction

ExplorViz1 is a software visualization tool which uses a 3D city metaphor to visualize data
from dynamic program analysis. Recently, a virtual reality (VR) extension, which allows
the collaborative exploration of software landscapes, has been integrated into ExplorViz
[Hasselbring et al. 2020].

Based on this, we explore the potentials of a novel collaborative augmented reality
(AR) approach for program comprehension. BIMSWARM2 is a software in the field of
building information modeling (BIM) which is currently under development and deploys
a Java-based microservice architecture. As such, it is a well-suited piece of software to
evaluate the envisioned approach.

1.1 Motivation

The complexity of software systems increases and thereby maintainability and extensibility
become more and more important. Thus, it is crucial to have tools at hand which facilitate
program comprehension. As complex commercial software systems are developed by large
teams with changing team members, it is desirable for such tools to enable and promote
collaboration among the involved software professionals.

The collaborative VR approach of ExplorViz is such a tool. However, this approach
requires expensive hardware. We propose a collaborative AR approach for ExplorViz which
uses commercial off-the-shelf tablet computers and smartphones. Our approach envisions
to supplement the live camera feed of the used hardware with 3D models of the live trace
software visualization which ExplorViz provides. An interactive visualization which is
synchronized among the devices of software professionals could enhance the process of
collaborative program comprehension.

We evaluate how software professionals can use our collaborative AR approach of
ExplorViz to gather valuable information about software and in turn, increase their program
comprehension. This is done by means of a case study in which BIMSWARM is analyzed.
The design of the study needs to incorporate the diverse and unpredictable challenges
which arise from the COVID-19 pandemic and the resulting governmental restrictions. It is

1http://www.explorviz.net
2https://www.bimswarm.de/

1

http://www.explorviz.net
https://www.bimswarm.de/

1. Introduction

notable that the design of a study, which asks software professionals to use collaborative
AR to explore and evaluate software, is still a novel field of research.

1.2 Document Structure

In Chapter 2 we give an overview of our goals. Chapter 3 is an introduction to the
foundations and technologies which are necessary to achieve our goals. In Chapter 4 we take
a look at related work to give an overview of existing and related visualization approaches.
The gathered knowledge about foundations and related work is a building block for
Chapter 5 which gives insights into the envisioned approach. Chapter 6 is concerned
with the implementation of the developed concept. The resulting implementation is then
evaluated in Chapter 7. At last, Chapter 8 summarizes the gathered results and takes a
look at potential future work.

2

Chapter 2

Goals

We have the overall goal to explore the potentials and limitations of a collaborative AR
approach for program comprehension. Following this, the overall goal is split up into three
goals which represent the required steps to achieve our overall goal.

2.1 G1: Concept for a Collaborative Augmented Reality Ap-
proach

The concept for the collaborative AR approach describes the envisioned visualization
which aims at improving program comprehension. The realization of a collaborative AR
approach requires several design decisions. The resulting set of design decisions builds the
foundation for the later implementation and evaluation of the approach.

The concept should at least contain specifications about the visualization approach,
the user interface (UI), desired target group, the envisioned use cases, and the minimal
technical requirements. Proceeding from these specifications, existing technologies and
software frameworks are compared to specify the technical environment which is used in
the subsequent implementation.

2.2 G2: Development & Integration of the Collaborative
Augmented Reality Approach

The second goal focuses on the architectural design and implementation of the collaborative
AR approach. Both architecture and implementation should be in accordance with existing
design principles of ExplorViz and make use of existing code where applicable. It is
desirable to incorporate the AR features into the existing extension for VR, such that users
can seamlessly switch between different visualizations.

An optional part of this goal is to enable interoperability between 2D, VR, and AR
visualizations. This would enable cross-platform collaboration. However, as described in
the next goal, we do not envision to evaluate cross-platform features within this context.

3

2. Goals

2.3 G3: Evaluation of the Collaborative Augmented Reality
Approach

To gain insights into the potentials and limitations of the developed collaborative AR
approach, our goal is to conduct a case study using a real-world application. BIMSWARM
is a Java-based enterprise application in the realm of BIM and is currently in development.
As such, it is a suitable test subject. The study aims to use off-the-shelf hardware, namely
tablet computers, to evaluate the approach in a practically applicable and relevant scenario.

The active developers of BIMSWARM are valuable probands for the case study as they
are familiar with BIMSWARM and can give informed feedback about potential applications
and limitations of our approach within the design and development process of a complex
software application. In preparation for the case study, a smaller pilot study with students
should be conducted. The pilot study could identify improvements of the case study design
and give hints about desirable changes to the implementation.

4

Chapter 3

Foundations and Technologies

In the following, we give an overview of the necessary conceptional foundations and
employed technologies. Following that, we give an overview of AR and VR in Section 3.3,
including the software solutions for AR and VR, which are relevant for the envisioned
approach. We start in Section 3.1 with the introduction of BIM before we present the BIM
software BIMSWARM in Section 3.2. At last, we introduce the software visualization tool
ExplorViz and its collaborative VR approach in Section 3.5.

3.1 Building Information Modeling

We plan to evaluate our approach by means of a case study that employs BIMSWARM,
a piece of software in the realm of BIM. BIM is founded on the use of digital models for
buildings, called building information models. In addition to their 3D information, building
information models contain metadata about the represented physical entities. Furthermore,
standardized processes are essential to effectively use BIM throughout all lifecycle phases
of a building [Meins-Becker et al. 2019].

The number and definition of the individual lifecycle phases vary throughout the
literature [Meins-Becker et al. 2019; Borrmann et al. 2018; Jiang et al. 2016]. For our
purpose, we define the lifecycle of a building in a simplified manner but in accordance
with Borrmann et al. [2018]. The lifecycle includes the phases of conceptual design, detailed
design, construction, operation, and modification (see Figure 3.1). Modification includes the
process of demolition. The overall process is represented as a cycle because both building
material and gathered knowledge can be recycled for new building projects.

Beyond replacing paper drawings and utilizing the lifecycle of a building, BIM intro-
duces new opportunities for automatic analysis, including checks for safety hazards [Aires
et al. 2018]. Also, recent research explores how BIM can support meeting current building
requirements, e.g. to build sustainably and energy-efficient [wu et al. 2017; Jiang et al.
2016].

3.2 BIMSWARM

BIMSWARM is a piece of software under development in the realm of BIM. As such, it is a
candidate for our case study to test the collaborative AR approach. BIMSWARM is an online

5

3. Foundations and Technologies

Conceptual Design

Conceptual Design

Det
ai

le
d

D
es

ig
n

Conceptual Design

Construction

Demolitio
n

O
peration

Figure 3.1. Lifecycle phases of a building (adapted from Borrmann et al. [2018])

marketplace which aims at enabling users to easily find, evaluate, and combine BIM-related
software products. It is developed as part of a research project whereby planen-bauen 4.01

acts as coordinator and adesso2 is responsible for the software implementation.
The backend of BIMSWARM is composed of microservices. An overview of the function-

ally relevant microservices and some of their relations is presented in Figure 3.2. Eureka3

is a service registry and used by BIMSWARM to introduce the remaining microservices
to each other. Just as Eureka itself, all microservices use Representational State Transfer
(REST) for inter-service communication.

Zuul4 is employed by BIMSWARM as a gateway to dynamically route requests to other
microservices and increase resilience. The remainder of the depicted microservices in Fig-
ure 3.2 are used to implement the core features of BIM. The development of BIMSWARM fo-
cuses on four main features, namely BIMSWARM-Marketplace, BIMSWARM-Certification,
BIMSWARM-API, and BIMSWARM-Composer.

The BIMSWARM-Marketplace provides a user with an overview of software in the realm
of BIM. In addition to a simple property-based search, users should be provided with a
search for BIM software which takes their employed use cases into account.

The BIMSWARM-Certification aims at supporting users in their choice of software.
BIMSWARM can provide information about certifications of the offered software products.
A software product can be certified by independent authorities and for example, could

1https://planen-bauen40.de/
2https://www.adesso.de/de/
3https://github.com/Netflix/eureka
4https://github.com/Netflix/zuul

6

https://planen-bauen40.de/
https://www.adesso.de/de/
https://github.com/Netflix/eureka
https://github.com/Netflix/zuul

3.3. Extended Reality

<<component>>
BIMSWARM Platform

<<component>>
SSOService

<<component>>
ToolchainService

<<component>>
ProductService

<<component>>
UserService

<<component>>
MailService

<<component>>
Gateway

<<component>>
Eureka

<<component>>
FileService

External
Mailserver

BIMSWARM
Platform API

SSO API

Service
Registration

Distribute Requests
to Services

Figure 3.2. Overview of the microservices and interfaces of the BIMSWARM backend.

provide information about the compatibility with other products or the use of open
technology standards. In addition to the certification of single products, product types and
toolchains might acquire a certification.

The BIMSWARM-API is a coherent API which can be used by BIM software to enable
them to work in combination with other BIM software products. For example, a single sign-
on (SSO) feature allows users to enter login credentials only once in order to use multiple
BIM software products which support the BIMSWARM-API. Additionally, BIMSWARM
provides the software products with a common data environment (CDE) to facilitate
sharing of data throughout BIM processes.

The BIMSWARM-Composer takes use cases or processes of a user and can determine
which software products are capable to achieve the desired tasks in combination. The
result is a possible toolchain. The compatibility of the software products, with regard to
the processes and data flows, is ensured with help of the BIMSWARM-API.

In sum, BIMSWARM aims at supporting and combining BIM software for all BIM
lifecycle phases and the transitions between them. As such, it tackles the problem of
incompatible BIM software, which is one of the major technical challenges for the current
use of BIM in the industry [Azhar 2011].

3.3 Extended Reality

For program comprehension and software visualization, a variety of hardware devices and
approaches which augment or replace the real environment are explored [Chotisarn et al.
2020]. The degree to which a visualization makes use of real or virtual objects respectively,

7

3. Foundations and Technologies

Mixed Reality (MR)

Reality-Virtuality (RV) Continuum

Real
Environment

Augmented
Reality (AR)

Augmented
Virtuality (AV)

Virtual
Environment

Figure 3.3. Simplified reality-virtuality continuum by Milgram et al. [1994]

can be categorized with respect to the reality-virtuality (RV) continuum (see Figure 3.3). As
mixed reality (MR) describes the combination of both real and virtual environments, we
use the term extended reality (XR) to subsume AR, VR, and related technologies. In the
following, we introduce the concepts for AR and VR.

3.3.1 Augmented Reality

In the reality-virtuality continuum, AR is categorized as a mixed reality (MR), which adds
virtual elements to a real environment. However, as augmented virtuality (AV) is rarely
used, there exist broader definitions which focus on the user experience. For example,
Azuma [1997] defines AR as a combination of real and virtual (1), interactive in real-time
(2), and registered in 3D (3), whereas registration of 3D means that 3D virtual objects are
added to a 3D real environment. For the context of this work, we adopt this definition as it
represents the properties of AR which we aim for in our envisioned approach. In addition,
this definition does make assumptions about the employed hardware devices.

3.3.2 Virtual Reality

In the reality-virtuality continuum VR is categorized as a virtual environment, i.e. VR
does incorporate no elements of the real environment into the visualization for the user.
However, since VR-capable devices often allow the movement of users, in practice a VR
visualization might include indicators for barriers in the real world to prevent collisions.

VR tries to let a computer-generated world feel as real and immersive as possible for
a user [Billinghurst et al. 2001; Robertson et al. 1997]. To enable the perception of depth,
i.e. stereopsis [Ohzawa 1998], the left and right eye are usually given two slightly different
images. Furthermore, headphones or even omnidirectional treadmills might be employed
in addition to the visual input to further decouple the user from the real environment.

In 1968, a head-mounted display (HMD), known as ’Sword of Damocles’, was developed
[Sutherland 1968]. Afterwards, especially recently, there have been numerous technical

8

3.4. Web Technologies

developments in the realm of virtual reality [Anthes et al. 2016], e.g. the Oculus Rift5 or
HTC Vive Pro VR system.6

3.4 Web Technologies

In this section, we take a closer look at web technologies which we plan to use or take their
use into consideration. Namely, we present AR.js, WebXR, Hammer.JS, and WebRTC.

3.4.1 AR.js

AR.js7 is a JavaScript library which provides functionalities for the use of AR in the browser.
Given a video feed, e.g. of a webcam or an integrated camera of mobile devices, AR.js
provides three ways to introduce virtual objects to a given video in order to achieve AR,
namely image tracking, location-based AR, and marker tracking.

For image tracking, AR.js aims at detecting a provided image within the video. If such an
image is detected, its position can be used to place virtual objects within the visualization,
e.g. on top of the image. This approach is quite versatile as arbitrary images might be
selected to get reference points for the visualization. However, depending on the image,
the detection accuracy might vary and the approach is compute-intensive. Undesirably,
this leads to increased power consumption for mobile devices.

Location-based AR makes use of positional information which can be provided by modern
smartphones, e.g. via their GPS, WLAN, or gyro sensors. Use cases include the use of
virtual objects to provide a user with information for navigation in foreign environments.

For marker tracking, AR.js uses images which are easy to recognize, called markers.
Markers employ two high contrast colors, e.g. black and white. If additionally a low
resolution is used, markers can be recognized within the video of a camera with low
computational effort. Markers can be printed on paper or displayed on screens. The
recognized markers are points of reference to add and position virtual 3D models to the
video, e.g. on top of a marker.

As AR.js uses widely adopted web technologies such as WebGL8 and WebRTC9, it is
compatible with commonly used modern browsers.

3.4.2 WebXR

WebXR10 is an application programming interface (API), which brings support for AR,
VR, and related devices to the web browser. The term XR subsumes AR, VR, related

5https://www.oculus.com/rift/
6https://www.vive.com/de/product/vive-pro/
7https://github.com/AR-js-org/AR.js/
8https://get.webgl.org/
9https://webrtc.org/

10https://www.w3.org/TR/webxr/

9

https://www.oculus.com/rift/
https://www.vive.com/de/product/vive-pro/
https://github.com/AR-js-org/AR.js/
https://get.webgl.org/
https://webrtc.org/
https://www.w3.org/TR/webxr/

3. Foundations and Technologies

technologies in this context. WebXR is the successor of the experimental API for VR in web
browsers, WebVR.11

In order to present XR content to a user, WebXR exposes a list of all connected and
supported XR hardware devices. After a session for a device is initiated, content can be
rendered, e.g. via WebGL, to the respective display(s). WebXR also provides access to
positional information and contains events for user inputs.

Since WebXR uses JavaScript12 and both AR and VR become more widely available,
support for many browsers across a variety of devices and operating systems can be
expected for the future. However, WebXR was recently released in 2018 and as of now, only
Chrome13, Egde14, Chrome for Android, and Samsung Internet15 offer native support [MDN
Web Docs WebXR Device API]. However, web browsers which offer support for WebVR, like
Firefox16, there exists a WebXR Polyfill.17

3.4.3 Hammer.JS

Hammer.JS18 is a Javascript library for the recognition of touch gestures in web browsers.
Besides simple single-tap and multi-tap recognizers, Hammer.JS also provides recognizers
for multi-touch gestures. These include recognizers for pan, pinch, and rotate gestures.
With regard to these recognizers, Hammer.JS is highly configurable. Each recognizer for a
gesture can be set to trigger for a specific number of fingers on a touchscreen. In addition,
it can be specified which gestures can be combined or take precedence over each other.

