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Abstract 

The tunicate Ciona intestinalis is one of the most notorious invasive ascidian species. In 

Prince Edward Island (PEI, Canada), C. intestinalis causes heavy fouling on farmed mussels 

leading to significant economic losses. Except for general beneficial eco-physiological 

characteristics of invasive ascidians, reasons underlying C. intestinalis’ invasiveness remain 

obscure. This study aimed to shed light on two additional factors potentially promoting its 

invasion success, i.e., bioactive secondary metabolites and associated microbiota, which 

reportedly contribute to the invasiveness of other marine species. Therefore, microbiomes and 

metabolomes of invasive (PEI) and native (Helgoland and Kiel, Germany) C. intestinalis 

populations were comparatively studied, a novelty in invasive ascidian research.  

Apart from being problematic invasive species, ascidians and their associated microbiota 

are a rich source for bioactive marine natural products (MNPs) relevant for human health. 

However, the biodiscovery potential of C. intestinalis-associated microorganisms remains 

largely unknown. Accordingly, this doctoral research project targeted to explore bioactivities 

and the chemical repertoire of culturable bacteria and fungi associated with C. intestinalis. 

Amplicon sequencing-based bacterial community analysis of gut, tunic, and seawater 

(control) samples revealed species-specificity and a diverse microbiota (39 phyla). The UPLC-

MS/MS-based untargeted metabolomics approach revealed a diverse chemical inventory 

dominated by alkaloids and lipids. In addition to core bacteria and metabolites present in all 

samples, also tissue- and location-specific bacteria and metabolites were observed. Notably, 

highest microbial and chemical diversity were detected in the invasive C. intestinalis 

population (PEI). In combination, these results suggest a high adaptive capacity of 

C. intestinalis. In addition, several detected bacteria and secondary metabolites reportedly 

have antimicrobial, antifouling, and other relevant bioactivities, potentially promoting its overall 

health, fitness, and competitiveness. In conjunction with microbiome data, this first global 

metabolome study on C. intestinalis indicated microbial associates and chemical weapons as 

additional relevant factors promoting its invasion success. Therefore, this work contributes 

important basic knowledge for future projects scrutinizing the invasiveness of C. intestinalis. 

To investigate the potential of microorganisms associated with C. intestinalis in marine 

biodiscovery, isolates were obtained from tunics (T) and guts (G) due to their pivotal functions 

for the ascidian’s defense against, e.g., pathogens, and their reportedly different bacterial 

communities. In total, 89 (T) and 61 (G) bacteria as well as 22 (T) and 40 (G) fungi were 

isolated and identified from Helgoland and Kiel specimens. Many extracts showed 

antibacterial (T: 42%, G: 64%), antifungal (T: 10%, G: 11%), and/or anticancer (T: 6%, G: 

22%) activities. A 2-step selection procedure considering bioactivity and metabolite profiles 

was applied to prioritize the most promising MNPs producers. This led to the selection of seven 

tunic- and nine gut-derived microbial extracts affiliated to the fungal group of ascomycetes 

(69%) and the bacterial taxa Actinobacteria (25%) and Bacillus sp. (6%). Through an UPLC-

MS/MS-based dereplication workflow including molecular networking, in-silico approaches 

and manual database comparison, 170 compounds belonging to >40 different chemical 

families were putatively annotated, displaying a vast chemical diversity. Although this 

represents a significant increase in annotation rates compared to previous studies, still many 

compounds even from well-studied organisms (e.g., Penicillium and Streptomyces spp.) 

remained unknown. In summary, this study demonstrated a huge pharmaceutical potential of 

the culturable microbiota associated with C. intestinalis, including discovery of various 

putatively novel compounds. Application of novel selection and integrated dereplication 

procedures proved successful for strain prioritization and compound annotation. Furthermore, 

this strategy highlighted particularly fungi as so far uncharted and exceptionally promising 

resource for putatively novel anticancer and antimicrobial lead compounds of high interest. 
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Zusammenfassung 

Das Manteltier Ciona intestinalis ist eine der problematischsten invasiven 

Seescheidenarten. In der kanadischen Provinz Prince Edward Island (PEI) führt massiver 

Bewuchs von Zucht-Muscheln durch C. intestinalis zu erheblichen wirtschaftlichen Einbußen. 

Die ökophysiologischen Eigenschaften invasiver Seescheiden liefern lediglich eine 

unvollständige Erklärung für die Invasivität von C. intestinalis und es ist unklar, ob weitere 

Aspekte eine Rolle spielen. Ziel dieser Arbeit war es daher, mögliche zusätzliche Faktoren 

aufzuzeigen, die zu einer erfolgreichen Ansiedlung von C. intestinalis in neuen Habitaten 

beitragen könnten. Hierzu wurden sowohl bioaktive Sekundärmetabolite als auch assoziierte 

Mikroorganismen von C. intestinalis untersucht, welche beide in der Literatur bereits als 

wichtige Faktoren für die Invasivität mariner Arten identifiziert wurden. Erstmals wurden in 

dieser Arbeit vergleichende Untersuchungen des Mikrobioms und des Metaboloms invasiver 

(PEI) und einheimischer (Helgoland und Kiel, Deutschland) C. intestinalis Populationen 

durchgeführt. 

Neben ihrer hohen Invasivität sind Seescheiden und ihre assoziierten Mikroorganismen 

als ergiebige Quelle für bioaktive marine Naturstoffe mit hohem Anwendungspotenzial für die 

medizinische Forschung bekannt. Allerdings ist das Potenzial der mit C. intestinalis 

assoziierten Mikroorganismen diesbezüglich weitgehend unbekannt. Demzufolge war ein 

weiteres Ziel dieses Promotionsprojekts, die mit C. intestinalis assoziierten, kultivierbaren 

Bakterien und Pilze hinsichtlich ihrer Bioaktivität und ihres Repertoires an 

Sekundärmetaboliten zu erforschen.  

Für die Analyse hinsichtlich zusätzlicher Invasivitätsfaktoren wurde die bakterielle 

Diversität des Darms und der Tunica von C. intestinalis sowie von Meerwasserproben 

(Kontrolle) mittels Amplikon-Sequenzierung vergleichend untersucht. Diese Analysen 

resultierten in einer diversen (39 Phyla) und C. intestinalis-spezifischen 

Bakteriengemeinschaft. Darüber hinaus wurde mittels vergleichender, ungerichteter UPLC-

MS/MS-basierter Metabolomanalysen ein vielfältiges, von Alkaloiden und Lipiden dominiertes 

Sekundärmetabolitspektrum gefunden. Interessanterweise wurden neben Seescheiden-

spezifischen Bakterien-Sequenzen und ubiquitär vorkommenden Metaboliten auch solche mit 

gewebe- und standortspezifischem Vorkommen detektiert. Besonders hervorzuheben ist hier 

die erhöhte mikrobielle und chemische Diversität in der invasiven C. intestinalis Population 

(PEI). Zusammengenommen deuten diese Ergebnisse auf eine hohe Anpassungsfähigkeit 

von C. intestinalis hin. Darüber hinaus sind für einige der C. intestinalis-assoziierten Bakterien 

und Sekundärmetabolite bereits antimikrobielle, antifouling sowie andere relevante 

Bioaktivitäten beschrieben worden, welche potenziell zu einer Erhöhung der Gesundheit, 

Fitness und Konkurrenzfähigkeit der Seescheide beitragen. Diese erste globale 

Metabolomstudie von C. intestinalis weist in Verbindung mit dem erhobenen 

Mikrobiomdatensatz darauf hin, dass assoziierte Mikroorganismen und Sekundärmetabolite 

möglicherweise zusätzliche, für den Invasionserfolg von C. intestinalis relevante Faktoren 

darstellen. Daher liefert die vorliegende Arbeit wichtige Basisdaten für zukünftige Projekte 

rund um die Invasivität von C. intestinalis. 

Um das Potenzial der C. intestinalis-assoziierten Mikroorganismen für die 

Wirkstoffforschung zu untersuchen, wurden Mikroorganismen von Tunica (T) und Darm (G) 

einheimischer C. intestinalis (Helgoland und Kiel) isoliert. Diese Gewebe wurden aufgrund 

ihrer zentralen Rolle z.B. in der Abwehr von Pathogenen sowie ihrer bekanntermaßen 

unterschiedlichen Bakteriengemeinschaften ausgewählt. Insgesamt wurden 89 (T) bzw. 61 

(G) Bakterien sowie 22 (T) bzw. 40 (G) Pilze isoliert und identifiziert. Viele Extrakte zeigten 

antibakterielle (T: 42%, G: 64%), fungizide (T: 10%, G: 11%) und/oder krebszellhemmende 

(T: 6%, G: 22%) Aktivitäten. Ein zweistufiges Selektionsverfahren, welches die Bioaktivitäts- 
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und Metabolitprofile der Isolate berücksichtigte, wurde zur Priorisierung der 

vielversprechendsten Naturstoffproduzenten-Stämme angewendet. So wurden sieben (T) 

bzw. neun (G) mikrobielle Extrakte ausgewählt, die den Schlauchpilzen (69%), den 

Actinobakterien (25%) und Bacillus sp. (6%) zugeordnet wurden. Im Folgenden wurde ein 

UPLC-MS/MS-basierter Dereplikationsprozess genutzt, der molekulare Netzwerke, in-silico 

Verfahren und manuelle Datenbanksuchen beinhaltete. Mit 170 mutmaßlich identifizierten 

Substanzen aus über 40 verschiedenen chemischen Familien konnte so eine immense 

chemische Vielfalt ermittelt werden. Auch wenn diese Ergebnisse eine signifikante Steigerung 

erfolgreich identifizierter Substanzen im Vergleich zu Literaturdaten darstellen, blieben viele 

Metabolite auch von bereits sehr gut erforschten Mikroorganismen (z.B. Penicillium und 

Streptomyces spp.) unannotiert. 