3.4.4 WebRTC

WebRTC19 is an API for the web, which enables real-time communications. Among others,
it supports the direct transfer of audio and video data, including the streaming from cam-
eras and microphones. Almost all modern browsers, including mobile browsers, support
WebRTC by default.

3.5 ExplorViz

ExplorViz [Fittkau et al. 2017; Hasselbring et al. 2020] is a piece of software for the
visualization and monitoring of software landscapes. It employs dynamic program analysis

11https://webvr.info/
12https://www.javascript.com/de
13https://www.google.com/intl/en_gb/chrome/
14https://www.microsoft.com/en-us/edge
15https://www.samsung.com/uk/apps/samsung-internet/
16https://www.mozilla.org
17https://github.com/immersive-web/webxr-polyfill
18https://hammerjs.github.io/
19https://webrtc.org/

10

https://webvr.info/
https://www.javascript.com/de
https://www.google.com/intl/en_gb/chrome/
https://www.microsoft.com/en-us/edge
https://www.samsung.com/uk/apps/samsung-internet/
https://www.mozilla.org
https://github.com/immersive-web/webxr-polyfill
https://hammerjs.github.io/
https://webrtc.org/

3.5. ExplorViz

Kubernetes Cluster

<TraceId, Span>
OpenCensus

Collector

OpenCensus Spans

<Token, SpanStructure>

<TraceId, SpanDynamic>

Adapter
Service

Structure Records

Landscape
Service

Traces

Trace
Service

User
Service

Structural Landscape Model
(Current / Historical)

Traces for Landsape Model

Frontend

Merge Structure
and Traces

Structural
Data

Dynamic
Data

LandscapeToken
Management

LandscapeToken / OpenId User

CassandraDB

CassandraDB

MongoDB

OpenCensus Spans

Client

Application

Ocelot

Application

Ocelot

Client

Application

Ocelot

Application

Ocelot

gRPC
Kafka

HTTP
CQL
MQL

A
B

C

D

E

Figure 3.4. An overview of the architecture of ExplorViz.

to provide a live trace visualization of the monitored data. As such, ExplorViz is a tool to
improve program comprehension, i.e. to support users in software maintenance activities.

In the following, we take a closer look at the architecture of ExplorViz and its visualiza-
tion approach.

3.5.1 Architecture

ExplorViz has been under continuous development since 2012. In 2017 a structural change
from a monolithic architecture to an architecture organized in microservices was realized
in ExplorViz [Zirkelbach et al. 2018]. The most important components of ExplorViz are the
backend and frontend. The backend, which employs a microservice architecture, is mainly
written in Java. The data flow and implemented microservices are displayed in Figure 3.4.

For the envisioned case study it is necessary to collect live trace data, i.e. employ a
dynamic program analysis framework. For Java-based applications, ExplorViz employs
inspectIT Ocelot.20 inspectIT Ocelot is a Java agent which collects performance, tracing,
and business data. For our context, the collected data about trace executions is the most
relevant feature.

The trace data is exported in accordance with the OpenCensus21 standard, a library
for application metrics and distributed traces. The data of the Java agent is received by a
collector via gRPC22 and then forwarded via Kafka23 (Figure 3.4 - A) to the Adapter Service.
The Adapter Service processes the incoming data such that it is split into structural and
dynamic data (Figure 3.4 - B). The Landscape Service (Figure 3.4 - C) then manages and
persists the structural data, e.g. data about the structure of applications, packages, and

20https://www.inspectit.rocks/
21https://opencensus.io/
22https://grpc.io/
23https://kafka.apache.org/

11

https://www.inspectit.rocks/
https://opencensus.io/
https://grpc.io/
https://kafka.apache.org/

3. Foundations and Technologies

Figure 3.5. An example system and its content as displayed by the ExplorViz landscape view.

classes. On the other hand, the Trace Service (Figure 3.4 - D) manages and persists dynamic
data, i.e. data about observed method calls.

The collected data can then be retrieved by the frontend (Figure 3.4 - E). The frontend
uses the Ember.js24 web development framework and is executed by the user’s web browser.
Therefore, it is mostly written in TypeScript25 and JavaScript. Through this architecture, the
development of extensions is very flexible [Zirkelbach et al. 2019] and through the use of
JavaScript on the client-side it is possible that ExplorViz can be used system-independently
with modern browsers. The employed visualization approach of the frontend is explained
in further detail in the following section.

3.5.2 Landscape and Application View

The visualization of ExplorViz is rendered on a canvas using WebGL. To create and
arrange the virtual objects for the canvas, three.js26, a popular Javascript 3D library, is used.
ExplorViz uses two different views [Fittkau et al. 2015]. In Figure 3.5 a snippet of the
landscape view for an exemplary landscape is depicted.

The landscape view is a two-dimensional representation of a software landscape and is
particularly suitable to get an overview of the monitored software. There are applications
(blue), nodes (green) and systems (grey). Nodes can represent a physical server which
can be identified by an IP address. Systems on the other hand are a semantic construct

24https://emberjs.com/
25https://www.typescriptlang.org/
26https://threejs.org/

12

https://emberjs.com/
https://www.typescriptlang.org/
https://threejs.org/

3.5. ExplorViz

Figure 3.6. A snapshot of the Spring PetClinic as displayed by ExplorViz.

and therefore cannot be detected automatically. The communication between software is
represented by orange lines. The thickness of the lines correlates with the number of calls it
represents. Interaction with an application (e.g. via a double click) leads to the application
view (see Figure 3.6).

The application view represents a three-dimensional model of the software and offers
many interaction possibilities. Software packages are shown in green, which in turn can
contain packages or individual classes (blue). The height of a class model indicates the
number of objects belonging to the class. Here, too, the communication between objects is
represented with orange lines. One can highlight individual classes and components or call
up additional information for a component or class in form of a popup. This representation
of applications is supposed to be a metaphor for a three-dimensional city [Dieberger and
Frank 1998] [Wettel and Lanza 2007]. Packages can be interpreted as districts, classes
correspond to houses, and communication between classes is comparable to streets as it is
connecting classes with each other.

13

Chapter 4

Related Work

In this chapter, we take a closer look at related approaches and existing implementa-
tions in the realm of software visualizations. To the best of our knowledge, there are
no approaches which employ AR for collaborative program comprehension with tablet
computers. Therefore, we present related work which focuses on comparable software
visualization approaches.

4.1 ExplorViz

ExplorViz [Fittkau et al. 2017; Hasselbring et al. 2020] is a piece of software for the
visualization and monitoring of software landscapes (see Section 3.5). Building on top of its
core features, ExplorViz includes an extension for collaborative VR which has undergone
several design iterations [Zirkelbach 2021].

First, Krause [2015] introduced VR to ExplorViz using an early version of the Oculus
Rift as a HMD and Microsoft Kinect1 to realize motion controls. With the growing maturity
of standalone VR solutions, Häsemeyer [2017] adapted the VR implementation such that
VR systems with dedicated controllers, e.g. the HTC Vive2, HTC Vive Pro, and Oculus
Rift are supported. Building upon that, König [2018] and Hansen [2018] implemented the
collaborative VR approach in its current state.

The collaborative VR approach, just as the rest of the frontend of ExplorViz, uses three.js.
WebXR is used to access VR devices. As three.js offers support and documentation for
the use of WebXR, the combination of these technologies is straightforward. However, as
Chrome does not yet support standalone VR devices such as the HTC Vive [W3C Chrome
Hardware Support], Firefox in combination with the WebXR Polyfill is used.

For the VR visualization approach, a user enters a virtual world, which contains a
square floor. An example of the VR visualization can be seen in Figure 4.1. On top of the
floor, a 3D adaption of the landscape model is placed. The VR controllers are represented
by 3D models. Colored rays originate from the front of the controllers. The rays aid the
interaction with software models from a distance such that a user can use a controller to
manipulate objects which intersect with its corresponding ray. One controller, referred to
as the interaction controller, is augmented with a red ray and mainly used to manipulate

1https://developer.microsoft.com/de-de/windows/kinect/
2https://www.vive.com/de/

15

https://developer.microsoft.com/de-de/windows/kinect/
https://www.vive.com/de/

4. Related Work

Figure 4.1. An example landscape and one opened application as displayed by the ExplorViz VR
approach. On the left is a model of the utility controller and on the right a model of the
interaction controller.

the landscape and applications. Most actions, e.g. opening and closing entities of the
landscape and applications, are achieved by pointing at the respective entity with the ray
and actuating the controller’s trigger button. This action, applied to an application within
the landscape model, allows a user to open an application model which can be moved and
interacted with by pressing and holding a button on the side of the controller.

The second controller, referred to as the utility controller, is mainly used for additional
features like highlighting classes and teleporting within the 3D space. Teleporting is
achieved by actuating the trigger of the utility controller when pointing at the desired
position on the virtual floor. This allows a user to move in the virtual environment
independent of the space restrictions which the physical room might have.

The interactions with the landscape and applications are supplemented by textual
overlays and menus. The canvas-based menus are attached to the utility controller and
allow additional functionality like the rotation of the landscape model or to connect with
other users. By connecting with other users, the collaborative VR experience is started.
Other users are represented by 3D models of their HMD and their controllers. An extension
for the backend ensures that actions, e.g. opening and closing landscape entities, are
synchronized among all users.

The VR extension for ExplorViz shares several similarities with our approach. Mainly,
the visualization of the software models is comparable as we want to use the same
3D models. In contrast, as our approach employs AR, the real environment of users is
incorporated into the visualization whereas the VR approach does only visualize a virtual

16

4.2. SkyscrapAR

floor. The main difference originates from the different hardware requirements. The VR
approach requires expensive hardware, our approach relies on the use of widespread tablet
computers.

4.2 SkyscrapAR

SkyscrapAR [Souza et al. 2012] uses an AR software visualization approach to depict the
process of software evolution. The representation of packages and classes is a variation
of the widespread 3D city metaphor. The classes can be interpreted as buildings and
are placed on top of rectangular quarters which represent packages. As SkyscrapAR is
concerned with software evolution, the visualization displays a selected revision of a piece
of software and can change over time.

Even though classes can be added or removed throughout the development of software,
a static layout is used. For this, data about all packages and classes which have existed
at any time within the software is collected and using that information a layout for the
metaphorical city is calculated which could accommodate all those packages and classes.
The packages for classes which are not present at a given software revision are represented
as green lots. Classes which are changed in the current revision are depicted as red
buildings. In addition, the user can highlight individual classes in yellow or orange. In
addition to the colors, the footprint of a building gives a viewer insights into the lines
of code (LOC) for the associated class and the height of the building correlates with the
number of recent modifications to that class.

The software model of an application is displayed in AR by SkyscrapAR. To have a
point of reference for the placement in the real environment, printed markers (Figure 4.2
(a)) are placed such that a webcam can capture it as part of an image. The image is then
transformed to black and white such that the rectangular marker and its content can
be used to calculate a matching coordinate system (Figure 4.2 (b)). At last, the rendered
3D model is centered on the marker with respect to the calculated coordinate system
(Figure 4.2 (c)).

SkyscrapAR is executed on computers and thus a keyboard and mouse are used as
input devices. A mouse can be used to highlight classes or hover on a class to display
information like the class name or the LOC. The keyboard is used to switch to another
software revision, filter out buildings, or scale the application. Changing the orientation of
the application is achieved by rotating the underlying marker.

The approach of SkyscrapAR shares similarities with our approach as it uses com-
mon hardware and easy to produce markers to achieve an AR software visualization.
However, the use of a desktop computer and webcam prohibits the movement within
the real environment such that the viewed image remains mostly stationary. In addition,
keyboard and mouse do not represent the ideal input devices for this visualization, which
is also recognized by Souza et al. [2012]. Aside from the use of the 3D city metaphor,
the visualizations share few similarities because SkyscrapAR is concerned with software

17

4. Related Work

Figure 4.2. For the visualization approach of SkyscrapAR [Souza et al. 2012], pictures containing a
marker are captured using a camera (a), processed to calculate a corresponding coordinate
system (b). The coordinate system is used to place and align the 3D model (c).

evolution and ExploViz is concerned with software behavior.

4.3 IslandViz

IslandViz [Schreiber et al. 2019; Seipel et al. 2019] is a software visualization tool which
provides visualizations for both AR and VR. In this section, we focus on the visualization
approach for AR.

IslandViz, as the name suggests, employs a custom metaphor to visualize component-
based software architectures called island metaphor. The overall software system is rep-
resented as an ocean containing several islands representing bundles (applications). The
islands are partitioned into regions of different colors and irregular shapes through which
the island’s appearance shares similarities with political maps. The regions represent
software packages. Only regions which contain classes, represented by tall buildings, are
visualized. Thus, the hierarchical structure of packages is neglected to simplify the visual
metaphor. To visualize dependencies between bundles, green and red ports are placed
aside an island. Here, green ports with corresponding arrows indicate import dependencies
to another bundle and red ports are used to depict export dependencies.

To realize the visualization in AR, IslandViz focuses on the Microsoft Holo Lens as
a hardware solution. The Holo Lens makes use of translucent glasses on which images
are projected to add 3D virtual objects to the real environment. The Holo Lens possesses
several sensors to scan the environment and calculate a 3D representation of it through
which AR content can be aligned with real objects. Figure 4.3 illustrates that the 3D models
for IslandViz can be placed freely on real objects, e.g. on a table. The Holo Lens does not
come with dedicated input devices. Therefore, the interaction with IslandViz is realized

18

4.3. IslandViz

Figure 4.3. AR Visualization of IslandViz [Schreiber et al. 2019]. An "Air-Tap" gesture can be per-
formed to select a bundle.

through gestures, voice commands, and gaze actions. An "Air-Tap" can be performed to
select bundles and bring up additional information. A two-handed gesture, similar to a
pinch gesture on mobile devices, allows a user to change the zoom of the visualization. A
cursor which is navigated by gazing can be combined with a "Tap-and-Hold" gesture to
navigate through the virtual ocean. At last, natural language processing is employed to
allow more complex interactions. For example, a user can filter and select bundles through
voice commands.

From a technical perspective, the Holo Lens uses the Universal Windows Platform
(UWP) as a runtime environment. IslandViz is developed with Unity3D 3, which provides
support for both UWP and the Holo Lens specific Mixed Reality Toolkit 4 (MRTK). The
MRTK has built-in support for sharing application states over multiple devices. IslandViz
utilizes this feature to allow for collaborative software exploration. For example, two users,
who are both wearing a Holo Lens, can stand in the same room and interact with the AR
visualization of IslandViz which is placed on a table. This collaborative scenario is similar
to the single-user scenario depicted in Figure 4.3.

Overall, IslandViz is a software visualization tool which allows to view and explore
software systems in AR. Just like our approach, it strives to enable users to work collab-
oratively. In contrast, the visualization approach and required hardware, as well as the
employed software technologies, differ. IslandViz employs the island metaphor which aims

3https://unity.com/
4https://github.com/microsoft/MixedRealityToolkit-Unity

19

https://unity.com/
https://github.com/microsoft/MixedRealityToolkit-Unity

4. Related Work

to enhance immersion through a detailed depiction of islands which are placed within a
virtual ocean. Even though ExplorViz is also based on a metaphor, the 3D city metaphor,
we do not pursue the goal to resemble real-world cities as closely as possible. We provide
a user with a landscape model, which gives an overview of the software system, and
application models which are suitable for a more detailed software exploration. These
models can be explored independently from each other as they can be placed on different
markers. At last, IslandViz uses specialized and expensive hardware for AR whereas our
approach uses widely available and affordable hardware.

20

Chapter 5

Concept

In this chapter, we introduce the concepts for our collaborative AR approach. We start by in-
troducing the general ideas, including envisioned use cases, for our approach. The Chapter
then goes into more detail by specifying the required hardware before we present a draft
for the user interface. We continue by presenting how our approach can be incorporated
with the existing implementation of ExplorViz. The chapter is concluded by a discussion
about the available software technologies which are suitable to implement our approach.

5.1 Classification

In this section, we classify the envisioned software visualization approach which we employ
for collaborative program comprehension. Maletic et al. [2002] propose a taxonomy for
software visualization. Therefore, a software visualization is characterized by the five
dimensions tasks, audience, target, medium, and representation.

The tasks define why a software visualization is needed. For our approach, we envision
the main task to be familiarization with software systems such that the maintenance
of software systems is facilitated. In addition, the analysis of the visualized program
behavior could also be used to identify architectural shortcomings or identify unwanted
dependencies between classes.

The audience defines who will use a software visualization approach. We primarily
envision software developers and software architects with varying levels of expertise for
our approach. As we also envision the collaborative use, we also assume that the immersive
character of AR can be used in some use case scenarios which include persons with a
background in software development. We present the envisioned use cases in more detail
in Section 5.2.

The target defines the employed data source and what aspects of a piece of software are
visualized. We want to incorporate our approach seamlessly into ExplorViz and therefore
adopt the same data as used for the existing visualization (see Section 3.5).

The medium specifies which devices are used for visualization. We envision to support
the use of mobile devices, i.e. tablet computers and smartphones. We describe the properties
of the required hardware in more detail throughout Section 5.3.

The representation defines how the available data is presented. In general, we want to
adopt the existing 3D software models of ExplorViz that are already employed for its VR

21

5. Concept

extension (see Section 4.1). The visualization and user interface is specified in more detail
in Section 5.4.

5.2 Use Cases

In general, AR visualizations tend to be more immersive as they combine the real environ-
ment with virtual objects. There are several use cases for which our visualization approach
could be suitable due to the use of mobile devices and the immersive character of AR.
Firstly, we present examples for use cases in which our approach is used alone as opposed
to collaboratively. These example use cases include the familiarization or mobile solution.

For familiarization, developers or software architects who are unfamiliar with a given
software system can use our approach to become more familiar with the overall architecture
and behavior of the analyzed software system. Mobile devices are very common and our
approach does only require a browser and markers in addition. Notably, it is sufficient to
display the markers on a monitor as opposed to printing them to try out our approach.

Our approach could also be suitable as a mobile solution for software visualization. Only
a mobile device and a marker, both of which are portable, are required. This opens up the
potential for brief presentations about software architecture and behavior. For example,
the immersive and three-dimensional properties of our visualization approach could be
appealing to customers and complement ordinary presentations.

We do not only focus on an AR visualization for tablet computers but want to enable
users to work collaboratively. We also envision use cases where our approach could be
used collaboratively, including meetings and a pair programming use case.

Meetings are a common practice in the realm of software engineering. It could be
beneficial to incorporate findings which originate from software visualization tools like
ExplorViz into the meeting. However, the use of desktop computers or laptops can divert the
attention of meeting attendees. Our approach employs mobile devices in conjunction with
printed markers. We provide collaborative features, employ small devices, and use markers
which can be moved and pointed at, thereby encouraging and facilitating communication.

Pair programming is the practice of developing software in pairs of two at a single
workspace. Thereby, one developer is writing code while the other developer is reviewing
the written code and is giving advice. This practice is employed to increase software
quality, especially for the development of complex software systems. Since recently, pair
programming might also be conducted remotely as opposed to the developers occupying
a single workspace. We suspect that our approach can be used in the fashion of pair
programming, i.e. multiple software developers could collaborate to achieve a common
understanding of a piece of software. The analysis of the architecture or runtime behavior
of software can be complex. By working in a team and exchanging views on different
aspects of the depicted visualization, the program comprehension of the collaborating
users could be improved. This use case could be particularly beneficial for users who
have different backgrounds or different levels of expertise. At last, the practice of pair

22

5.3. Required Equipment

programming could be augmented by our visualization approach since ExplorViz uses
live trace analysis. Thus, changes to the behavior of a software system could be inspected
during the development process.

5.3 Required Equipment

In this section, we present the required equipment to use the envisioned collaborative
AR approach. This includes tablet computers, markers, and the required deployment
infrastructure.

5.3.1 Tablet Computers

Our approach aims to provide an augmented reality solution through the web browser.
Our only hard requirement for devices is that they possess a modern web browser and a
camera which can be accessed within the web browser. Up until now, ExplorViz does not
support visualizations, input methods, or features which are designed for mobile devices
which possess small touchscreens.

We aim to provide a visualization approach which is usable for the vast majority of
mobile devices. However, we assume it to be unlikely that smartphones are used exten-
sively for software exploration due to their limited screen size. Therefore, we consider that
smartphones might be used temporarily but we focus our development efforts on an im-
plementation which is suitable for tablet computers. Tablet computers can be characterized
as devices which have a smaller screen than computer monitors but do have a significantly
larger screen than smartphones.

5.3.2 Markers

In addition to the technical requirements, we need to specify which other requirements
in terms of physical equipment are present. For our approach, these are markers which
act as points of reference in the real world. Thus, they are used to position landscape and
application models as expected in the virtual coordinate system on top of the markers. The
markers themselves require well-thought-out design decisions, i.e. regarding their size,
employed symbols, and the choice of material.

Markers for AR.js include a black rectangular border that contains the marker’s content.
The background is white to increase the contrast and improve recognition. In terms
of symbols, we plan to use a marker design similar to the often used and approved
Hiro marker1, which depicts the word "Hiro". As opposed to the Hiro marker, which is
designed for a general use, the use for our markers is known in advance, i.e. landscape
and application models.

1https://commons.wikimedia.org/wiki/File:Hiro_marker_ARjs.png

23

https://commons.wikimedia.org/wiki/File:Hiro_marker_ARjs.png

5. Concept

L 1A

(a) (b)

Figure 5.1. Marker concepts for landscape (a) and application models (b). The outer black border
represents the edges of the paper on which the marker shall be printed.

Thus, we choose to depict semantically meaningful letters and numbers on the markers
to aid users. We use the letter "L" to indicate that a marker is used for landscape models
and refer to this kind of markers and landscape markers. The landscape model is required to
open applications and gives an overview of the running applications.

Complementing the landscape markers are markers on which application models are
placed, referred to as application markers. As software landscapes often contain multiple
applications, multiple markers with different content are required. Therefore, we choose to
display a number prominently on application markers and opt for a one-to-one mapping
of numbers on application markers and different application models. We suppose that
allowing multiple identical application models on different markers could lead to confusion.
To remind the user of the semantic meaning of the application markers, a small letter
"A" is printed on the bottom right. A marker design that illustrates the above-mentioned
considerations for a landscape and the first opened application can be seen in Figure 5.1.

Next, we take a look at the suitable materials for the markers. As a user should be
able to produce markers easily at home or at his or her workplace, printable paper is the
only viable option for our approach. However, preliminary tests have shown that the usual
paper with 80 grams per square meter has some drawbacks. Firstly, it is easily damaged by
regular use. Secondly, thin paper is rather flimsy such that it tends to be uneven which
could negatively impact the accuracy of marker recognition. At last, thin paper can not
be easily picked up or moved when it lays flat on a surface without bending it. Thus, we

24

5.4. Representation

recommend the use of thicker paper which is still printable, i.e. in the range of 200 to 400
grams per square meter. Such paper exhibits improved durability, keeps its shape well, and
can be picked up and moved easily with one hand.

The last design decision is about the size of the markers. We suggest that all markers
should have the same dimensions to simplify the creation, storage, and usage of markers.
On the one hand, markers should not be too large because they could become bulky or even
tend to be only partly visible on a tablet’s camera feed. On the other hand, markers should
be easy to read for the user and reliably recognized by the employed software framework.
In the same manner as the other design decisions, we aim to use widely available products.
Concluding, we choose a rough format of 10 cm x 10 cm for the black rectangle which
contains the marker symbols. As a white background around the black square improves
recognition accuracy, we aim to print the markers on DIN A5 paper. DIN A5 is half the
size of DIN A4 and thus can easily be acquired by cutting a regular DIN A4 paper in half.
As DIN A5 is not a square shape, the printed markers have significantly more white space
in one direction compared to the other. We assume this to be helpful for users in order to
assess the correct orientation of the marker.

5.3.3 Deployment Infrastructure

The backend of ExplorViz with our contributions needs to run on a computer. As ExplorViz
can be deployed with Docker 2 containers, a wide support of devices is ensured. However,
it should be considered that both ExplorViz and the monitored application need to be
executed. This can be done on a single device but requires sufficient compute power
and main memory. For technical details about ExplorViz we refer to Section 3.5. For the
remainder of this section, we assume that ExplorViz is deployed on a server and can be
accessed easily through modern web browsers.

5.4 Representation

In this section, we present our concept for the employed visualization and the corresponding
user interface.

For visualization in AR, we would like to adapt the existing visualization of ExplorViz.
By splitting it into a landscape model, which gives an overview of the instrumented
applications, and several application models, the visualization of ExplorViz is already
designed to be modular. It therefore certainly makes sense to place the corresponding 3D
models onto different markers. This way, the landscape would have its own marker. But
since there can be any number of applications, they should not be automatically placed
on markers. We, therefore, think it makes sense that by interacting with the landscape,
applications can be opened and placed on a marker, which is still free. Here, we consider

2https://www.docker.com/

25

https://www.docker.com/

5. Concept

Figure 5.2. The concept for the user interface. A crosshair in the middle is used to aim at the desired
entity within models which are placed on a marker. Buttons in the bottom left and right
corner allow for various interactions. A button in the top right corner enables a user to
exit the visualization while a button in the top right corner opens a window for settings.

the number of five markers for applications to be sufficient for the time being. If all markers
are occupied, however, another application would have to be closed first.

For interaction with the software models, mobile devices do not have a mouse as an
input device, but only a touchscreen. Tapping with a finger can be quite inaccurate, which
is why we assume this to be unsuitable for interaction with small classes and closely packed
communication lines. Furthermore, regular touch inputs could be impeded by the fact that
only one hand is then available to hold the mobile device. Depending on the size, this
could cause it to wobble, and the camera image with markers and models located on the
markers would also move accordingly. We, therefore, aim to have users hold their device
steadily with two hands and still be able to interact well with the software models. At last,
we envision to provide the user with various settings to configure the visualization. For
example, the size and spacing of the buttons should be configurable such that they can be
adapted to different screen sizes and user preferences.

A first draft of the visualization can be seen in Figure 5.2. It can be seen that models are
projected onto recognized markers. In the middle of the screen, we plan to use a crosshair,
which allows the targeting of entities and prevents the models from being obscured by the

26

5.5. Incorporation with existing Implementation

user’s fingers. Buttons for interaction are placed in the lower left and lower right corners
so that they can be easily operated with the thumbs during two-handed use.

As features for interaction, we would like to adopt the features known from the frontend
for opening and closing applications and packages as well as the highlighting feature. A
toggleable heat map should also provide a quick overview of properties of classes, e.g.
regarding their number of outgoing method calls. Since applications can be very large,
making it difficult to read class names, for example, it should be possible to adjust the size
of the 3D models. Finally, the popups known from the frontend should also be added to
display information.

5.5 Incorporation with existing Implementation

To ensure maintainability and compatibility of the developed approach, the later imple-
mentation should integrate with the existing implementation. Since our approach for the
visualization has the most similarities with the VR approach of ExplorViz, our approach
should be added to the existing VR extension. Effectively, this would turn the VR extension
into an XR extension.

In terms of collaboration, the existing VR service should also be used. This service
can be employed for session management. In addition, the VR service can synchronize
data about the opened applications, the state of packages within applications, and the
information about currently highlighted entities. Additions to the VR service may need to
be made here to ensure proper synchronization for our approach or enable new features to
be used collaboratively.

5.6 Software Technologies

In this section, we discuss our choice of software technologies.
WebXR is an API which enables the use of AR and VR devices for web browsers.

ExplorViz employs WebXR already for its VR extension. However, WebXR is not yet
supported by all modern browsers. For example, the mobile Safari browser does not
support WebXR. As Safari is the only browser on iOS devices which is allowed to use the
camera, this would interfere with our goal to develop an approach for a wide variety of
mobile devices. In addition, we rely on markers for the placement of the software models.
WebXR does not provide an implementation for the recognition of markers. Moreover,
since we are not using specialized hardware for AR, WebXR does not offer features that we
could make use of.

As opposed to WebXR, AR.js is a Javascript library which offers the detection of markers
in live camera feeds and brings support for the use of three.js. Therefore, AR.js provides
the feature set that is required by us and is supported by all modern browsers, including
mobile browsers. The use of AR.js is presented in the upcoming chapter.

27

Chapter 6

Implementation

In this chapter, we present the implementation of our approach for collaborative program
comprehension. The presented implementation reflects the state which is used for our
case study. Minor adaptions which result from a preliminary pilot study are already
incorporated in the upcoming sections.

6.1 AR.js

AR.js is a Javascript library for AR on the web. For managing such a dependency we prefer
to use npm1, a package manager for Javascript applications. However, there does not exist
an up-to-date version of AR.js for npm. Therefore, we include the current version of AR.js
as a Javascript file in the frontend of ExplorViz. AR.js is provided in different variants. We
choose the variant which can be used in conjunction with three.js. Another variant is meant
to be used with A-Frame2, a web framework for building AR and VR environments.

AR.js provides three main classes which need to be initialized in order to make use of
AR.js in conjunction with three.js. These classes are the ArToolkitContext, ArMarkerControls,
and ArToolkitSource.

Listing 6.1. Initialization of ArToolkitContext

1 let arToolkitContext = new THREEx.ArToolkitContext({

2 detectionMode: ’mono’,

3 cameraParametersUrl,

4 });

The initialization of the ArToolkitContext class is presented in Listing 6.1. The ArToolkit-
Context is the main engine which detects a marker within the desired images, e.g. a live
camera feed. Since we rely on black and white markers, we set the detection mode to
’mono’ (line 2). The use of colored markers is also possible but the accuracy of the marker
recognition is more sensitive to the encountered lighting conditions as these can distort
the colors. In addition to the detection mode, we need to pass the path to a file which
contains parameters for the employed camera (line 3). This is a binary file that contains

1https://www.npmjs.com/
2https://aframe.io/

29

https://www.npmjs.com/
https://aframe.io/

6. Implementation

technical data about a camera like the aspect ratio or focal length. We include such a file
for a 4:3 and a 16:9 aspect ratio and achieve satisfying results for the visualization. The use
of a file which contains mismatched camera parameters could lead to visual distortions or
misplacements of the 3D models.