Zusammengefasst zeigt diese Arbeit, dass die mit C. intestinalis assoziierte, kultivierbare 

mikrobielle Gemeinschaft ein enormes Potenzial für die Wirkstoffentwicklung hat. Dies 

beinhaltet auch die Entdeckung vieler neuartiger Substanzen. Eine neue Selektionsmethode 

und ein integriertes Dereplikationsverfahren wurden erfolgreich zur Priorisierung von 

mikrobiellen Extrakten und zur Substanzidentifikation angewendet. Außerdem hebt diese 

Studie insbesondere die bisher völlig unerforschte C. intestinalis-assoziierte Pilzgemeinschaft 

als äußerst vielversprechende Quelle für möglicherweise neuartige krebshemmende und 

antimikrobielle Wirkstoffe hervor.
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1 Marine natural products to combat infectious diseases and cancer  

Cancer is after cardiac diseases the most life-threatening non-infectious disease today. 

More than nine million cancer-related deaths worldwide were projected for 2018 (Bray et al. 

2018, WHO 2018). Cancer incidences continuously rise, mainly due to an aging society, and 

will probably exceed 20 million per annuum by 2025 (DePinho 2000, Ferlay et al. 2015). 

Despite remarkable advances in terms of efficacy and cure rates, most available 

chemotherapies still cause severe (long-term) side effects (Nurgali et al. 2018). Another 

serious risk for human health is imposed by the globally rising number of antibiotic-resistant 

bacteria (ARB). ARB-related deaths are estimated to reach 10 million within the next decades 

and currently >3 million new ARB infections are registered yearly in Europe and the USA 

(Luepke and Mohr 2017, Cassini et al. 2019). Mainly driven by excessive and often 

inappropriate use of antibiotics especially in medicine and agriculture, many human 

pathogenic bacteria have developed resistance to antibiotics. As a consequence, >70% of 

clinically relevant human pathogens nowadays show resistance towards at least one 

antimicrobial agent (Watkins and Bonomo 2016). Hence, novel drugs to combat infectious 

diseases and cancer are urgently needed (Khalifa et al. 2019, Hifnawy et al. 2020).  

Natural products (NPs) are used since millennia to cure all kinds of diseases and 

represent the most rewarding resource for drug development (Harvey 2008, Martins et al. 

2014). The term NPs usually refers to small molecules (<1500 Da) not directly related to 

growth and propagation of an organism. Being mostly classified as secondary metabolites 

(SMs), they offer competitive advantages and thus fulfill important functions for the producing 

organism such as defense, competition, and communication (Wishart 2008, Stuart et al. 2020). 

In contrast to long-standing research on terrestrial NPs (TNPs) that led to the discovery 

of >150,000 compounds, the exploration of the marine realm started only in the 1950s. 

Isolation of the nucleosides spongothymidine and spongosine from the Caribbean 

demosponge Tectitethya crypta (formerly known as Cryptotethya crypta) marks the beginning 

of marine NPs (MNPs) research (Bergmann and Burke 1955, Molinski et al. 2009, Shang et 

al. 2018). Their discovery inspired the development of the first marine-derived drug, the 

anticancer agent cytarabine. Cytarabine (marketed as Cytosar-U®) was approved for 

treatment of leukemia by the U.S. Food and Drug Administration (FDA) in 1969 (Molinski et 

al. 2009, Romano et al. 2017). Since then, >30,000 MNPs have been discovered (Carroll et 

al. 2020). Marine-sourced molecules presumably serve as basis for more than half of the drugs 

FDA-approved between 1981 and 2002, highlighting their enormous biodiscovery potential 

(Blockley et al. 2017). Evidence suggests that marine organisms are much more prolific 

producers of bioactive molecules than terrestrials. The proportion of MNPs with anticancer 

properties (1%) is 100-fold higher than for TNPs (Palanisamy et al. 2017, Shang et al. 2018) 

and marine drug discovery has a ~4-fold higher success rate when compared to TNPs 

research (Sigwart et al. 2021). So far, 14 MNPs entered the market as drugs, of which the 

majority (9 MNPs) was approved as therapeutic agents against cancer1. However, no marine-

derived compound has yet been approved or entered clinical trials for treatment of microbial 

infections.  

                                                
1 According to the Marine Pharmacology Clinical Pipeline, last updated in October 2020. Available at 

https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml (accessed on 04.01.2021) 

https://www.midwestern.edu/departments/marinepharmacology/clinical-pipeline.xml
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1.1 Drug discovery potential of ascidians 

Marine sedentary invertebrates such as sponges and tunicates2 are among the most 

talented producers of MNPs. This is mainly attributed to their sedentary lifestyle that triggered 

evolution of various defense mechanisms, such as chemical defense, alternative to escape in 

order to protect themselves against fouling organisms, predators, and pathogens (Proksch et 

al. 2002, Schmidt and Donia 2010, Leal et al. 2012; more details in Section 2.1).  

Biodiscovery studies on the chordate subphylum Tunicata delivered already more than 

1300 MNPs (Miyako et al. 2020) that are mainly classified as alkaloids (79%; Figure 1a). All 

tunicate-derived MNPs have been isolated from the class Ascidiacea. Among them, the most 

diverse order Aplousobranchia (including, e.g., the genera Aplidium and Didemnum spp.; see 

also Section 2) contributed to 75% of the isolated MNPs between 1994 and 2014 (Figure 1b). 

Most ascidian-derived MNPs show bioactivities, with anticancer (64%) and antimicrobial 

(17%) activities being the most frequently reported (Figure 1c). The fact that three out of nine 

approved marine anticancer drugs are tunicate-derived (Figure 1d) underlines the high 

potential of ascidians to deliver novel compounds with anticancer activities (Menna 2009). 

 

Figure 1. Characteristics and MNP discovery potential of ascidian-derived compounds. Ascidian-
derived MNPs published between 1994 and 2014 (modified after Palanisamy et al. 2017). The chemical 
family of the isolated compounds (a), the taxonomic classification of the producing ascidian at order 
level (b), and reported bioactivities (c) are given. Figure 1d displays the origin of nine clinically approved 
marine anticancer drugs according to the Marine Pharmacology Clinical Pipeline1. 

                                                
2 The presence of a notochord and dorsal nerve cord during the larval stage places tunicates unambiguously in the 

phylum Chordata, but still most studies include tunicates to the informal group invertebrates (Leal et al. 2012). 
Accordingly, in this study, the subphylum Tunicata is included in the group of marine invertebrates. 
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After 40 years of research, the anticancer agent Yondelis® (trabectedin/ecteinascidin-

743; Figure 2) was the first ascidian-sourced drug that entered the market in 2007. Extracts of 

the colonial tunicate Ecteinascidia turbinata were already reported in 1969 to show antitumor 

properties, but structure elucidation of the complex tetrahydroisoquinoline alkaloid trabectedin 

was only completed in 1990 (Molinski et al. 2009, Gerwick and Moore 2012). Another 10 years 

were needed for the development of an appropriate semi-synthetic production process for 

trabectedin to solve the supply issue, i.e., ~1 t of E. turbinata were needed to gain 1 g of 

trabectedin (Cuevas and Francesch 2009, Martins et al. 2014).  

 

Figure 2. Anticancer and antimicrobial lead compounds isolated from ascidians. Compound 
names, trade names (if approved as drug) and the source of isolation are displayed for each structure. 

Didemnin B represents another prominent example of an ascidian-derived MNP (Figure 

2). It was isolated in the 1980s along with other cytotoxic cyclic depsipeptides from the 

Caribbean tunicate Trididemnum solidum (Rinehart et al. 1981). Although didemnin B showed 

potent in vitro and in vivo antiproliferative activity (Rinehart et al. 1981), clinical trials had to 

be stopped in phase II due to several negative side effects such as neuromuscular toxicity. 