Listing 6.2. Initialization of ArToolkitSource

1 let arToolkitSource = new THREEx.ArToolkitSource({

2 sourceType: ’webcam’,

3 sourceWidth: width,

4 sourceHeight: height,

5 });

The initialization of the ArToolkitSource class is displayed in Listing 6.2. The ArToolkit-
Source manages the image source which should be used for the recognition of markers.
As we are interested in a live camera feed, we use the images which are produced by the
device’s camera or webcam (line 2). However, the use of image or video files is also an
option. Furthermore, we specify the desired width and height (line 3 and 4). Notably, it
is not possible to request the actual camera resolution of a device through a web browser
due to privacy concerns. The provided width and height (in pixels) can only inform a
browser about the ideal camera resolution for the given application. It could be that a
lower resolution is provided if the device’s camera does not support the desired resolution.
Therefore, we use a resolution of 640 x 480 pixels as a default camera resolution. This
resolution can be met by all modern camera systems and reduces the computational load
for the detection of markers.

Listing 6.3. Initialization of ArMarkerControls

1 let arMarkerControls = new THREEx.ArMarkerControls(

2 arToolkitContext,

3 landscapeContainerObject3D,

4 { type: ’pattern’,

5 patternUrl: ’ar_data/pattern-angular_L_thick.patt’}

6);

The initialization of the ArMarkerControls class is presented in Listing 6.3. The Ar-
MarkerControls class is responsible for the correct alignment of 3D models on top of
a recognized marker. Therefore, it relies on the ArToolkitContext (line 2) and expects a
three.js object which it centers on the marker (line 3). Whenever a marker is recognized
within the provided image, the specified three.js object is set to be visible. Thereby, also all
child objects of that three.js object, e.g. the 3D landscape model, become visible. When a
marker is not recognized anymore, the specified three.js object is turned invisible again.
In addition to a three.js object, ArMarkerControls needs the path to a pattern file which
contains data for the recognition of the corresponding marker (line 4 and 5). The contents

30

6.2. Markers

of the pattern files and the process to generate them is explained in more detail in the
upcoming section.

6.2 Markers

In this section, we introduce the process of creating and detecting a marker. Thereafter, we
use the gathered knowledge to report about the design process which resulted in our final
marker design.

AR.js provides an online tool3 that can be used to transform images into corresponding
marker images and pattern files. For the resulting images, the uploaded image is placed
within a thick black border, which characterizes markers. The resulting pattern files can be
added to the frontend of ExplorViz and are needed to initialize the marker controls.

Using our concept for markers as a starting point, we thoroughly tested different marker
designs. It turns out that the envisioned marker design (see Figure 5.1) has drawbacks in
terms of recognition accuracy. Even though the first marker design is recognized in most
cases, bending the marker or non-optimal lighting conditions had a great impact on the
correct placement of the 3D models. During our regular tests, models had a tendency to
be missing even though the marker was within the camera image. Furthermore, it could
happen that models were visible in some seemingly arbitrary location of the image even
though no marker was visible.

The unwanted behavior led us to investigate the cause of this issue. While taking a
look at the content of the pattern files we recognized that the original images for a marker
are transformed into 16 times 16 numerical values which range from 0 to 255. In other
words, the marker recognition is based on recognizing a low-resolution image with gray
values which range from 0 (black) to 255 (white). This approach is very similar to that of
SkyscrapAR (see Section 4.2). If the resolution of input images is larger than 16 times 16,
the average color value is calculated for the corresponding area. Therefore, an input image
for a marker which only contains black and white pixels could result in a marker with
many different gray values.

We assumed that the recognition accuracy could be improved by providing an input
image whose pixels are a better match for the resulting pattern file. Thus, we went through
several design iterations to come up with a marker design which consists of black and white
elements, is aligned in a 16 by 16 grid, and still is semantically meaningful. We introduced
a horizontal at the bottom of each marker to clarify the intended orientation. Furthermore,
we kept the letter "L" to represent the landscape marker. In contrast to application markers,
the font of the landscape marker is thicker to indicate the importance of that marker, as
every software exploration in ExplorViz starts with the landscape model. For application
markers, we retained the approach for numbering those markers but neglected to include
additional visual hints since the landscape marker already stands out. An example of the

3https://jeromeetienne.github.io/AR.js/three.js/examples/marker-training/examples/generator.html

31

https://jeromeetienne.github.io/AR.js/three.js/examples/marker-training/examples/generator.html

6. Implementation

(a) (b)
Figure 6.1. A marker for the third application which has been opened (a) and a snippet from its

corresponding pattern file (b).

new marker design and its color values in the corresponding pattern file can be seen in
Figure 6.1. The design of all markers is presented in Appendix 8.2.

We tested the new marker design and noticed that the beforementioned issues are
alleviated. In our experience, it does not happen anymore that models are placed on
the wrong marker or placed when no marker is present at all. Still, markers may not
be recognized correctly due to poor printing quality, especially if colors are not printed
accurately.

Regarding the paper on which the markers should preferably be printed, we use matt
paper with a weight of 300 grams per square meter in accordance with our concept for
markers (see Section 5.3.2). In the upcoming section, we present how the markers are
combined with the 3D software models and a user interface.

6.3 Visualization

In this section, we give an overview on the developed visualization and the user interface
which accommodates it. For features that are added in addition to the core implementation
of ExplorViz, we refer to upcoming sections.

Figure 6.2 displays an example of the developed visualization. It shows three markers
which are placed on a table. The landscape model is always displayed on the marker which
contains the letter "L". Both landscape (Figure 6.2 - A) and application models (Figure 6.2 -
D) can be set to different transparency values such that the underlying marker is readable
and virtual and real environments blend together. Applications which include transparent

32

6.3. Visualization

Figure 6.2. Overview of the developed visualization. Three printed markers are placed on a table
such that a landscape model (A), a highlighted application (B) with additional information
(C), and a second application (D) are visualized. A centered crosshair (E) is the reference
point for several interactions with the models which can be triggered via buttons in the
bottom left (E) and bottom right (F) corner of the screen. Settings (H) can be accessed to
customize the visualization.

entities for other reasons, e.g. because of a highlighted package, are temporarily set to
opaque (Figure 6.2 - B). Besides the transparency, we included various customization
options which can be accessed via a designated settings button (Figure 6.2 - H). We give an
overview of all available settings in Section 6.7.

In general, the developed visualization closely resembles the draft for the visualization
which we envisioned in our concept (Figure 5.2). We removed the button to return to the 2D
landscape view. A context menu can be accessed through a long press on the camera image
or 3D models to access this and other features which are not frequently used. Through
this, we freed up additional screen space for the visualization and reduced accidental
button presses. The elements on the top of the screen, including the logo of ExplorViz
and a blue identifier of the currently selected landscape, are carried over from the default
visualization of ExplorViz as those take up little space and are unintrusive. Furthermore,

33

6. Implementation

we deviated from our concept by not employing the classic crosshair design and updating
it to a hollow circle (Figure 5.2 - E). This has the advantage that the color of the currently
targeted entity is still visible in the center and not covered. Even though the form differs,
we keep the name crosshair for this visual selection aid. In the given figure, the crosshair
could seem small as the screenshot was taken on a tablet computer with a screen diagonal
of 12.9 inches. It is important to us that the user interface is suitable for most screen sizes
and therefore elements of the user interface exhibit different sizes depending on the used
device.

In addition to the crosshair, we adapted the icon design, arrangement, and features of
some buttons. The scaling of software models is now accomplished through touch gestures
(see Section 6.4). The remaining button with a magnifier (Figure 5.2 - F) is repurposed to
enable a temporary enlargement of a small area around the crosshair. This zoom feature is
described in more detail in Section 6.5. Beside the button for zooming, there is a button to
toggle the heat map. This feature is presented in more detail in Section 6.6. The remaining
button in the bottom left corner, called info button, is used to call up additional information
about an entity. When activated, popups (Figure 5.2 - C) that contain data about the targeted
model, e.g. a class, package, or application, can be opened. The popups are inherited from
the frontend’s core implementation. However, we added a wrapper around the underlying
code which enables us to initially place popups above the crosshair and allow a user to
drag and place them freely on the screen. By default, at most one popup can be opened at
a time but popups which have been dragged by the user are not removed by subsequent
clicks on the info button. Still, whenever an opened popup is of no interest anymore, it can
be individually closed via a blue button above the popup. In addition, all popups can be
closed at once through a long press of the info button or the selection of a corresponding
entry within the context menu.

The remaining buttons of the visualization are placed in the bottom right corner of the
screen (Figure 5.2 - G). The button with two arrows enables the main interaction with the
visualized models. Through this button, target applications and packages can be opened
or closed. Therefore, it resembles the features which are accomplished by a double click
within the default visualization. The button with a colored paintbrush icon is used to
highlight packages, classes, or class communication in the depicted color. It, therefore,
inherits the features which are accomplished through a single mouse click in the default
visualization. The last remaining button contains an icon which should resemble a laser.
It triggers the temporary display of a colored sphere. Thus, users can ping at a point
within an application or landscape. This collaborative feature is presented in more detail in
Section 6.8.2.

6.4 Touch Gestures

In our concept, we planned to realize the interaction with the displayed 3D models mainly
through the use of HTML buttons. As these are placed in the bottom right and left corner,

34

6.4. Touch Gestures

it would enable a user to hold the tablet computer steadily with two hands during the
use of our approach. However, during the development of our approach, the number of
desirable features increased such that the addition of more buttons would be required.
Due to the limited screen space, we want to avoid this. Thus, we add the (multi-)touch
gestures pinch, rotate, and pan to our implementation. The gestures can be used to change
the scaling, rotation and position of the models which are targeted by the crosshair.

6.4.1 Pinch

We noticed that scaling the landscape or application models through a button press is
not practical. First of all, scaling a model like this can take up an extended amount of
time. Buttons can only register the number of performed touch actions or the duration of a
button press and therefore a user would need to click the button multiple times or press
it for quite a long time to change the size of a model by multiple magnitudes. Scaling a
model faster would inevitably make it harder for a user to make small adjustments to the
scale of a model.

As tablet computers are reliant on touchscreens for user inputs, we decided to incor-
porate touch gestures into our implementation. The frontend of ExplorViz already uses
Hammer.JS, a library to detect and process touch gestures, in its core implementation.
However, ExplorViz only uses the tap recognizer of Hammer.js which can detect the number
of consecutive taps or clicks which a user performed. The tap recognizer of ExplorViz’
core implementation is configured such that a double-click within a certain timeframe
only triggers a corresponding event for a double-tap but no event for a single-tap. Thereby,
ExplorViz realizes double-click actions like opening a sofware package without triggering
a single-click action which could for example result in an unintended highlighting of a
package.

We, on the other hand, want to realize the scaling of the models through touch gestures.
Since scaling a model can have the same visual effect as changing the zoom of a camera,
we employ the commonly used pinch-to-zoom gesture. For a pinch-to-zoom gesture, a
user places two fingers on a touchscreen. The gesture is then performed by changing the
distance between the two fingers, i.e. moving the fingers apart or closer together. The
change in distance between the used fingers can be measured and for example, be used to
change the size of an object accordingly.

Hammer.js provides a pinch recognizer. This recognizer can trigger an event when the
pinch gesture is performed and contains a numerical value which represents the distance of
the two corresponding fingers. We apply some calculations to retrieve a percentage which
we apply directly to the scale of the targeted model. For example, by doubling the distance
between the two fingers, the targeted model is doubled in size with respect to all three
dimensions. Moving the fingers more closely together has the inverse effect.

Thus, a user can, depending on the initial placement of fingers, make both small and
large changes to a model’s scale very rapidly. For example, initially placing the fingers
closely together and then increasing the distance between them can dramatically increase

35

6. Implementation

a model’s size. This is a useful feature for devices with small screens. On other hand, an
initial finger placement with a greater distance causes only smaller changes to the scale of
a model with respect to the absolute difference of the finger’s distance.

6.4.2 Rotate

In our concept, we do not include the option for rotating a model on a marker since the
model can be rotated intuitively together with the underlying marker. However, through
early tests, we recognized that switching between the tablet computer and a marker could
be disruptive. Thus, we add the option to rotate models through touch gestures and let the
user decide which way of interaction suits him or her the best.

Hammer.JS also provides a recognizer for rotation gestures. Therefore, a user can place
two fingers on the screen and turn those in a circular motion. As the pinch-to-zoom gesture
also requires two fingers, the two gestures can be combined seamlessly for improved
usability. Additionally, we decided against the employment of gestures which include
three or more fingers as those are hard to perform on small screens. Furthermore, on some
operating systems there exist gestures for three fingers which can take precedence over our
implementation.

6.4.3 Pan

Since the size of applications depends on the number of packages and classes, there is
no upper limit for the size of the displayed models. Thus, scaling models can be crucial
but could result in models which do not fit on the screen. The part of the models which
is currently visible could be changed by moving the tablet computer and therethrough
change the position of the marker in the current image of the camera. However, this could
also cause a marker to be outside the camera’s field of view. As a result, we incorporate a
pan gesture to move landscape and application models within the plane which is defined
by the marker.

Hammer.JS provides a pan recognizer. As the movement of objects is usually achieved
with one finger and we since dragging a popup is also achieved by a pan gesture with
one finger, we enable the movement of models by placing and moving one finger on the
screen. Just as the other touch gestures, the pan gesture can be performed anywhere on the
screen (excluding buttons) such that the users can perform the gesture beside the buttons.
Therefore, it is not necessary for a user to regularly change the position of his or her hands
and travel large distances on the screen just to target the desired model.

The scaling, rotation, and position of software models can be reset via an entry within
the context menu.

36

6.5. Zoom Feature

Figure 6.3. The visualization of an application. The zoom feature is activated (A). Thus, a rectangular
region around the crosshair is magnified (B).

6.5 Zoom Feature

Scaling through touch gestures, as presented in the previous section, allows a user to
change the overall size of a model. However, when a user wants solely to increase the
readability of some text or more closely inspect the crosshair to determine if the wanted
entity is targeted, scaling the whole model is impractical. By increasing the scale of a model
one can lose the overview of its dimensions and overall structure.

Therefore, we introduce a zoom feature which enables a user to temporarily increase
the size of the center part of the visualization. The zoom feature can be toggled by the
zoom button (Figure 6.3 - A), whereby a green color of the button indicates that the zoom is
activated. As a result, the crosshair and the parts of the targeted model which surround the
crosshair are visually enlarged. By default, we set the magnification such that the displayed
parts are three times larger than usual. We assume this to be a suitable magnification for the
selection of classes or communication. However, the magnification can also be configured
in the settings.

37

6. Implementation

Listing 6.4. Rendering of the zoomed Area

1 renderer.setScissorTest(true);

2
3 renderer.setViewport(zoomPos.x, zoomPos.y, zoomSize.x, zoomSize.y);

4 renderer.setScissor(zoomPos.x, zoomPos.y, zoomSize.x, zoomSize.y);

5
6 renderer.render(scene, this.zoomCamera);

7
8 renderer.setScissorTest(false);

For the implementation, we first need to calculate the position and size of the zoomed
region within the overall canvas which depends on the desired magnification. To render
the desired portion of the scene, three.js brings features to render another image section
within the default image. The core of this implementation is presented in Listing 6.4. First,
the renderer is instructed to only render within a restricted region by activating the scissor
test (line). Following, the position and size of the zoomed region is declared (lines 3 and 4).
At last, the scene containing all 3D models is rendered (line 6). As opposed to the rendering
of the image for the remaining scene, a camera which is configured in accordance with the
desired magnification is used.

6.6 Heat Map

Especially for small screen sizes, a heat map can help to improve the overview of the
displayed entities. The heat map of ExplorViz, as introduced in the concept, provides a
coloring for classes which is applied with respect to different metrics.

However, we could not simply adopt the existing implementation for the heat map and
use it for our visualization approach. The existing heat map implementation is based on a
deprecated data model. It also relies on a backend service which calculates and persists
data for different metrics. The existing service cannot be included as is in the current
backend infrastructure.

As the frontend is already capable and responsible for processing incoming trace
data, we opt to update the existing implementation and to introduce a working heatmap
visualization which resides in the frontend. The foundation for the heat map visualization
are metrics. We calculate those concurrently in a designated Web Worker. In addition to
the already calculated count of newly created class instances, we introduce metrics for
incoming, outgoing, and overall requests. Hereby requests for a class are method calls
which originate from or target any object which is an instance of that class.

The resulting visualization is displayed in Figure 6.4. The heat map visualization can
be toggled by the click of a button (Figure 6.4 - A) which turns green when the heat map
is active. The components and classes of the targeted applications become transparent.
Thereby classes and their corresponding heat map colors, which are projected on the

38

6.6. Heat Map

Figure 6.4. An example of the heat map visualization. The heat map is toggled via a button (A)
and projected on the foundation of an application (B). A collapsable color legend with a
metrics selector (C) and precise values about the metrics in class popups (D) accompany
the heat map.

opaque foundation, are visible (Figure 6.4 - B). Small black lines connect classes and their
corresponding colored area on the foundation such that their association can be accessed
independently of the current camera perspective.

When the heat map is activated, a labeled legend (Figure 6.4 - C) is opened. It can be
dragged and placed freely on the screen, just like popups. In addition, a small triangle
can be clicked to collapse the legend such that it takes up less space on small screens.
Under the legend is a selector which shows the currently active metric and allows to switch
seamlessly between the available metrics.

The data values for the metrics are calculated when the heat map is activated. Since the
colors only give a rough estimate about the absolute value of a metric, popups for classes
contain the absolute values of the available metrics (Figure 6.4 - D).

39

6. Implementation

Figure 6.5. An overview of the available settings (C to I). The settings panel can be closed (A) and
horizontally resized (B).

6.7 Settings

In order to support a variety of devices in the best possible way, we implement a number
of configuration options, which we present below.

As soon as the user clicks on a button to open the settings, a sidebar opens and reveals
the configuration options (Figure 6.5). The sidebar can be varied in width via a button
(Figure 6.5 - B). In the options, the color scheme can be adjusted (Figure 6.5 - C), e.g. if the
default color scheme does not exhibit good contrasts on a user’s device. In addition to the
default color scheme, color schemes with blue, dark, as well as pastel colors are provided.

To calibrate quality and performance, a user can adjust the resolution of the camera
and the resolution of the rendered models (Figure 6.5 D - E). By default, the models are
displayed in the best quality, whereas the camera is set to a low resolution to save resources.
However, high-definition resolutions are also available.

Since a large number of communication lines can be difficult to tell apart, we have intro-
duced some options to customize their visualization (Figure 6.5 - F). The communication

40

6.8. Collaboration

can be completely hidden, if only structural data is of interest. In addition, the thickness
of the communication lines can be configured in order to make differences between the
various communication lines more obvious. The height of the communication specifies
how great the curvature of the rendered lines should be. A height of 0 corresponds to a
straight communication line. In addition, it can be configured whether the height of the
communication depends on the distance of the involved classes, such that far away classes
are connected by a higher communication line.

In order not to lose sight of the markers and to improve immersion, both the landscape
model and the application models are slightly transparent. The degree of transparency can
be adjusted to the user’s preferences (Figure 6.5 - G). Next, the size and spacing of the
buttons can be adjusted (Figure 6.5 - H). The buttons already scale with the screen size,
however, especially on small devices, it may be helpful to further reduce the size of the
buttons to free up space for the visualization.

Lastly, we offer the option to adjust the magnification of the zoom feature as well as
the option to let popups stack (Figure 6.5 - I). By default, one popup is displayed at a
time. Popups can be moved at will, after which they are not automatically removed again.
However, the displayed option allows the user to call up several popups subsequently and
then view them one after the other.

All settings made via the sidebar are also updated in realtime within the visualization
to improve usability. The sidebar does also provide a component for collaboration that we
present in the upcoming section.

6.8 Collaboration

In this section, we present the implementation of collaborative features.
The basis for the collaborative software exploration is the synchronization of the dis-

played models such that users can exchange their thoughts about entities which are
currently visible to them. The VR extension for ExplorViz makes extensive use of collabora-
tive features. There exists a designated backend application, called VR Service, to persist
and synchronize the current state of the visualization amongst different users. It is our goal
to make use of existing technologies and implementations. Therefore, we employ the VR
Service to synchronize various aspects of the visualization for collaborative use.

6.8.1 Collaboration Interface

The VR extension of ExplorViz uses custom canvas-based menus which are placed within
the 3D scene of three.js to allow users to host and join a collaborative session. These menus
are optimized for use with VR controllers. We, on the other hand, opt for the use of native
HTML elements and therefore developed a component for collaboration. The component is
accessible by a click on the settings icon which opens a sidebar.

41

6. Implementation

A

B

C

D

Figure 6.6. A Snippet of an application model during the collaboration of two users (A). One
user highlighted a package (B) while another user pinged a class (C) by clicking the
corresponding button (D).

The collaboration component enables users to host a collaborative session, referred to
as a room, or join an existing room. Available rooms are assigned with a unique number.
When a user joins a room, the collaboration component displays the current room number
and a list of all users who are currently assigned to that room (Figure 6.6 - A). A unique
color is assigned to every user by the VR Service which we display in the user list. As
the assigned color is used for highlighting, the icon of the highlighting button also does
represent the current color of a user. The highlighting is synchronized amongst users
(Figure 6.6 - B) and can be used on packages, classes, and communication between classes.

6.8.2 Ping Feature

Highlighting is intended for the analysis of communication between packages or classes.
Also, only one entity can be highlighted per application such that a subsequent highlighting
action does override any existing highlighting within an application. We also noticed in a
conducted pilot study that users who use our approach collaboratively might talk about

42

6.9. Deployment

a certain package or class which exists in more than one application. For example, the
"model" package is a common name for a package throughout various applications. Thus,
there exists the possibility of confusion.

To facilitate the collaboration of users, we introduce the ping feature. A ping is repre-
sented by a colored sphere which bears a resemblance to the visual effect of a laser pointer.
Users can activate the temporary ping via the corresponding button (Figure 6.6 - D). The
ping is placed just above the entity which is targeted with the crosshair. It is displayed for
two seconds for each user whereby pings of multiple users could be present at once.

6.9 Deployment

In this section, we describe the necessary steps to test our approach during the development
and the steps that follow in order to deploy the developed approach.

The backend of ExplorViz does provide Docker containers such that the services can
be started easily. There do also exist various sample applications with corresponding
configurations for inspectIT Ocelot such that live monitoring of an application can be
established for development purposes. In addition, most of the implemented features can
be tested on a local desktop computer since our visualization approach does only require
printed markers, a modern web browser, and a camera.

However, testing the AR visualization locally on a mobile device turned out to be
more challenging. As a first step, the addresses of the backend services are set to local
IP addresses as opposed to localhost within the frontend. This is necessary since a mobile
device which accesses the frontend would otherwise expect that the backend services
of ExplorViz are executed on the mobile device itself. With this configuration, mobile
devices can use the regular visualization of ExplorViz. However, it is not possible to use
our approach like this. In order to use the camera within a browser, WebRTC requires a
secure connection with the only exception being the localhost domain.

To establish a secure connection locally, we generate a self-signed certificate for the
localhost domain. Since modern web browsers do not allow mixed content, i.e. the combi-
nation of secure and insecure communication on websites, all connections from and to the
frontend need to be secured by that certificate. This could be achieved by supplying every
backend service of ExplorViz with a configuration for a secure connection. However, we
choose to use nginx as a reverse proxy. With nginx, requests from the frontend can be sent
securely to nginx which in turn can forward the requests to the desired backend service.
The connection between nginx and the backend services do not need to be secure. This is a
preferable solution as long as all microservices of ExplorViz and nginx are deployed on the
same computer or server.

With nginx and the self-signed certificate in place, we can test our implementation
locally on an Android smartphone with Chrome as a mobile browser. Chrome displays a
warning since the certificate is only self-signed but allows a user to enter the website after
a confirmation. In addition, the camera can be accessed through WebRTC. However, we

43

6. Implementation

observe that this solution is not viable for iOS devices. The mobile Safari4 browser does not
allow users to enter websites with an untrusted certificate. The use of Chrome is no viable
solution either since Safari is the only browser on iOS which is allowed to use the device’s
camera. It is possible to add trusted root certificates to iOS. However, certificates cover a
domain and no IP address. Thus, the only way to test our developed approach locally on
iOS devices would require the installation of a local DNS server. The DNS server could
route requests for the desired domain to the local IP address of the desktop computer on
which ExplorViz is executed. This setup is impractical for us and thus we stick with testing
our implementation locally on a computer and an Android device.

To test our approach with iOS devices and for the evaluation of our approach, a
deployment of ExplorViz on a publicly accessible server with a secure connection is
required. During development and also for the later evaluation, we are granted access to
a server of adesso. The server uses CentOS5, a linux distribution, as an operating system.
Since ExplorViz can be executed within Docker containers, the deployment process is
straightforward. Just like for the local deployment, we use nginx as a reverse proxy on
the server of adesso. Only the configuration of nginx needs to be adapted because a
development version of BIMSWARM is also executed on the given server and already uses
nginx. In the end, both BIMSWARM and ExplorViz are publicly accessible and use trusted
certificates for secure communication from and to the frontend.

As the last step for the deployment, we need to combine our approach for software
visualization in AR with BIMSWARM. In the upcoming section, we describe the necessary
steps for the instrumentation which collects runtime data of BIMSWARM and sends it to
the backend infrastructure of ExplorViz for further processing such that the resulting data
can be visualized in with our visualization approach.

6.10 Instrumentation of BIMSWARM

To execute BIMSWARM on our local machine, we build its frontend and configured nginx
such that incoming requests on port 80 are redirected to the frontend. Additionally, nginx
is responsible for routing requests which originate in the frontend to the corresponding
backend services. For the backend there exist gradle tasks to start the services. First, the
service which employs Eureka is started such that services can register with Eureka on their
startup. Then, the Gateway service and PCSSO service are started to enable the distribution
of communication and authorization of service requests. At last, the remaining services are
started in an arbitrary order.

As BIMSWARM employs a microservice architecture with services which are written in
Java, we can use inspectIT Ocelot as a Java agent to extract runtime data. The Java Virtual
Machine (JVM) enables agents to attach themselves to a running process of an application.
Therefore, we intended to use this feature and add the inspecIT Ocelot agent to the already

4https://www.apple.com/safari/
5https://www.centos.org/

44

https://www.apple.com/safari/
https://www.centos.org/

6.10. Instrumentation of BIMSWARM

running services of BIMSWARM. However, this approach has few advantages since there
is no option to remove the previously added agent from the instrumented process. Most
importantly, attaching inspectIT Ocelot as a Java agent during the runtime of a Java process
yielded an exception much more frequently than adding the agent during the startup of
the same application.

Therefore, as recommended by the documentation6 of inspectIT Ocelot, we started it
together with the application which we want to instrument. This can be achieved with the
following command:

Listing 6.5. Execution of the Product Service Application with inspectIT Ocelot

1 java -Dinspectit.config.file-based.path="./" -javaagent:inspectit-ocelot-agent

-1.8.1.jar -jar productservice.jar

For this command execution, it is expected that a configuration file, the inspectIT Ocelot
agent in version 1.8.1, and the JAR of the product service are in the current directory.

Listing 6.6. Excerpt of the Instrumentation for the Product Service

1 scopes:

2 s_erroneous_instrumentation:

3 type:

4 name: de.adesso.swarm.productservice.feign

5 matcher-mode: STARTS_WITH_IGNORE_CASE

6 s_allClasses:

7 type:

8 name: de.adesso.swarm.productservice

9 matcher-mode: STARTS_WITH_IGNORE_CASE

10 exclude:

11 s_erroneous_instrumentation: true

The configuration file, called inspectit.yml by default, is a YAML7 file which is used to
specify which data shall be collected and where the data is to be sent. For the most part,
we adapt the configuration files which ExplorViz already uses for other Java applications.
However, we need to specify a custom scope. Instrumentation without restrictions would
also include method calls of classes from employed libraries. Since we are interested in
the program behavior of BIMSWARM, we naturally narrowed the scope down to classes
which are developed and maintained by adesso. Doing so resulted in inconclusive runtime
errors as soon as we triggered actions through the frontend. We used the approach of
binary search, e.g. by including only half of the packages in our scope at first, to isolate the
origin of the errors. Finally, we could observe that the instrumentation of classes which use
Feign8, a Java to HTTP client binder, results in the previously noticed errors. We suspect

6https://inspectit.github.io/inspectit-ocelot/docs/getting-started/installation
7https://yaml.org/
8https://github.com/OpenFeign/feign

45

https://inspectit.github.io/inspectit-ocelot/docs/getting-started/installation
https://yaml.org/
https://github.com/OpenFeign/feign

6. Implementation

that this could be caused by the extensive use of annotations in Feign, including custom
Feign and JAX-RS9 annotations, which could interfere with the code which is added by the
Java agent.

Concluding, we excluded the classes which use Feign from our instrumentation. A
resulting scope for the product service can be seen in Listing 6.6. Here, line two to five
describe the scope which causes errors during instrumentation. This scope is excluded from
the overall scope, which is specified in the remaining lines of the Listing 6.6. The scope of
the instrumentation is representative, as we included all packages which are developed by
adesso and excluded the feign package for those services, too.

9https://jakarta.ee/specifications/restful-ws/3.0/

46

https://jakarta.ee/specifications/restful-ws/3.0/

Chapter 7

Evaluation

In this chapter, we present the evaluation of the implemented approach for collaborative
program comprehension by means of a case study.

7.1 Goals

In this section, we describe our goals for the evaluation of the developed visualization
approach for program comprehension. Collaborative program comprehension through an
AR visualization for mobile devices, i.e. tablet computers and smartphones, is a new field
of research. It is our goal to ascertain which potentials and drawbacks such a visualization
has. We specify our goals in terms of four research questions:

Ź Is the employed visualization suitable for mobile devices?

Ź Are the implemented features suitable for mobile devices in terms of usability?

Ź Is the developed approach suitable to solve tasks in the context of dynamic program
analysis?

Ź Is the developed approach suitable to work collaboratively?

7.2 Methodology

In order to assess the potentials and drawbacks of our approach, we conduct a case study.
Our study design is inspired by the experiments of Hansen [2018], König [2018], and Brück
[2020] about the collaborative VR approach of ExplorViz. Notably, the collaborative nature
of our approach also requires that two probands can evaluate the developed approach
together. Hereby we can evaluate whether the implemented set of features and the use of
mobile devices are suitable for collaborative work.

Due to the COVID-19 pandemic, we cannot design and prepare an experiment setup
which requires probands to undertake the case study in a designated lab environment.
Additionally, the collaborative use of mobile devices for program comprehension is a new
field of research. Therefore, our study is qualitative in nature. We strive to find answers to
our proposed research questions and collect substantial feedback which can be a foundation

47

7. Evaluation

for further development of our approach. For the communication and interactions with
probands during the study, we are guided by established best practices of Hove and Anda
[2005].