Notably, the structurally similar compound plitidepsin (dehydrodidemnin B, Aplidin®; Figure 2) 

originally isolated from the Mediterranean tunicate Aplidium albicans showed comparable 

antitumor properties, but lower cytotoxicity (Molinski et al. 2009, Xu et al. 2012). Aplidin® 

combined with the corticosteroid dexamethasone was approved in 2018 by the Australian 

Regulatory Agency as 3rd/4th line anticancer agent for treatment of multiple myeloma 
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(Dyshlovoy and Honecker 2020)3. Most recently, lurbinectedin (Zepzelca®; Figure 2), a 

synthetic analog of trabectedin, was FDA-approved as treatment against small cell lung 

cancer. In addition, lurbinectedin is currently in clinical trials (phase III1) for treatment of, e.g., 

ovarian and breast cancer (Markham 2020). 

Although no antimicrobial marine lead compound entered clinical trials so far, a current 

review presented 159 ascidian-derived compounds showing antibacterial activity, often in 

conjunction with other activities, e.g., antifungal (Casertano et al. 2020). For example, the 

polysulfide lissoclinotoxin A isolated from the colonial ascidian Lissoclinum perforatum shows 

a broad spectrum of activities against bacteria, fungi, and cancer cell lines (Figure 2). Most 

excitingly, it exhibited higher potency against the human pathogen Staphylococcus aureus 

(MIC 0.08 to 0.15 µg/mL) than the commercial antibiotic cefotaxime (MIC 1.2 to 10 µg/mL; 

Litaudon et al. 1994, Casertano et al. 2020). Moreover, antimicrobial peptides isolated from 

the solitary tunicate Styela clava included the polypeptide clavanin A, which showed promising 

antimicrobial properties when encapsulated with nanoparticles. In vivo bacterial sepsis 

assays, in which mice were infected with a polymicrobial mixture of human pathogens such 

as Staphylococcus aureus, showed increased survival rates to up to 100% when 

nanoformulated clavanin A was applied (Saude et al. 2014, Casertano et al. 2020).  

1.2 Marine-derived microorganisms as resource for bioactive marine natural 

products 

Recent evidence suggests that at least 8% of ascidian-derived metabolites are of 

microbial origin and several compounds originally isolated from ascidians have been shown 

to be actually produced by bacterial associates (Schmidt 2015, Bauermeister et al. 2018). 

Among them, didemnin B and trabectedin (ET-743) represent the most prominent examples. 

According to recent meta-omics studies, didemnin B is produced by marine-derived 

Alphaproteobacteria of the genus Tistrella (Xu et al. 2012) and trabectedin synthesis was 

demonstrated in the yet unculturable gammaproteobacterial E. turbinata-symbiont Candidatus 

Endoecteinascidia frumentensis (Rath et al. 2011). Another example is provided by the 

tambjamines, which were isolated from taxonomically very different marine invertebrate 

groups such as ascidians and bryozoans. This alkaloid family harbors many bioactive 

metabolites, inhibiting growth of bacteria, fungi, and cancer cells (Picott et al. 2019). In 2007, 

Burke and co-workers showed that tambjamine YP1 (Figure 3) is actually biosynthesized by 

the Gammaproteobacterium Pseudoalteromonas tunicata, which has been isolated from 

various marine surfaces including the solitary tunicate Ciona intestinalis (Burke et al. 2007). 

Similarly, patellamides, cytotoxic cyclic peptides, are frequently isolated from didemnid 

ascidians such as Lissoclinum species. Genome sequencing and heterologous expression 

evinced the production of patellamide A and C (Figure 3) by the cyanobacterial symbiont 

Prochloron didemni (Schmidt et al. 2005).  

Over 150 MNPs have been isolated from ascidian-associated microbes in the past two 

decades (Chen et al. 2018). One example is the novel polyketide forazoline A that was 

obtained from the E. turbinata-associated actinobacterium Actinomadura sp. (Figure 3). This 

halogenated polyketide is a promising antifungal lead, since it showed in vivo activity against 

the human pathogen Candida albicans (MIC 16 µg/mL) and no toxicity (Wyche et al. 2014). 

This is in accordance with a general trend increasingly revealing symbiotic and free living 

marine-derived microorganisms as major source for the drug discovery pipeline, 

                                                
3 According to the oncology pipeline of PharmaMar. Available at https://pharmamar.com/science-and-
innovation/oncology-pipeline/?lang=en (accessed on 18.01.2021)  

https://pharmamar.com/science-and-innovation/oncology-pipeline/?lang=en
https://pharmamar.com/science-and-innovation/oncology-pipeline/?lang=en
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outperforming marine invertebrates, algae, and mangroves (Figure 4; Bhatnagar and Kim 

2010, Carroll et al. 2020). In 2019, the majority of reported marine compounds were of 

microbial origin (66%), with fungi (47%) taking the lead position as source for novel MNPs. 

While ten years ago only ~1000 MNPs were known from marine-derived fungi (Rateb and 

Ebel 2011), today >5000 are published (Carroll et al. 2020). The importance of marine 

microorganisms for drug discovery is highlighted by the microbial origin of two out of three 

MNPs currently in phase III clinical anticancer trials1. These are the cyclic dipeptide plinabulin 

(Figure 3), which was inspired by the fungal diketopiperazine halimide (Giddings and Newman 

2019), and salinosporamide A (marizomib; Figure 3) produced by the actinobacterium 

Salinispora tropica (Feling et al. 2003, Wang et al. 2020).  

 

Figure 3. Bioactive secondary metabolites isolated from marine microorganisms. Chemical 
structures are displayed with their compound name and the bacterial or fungal producer. 

 

Figure 4. Original source of isolated MNPs published between 2014 and 2019. This graph was 
based on the annual MNPs report (Carroll et al. 2020). Data for 2019, which will be part of the 2021 
MNPs report, are provided courtesy of Prof. Dr. Anthony Carroll (personal communication). Others: 
Bryozoans, echinoderms, mollusks, and tunicates. 
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2 The tunicate class Ascidiacea 

Ascidians (sea squirts) are a fully marine class within the chordate subphylum Tunicata, 

the closest relatives of the vertebrates. Tunicate phylogeny has been challenging, mainly due 

to the low resolving power of previously used marker genes. Phylogenomic studies revealed 

that tunicates include the classes Appendicularia, Ascidiacea, and Thaliacea (Figure 5a). The 

class Ascidiacea can be further divided into the orders Aplousobranchia, Phlebobranchia, and 

Stolidobranchia, and is with ~3000 described species by far the largest tunicate class 

(Shenkar et al. 2017, Delsuc et al. 2018, Kocot et al. 2018). 

Earliest geological records of tunicates date back to the early Cambrian period (~542 

mya; Chen et al. 2003). Nowadays, ascidians are found all over the globe, from Alaska to 

Antarctica. Sea squirts colonize diverse habitats ranging from shallow waters to the deep sea, 

including soft and hard substrates as well as artificial structures (Shenkar and Swalla 2011). 

Species diversity is highest in the epi- and mesopelagic zone (Lambert 2005), but deep-sea 

ascidian species have been collected from below 8000 m (Sanamyan and Sanamyan 2006). 

Many ascidian species show broad environmental tolerances, with reported temperature limits 

from approximately -2 °C to +35 °C. Most ascidians can survive salinities between 25 ‰ and 

40 ‰, but there are few reported species with much lower (12 ‰) or higher (>44 ‰) salinity 

tolerance limits (Shenkar and Swalla 2011, Zhan et al. 2015). 

Although showing different lifestyles (colonial vs. solitary organisms) and diverse colors 

and shapes (Figure 5b), ascidians share general characteristics and body plan features 

(Figure 5c; Zeng et al. 2006, Holland 2016). Ascidians have a sessile lifestyle and a tough 

protective outer coating, the tunic. The tunic is a dense matrix mainly consisting of the 

cellulose-like polysaccharide tunicin and complex proteins such as collagen and elastin 

(Holland 2016, Franchi and Ballarin 2017). With few exceptions, ascidians are filter-feeders: 

Seawater enters the body via an oral (inhaling) siphon, is filtered through the branchial basket, 

where food particles are trapped by mucus, and exits via the atrial (exhaling) siphon (Lemaire 

2011, Holland 2016). The alimentary tract is compartmentalized (i.e., esophagus, stomach, 

gut) and challenged by the constant exposure to microorganisms entering the sea squirt during 

water filtration. In that respect, the gut plays a pivotal role for the animal’s immunity, 

exemplified by variable region-containing chitin-binding proteins (VCBPs). VCBPs are mainly 

expressed in the gut epithelium and modulate its microbial colonization and immune defense 

(Dishaw et al. 2016, Franchi and Ballarin 2017). Finally, sea squirts are broadcast-spawning 

hermaphrodites, i.e., they reproduce sexually by ejecting both eggs and sperms 

simultaneously. The embryo rapidly develops to a tadpole larva that exhibits basic chordate 

characteristics such as a notochord and a dorsal nerve cord (Lemaire et al. 2008, Holland 

2016). Colonial ascidians also reproduce asexually via budding (Holland 2016). 
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Figure 5. The tunicate class Ascidiacea. (a) Phylogenetic tree of tunicates and their closest relatives 
based on Delsuc et al. 2018. Orange names: Orders of the class Ascidiacea. (b) Prominent MNPs 
producers (1-4) and invasive species (5-6): Trididemnum solidum (1), Ecteinascidia turbinata (2), 
Aplidium albicans (3), Lissoclinum perforatum (4), Ciona intestinalis (5), and Styela clava (6). Pictures 
1-3 were obtained under the terms and conditions of the CC BY 4.0 license 
(https://creativecommons.org/licenses/by/4.0/) from Hoeksema et al. 2020 (1) and Dou and Dong 2019 
(2, 3). Pictures 4-6 were obtained from The Dutch Ascidians Homepage (www.ascidians.com) with 
permission from Dr. Arjan Gittenberger (GiMaRIS). (c) Simplified and generalized body plan of 
ascidians. 