7.3 Experiment

We evaluate our approach by means of a case study. In the following, we start by presenting
the study setup, which includes probands, employed equipment, and the chosen use case
for the study. In the remainder of this section, we present the phases of our case study,
namely introduction to ExplorViz, introduction to BIMSWARM, assignments, and the
survey.

7.3.1 Setup

It is our goal to evaluate the potentials and drawbacks of the developed visualization
approach for collaborative program comprehension. In the following, we describe the
experimental setup which includes the background of participants, the required equipment,
the employed use case, and the configuration of ExplorViz.

Probands
Based on the concept for the possible use cases, people with an IT background are our
target group. This includes students of computer science and closely related subjects, as
well as researchers in computer science and IT professionals. We do not give probands
financial incentives but rely on volunteers. The technical background of the probands
allows us to give a quick introduction to the principles of software visualization. This frees
up time such that probands can test the developed approach more extensively. Furthermore,
the technical background allows us to set practical tasks and not only to evaluate the design
and usability of the visualization.

Equipment
To meet our requirements for the equipment, the probands need a mobile device, preferably
a tablet computer, which has a touchscreen and a camera. In addition, an active internet
connection is necessary to use ExplorViz with a mobile browser. At last, probands require
the printed markers for the AR visualization. If no printer is available or the printing
quality is inadequate, we also allow that markers are displayed on a monitor.

Usually, it is the goal of an evaluation to provide a controlled environment such that all
probands have comparable conditions during the conduct of the case study. However, due
to the remote nature of the experiment, our influence on the setup which probands use
to conduct the study is limited. Due to the COVID-19 pandemic, we cannot design and
prepare an experiment setup which requires probands to undertake the case study in a
designated lab environment. Notably, the collaborative nature of our approach requires that

48

7.3. Experiment

two probands can evaluate the developed approach together. Consequently, the probands
need to conduct the case study remotely and it is not feasible to bring or send equipment
to each proband individually. The remote setting also requires the probands to own a
microphone which can be used to communicate during the conduct of the case study.

Our only influence on the equipment of the probands lies in the communication of
requirements during the acquisition process. We presume that the acquisition of participants
for a collaborative case study could be challenging and thus do not require the use of
specific devices, a modern smartphone or tablet computer suffices. Consequently, the
employed equipment could be quite diverse. This has potential impacts on our results
which we consider and reflect in Section 7.5 and Section 7.7.

Use Case
We would like to present a realistic use case to the participants of the study. As described
before, BIMSWARM is a current and Java-based software which is suitable for the analysis.
We would like to capture the runtime behavior of a use case of BIMSWARM to employ it
as an example for the case study. The employed use case should be easy to understand.
BIMSWARM offers some domain-specific functionalities, which however would require
more background knowledge and thus a more detailed introduction.

Since we want to focus the study on the use of the approach we developed, we decided
to use the creation of a product as a use case. Organizations which are registered at
BIMSWARM can create a product with various features. This use case is easy to understand
after a brief introduction to BIMSWARM. However, several services of the backend are
involved during the creation of a product. Worth mentioning are the Product Service, User
Service, and File Service. The File Service is involved by uploading a logo for the product.

ExplorViz
It is our goal to present the same visualization to all probands, especially the same runtime
data. The use of the backend of ExplorViz for live visualization does not allow us to ensure
that the same runtime data is always displayed. For example, the method calls of the
use case could be split and show up in two different snapshots of ExplorViz. Also, when
employing live trace analysis, the appropriate timestamp would need to be selected for the
visualization, which seems impractical to us for a robust execution of a study.

Therefore, we execute the described use case of BIMSWARM on our local machine and
save the JSON data that is sent to the frontend. ExplorViz has an application to mock the
backend, called Demo Supplier. The Demo Supplier is a NodeJS server that can run in a
Docker container and respond to requests from the frontend with previously deposited
JSON files. We use the Demo Supplier to deposit the PetClinic as a sample application. In
addition, we saved the recorded use case of BIMSWARM such that it is persisted for our
probands to ensure consistency of visualized data across multiple experimental runs.

Another point concerns the user management of ExplorViz. ExplorViz uses Auth01 to

1https://auth0.com/

49

https://auth0.com/

7. Evaluation

identify users, associate persisted data to them, and to manage access rights to stored data.
An account with Google2 or Github3 is required to log in to ExplorViz. We see it as a potential
hurdle that probands need to have their credentials for either of those services on hand.
Also, in the free variant of Auth0, the domain of Auth0 is accessed for authentication. This
is blocked by some browsers and can prevent the login. In order to avoid difficulties in the
execution of the study due to errors in the authentication, we configure ExplorViz for our
study in such a way that no registration of the probands is necessary. Consequently, each
proband is assigned with an example account by the name of "Johnny Doe". Distinguishing
users from each other during the collaborative use of our approach is still possible due to a
unique color assignment.

7.3.2 Introduction to ExplorViz

Before the study begins, probands are provided with the markers (see Appendix 8.2) such
that they can print them in advance. After an appointment has been made to conduct the
study and the probands have joined a meeting in a video conferencing system of their
choice, the study begins. At the beginning of the study, we familiarize the probands with
ExplorViz and the developed approach. This phase also serves to clarify general questions
and to resolve technical problems. Specifically, probands are asked to visit the website
where ExplorViz has been deployed for our study.

The introduction is done with PetClinic as an example application because it exhibits
an overseeable structure and at the same time there are enough classes and corresponding
communication for the explanation of the visualization. We also want to ensure that the
probands have similar starting conditions for solving the upcoming tasks about BIM-
SWARM. We assume that different amounts of time will be needed for the introduction and
thus the probands could also gather different amounts of information about the displayed
application.

Once the introduction to the visualization and the user interface is completed, the
presentation of the use case begins, which is then to be analyzed.

7.3.3 Introduction to BIMSWARM

Before the probands analyze the runtime behavior of the selected use case on BIMSWARM,
we provide an introduction to BIMSWARM. To keep this introduction efficient, we introduce
BIMSWARM via screen transfer. This has the advantage that all probands receive the same
information and participants do not have to create a user account with BIMSWARM.

Besides the presentation of BIMSWARM as a marketplace, we also give a brief intro-
duction to the domain of BIM to outline the domain-specific background. However, we
refrain from presenting more complex functionalities such as the combination of different

2https://www.google.com/
3https://github.com/

50

https://www.google.com/
https://github.com/

7.3. Experiment

products. Hereby, we facilitate that the information relevant for the use case remains
memorable. Finally, we present the dialog for the creation of a product within the frontend
of BIMSWARM.

7.3.4 Assignments

The probands are asked to perform tasks collaboratively for the prepared use case of
BIMSWARM. We do not focus on a quantitative evaluation of the assignments, but rather
want to encourage the probands to interact with the developed visualization approach.
Therefore, we want to foster the use of various features across all assignments.

Beyond the mere stimulation of interaction, the tasks should also show practical rel-
evance. Where possible, we want to encourage semantic analysis of the visualized data.
The tasks are roughly based on the tasks chosen for the evaluation of the VR extension of
ExplorViz [Brück 2020].

T1: Software System Overview and Structure

T1.1: Name all applications which are communicating with other applications.

T1.2: Name all packages which only contain classes (no other packages) within the User
Service and are developed by adesso.

T1.3: Which package does contain more classes: de.adesso.swarm.fileservice.service or
de.adesso.swarm.toolchainservice.service?

T1.4: Name all classes (full name) in the package
de.adesso.swarm.productservice.model.dto.pagination.

T2: Software System Dynamics

T2.1: Which class has the highest number of newly created instances within the User
Service? The number of instances is represented by the height of a class but can also
be estimated by using the heat map.

T2.2: Which pair of classes in the Product Service has the highest number of requests
between them? The number of requests correlates with the thickness of the depicted
communication. Name also the direction of the communication and the exact number
of requests.

T2.3: Which class within the Product Service has the highest overall request count? Can you
explain why this class might have so many requests? You may use the highlighting
feature on the class to identify which other classes are directly communicating with
the found class.

T2.4: Which classes within the Product Service have more than 150 outgoing requests but
less than 20 incoming requests?

51

7. Evaluation

T2.5: Imagine you wanted to make extensive changes to the code of the FileInfo class,
located in the package de.adesso.swarm.fileservice.model. Which other classes could be
affected by your changes (based on the current use case)?

We designed the assignments such that it should take participants around 30 minutes to
solve the tasks, depending on their background knowledge. Therefore, on the assumption
that no major technical issues occur, the overall study should take no longer than 60
minutes. We expect it to be challenging to recruit probands for a longer period of time
without financial incentives.

The assignments about system overview and structure should ascertain that the
probands understand the visualization metaphor correctly. We include straightforward
questions which concern applications, packages, and classes. Assignment A1.3 is meant to
remind probands that multiple applications can be opened at once. However, we do not
specify how the assignments should be solved. Therefore, opening and closing applications
one at a time such that no more than one application is open would be an acceptable way
to solve this assignment. By asking questions about various applications we also want to
encourage collaboration and communication. For example, the probands could determine
who is responsible for opening applications or packages. In addition, since the state of
applications and components is synchronized, they could use the ping feature for mutual
guidance in unfamiliar applications.

The assignments about the dynamics of a software system are regarding the runtime
behavior, i.e. the requests between classes. Some of the assignments require the use of the
heat map to compare classes or even different metrics. In addition, assignment A2.3 asks
for the class with the most overall requests within the Product Service. The solution is
the class ProductDto, a data transfer object (DTO). To explain the origin of these requests,
probands would need to know what a DTO is or inspect the communication as shown in
Figure 7.1 more closely to make assumptions about the role of the class.

7.3.5 Survey

Following the study, we ask the probands to take part in a survey. Since the study takes
place remotely, we decided to conduct an online survey. The choice for the survey tool falls
on SurveyMonkey4 as it is widely used and supports both desktop computers and mobile
devices. We do not collect personal data such as age or the IP address.

Our survey is structured in such a way that we ask about the user experience first
since we thereby minimize the time gap to the completion of the tasks. Only further down
the line, we ask more general questions, e.g. about the professional background or the
environment in which the proband conducted the study.

First, we ask the probands how they perceived the difficulty of the assignments about
software structure and software system dynamics respectively. The study probands can
select very difficult, difficult, intermediate, easy, and very easy. We can use the results to assess

4https://www.surveymonkey.de

52

https://www.surveymonkey.de

7.3. Experiment

Figure 7.1. Excerpt of the Product Service with the highlighted class ProductDto.

whether the difficulty of the assignments is chosen appropriately. In the following, we
present the questions of the survey which are most relevant to, later on, answer our research
questions.

Professional Background
Our target group includes persons with a computer science background. Nonetheless, the
level of expertise and practical knowledge might vary from person to person. Therefore,
we ask the probands which of the following terms describes their professional background
the best: student, researcher, software developer, software architect, project manager, or other. In
addition, we ask the probands to self-assess their experience in different topics regarding
software development, software analysis, and software visualization. The probands can
choose from none, beginner, intermediate, advanced, or expert to categorize their level of
expertise.

Usability
We provide various features to interact with and manipulate the displayed 3D software
models. Therefore, we ask the probands to rate the usability of those features on a scale

53

7. Evaluation

which includes very bad, bad, undecided, good, and very good as options. The features which
can be rated are displayed in Table 7.1.

Table 7.1. Features which probands could rate in Terms of Usability

ID Rated Feature

A1 Touch gestures (pan, rotate, zoom)

A2 Opening & closing of packages

A3 Highlighting

A4 Ping Feature

A5 Heat map (e.g. request metrics)

A6 Popups (movable window with information)

A7 Settings / Configurability

A8 User interface

Visualization
We are interested if the established visualization approach of ExplorViz is suitable for
mobile devices, too. To the best of our knowledge, there does not exist research on the
applicability of the 3D city metaphor for such devices. Therefore, we ask the probands how
much they agree with the statements in Table 7.2. For each statement, a participant can
choose either disagree, rather disagree, undecided, rather, or agree as an answer.

Table 7.2. Statements on Visualization

ID Statement

B1 The package structure can be easily accessed.

B2 Component and class names can be read with ease.

B3 Communication between classes can be distinguished easily.

B4 The layout and visualization are suitable for the mobile device which I used.

Collaboration
As we are interested in collaborative program comprehension, we present probands with
various statements about the collaborative use of our approach. The statements are pre-
sented in Table 7.3 and are evaluated by the participants just like the statements about
visualization.

54

7.3. Experiment

Table 7.3. Statements on Collaboration

ID Statement

C1 I know the other team member very well.

C2 I already worked with the other team member before the study.

C3 I felt working on the tasks as a team was helpful.

C4 I felt I could communicate and interact well with my team member.

C5 The AR mode of ExplorViz can be used to improve program comprehension.

C6 The AR mode of ExplorViz is suitable for working in a team.

Markers
Since we rely on markers to achieve the AR visualization, we ask the participants about
their employed markers, the lighting condition, and the resulting recognition rate. The
questions are displayed in Table 7.4.

Table 7.4. Questions and Statements on Markers

ID Statement

D1 Which type of markers did you use?

D2 Please rate the lighting conditions of your environment during the study.

D3 Please rate the recognition rate of the markers.

Comments and Text Inputs
In addition to the selection of predefined values, we give participants of our survey the
opportunity to submit textual inputs on various topics. Table 7.5 displays the labels of
the text boxes which we use in our survey. The topics include usability, visualization,
collaboration, and markers. In addition, we also ask the probands about their mobile device
since a predefined selection is not feasible due to the wide variety of supported devices.

55

7. Evaluation

Table 7.5. Additional Questions about further Comments

ID Statement

E1 Do you have remarks about the usability of certain features?

E2 Do you have further remarks about the visualization of applications (for mobile devices)?

E3 Do you have further feedback about the collaborative aspects?

E4 Which device(s) did you use? Be as specific as possible.

E5 Additional comments about markers

E6 Suggestions for improvements or other remarks

7.4 Pilot Study

In order to gather early results and incorporate preliminary feedback into our implementa-
tion and experimental setup, we conduct a pilot study. The pilot study is comprised of two
computer science students without prior knowledge about software visualization. Those
students conduct the experiment as presented in Section 7.3 except that they are given
the additional assignment of naming all classes which show communication with other
applications. We exclude that question from the case study because it is of little relevance
and we realize that the remaining questions will already require the targeted 30 minutes to
answer.

The participants of the pilot study employed an older tablet computer and a modern
smartphone for the pilot study. We observed that the older tablet exhibited performance
issues when multiple applications were opened. As a result, the opening and closing of
applications were performed with a noticeable delay and eventually, the browser stopped
the execution of ExplorViz due to limited resources. We suspect that the performance
issues originate from the 1.5GB of RAM. Even though the modern smartphone of the other
proband was warm to the touch, there were no such performance issues. Concluding, we
require that devices should own at least 2GB of RAM to avoid such performance issues
during the conduct of the case study.

In terms of implementation, the ping feature (see Section 6.8.2) is not included in the
pilot study as this feature is a result of the hereby gathered feedback. The students of
the pilot study experienced the situation that they talked about different packages which
share the same name and are present in multiple applications. Thus, the ping feature is
added to allow users to easily point at parts of the software model which they want to talk
about. Furthermore, the probands occasionally panned the software models so far off the
marker that the model was barely visible anymore. As a result, we introduce an entry in
the context menu which allows resetting the position, rotation, and scaling of all opened
landscape and application models. At last, the legend of the heat map can take up valuable

56

7.5. Results

screen space on smartphones. Hence, we add the option to collapse the heat map legend
such that only a small header and the name of the selected metric are displayed.