2.1 Key strategies of ascidians to escape predation, fouling, and infection  

Sedentary and soft-bodied animals such as ascidians are continuously exposed to fouling 

and pathogens, are unable to escape from predation, and are in direct competition with other 

benthic species for resources such as food and space. To survive in this hostile environment, 

ascidians have developed multifold physical and chemical defense strategies. Physical 

defenses include tunic toughness and in some species accumulation of spicules within the 

tunic. Major chemical defense strategies involve highly acidic tunics (pH ≤2), accumulation of 

toxic heavy metals such as vanadium, and defensive chemicals, of which the latter appear 

most crucial for survival and performance (Stoecker 1980, Pisut and Pawlik 2002, López-

Legentil et al. 2006, Erwin et al. 2013). Antimicrobial peptides (AMPs) are important for the 

ascidian’s immune response towards invading microorganisms. For instance, two AMPs (Ci-

MAM-A24 and Ci-PAP-A22) originating from hemocytes of C. intestinalis exerted potent 

antimicrobial activities, e.g., Ci-MAM-A24 inhibited growth of marine bacteria (MIC 0.1-3.1 µM; 

Fedders et al. 2008, Di Bella et al. 2011, Sperstad et al. 2011). In addition to AMPs, chemical 

defense is provided by predator deterring SMs. This was first demonstrated in 1990 for 

Atapozoa sp. (later identified as Sigillina signifera). Crude extracts and tambjamine alkaloids 

from this ascidian repelled, e.g., carnivorous fish (Paul et al. 1990, López-Legentil et al. 2006). 

Similarly, ascididemin obtained from Cystodytes spp. significantly reduced predation by the 

puffer fish Canthigaster solandri (López-Legentil et al. 2006). Despite these intriguing 

examples, for most SMs, the ecological function remains unclear (Lopanik and Clay 2014). 

https://creativecommons.org/licenses/by/4.0/
http://www.ascidians.com/
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2.2 Microbial associates of ascidians: Friends or foes? 

Today’s consensus is that macroorganisms are not regarded as single organisms, but as 

a complex host-microbiota entity, named holobiont (Zilber-Rosenberg and Rosenberg 2008) 

or metaorganism (Bosch and McFall-Ngai 2011). Many ascidian species have been 

demonstrated to harbor diverse host-specific bacterial communities that vary with geographic 

location and environmental parameters (Tianero et al. 2015). In addition, species-specific 

bacterial symbionts are essential for survival and fitness of the host, mainly by providing 

bioactive metabolites with various ecological functions and by assisting nutrient supply 

(Franzenburg et al. 2013, Tianero et al. 2015). The cyanobacterium Prochloron spp. 

associated with the colonial ascidians Lissoclinum patella and Didemnum molle provides UV-

shielding compounds such as mycosporine-like amino acids (Hirose et al. 2006, Morita and 

Schmidt 2018). The above-mentioned didemnins, ecteinascidins, and tambjamines are 

excellent examples of symbiont-mediated chemical defense for deterrence of predators 

(Florez et al. 2015, Morita and Schmidt 2018). Cyanobacterial associates such as Prochloron 

or Synechocystis spp. complement the diet of their heterotrophic filter-feeding hosts by 

providing photosynthetically fixed carbon (up to 100%) and by nitrogen recycling (Donia et al. 

2011, Morita and Schmidt 2018). In contrast to numerous examples of beneficial bacteria-

ascidian partnerships, the ascidian mycobiome remains largely unexplored. First studies on 

ascidian-associated fungi are solely based on cultivation and therefore, host-specificity and 

their ecological roles remain to be proven (Yarden 2014, López-Legentil et al. 2015). 

Interestingly, no microbial pathogens are – to our knowledge – known from sea squirts, giving 

further evidence for a well-working defense system against microbial infections. 

2.3 The sea vase tunicate Ciona intestinalis 

Ciona intestinalis, commonly known as sea vase tunicate, is a solitary sea squirt 

belonging to the family Cionidae (order Phlebobranchia; Figure 6a) that consists of 18 different 

species (Carver et al. 2006, Shenkar and Swalla 2011, Mastrototaro et al. 2020). In 1767, 

C. intestinalis was first described by Carl von Linné (latin: Carolus Linnaeus) under the name 

Ascidia intestinalis (Linnaeus 1767, Brunetti et al. 2015). It follows a typical ascidian body plan, 

including the tunic, two siphons, and the digestive organs. The sea vase tunicate has a 

cylindrical and translucent body of pale greenish to orange color and the siphons show 

yellowish pigmentation at the margins (Figure 6b-f; Millar 1953, Carver et al. 2006). With a 

long reproductive season in temperate regions (spring to autumn) and ~500-1000 produced 

eggs per individual per day, C. intestinalis shows a high reproductive capacity. Moreover, it 

grows rapidly (~2 cm/month) and reaches maturity already after ca. 2 months (Dybern 1965, 

Carver et al. 2006, Harris et al. 2017). Adults reach up to 15 cm in length and 3 cm in diameter 

(Carver et al. 2006). The total life-span of C. intestinalis varies from months to years, with cold-

water-adapted animals showing longer lifespans, e.g., in Northern European waters 

individuals live 12-18 months (Dybern 1965, Carver et al. 2003). C. intestinalis is characterized 

by broad environmental tolerance: it can survive water temperatures from -1 °C to +35 °C 

(eurytherm) and salinities from 12 ‰ to 40 ‰ (euryhaline), which is the highest salinity 

tolerance reported for ascidians (Zhan et al. 2015). Some generalist ascidian predators such 

as fish (e.g., combtooth blenny Scartichthys viridis), crustaceans (e.g., rock shrimp 

Rhyncocinetes typus and shore crab Carcinus maenas), and the common sea star Asterias 

rubens reportedly prey upon adult C. intestinalis (Carver et al. 2006, Dumont et al. 2011). 
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Figure 6. The sea vase tunicate Ciona intestinalis. The taxonomic classification of C. intestinalis is 
displayed in a. Pictures b-f show C. intestinalis in the laboratory and in natural habitats: A specimen 
sampled in Helgoland (b), the opened tunic of a specimen from Prince Edward Island (c), C. intestinalis 
growing on a buoy (d) or on farmed Laminaria saccharina in Kiel Fjord (e), and an underwater 
C. intestinalis population (f). Pictures 6b-e were taken by Caroline Utermann, picture 6f was retrieved 
under CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/) from the World 
Register of Marine Species (http://www.marinespecies.org/index.php; author: Perezoso). 

Ascidians are due their close relation to the vertebrates (including the tadpole larvae) and 

their fast reproduction perfect model organisms for animal evolution and development 

(Kumano and Nishida 2007, Delsuc et al. 2018). Ciona spp. are particularly favorable model 

species due to their rapid embryogenesis, easy cultivation and propagation in the laboratory, 

and their translucent body that allows non-invasive observation of all internal organs (Corbo 

et al. 2001, Satoh et al. 2003, Dishaw et al. 2012). Research on Ciona spp. was further spurred 

by the release of the C. intestinalis4 and C. savignyi genomes in 2002 (Dehal et al. 2002) and 

2005 (Vinson et al. 2005), respectively. Genome sequencing of C. intestinalis4 was an 

important milestone, since it was the first published genome of an invertebrate chordate. Its 

comparably small genome size (∼160 Mb) is another aspect rendering C. intestinalis4 an 

attractive model species (Satoh and Levine 2005, Satou et al. 2019). Ciona spp. were also 

recently proposed as suitable model organisms for ecotoxicity (Gallo and Tosti 2015, Eliso et 

al. 2020) and host-microbe interaction studies (Leigh et al. 2016). 

2.4 Taxonomic revision and global distribution of the C. intestinalis species 

complex 

The precise taxonomic placement of species is crucial for many research fields, including 

the developmental and evolutionary research conducted with the model organism 

C. intestinalis (Caputi et al. 2007). However, the phylogenetic relationship of C. intestinalis 

and its closely related species C. robusta was the subject of long scientific debate (Brunetti et 

                                                
4 Previously re-assigned to C. robusta (see Section 2.4) 

https://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.marinespecies.org/index.php
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al. 2015, Pennati et al. 2015). In 2007, it was demonstrated that C. intestinalis consists of two 

cryptic species, termed C. intestinalis spA and spB (Caputi et al. 2007). Only five years later 

researchers presented compelling genetic and morphological evidence that C. intestinalis spA 

was misidentified and must be assigned to the distinct species C. robusta described by 

Hoshino and Tokioka in 1967. Ciona intestinalis spB is correctly assigned as C. intestinalis 

Linnaeus 1767 sensu Millar 1953 (Brunetti et al. 2015, Pennati et al. 2015, Mastrototaro et al. 

2020)5. Since C. intestinalis and C. robusta show high morphological similarity, the above 

presented studies used mitochondrial and nuclear gene markers to corroborate their findings. 

The only reliable morphology-based discrimination criterion (i.e., C. robusta shows ‘small 

raised regions’ on the tunic surface close to the siphons) requires sophisticated knowledge 

and equipment. Hence, identification of C. intestinalis and C. robusta should always be based 

on molecular marker genes (Brunetti et al. 2015). 

Ciona intestinalis and C. robusta are both denoted as shallow water species and show a 

cosmopolitan distribution (Figure 7). Ciona intestinalis is more common in cold waters and has 

its origin in the NE Atlantic (including Baltic and North Seas). Nowadays, it is also found in the 

NW Atlantic (US and Canadian coast) as well as Bohai and Yellow Seas (China). Ciona 

robusta, which is native to the NW Pacific (Japan and Korea), is more adapted to warmer 

regions. This species has colonized several other geographic areas, i.e., the NE Pacific, the 

Mediterranean Sea, and additional regions in the Southern hemisphere. Moreover, co-

occurrence of both species has been reported from the English Channel as well as the French 

and Spanish Atlantic coast (Caputi et al. 2007, Procaccini et al. 2011, Brunetti et al. 2015, 

Bouchemousse et al. 2016). 

 

Figure 7. Global distribution of C. intestinalis and C. robusta. The gene marker-based distribution 
of C. intestinalis (red) and C. robusta (blue) is displayed. The contact zone of C. intestinalis and 
C. robusta is highlighted in purple. Native habitats are marked by an asterisk. This illustration was 
inspired by Caputi et al. 2007 and is based on the molecular studies of Zhan et al. 2010 and 
Bouchemousse et al. 2016. The map was retrieved from 
https://de.wikipedia.org/wiki/Datei:World_map_blank_without_borders.svg, where it was published by 
user Crates under the CC BY-SA 4.0 license (https://creativecommons.org/licenses/by-sa/4.0/).  

                                                
5 Whenever hereinafter referencing studies published before the taxonomic revision in 2015, the new taxonomy 

will be applied, i.e., C. intestinalis type A is changed to C. robusta. 

https://de.wikipedia.org/wiki/Datei:World_map_blank_without_borders.svg
https://creativecommons.org/licenses/by-sa/4.0/
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2.5 Current state of play: Chemical and microbiome research on Ciona species  

Although ascidians and their microbial associates are versatile producers of bioactive 

SMs, research on Ciona spp. is comparably low, i.e., Cionidae contributed only to 4% of MNPs 

isolated from ascidians between 1994 and 2014 (Palanisamy et al. 2017). Chemical 

investigations on European C. intestinalis delivered the above presented AMPs Ci-MAM-A24 

and Ci-PAP-A22 (Helgoland, Germany), promising antibiotic lead compounds against 

antibiotic-resistant bacteria (Fedders et al. 2010, Di Bella et al. 2011), as well as the 

octapeptide cionin purified from Swedish specimens (Figure 8; Johnson and Rehfeld 1990). 

The polypeptides CS5931 and Cs-mChM-1, which were isolated from C. savignyi collected in 

China (Yellow Sea), are promising anticancer agents (Cheng et al. 2012, Dou et al. 2018). For 

instance, CS5931 inhibited the proliferation of six cancer cell lines and showed in vitro and in 

vivo anti-angiogenic activity rendering it a good anticancer drug candidate (Cheng et al. 2012, 

Liu et al. 2014). The bromophysostigmine alkaloids urochordamine A and B (Figure 8), both 

purified from Japanese C. savignyi, are potential metamorphosis inducers as they reportedly 

promote settlement and metamorphosis of the tadpole larvae (Tsukamoto et al. 1993). 

Furthermore, they show antibacterial activity against Bacillus marinus. Due to the detection of 

urochordamines and structurally related compounds in various marine invertebrates, a 

microbial origin was suggested (Tsukamoto et al. 1993). Two halogenated tyrosine-derived 

alkaloids, iodo- and bromocionin (Figure 8), were purified from C. edwardsii (Naples, Italy). 

Iodocionin showed selective in vitro activity against cell line L5178Y (mouse lymphoma; IC50 

of 7.75 μg/mL; Aiello et al. 2010). A novel alkyl sulfate (Figure 8) from the same species also 

collected in Naples did not exert any cytotoxic effects (Imperatore et al. 2012). Chemical 

analyses of C. robusta led to the isolation of many sterols, including the ubiquitous cytotoxic 

sterol 24-hydroperoxy-24-vinylcholesterol isolated from C. robusta sampled in the 

Mediterranean Sea (Corsica, France; Figure 8; Guyot and Davoust 1982). Finally, the sperm-

activating and -attracting factor 3,4,7,26-tetrahydroxycholestane-3,26-disulfate (Figure 8) was 

isolated from C. robusta and C. savignyi collected in Japan (Yoshida et al. 2002).  

Two studies exploring the chemical composition of Norwegian C. intestinalis evinced 

differential lipid composition of tunic and inner body tissues as well as higher amounts of 

carbohydrates in the tunic, while inner body tissues were comparably richer in proteins (Zhao 

et al. 2015, Zhao and Li 2016). Nevertheless, no metabolomics study assessing the SM 

composition of Ciona spp. was conducted so far.  

Three culture-independent studies revealed a diverse and rich bacterial community 

associated with the gut and tunic of Ciona species. Ciona intestinalis collected in the North 

Atlantic (Massachusetts, USA) harbored ascidian-specific microbiomes different from the 

ambient seawater, with few dominating strains mainly affiliated to Alphaproteobacteria and 

Bacteroidetes (Blasiak et al. 2014). A comparative analysis of the tunic microbiome of 

C. robusta, C. savignyi and two Stolidobranch ascidians sampled at different locations in New 

Zealand showed geographically conserved and species-specific microbiomes (Cahill et al. 

2016). Ciona intestinalis and C. robusta sampled at three different sites (San Diego and 

Woods Hole, USA; Naples, Italy) showed large overlap of their gut microbiomes and, in 

contrast to the tunic, the gut microbiota was dominated by Gammaproteobacteria and 

Verrucomicrobia (Dishaw et al. 2014). The mycobiota of Ciona spp. has not been assessed 

by culture-independent methods yet, but recently few Ascomycete fungi such as Acremonium, 

Penicillium, and Trichoderma were isolated from the gut of C. robusta (Liberti et al. 2019). 

However, to the best of our knowledge no records exist on culturable fungi associated with 

C. intestinalis. Moreover, the biotechnological potential of microorganisms associated with 

Ciona spp. has only been investigated once: Pseudoalteromonas tunicata, a tunic-associated 
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bacterium isolated from C. intestinalis collected in the Gullmarsfjorden (Swedish west coast), 

exhibits antibacterial, antifouling, and antilarval activity and therefore, may contribute to the 

chemical defense of its host (Holmström et al. 1998). Accordingly, the potential of 

C. intestinalis associated microbiota in marine biodiscovery remains largely untapped. 

 

Figure 8. Examples of natural products isolated from Ciona species. Chemical structures of four 
discussed peptides are not shown, since the structure was not given in the respective publication. 

3 Biological invasions  

In invasion biology, terminology for species that spread beyond their natural habitat has 

not been used consistently (Kolar and Lodge 2001, Colautti and MacIsaac 2004). Following 

Kolar and Lodge, species successfully introduced outside their native habitat are termed non-

indigenous (or non-native) species (NIS). When NIS become highly abundant and expand 

their range in the non-native habitat, they are defined as invasive species (Kolar and Lodge 

2001, Falk-Petersen et al. 2006). Invasive species with tremendous ecological or economic 

impact are often referred to as nuisance or pest species (Falk-Petersen et al. 2006). They are 

a major threat to our planet’s biodiversity ranking second among the causes for global diversity 

loss (Kolar and Lodge 2001, Molnar et al. 2008, Simberloff et al. 2013). For instance, pest 

species can reduce local species richness, lead to decline or extinction of native species, alter 

food webs and nutrient cycles, and thereby disrupt key ecological processes (Simberloff et al. 

2013, Chan and Briski 2017). Invasive species also cause serious economic damages. For 

instance, the US shipping industry estimates that fouling on ship hulls costs $120 billion per 
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year, mainly due to increased water resistance leading to raised fuel consumption (Susick et 

al. 2019).  