As soon as we had incorporated the feedback from the pilot study, we conducted the
case study. The results of the case study are presented in the upcoming section.

7.5 Results

In this section, we present the results of the conducted case study. We only present
accumulated results from our survey in this section. Comments and additional remarks are
not presented as they are manifold. However, the complete dataset is publicly accessible
[Hansen 2021].

Probands
20 participants conducted our case study, out of which 7 are students, 8 are researchers,
2 are software developers, and 3 are software architects. All participants have experience
in either object-oriented programming or web development, i.e. they have at least a basic
knowledge of software development.

9 of the participants used a smartphone and 11 participants used a tablet computer. Out
of the 9 smartphones, 7 smartphones run Android, 2 run iOS, and for one smartphone the
operating system is not specified. Out of the 11 tablet computers, 5 run iOS, 4 run Android,
and 2 devices run Microsoft Windows5 as an operating system.

Usability
In order to accumulate the collected data, we assign integer values to the given answers,
the mapping is declared in Table 7.6. We choose the mapping such that the mean value over
several answers can result in values between 0 and 4, whereby a value of 2 would indicate
that answers that indicate a bad usability and answers that indicate a good usability balance
each other out.

Table 7.6. Integer mapping for answers to questions about usability

Answer Value

Very Bad 0

Bad 1

Undecided 2

Good 3

Very Good 4

5https://www.microsoft.com/windows/

57

https://www.microsoft.com/windows/

7. Evaluation

The accumulated results for the usability of our results are presented in Table 7.7. In
addition to the mean value we added the value for standard deviation (SD) as an indicator
for the distribution of the given answers.

Table 7.7. Rating of the usability features

ID Mean (overall) SD (overall) Mean (tablets) SD (tablets)

A1 2.75 1.26 3.33 1.25

A2 3.15 0.73 3.27 0.62

A3 2.65 1.01 3.09 0.67

A4 3.15 0.79 3.45 0.50

A5 2.70 1.00 2.72 0.86

A6 2.65 1.24 3.09 0.90

A7 2.80 0.98 3.09 0.79

A8 3.00 1.00 3.27 0.62

Visualization
To evaluate aspects of the visualization and collaboration, probands were asked to state
their level of agreement with a given statement. In order to allow the accumulation of
results, we again use a mapping to integer values that is analogous to the previous mapping.
We display the mapping in Table 7.8.

Table 7.8. Integer mapping for answers to statements about visualization and collaboration

Answer Value

Disagree 0

Rather disagree 1

Undecided 2

Agree 3

Rather agree 4

The accumulated results for the statements concerning the visualization are presented
in Table 7.9.

58

7.6. Discussion

Table 7.9. Rating of the visualization

ID Mean (overall) SD (overall) Mean (tablets) SD (tablets)

B1 3.50 0.81 3.72 0.62

B2 1.85 1.19 2.09 0.90

B3 2.75 1.18 2.64 1.30

B4 2.70 1.35 3.45 0.89

Collaboration
The accumulated results concerning statements about collaboration are presented in Ta-
ble 7.10.

Table 7.10. Rating of collaborative aspects

ID Mean (overall) SD (overall) Mean (tablets) SD (tablets)

C1 3.45 1.20 3.45 1.16

C2 3.30 1.45 3.45 1.23

C3 3.10 1.18 3.18 1.03

C4 3.70 0.56 3.55 0.78

C5 3.25 0.83 3.45 0.50

C6 3.60 0.58 3.73 0.45

Markers
Regarding question D1, 5 probands used markers on thick DIN A5 paper that we provided,
5 participants printed markers themselves, 9 participants displayed markers on a display,
and 1 participant used different kinds of markers throughout the study. With respect to
question D2, 7 probands described the lighting conditions during the study as very good,
11 as good, and 2 stated that their lighting conditions are intermediate. For question D3,
8 probands described the recognition rate of the markers as very good, 9 as good, and 3
participants stated that the recognition rate is intermediate.

7.6 Discussion

This section discusses the abovementioned results. Therefor, we take a look at four different
aspects which correspond with our research questions, namely assignments, visualization,

59

7. Evaluation

usability, and collaboration.

Assignments
The assignments were largely solved correctly by the probands. At times an incorrect
answer was given at first but this was usually noticed and corrected by the other proband.
Incorrect answers could also be explained by a communication problem and due to our
additional notes the assignments could be solved without great difficulty. In the survey, no
probands indicated that the assignments were perceived as very difficult either. Moreover,
only one person found the assignments on software structure as difficult, for software
dynamics it are also only two persons.

For task T2.3 the probands were asked how the high number of method calls for
the previously identified class ProductDto can be explained. This semantic explanation
requires prior knowledge about data transfer objects (DTO), which was not present for all
probands. However, since this is an open question that cannot be answered by data from
the visualization alone, we do not see this as a shortcoming for our approach.

Probands gave question C5, which asks about the suitability of our approach to improve
program understanding, an overall rating of 3.25. Since the rating scale goes from 0 to 4,
we see this as a very positive sign. It can therefore be assumed that the developed approach
is in general suitable for tasks in the context of dynamic program analysis.

Visualization
Regarding B1, a question about the package structure, an overall rating of 3.50 and a
rating of 3.72 for tablets indicates that the package structure of applications is also easy to
understand on mobile applications. However, there were individuals who had no previous
experience with software visualizations and found the order of the packages confusing at
first. In the visualization, top-level packages, which therefore contain many other packages,
appear visually at the bottom. From development environments, one usually expects that
the name of these packages is at the top. However, this confusion was short-lived for the
people concerned, as the opening and closing of packages in the visualization quickly
revealed the underlying principles which are employed by the 3D city metaphor. Overall,
the presented package structure, as known from the frontend core of ExplorViz, seems to
work well on mobile devices.

Question B2 deals with the readability of labels for classes and packages. With an overall
rating of 1.85 and a rating of 2.09 for tablets, this aspect received the lowest rating within
our survey. The feedback shows that the names for packages are perceived as sufficiently
large, while the readability of class names can still be improved. There are suggestions
that the labels should already be displayed completely as soon as the user aims at a class
with the crosshair or that the labels are not shortened when a class is magnified by the
zoom feature. We consider these change requests to be very reasonable. However, when
implementing them, the possible performance impacts should be monitored. Detecting if a
class is currently targeted by the crosshair requires frequent calculations.

60

7.6. Discussion

Question B3 asks about the distinguishability of communication lines. With an overall
rating of 2.75 and a rating of 2.64 for tablet computers, respectively, this is rated rather
good, but there is room for improvement here. It was noted, for example, that many lines
of communication lying on top of each other are difficult to distinguish. It was suggested
that the communication lines should be distinguished not only in thickness but also in
color. This corresponds to a heat map visualization for communication lines. We consider
this change to be very useful, which also has advantages for the regular visualization of
ExplorViz.

Question B4 asks in general about the suitability of the layout and visualization for
the employed device. With 2.70, the overall rating is still rather good, but for tablets it
results in a rating of 3.45. Also considering the comments of the probands during the study,
we consider smartphones are best suited for the mere visualization of the 3D models. On
the other hand, tablet computers have a larger screen and are clearly better suited for an
analysis of the visualized data. In our estimation, visualization on tablet computers thus
proves to be very promising. The visualization on smartphones should continue to be
supported as best as possible, but we suspect the practical use cases for smartphones are
constrained.

Usability
The results for the questions A1 to A8 on the topic of usability are promising. From a
possible overall rating between 0 and 4, the average values are between 2.65 and 3.15.
However, it is noticeable that the rating of probands who have used tablet computers is
better for every aspect. For results for tablet computers achieve values between 2.72 and
3.45 for the questions in this category.

We, therefore, conclude that usability is better achieved for tablet computers, as already
assumed from the beginning. The larger screen of tablets allows more space to display the
UI elements and significantly less scaling or zooming are required to explore the software.
In addition, the selection of entities, especially for classes and lines of communication
between classes, is significantly more reliable with a larger display.

During the study, some probands expressed that they would like to interact with the
displayed models of the visualization with their finger or that they actually tried so without
success. Depending on their current assignment, the probands expressed that the ping
feature should be activated at the touched location or that a popup should be opened for
the targeted entity. We consider the implementation of a ping to be the most sensible since
precise targeting is not so relevant for that feature. If a class is meant to be targeted, but the
package under the class is hit by the imprecise touch input, the semantics of the displayed
ping will remain understandable.

When looking at the individual features, the popups, highlighting, and heat map gained
the lowest ratings. In the following, we will take a closer look at the weaknesses and the
reasons for these lower ratings in order to provide a basis for future improvement.

In the case of popups, individual probands with smartphones had the problem that

61

7. Evaluation

popups were not displayed on their screen or were only shown in landscape format. We
suspect that the popups were displayed outside the viewport due to the employed browser.
In addition, the sometimes difficult targeting of classes was criticized. One could counter
this by offering the option to only display information on either packages, classes, or
communication. With this addition, inaccurate targeting by the users could be adapted
such that it is mapped to the closest class, package, or communication line.

For highlighting, there were individual comments that multiple entities within an
application should be highlightable at the same time. We could imagine this, but we
are not sure if the semantics regarding transparent and displayed communication is still
preserved. Otherwise, we observed that some probands could only unhighlight an entity
with difficulty. Unhighlighting an entity is currently only possible by highlighting an
already highlighted entity again. This limitation originates from the frontend core and will
soon be lifted so that the highlighting can be removed by targeting the background.

Regarding the heat map, there were two main criticisms. First, the heat map is projected
onto the gray foundation of an application, which creates a gap between the class and the
corresponding colored area of the heat map. When viewed in three dimensions in AR, this
can lead to perspective shifts, such that colors are not aligned with the corresponding class.
The second point of criticism concerns the gradient of the colored areas that belong to a
class. In this gradient, the centered color indicates the actual value of the heat map. Even if
this visualization should help to differentiate the colors more easily, some users have asked
about the semantics of this coloring and have been unsure how to estimate the values using
the heat map legend. The mentioned problems could be solved by displaying the colors of
the heat map directly under a class and giving the class itself the assigned heat map color
as well.

Overall, we conclude that the usability of the implemented features to be good. However,
the aforementioned feedback should be implemented alongside other minor improvements
to make the use of our approach more intuitive.

Collaboration
For the topic of collaboration, we note that most probands from the study know each
other and have worked together before. However, this would also apply to people who
develop software together in a work environment. Therefore, we assume this to be a viable
precondition for the evaluation of collaborative features.

Question C3 asks whether working together was beneficial. With an overall rating of
3.10 most probands agreed with this statement. One proband noted that the tasks were too
easy and therefore the collaborative work was unnecessary. On the other hand, another
respondent, whose partner had more technical knowledge than him or her, described the
collaborative teamwork as very helpful.

Furthermore, we can state that the communication and interaction worked very well,
question C4 reaches a score of 3.70. Throughout the conduct of the study, there was also only
one proband, for whom a weak Internet connection led to issues regarding communication.

62

7.7. Threats to Validity

C6 deals with the question of whether the developed approach is suitable for collabora-
tive work in general. We find that with an overall rating of 3.60 and a rating for tablets of
3.73, this question was almost exclusively answered positively. The additional comments
in the survey on collaboration are also positive and highlight collaborative working in
ExplorViz as a particular plus.

The positive results regarding collaboration are certainly due in part to the fact that
the probands mostly knew each other. According to our observations, the probands who
already knew each other well also exchanged ideas more intensively during the study.
Overall, however, we see confirmation that the chosen approach is very promising for
collaborative program comprehension.

7.7 Threats to Validity

In this section, we present the most important threats to the validity of our evaluation.
These threats regard the probands, study setup, and relevance of the assignments.

Probands
20 probands conducted our case study. This number makes it hard to generalize our results.
Also, only 4 probands have currently a practical background like software engineer or
software architect. 16 probands are associated with academia. Therefore, the gathered
results provide first insights into the potential of our approach, but there is too little data
to state whether the developed approach could be adopted by software professionals for
practical applications. Another bias could be introduced due to the fact that we know
almost every proband personally. However, we stressed that open and honest feedback
is most beneficial to us. In addition, we encouraged probands to call out the issues they
encounter during the study and stated that such feedback is very helpful for the further
development of the evaluated approach.

Study Setup
As mentioned before, the setup of the study does not allow for a controlled experiment.
Therefore, there exist various factors which influence the gathered results aside from the
professional background of the probands. These factors include the diversity of employed
devices, employed markers, lighting conditions, available desk space, internet bandwidth,
as well as microphone and headphone quality. However, we anticipated most of these
factors and designed our study such that qualitative results are attained. It is also notable
that the conduct of such a study in a lab environment would probably improve the gathered
results because the study setup could be extensively tested and optimized in advance.

Relevance of the Assignments
The assignments for our case study are kept short and we mostly request the names of one

63

7. Evaluation

or more classes. Even though we asked participants to reflect their findings in assignment
T2.3 and add a practical use case to assignment T2.5, we expect real-world tasks to be
more complex. However, complex assignments that ask probands to analyze the runtime
behavior of a given software more extensively would require much more time. Our focus
is on the evaluation of the feasibility of our approach. In addition, we argue that the
assignments of our case study can be the building blocks for more complex tasks.

64

Chapter 8

Conclusions and Future Work

In this chapter, we summarize our developed approach for program exploration using
AR. We then take the gathered results from our evaluation to assess the potentials and
drawbacks for the collaborative use of our approach in practical applications. At last,
building upon our previous findings, we identify promising topics for future work.

8.1 Conclusions

In the course of this thesis, we developed an approach for an AR software visualization
which can be used collaboratively. For this purpose, we use mobile devices, i.e. tablet
computers and smartphones, and combine their camera images with virtual software
models. The 3D models are aligned within the camera image with the help of printed
markers.

In a concept, we have laid the foundation for the resulting implementation. The land-
scape model and application models of ExplorViz are placed on different markers. The user
is also provided with a variety of interaction options, such as a heat map, for analyzing the
visualization. Collaborative work is also enabled by synchronizing the status of applications
and providing further collaborative features.

In a case study, probands solved given tasks collaboratively and subsequently evaluated
the developed approach. The tasks were concerned with the analysis of the Java-based
BIMSWARM software system. The study was conducted in a location-independent manner
and feedback was collected for a variety of different devices. The results of the study
indicate that an AR visualization approach for mobile devices, especially tablet computers,
is suitable for improving program comprehension. In particular, the collaborative aspects
of our approach received positive feedback and should be further developed.

To our knowledge, no comparable approach exists that combines tablet computers
and an AR software visualization to collaboratively improve program comprehension.
Therefore, we see the necessity for further research regarding this promising topic.

8.2 Future Work

In this section, we discuss ideas for future work which originate from the conducted case
study.

65

8. Conclusions and Future Work

Extension of developed Approach
The results of the conducted case study are very promising. Therefore, the collected
feedback from the evaluation should be used to further develop and extend our approach.
For usability, for example, the control with touch gestures could be even more intuitive and
versatile. For the visualization a few ideas were collected, such as the different coloring
of communication lines, which can also benefit the other visualization approaches of
ExplorViz. Collaboration was positively received, but additional visual indicators can be
introduced to further simplify the location-independent use.