The major steps during the invasion process are (1) the transport to a new location, (2) 

the release and survival in the new habitat, (3) the successful population establishment, and 

(4) the range expansion going beyond the original arrival point (Kolar and Lodge 2001, 

Lockwood et al. 2005). Nowadays, anthropogenic activities are the main vector for species 

spread surpassing capabilities of natural species dispersal (Zhan et al. 2015). In marine realm, 

human-driven species transport occurs mainly via shipping (hull fouling, transport in ballast 

water) and aquaculture activities such as movement of fouled gear (Molnar et al. 2008, Zhan 

et al. 2015). According to the “Tens Rule”, 10% of introduced species successfully establish 

in the new habitat and 10% thereof turn into invasive species with significant ecological and 

economic impact (Williamson and Fitter 1996). However, there is increasing evidence that this 

rate is largely underestimated, e.g., ~25% of transported invertebrates are currently believed 

to establish in newly colonized habitats (Jaric and Cvijanovic 2012, Jeschke and Pyšek 2018).  

3.1 Concepts of invasion in the marine realm 

Why certain species turn into notorious invaders when colonizing new habitats, has 

puzzled scientists since decades and at least 30 invasion hypotheses have been developed 

to date (Catford et al. 2009). An important finding across several studies is that invasion 

success is usually not explained by a single concept but rather the interplay of several factors 

(Lau and Schultheis 2015). In contrast to various proofs for terrestrial invasions, only few 

invasion concepts have been tested for marine NIS so far (Chan and Briski 2017). The ‘enemy 

release hypothesis’ (ERH), which assumes that NIS successfully establish in new habitats due 

to absence of specialized predators and pathogens, has been suggested as relevant factor 

for propagation of several marine NIS (Keane and Crawley 2002, Joshi and Vrieling 2005). 

For example, the crab Carcinus maenas and the gastropod Littorina littorea are significantly 

less parasitized in invaded habitats compared to their native habitats (Torchin et al. 2002). 

Due to release from specialized predators, NIS can decrease chemical defenses and invest 

left-over resources into biomass production and propagation, which is predicted by the 

‘evolution of increased competitive ability hypothesis’ (EICA; Blossey and Notzold 1995, 

Doorduin and Vrieling 2011). This potential resource shift has been suggested for the brown 

alga Sargassum muticum, which is native in the Pacific (Japan, China), but has spread along 

the European Atlantic and North Sea coast. Feeding assays showed grazing preference of 

common North Sea herbivores towards non-native specimens (North Sea) compared to native 

S. muticum (Japan). This suggests a lowered chemical defense of S. muticum in its invaded 

habitat (Schwartz et al. 2016, Chan and Briski 2017). The ‘novel weapon hypothesis’ (NWH) 

implies that allelopathic compounds such as defensive SMs produced by newly arrived 

species impose negative effects on native species, due to the lack of adaptation to the newly 

introduced molecules (Callaway and Ridenour 2004, Svensson et al. 2013). This theory has 

been proven for the invasive red alga Bonnemaisonia hamifera, since its invasion success 

could be linked to the halogenated SM 1,1,3,3-tetrabromo-2-heptanone. This novel chemical 

weapon produced by B. hamifera inhibits settlement of propagules from native algal species 

and significantly deters native herbivores (Enge et al. 2012, Svensson et al. 2013). According 

to the ‘biological weapons hypothesis’ (BWH), NIS transport pathogens or parasites to new 

habitats that harm native species (Strauss et al. 2012, Vilcinskas 2015). This concept applies 

for the North American crayfish Pacifastacus leniusculus when introduced to the North Sea. 

The invasive crayfish served as vector for the fungus Aphanomyces astaci, the causal agent 

of crayfish plague, which led to significant losses in native crayfish populations (Holdich et al. 
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2009, Vilcinskas 2015). The ‘generalist host hypothesis’ claims that non-native specimens are 

more flexible with regard to their associated microbiota and are thereby lesser disturbed when 

specialized microbial symbionts were lost during the invasion of new habitats (Klock et al. 

2015). So-called “host promiscuity” was recently suggested for the invasive red seaweed 

Agarophyton vermiculophyllum by applying controlled microbial disturbance in native and 

invasive specimens in a common garden experiment. Higher growth rates combined with 

lower bacterial beta-diversity in non-native macroalga specimens indicated high microbial 

flexibility as a potential benefit during invasion (Bonthond et al. 2021). 

3.2 Ascidians as invasive species 

The class Ascidiacea includes many species with non-native distribution and among 

them, several are notorious invasive species causing worldwide severe ecological and 

economic problems (Zhan et al. 2015, Kocot et al. 2018). A review by Shenkar and Swalla 

(2011) lists 64 ascidian species with non-native distribution, most of which belonged to the 

order Stolidobranchia (Shenkar and Swalla 2011, Lins et al. 2018). Invasive ascidians cause 

drastic changes in the benthic macrobiota, such as lowering species diversity. Economic 

losses are mainly reported from aquaculture sites, since ascidians often overgrow mussels 

cultivated on long lines (Zhan et al. 2015). When fouling on mussels, ascidians are in direct 

competition for food and space with them and hence, overgrowth leads to significantly reduced 

mussel production (Davidson et al. 2017, Palanisamy et al. 2018, Lins and Rocha 2020). 

Additionally, the time-consuming removal of ascidians from aquaculture gear leads to an 

increase of operational costs of up to 30% (Carman et al. 2010). The successful invasion of 

ascidians is probably promoted by several favorable characteristics such as their broad 

environmental tolerance, rapid growth, and high fertility (Sargent et al. 2013, Caputi et al. 

2019). Moreover, anthropogenic activities facilitate establishment in new habitats: Invasive 

ascidians are more tolerant towards pollution and eutrophication compared to native species 

and preferably settle on man-made substrates such as aquaculture facilities and docks 

(Shenkar and Swalla 2011, Caputi et al. 2019). Growing on such submersed artificial 

substrates leads to lower predation pressure by benthic predators, which was shown to be a 

key factor for predominance of, e.g., Ascidiella aspersa and C. robusta on artificial structures 

such as mussel farms (Atalah et al. 2020, Giachetti et al. 2020). Due to the generally low 

natural dispersal capacity of ascidian larvae, transport to new habitats is mainly achieved via 

hitch-hiking on artificial structures such as vessels and aquaculture gear (Lambert 2005, Lins 

et al. 2018, Atalah et al. 2020). Projected future climate conditions will also affect the 

distribution of invasive ascidians, leading to a habitat range increase for some species and a 

decrease for others. The largest spread was predicted for C. savignyi, with up to 82% habitat 

expansion within this century (Zhang et al. 2020). Ciona intestinalis will presumably – due to 

a prolonged reproductive season as response to raising water temperatures – also expand its 

geographic range (Harris et al. 2017).  

3.3 The case study: C. intestinalis as notorious invader in Prince Edward 

Island 

The tunicate C. intestinalis is one of the most harmful fouling organisms in the NW Atlantic 

(Fitridge et al. 2012). It has spread more than 1000 km within 15 years: from Nova Scotia over 

Prince Edward Island (PEI) to Newfoundland (Carman et al. 2019). The first record of 

C. intestinalis in PEI, the smallest Canadian province located in the Gulf of Saint Lawrence, 

was in 2004 in a saline estuary, the Montague River (Ramsay et al. 2009). Only two years 

later, C. intestinalis had already colonized large parts of PEI’s coastline and evolved into the 
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predominant fouling species (Figure 9a-b; Ramsay et al. 2008). During this short time period, 

C. intestinalis nearly completely replaced the invasive clubbed tunicate Styela clava, which 

was until then the dominant fouling ascidian in PEI (Ramsay et al. 2008). With abundances of 

up to five individuals per cm2, C. intestinalis poses a great threat to PEI’s mussel industry 

(Ramsay et al. 2008, Davidson et al. 2017). It causes severe economic damages on 

aquaculture operations harvesting the blue mussel Mytilus edulis. Heavy fouling raises mussel 

mortality rates up to 50% (Daigle and Herbinger 2009) and removal activities significantly 

increase maintenance costs (Davidson et al. 2017). This is particularly detrimental for PEI, 

since it is the largest Canadian mussel producer. In 2018, PEI’s aquaculture sites produced 

>80% of all mussels harvested in Canada equaling Can $29.1 million6 (Patanasatienkul et al. 

2019). Furthermore, invasive C. robusta can decrease species richness and alter sessile 

invertebrate communities (Blum et al. 2007). 

Due to these negative impacts, it is of high academic and economic interest to elucidate 

why C. intestinalis is transforming into a pest species in new habitats while showing moderate 

abundance in its native habitats (Rius et al. 2011). Compared to eurythermal C. intestinalis, 

its competitor S. clava has a narrower temperature tolerance limit ranging from +2 to +23 °C 

(Clarke and Therriault 2007). However, a recent study indicates that neither temperature nor 

salinity can explain the high abundance and rapid growth of C. intestinalis, but that these 

abiotic parameters rather determine whether the ascidian can survive in its new habitat or not 

(Murphy et al. 2019). Notably, C. intestinalis starts spawning when seawater temperature 

reaches 8 °C, while its competitor S. clava needs water temperatures above 12 °C. This so-

called “4 °C gap” means in fact that recruitment of C. intestinalis starts ca. one month earlier, 

which is a significant advantage for settlement on (artificial) substrates. (Ramsay et al. 2008). 

Furthermore, it is assumed that PEI is particularly susceptible to invasive ascidians. Such 

highly industrial areas are characterized by nutrient loaded waters and plenty of artificial 

substrate, which are – as outlined above – beneficial factors for the establishment of non-

native ascidians (Locke et al. 2007, Ramsay et al. 2008). Nevertheless, none of these factors 

alone sufficiently explains the invasiveness of C. intestinalis (Figure 9c). Moreover, none of 

the above presented invasion hypotheses have been tested for this invasive ascidian; hence, 

it is indispensable to continue research on additional factors promoting the rapid propagation 

of C. intestinalis in PEI and other invaded habitats (Murphy et al. 2019). 

                                                
6 Statistics Canada, Table 32-10-0107-01 Aquaculture, production and value. Available at 

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210010701 (accessed on 21.12.2020) 

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210010701
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Figure 9. The invasion success of C. intestinalis in PEI. Photographs of C. intestinalis fouling on 
farmed mussels in PEI (a, b) and potential underlying reasons for its invasion success (c) are displayed. 
Pictures (a, b) were obtained from The Dutch Ascidians Homepage (www.ascidians.com) with 
permission from Dr. Arjan Gittenberger (GiMaRIS).  

4 Recent advances in metabolome and microbiome research 

During the past decades, technological innovations accelerated the development of 

multiple ‘omic approaches’ such as (meta)genomics, transcriptomics, proteomics, and 

metabolomics. The omics toolbox enables analysis of biological systems at different levels, 

e.g., genes, proteins, and metabolites (Horgan and Kenny 2011, Misra et al. 2018). Common 

approaches and application fields of metabolomics and microbiomics, the two omics 

techniques applied in this doctoral research project, are outlined below. 

4.1 Untargeted metabolomics 

Metabolomics studies aim to perform a global analysis of all small metabolites (usually 

<1500 Da) present in any organism or biological system at a certain time point (Wishart 2008, 

Chaleckis et al. 2019). Liquid chromatography-mass spectrometry (LC-MS) has emerged as 

the standard analytical technique used in metabolomics, due to its high sensitivity, sample 

throughput, and resolution (Grim et al. 2019, Stuart et al. 2020). LC-MS-based metabolomics 

allows rapid metabolome analysis of minute amounts of crude extracts containing thousands 

of different metabolites (Figure 10; Patti et al. 2012). To gain a global picture of the chemical 

inventory of an organism, tissue or cell, untargeted metabolomics approaches using tandem 

mass spectrometry (MS/MS) are applied to analyze all detectable metabolites (Chaleckis et 

al. 2019). Accordingly, untargeted metabolomics experiments gather a huge amount of data 

requiring thorough pre-processing. The most common automatic pre-processing tools XCMS 

and MZmine 2 aid for instance the removal of contaminant peaks (Myers et al. 2017). Pre-

processed data can be subjected to statistical analyses, manual dereplication, i.e., search in 

classical NP databases, and automated dereplication tools. Among the computational tools, 

molecular networking (MN), which is freely provided at the GNPS platform (Wang et al. 2016), 

has revolutionized untargeted metabolomics studies. MN is an algorithm-based visualization 

http://www.ascidians.com/
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approach that automatically calculates the structural relatedness (i.e., cosine score) of all 

detected ions based on their MS/MS spectra. Since each compound, displayed as nodes in 

the MN, has a specific fragmentation pattern resembling its core structural features, similar 

compounds will be connected in the MN and form one molecular cluster (Duncan et al. 2015, 

Quinn et al. 2017). Last year, feature-based MN (FBMN) was introduced. FBMN shows 

improved clustering and annotation by incorporating additional features such as the isotopic 

pattern, retention time, and quantitative information (Nothias et al. 2020). During the past 

years, additional MS/MS-based dereplication tools have been developed (e.g., Allard et al. 

2016, Mohimani et al. 2018). Among them, in-silico fragmentation tools such as the in-silico 

MS/MS database (ISDB) dereplication workflow, which compares in-silico generated MS/MS 

spectra of >170,000 known NPs to experimentally acquired MS/MS spectra (Allard et al. 

2016), currently provide the best annotation rates (Chaleckis et al. 2019, Grim et al. 2019).  

 

Figure 10. Generalized workflow of an untargeted LC-MS/MS-based metabolomics experiment. 

Such automated dereplication tools have become invaluable for compound annotation in 

order to avoid re-isolation of known NPs, one major obstacle of the classical NP discovery 

pipeline (Culp et al. 2019). For instance, MN-based studies demonstrated efficient 

dereplication and comparative analysis of hundreds of microbial extracts (Crüsemann et al. 

2016, Fan et al. 2019) or the targeted isolation of novel bioactive compounds from marine 

invertebrates (Bracegirdle et al. 2020, Li et al. 2020). Nevertheless, dereplication is still a 

challenging task, since the vast majority of compounds detected in untargeted metabolomics 

experiments remain unknown (da Silva et al. 2015). Metabolomics has also been successfully 

applied to investigate the invasiveness of, e.g., terrestrial plants. UPLC-QToF-MS-based 
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profiling of Bunias orientalis (Brassicaceae) revealed distinct chemistry for most analyzed 

native and invasive populations with enhanced production of defensive indole glucosinolates 

in invasive populations (Tewes et al. 2018). The MN-guided analyses of 61 plant species 

allowed the comparative investigation of 36,561 unique compounds, an unmanageable task if 

to be done manually. Their analysis gave evidence for the ‘enemy release hypothesis’ and 

‘novel weapon hypothesis’, since invasive species were chemically more distinct when 

compared to the native flora and invasive plants with the largest chemical novelty were lesser 

preferred by native herbivores (Sedio et al. 2020). Chemical investigations on invasive 

macroalgae revealed similar trends such as lowered palatability and rapid chemical defense 

adaptation contributing to the invasive character of red seaweed Gracilaria vermiculophylla 

(Hammann et al. 2013, Saha et al. 2016). However, metabolomics has not been applied to 

study the invasiveness of ascidians.  

4.2 Sequencing-based microbial community analyses  

Microbial communities have attracted scientists since decades due to key functions of 

microorganisms in the health and fitness of the hosts (Franzenburg et al. 2013) and due to 

provision of other essential ecosystem services (Martiny et al. 2015). The microbial diversity 

of any environmental sample is nowadays assessed by high-throughput culture-independent 

methods, so-called next generation sequencing (NGS) technologies. Their development and 

continuous improvement allow simultaneous comparative analysis of several hundreds of 

samples with steadily decreasing costs (Martiny et al. 2015, Goodwin et al. 2016). Culture-

independent analysis of environmental samples can be achieved via two different approaches, 

i.e., amplicon sequencing of a target gene (most often the 16S rRNA gene; Figure 11) and 

metagenomics, which aims to sequence the full genomic repertoire of a given sample 

(Hamady and Knight 2009, Quince et al. 2017). Both approaches have their pros and cons, 

e.g., comparatively expensive and time-consuming metagenomic analyses allow in-depth 

microbial community analysis at a functional level, while amplicon sequencing is more 

sensitive and lesser time intense, but limited to one gene and prone to PCR errors (Sekse et 

al. 2017). Similar to metabolome analysis, amplicon sequencing, which has been applied in 

this study, requires several bioinformatic steps to pre-process raw sequencing data. For 

example, sequence reads are quality-filtered and taxonomically classified, which is often 

based on operational taxonomic units (OTUs) clustered at a 97% similarity threshold. The 

open-source software tools mothur and QIIME2 are the most commonly applied pre-

processing tools (Christensen et al. 2018, Knight et al. 2018, Pollock et al. 2018). Various tools 

are nowadays available for visualization and statistical analyses of high-throughput 

sequencing data, e.g., several packages integrated in the R software environment (R Core 

Team 2017) or the web-based tool MicrobiomeAnalyst (Dhariwal et al. 2017). 

In terms of microbial diversity analysis, NGS approaches are superior to classical culture-

dependent studies, since the latter usually target microorganisms easily growing under 

standard laboratory conditions, which represents only 0.001-1% of the actual microbiota (Alain 

and Querellou 2009, Garza and Dutilh 2015, Gutleben et al. 2018). Amplicon sequencing 

studies have been established as invaluable tool to characterize microbial communities, such 

as the sponge microbiome, probably the most intensely studied marine invertebrate phylum 

(e.g., Hentschel et al. 2012, Thomas et al. 2016). Furthermore, metagenomics significantly 

contributed to our knowledge of NPs and their producers. It became apparent that there is a 

discrepancy between biosynthetic gene clusters (BGCs) detected in microbial genomes and 

the number of actually detected SMs, because most BGCs remain silent in artificial laboratory 

environments (Duncan et al. 2015, van Bergeijk et al. 2020). Nevertheless, classical cultivation 
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of NP producers is still highly efficient for MNP discovery and therefore, remains a popular tool 

among NP chemists (Chen et al. 2017). This is mainly attributed to the fact that this well-

established and straightforward workflow does not rely on a priori knowledge of BGCs and 

does not involve external expression of the target compound(s) in heterologous host, which is 

often a challenging and tedious task.  