Further Case Study
We have already conducted a case study and were able to gain initial insights into our
approach. However, our case study has been exposed to a lot of influences due to its remote
execution. For example, the employed devices and markers are hardly comparable from
one group of probands to another. In order to obtain more meaningful results about the
developed approach, it would be helpful to conduct a study in a laboratory environment.
In such a study, the employed devices and markers can be selected in a controlled manner.

In addition, such a study could be used to explore collaborative work among probands
who are in the same room or sit at the same table. Our study indicates that communication
by means of videoconferencing tools is already suitable, but we hypothesize that face-to-face
communication, including gestures and facial expressions, can further benefit collaborative
work. Last, it would also be desirable to have both an increased number of subjects and an
increased proportion of active software developers among the probands.

Cross-Plattform Collaboration
Our case study provides a strong indicator that collaborative work can help to improve
program comprehension. We, therefore, recommend leveraging the platform independence
of ExplorViz to also explore collaboration when using different visualizations simultane-
ously. Since our approach uses the VR service for synchronization, AR and VR can already
be combined without many modifications. Collaborative work between AR, VR, and the
visualization for computers would still be very interesting. For this, however, it would
be strongly recommended that the visualization of ExplorViz allows the simultaneous
display of the landscape and multiple application models or at least enables fast switching
between applications. If the visualization for computers is adapted accordingly, these three
visualizations could be combined to enable a variety of novel use cases.

66

Bibliography

[Aires et al. 2018] M. Aires, M. López-Alonso, and M. Martinez-Rojas. Building information
modeling and safety management: A systematic review. Safety Science 101 (Jan. 2018),
pages 11–18. (Cited on page 5)

[Anthes et al. 2016] C. Anthes, R. García Hernandez, M. Wiedemann, and D. Kranzlmüller.
State of the Art of Virtual Reality Technologies. In: Mar. 2016, pages 1–19. (Cited on
page 9)

[Azhar 2011] S. Azhar. Building Information Modeling (BIM): Trends, Benefits, Risks, and
Challenges for the AEC Industry. Leadership and Management in Engineering 11 (July
2011), pages 241–252. (Cited on page 7)

[Azuma 1997] R. T. Azuma. A Survey of Augmented Reality. Presence: Teleoper. Virtual
Environ. 6.4 (Aug. 1997), pages 355–385. (Cited on page 8)

[Billinghurst et al. 2001] M. Billinghurst, H. Kato, and I. Poupyrev. The MagicBook -
Moving seamlessly between reality and virtuality. Computer Graphics and Applications,
IEEE 21 (June 2001), pages 6–8. (Cited on page 8)

[Borrmann et al. 2018] A. Borrmann, M. König, C. Koch, and J. Beetz. Building Information
Modeling: Why? What? How?: Technology Foundations and Industry Practice. In: Sept.
2018, pages 1–24. (Cited on pages 5, 6)

[Brück 2020] J. Brück. Collaborative Program Comprehension based on Virtual Reality.
Bachelorarbeit. Kiel University, Apr. 2020. url: http://eprints.uni-kiel.de/49581/. (Cited on
pages 47, 51)

[Chotisarn et al. 2020] N. Chotisarn, L. Merino, X. Zheng, S. Lonapalawong, T. Zhang,
M. Xu, and W. Chen. A systematic literature review of modern software visualization.
Journal of Visualization 23.4 (2020), pages 539–558. (Cited on page 7)

[Dieberger and Frank 1998] A. Dieberger and A. Frank. A city metaphor for supporting
navigation in complex information spaces. Journal of Visual Languages and Computing -
VLC (Jan. 1998). (Cited on page 13)

[Fittkau et al. 2017] F. Fittkau, A. Krause, and W. Hasselbring. Software Landscape and
Application Visualization for System Comprehension with ExplorViz. Information and
Software Technology 87 (July 2017), pages 259–277. (Cited on pages 10, 15)

[Fittkau et al. 2015] F. Fittkau, S. Roth, and W. Hasselbring. ExplorViz: Visual Runtime
Behavior Analysis of Enterprise Application Landscapes. In: 23rd European Conference
on Information Systems (ECIS 2015). May 2015. (Cited on page 12)

67

http://eprints.uni-kiel.de/49581/

Bibliography

[Hansen 2018] M. Hansen. Collaborative Software Exploration with the HTC Vive in
ExplorViz. Bachelor thesis. Kiel University, Sept. 2018. (Cited on pages 15, 47)

[Hansen 2021] M. Hansen. Evaluation results - Colaborative Program Comprehension based on
Augmented Reality (Master’s Thesis). Zenodo, July 2021. url: https://doi.org/10.5281/zenodo.
5075126. (Cited on page 57)

[Häsemeyer 2017] T. Häsemeyer. Kollaboratives Erkunden von Software mithilfe virtueller
Realität in ExplorViz. Bachelor thesis. Kiel University, Sept. 2017. (Cited on page 15)

[Hasselbring et al. 2020] W. Hasselbring, A. Krause, and C. Zirkelbach. ExplorViz: Research
on software visualization, comprehension and collaboration. Software Impacts 6 (Nov.
2020). (Cited on pages 1, 10, 15)

[Hove and Anda 2005] S. Hove and B. Anda. Experiences from Conducting Semi-structured
Interviews in Empirical Software Engineering Research. In: volume 2005. Oct. 2005, 10
pp.-. (Cited on page 48)

[Jiang et al. 2016] Y. Jiang, X. Liu, F. Liu, D. Wu, and C. Anumba. An Analysis of BIM
Web Service Requirements and Design to Support Energy Efficient Building Lifecycle.
Buildings 6 (Apr. 2016), page 20. (Cited on page 5)

[König 2018] D. König. Collaborative Software Exploration with the Oculus Rift in
ExplorViz. Bachelor thesis. Kiel University, Sept. 2018. (Cited on pages 15, 47)

[Krause 2015] A. Krause. Erkundung von Softwarestädten mithilfe der virtuellen Realität.
Bachelor thesis. Kiel University, Sept. 2015. (Cited on page 15)

[Maletic et al. 2002] J. Maletic, A. Marcus, and M. Collard. A task oriented view of software
visualization. In: Feb. 2002, pages 32–40. (Cited on page 21)

[MDN Web Docs WebXR Device API]. MDN Web Docs webxr device api. https://developer.mozilla.

org/en/docs/Web/API/WebXR_Device_API. Accessed: 2021-01-09. (Cited on page 10)

[Meins-Becker et al. 2019] A. Meins-Becker, A. Kelm, M. Kaufhold, M. Quessel, and M.
Helmus. BUILDING INFORMATION MODELING AND OPERATION. Proceedings of
International Structural Engineering and Construction 6 (May 2019). (Cited on page 5)

[Milgram et al. 1994] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino. Augmented
reality: A class of displays on the reality-virtuality continuum. Telemanipulator and
Telepresence Technologies 2351 (Jan. 1994). (Cited on page 8)

[Ohzawa 1998] I. Ohzawa. Mechanisms of stereoscopic vision: the disparity energy model.
Current Opinion in Neurobiology 8.4 (1998), pages 509–515. (Cited on page 8)

[Robertson et al. 1997] G. Robertson, M. Czerwinski, and M. van Dantzich. Immersion
in Desktop Virtual Reality. In: Proceedings of the 10th Annual ACM Symposium on User
Interface Software and Technology. UIST ’97. Banff, Alberta, Canada: Association for
Computing Machinery, 1997, pages 11–19. (Cited on page 8)

68

https://doi.org/10.5281/zenodo.5075126
https://doi.org/10.5281/zenodo.5075126
https://developer.mozilla.org/en/docs/Web/API/WebXR_Device_API
https://developer.mozilla.org/en/docs/Web/API/WebXR_Device_API

Bibliography

[Schreiber et al. 2019] A. Schreiber, L. Nafeie, A. Baranowski, P. Seipel, and M. Misiak.
Visualization of Software Architectures in Virtual Reality and Augmented Reality. In:
2019 IEEE Aerospace Conference. 2019, pages 1–12. (Cited on pages 18, 19)

[Seipel et al. 2019] P. Seipel, A. Stock, S. Santhanam, A. Baranowski, N. Hochgeschwender,
and A. Schreiber. Speak to your Software Visualization—Exploring Component-Based
Software Architectures in Augmented Reality with a Conversational Interface. In: 2019
Working Conference on Software Visualization (VISSOFT). 2019, pages 78–82. (Cited on
page 18)

[Souza et al. 2012] R. Souza, B. da Silva, T. Mendes, and M. Mendonça. SkyscrapAR:
An Augmented Reality Visualization for Software Evolution. In: Jan. 2012. (Cited on
pages 17, 18)

[Sutherland 1968] I. E. Sutherland. A Head-Mounted Three Dimensional Display. In:
Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part I. AFIPS ’68
(Fall, part I). San Francisco, California: Association for Computing Machinery, 1968,
pages 757–764. (Cited on page 8)

[W3C Chrome Hardware Support]. W3C Chrome Hardware Support. https://immersiveweb.dev/chrome-
support.html. Accessed: 2021-01-09. (Cited on page 15)

[Wettel and Lanza 2007] R. Wettel and M. Lanza. Visualizing Software Systems as Cities.
In: June 2007, pages 92–99. (Cited on page 13)

[wu et al. 2017] Z. wu, R.-D. Chang, and Y. Li. Building Information Modeling (BIM) for
green buildings: A critical review and future directions. Automation in Construction 83
(Nov. 2017), pages 134–148. (Cited on page 5)

[Zirkelbach 2021] C. Zirkelbach. Collaborative Reengineering and Modularization of Software
Systems. Kiel Computer Science Series 2021/4. Dissertation, Faculty of Engineering,
Kiel University. Department of Computer Science, Kiel University, 2021. (Cited on
page 15)

[Zirkelbach et al. 2018] C. Zirkelbach, A. Krause, and W. Hasselbring. On the Modernization
of ExplorViz towards a Microservice Architecture. In: Software Engineering. 2018. (Cited
on page 11)

[Zirkelbach et al. 2019] C. Zirkelbach, A. Krause, and W. Hasselbring. Modularization
of Research Software for Collaborative Open Source Development. In: The Ninth
International Conference on Advanced Collaborative Networks, Systems and Applications
(COLLA 2019). June 2019, pages 1–7. (Cited on page 12)

69

https://immersiveweb.dev/chrome-support.html
https://immersiveweb.dev/chrome-support.html

Appendix A

71

Appendix B

75

Collaborative Augmented Reality (Program Comprehension Study)

* 1. Please enter your team name (name on which you and the other team member secretly agreed upon).

 Very Difficult Difficult Intermediate Easy Very Easy

Software Structure
(concerning packages
and classes)

Software Dynamics
(concernings number of
instances and requests)

* 2. How did you perceive the difficulty of the tasks from the different categories?

 Very Bad Bad Undecided Good Very Good

Touch gestures (pan,
rotate, zoom)

Opening & Closing of
packages

Highlighting (coloring of
classes / packages)

Ping (colored dots)

Heatmap (e.g. Request
metrics)

Popups (movable
window with infos, e.g.
about classes /
packages)

Settings /
Configurability

User Interface (blue
buttons etc.)

* 3. Rate following features or aspects in terms of usability

4. Do you have remarks about the usability of certain features?

 Disagree Rather disagree Undecided Rather agree Agree

The package structure
can be easily accessed.

Component and class
names can be read with
ease.

Communication
between classes can be
distinguished easily.

The layout and
visualization is suitable
for the mobile device
which I used.

* 5. Regarding the layout and visualization of applications, how much do you agree with the following

statements?

6. Do you have further remarks about the visualization of applications (for mobile devices)?

 Disagree Rather disagree Undecided Rather agree Agree

I know the other team
member very well.

I already worked with
the other team member
before the study.

I felt working on the
tasks as a team was
helpful.

I felt I could
communicate and
interact well with my
team member.

The AR mode of
ExplorViz can be used
to improve program
comprehension.

The AR mode of
ExplorViz is suitable for
working in a team.

* 7. How much do you agree with the following statements?

8. Do you have further feedback about the collaborative aspects?

9. Which device(s) did you use? Be as specific as possible.

* 10. Which type of markers did you use?

Provided markers (thick DIN A5 paper)

Self-printed markers

Markers displayed on a monitor

Combination of different types

* 11. Please rate the lighting conditions of your environment during the study:

Very Good (bright and even illumination for markers)

Good

Intermediate

Bad

Very Bad (uneven and low level of illumination for markers)

* 12. Please rate the recognition rate of the markers (reliable placement of models on correct marker).

Very Good

Good

Intermediate

Bad

Very Bad

13. Additional comments about markers:

* 14. Which of the following statements apply to your environment during the study?

I was in the same room as my team member.

I was at home.

I was at my workplace.

I had a sufficient amount of space (desk space, room to move around).

It was a distracting environment (e.g. noisy).

None of the above.

* 15. What describes your professional background best?

Student

Researcher

Software Developer

Software Architect

Project Manager

Other

 None Beginner Intermediate Advanced Expert

Java, C++, or similar

Web Development

Software Development
in Teams

Static Software Analysis

Dynamic Software
Analysis

Program
Comprehension

Reengineering and
Reverse-Engineering

Augmented Reality

Software Visualization
(Tools like ExplorViz)

ExplorViz

* 16. Rate your experience in the following fields:

17. Suggestions for improvements or other remarks:

	1 Introduction
	1.1 Motivation
	1.2 Document Structure

	2 Goals
	2.1 G1: Concept for a Collaborative Augmented Reality Approach
	2.2 G2: Development & Integration of the Collaborative Augmented Reality Approach
	2.3 G3: Evaluation of the Collaborative Augmented Reality Approach

	3 Foundations and Technologies
	3.1 Building Information Modeling
	3.2 BIMSWARM
	3.3 Extended Reality
	3.3.1 Augmented Reality
	3.3.2 Virtual Reality

	3.4 Web Technologies
	3.4.1 AR.js
	3.4.2 WebXR
	3.4.3 Hammer.JS
	3.4.4 WebRTC

	3.5 ExplorViz
	3.5.1 Architecture
	3.5.2 Landscape and Application View

	4 Related Work
	4.1 ExplorViz
	4.2 SkyscrapAR
	4.3 IslandViz

	5 Concept
	5.1 Classification
	5.2 Use Cases
	5.3 Required Equipment
	5.3.1 Tablet Computers
	5.3.2 Markers
	5.3.3 Deployment Infrastructure

	5.4 Representation
	5.5 Incorporation with existing Implementation
	5.6 Software Technologies

	6 Implementation
	6.1 AR.js
	6.2 Markers
	6.3 Visualization
	6.4 Touch Gestures
	6.4.1 Pinch
	6.4.2 Rotate
	6.4.3 Pan

	6.5 Zoom Feature
	6.6 Heat Map
	6.7 Settings
	6.8 Collaboration
	6.8.1 Collaboration Interface
	6.8.2 Ping Feature

	6.9 Deployment
	6.10 Instrumentation of BIMSWARM

	7 Evaluation
	7.1 Goals
	7.2 Methodology
	7.3 Experiment
	7.3.1 Setup
	7.3.2 Introduction to ExplorViz
	7.3.3 Introduction to BIMSWARM
	7.3.4 Assignments
	7.3.5 Survey

	7.4 Pilot Study
	7.5 Results
	7.6 Discussion
	7.7 Threats to Validity

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Bibliography
	Appendix A
	Appendix B