 

 

Figure 11. Generalized workflow of microbiome analysis via 16S rRNA gene amplicon 
sequencing. 

Microbiome studies also aid deciphering host-microbe interactions, such as their 

significance for the invasiveness of certain species. Recent studies comparatively inspecting 

microbiomes of native and invasive ascidian populations evinced a correlation of microbial 

and genetic diversity (Casso et al. 2020, Goddard-Dwyer et al. 2020), distinct microbiomes of 

native and non-native populations (Dror et al. 2019, Goddard-Dwyer et al. 2020), high 

microbial variability (Casso et al. 2020, Goddard-Dwyer et al. 2020), and a combination of 

horizontal and vertical symbiont transmission (Evans et al. 2018, Goddard-Dwyer et al. 2020), 

of which the latter two suggest high flexibility when adapting to new environments. Whether 

native and invasive C. intestinalis host variable and differential microbial communities remains 

to be tested. 
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5 Research objectives 
Ascidians and their associated microbiota are on the one hand a treasure trove for 

bioactive MNPs, while being on the other hand notorious invaders significantly threatening 

aquaculture industry and biodiversity at a global scale. Nevertheless, these intriguing research 

areas have only been poorly studied in the prominent model organism C. intestinalis. Despite 

its broad environmental tolerance, research on additional factors promoting the invasion 

success of C. intestinalis in PEI is lacking, e.g., the role of beneficial microbial associates and 

bioactive SMs for the ascidian’s invasiveness has not been studied yet. Hence, the first 

objective of this thesis (Chapter 1) was to investigate for the first time the potential contribution 

of (bioactive) SMs and the host-specific microbiota to the devastating invasive nature of 

C. intestinalis in PEI. Therefore, the associated bacterial community and the metabolome of 

native (Helgoland, North Sea, Germany; Kiel Fjord, Baltic Sea, Germany) and invasive (PEI) 

C. intestinalis populations were comparatively analyzed to address the following research 

questions:  

a) What are the core microbes and the global metabolome of C. intestinalis? 

b) What is the impact of the analyzed tissue on the associated bacterial community (gut 

vs. tunic) and on the metabolite production (inner body vs. tunic)? 

c) What is the influence of (i) biogeography and (ii) invasiveness on the microbial 

community composition and metabolite profiles? 

d) Do the associated bacteria and SMs contribute to the invasion success of 

C. intestinalis in PEI, including specific metabolites and bacteria potentially conveying 

beneficial effects for C. intestinalis? 

The culturable microbial fraction of C. intestinalis remains largely unstudied (bacteria) or 

even unknown (fungi). Moreover, apart from one single study, their biotechnological potential 

has not been investigated so far. To fill this knowledge gap and potentially provide the MNP 

discovery pipeline with promising candidate strains for urgently needed novel antimicrobial 

and anticancer lead compounds, the second part of this thesis (Chapters 2 and 3) aimed to 

explore the diversity and biodiscovery potential of the culturable microbial community 

associated with the sea vase tunicate. Since the culturable microbiota of ascidians reportedly 

differs between different tissues (Chen et al. 2018) and environmental conditions impact the 

culture-dependent microbial diversity (Alain and Querellou 2009), tunic- (Chapter 2) and gut-

associated (Chapter 3) bacterial and fungal specimens sampled at two different geographic 

locations (Helgoland and Kiel) were analyzed. The specific objectives of these studies were: 

a) Identify the culturable bacterial and fungal diversity of the tunic (Chapter 2) and the gut 

(Chapter 3) of C. intestinalis 

b) Investigate the biotechnological potential of bacterial and fungal isolates with regard to 

anticancer or antimicrobial activities 

c) Select the most promising microbial crude extracts for future discovery of novel 

bioactive MNPs 

d) Explore the metabolomes of promising bioactive crude extracts to identify putatively 

novel and bioactive metabolites/molecular clusters 

Associated microbial communities were either characterized via amplicon sequencing of 

the 16S rRNA gene (culture-independent; Chapter 1) or by isolating the culturable fraction 

(culture-dependent; Chapters 2 and 3). Metabolome analyses performed in Chapters 1 to 3 

were based on UPLC-QToF-MS/MS measurements. MZmine 2-pre-processed data were 

subjected to an integrated dereplication workflow combining state-of-the-art automated tools 

(FBMN, ISDB) with classical (M)NP databases.   
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Abstract: Massive fouling by the invasive ascidian Ciona intestinalis in Prince Edward Island 

(PEI, Canada) has been causing devastating losses to the local blue mussel farms. In order 

to gain first insights into so far unexplored factors that may contribute to the invasiveness of 

C. intestinalis in PEI, we undertook comparative microbiome and metabolome studies on 

specific tissues from C. intestinalis populations collected in invaded (PEI) and native regions 

(Helgoland and Kiel, Germany). Microbial community analyses and untargeted metabolomics 

revealed clear location- and tissue-specific patterns showing that biogeography and the 

sampled tissue shape the microbiome and metabolome of C. intestinalis. Moreover, we 

observed higher microbial and chemical diversity in C. intestinalis from PEI than in the native 

populations. Bacterial OTUs specific to C. intestinalis from PEI included Cyanobacteria (e.g., 

Leptolyngbya sp.) and Rhodobacteraceae (e.g., Roseobacter sp.), while populations from 

native sampling sites showed higher abundances of e.g., Firmicutes (Helgoland) and 

Epsilonproteobacteria (Kiel). Altogether 121 abundant metabolites were putatively annotated 

in the global ascidian metabolome, of which 18 were only detected in the invasive PEI 

population (e.g., polyketides and terpenoids), while six (e.g., sphingolipids) or none were 

exclusive to the native specimens from Helgoland and Kiel, respectively. Some identified 

bacteria and metabolites reportedly possess bioactive properties (e.g., antifouling and 

antibiotic) that may contribute to the overall fitness of C. intestinalis. Hence, this first study 

provides a basis for future studies on factors underlying the global invasiveness of Ciona 

species. 

Keywords: biological invasion; ascidian; Ciona intestinalis; Prince Edward Island; 

microbiome; symbionts; untargeted metabolomics; bioactive secondary metabolites  
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1. Introduction 

Biological invasions represent the second largest cause of biodiversity loss and is only 

surpassed by anthropogenic species extinction [1–3]. The marine coastal environment is one 

of the most invaded ecosystems globally, with at least 84% of coastal habitats affected by 

invasive species [4,5]. Shipping and aquaculture are considered as main vectors for the 

spread of marine invasive species (MIS) [4,5]. Characteristic features of MIS include high 

phenotypic plasticity, high fertility, and rapid growth [4,6]. MIS are often responsible for 

dramatic ecosystem changes, e.g., lowering species diversity, alteration of food webs and 

nutrient cycling [3,5], and cause drastic economic losses in various industrial sectors [5,7]. 

Several common invasion hypotheses have been applied to understand mechanisms allowing 

certain marine organisms to become invasive [7]. The prominent “enemy release hypothesis” 

states that invasive species thrive in their newly colonized habitats by escaping from 

specialized predators [1]. The “evolution of increased competitive ability hypothesis” assumes 

that due to lowered predation-pressure, invasive species reduce expensive specialized 

chemical defenses and reallocate these vacant resources towards growth and reproduction 

[7,8]. In the marine realm, re-distribution of resources has been suggested for the brown alga 

Sargassum spp., since herbivores preferably graze on seaweeds from the invaded population 

[7,9]. According to the “novel weapon hypothesis”, invasive species produce defensive 

metabolites conferring a competitive advantage to the invader and a potentially negative 

impact to native congeners [10]. 1,1,3,3-tetrabromo-2-heptanone, a secondary metabolite 

produced by the invasive red alga Bonnemaisonia hamifera, inhibits the settlement of 

indigenous algae [11] and is therefore an impressive example for this hypothesis. Chemical 

defense is often provided or aided by microbial symbionts, highlighting the importance of 

microbiome in invasion [12]. The “biological weapon hypothesis” postulates a transport of 

potential microbial pathogens and parasites by the invasive species to new habitats [13]. For 

instance, the crayfish Pacifastacus leniusculus transported the fungal pathogen Aphanomyces 

astaci to Europe, which significantly reduced native North Sea crayfish populations [13,14]. 

Tunicates are sessile filter-feeders with a protective outer coating, the tunic [15,16]. The 

fully marine tunicate class Ascidiacea is one of the most invasive marine taxa worldwide and 

therein Ciona intestinalis and its sister species C. robusta are among the most notorious 

invasive ascidians [4,17]. The sea vase C. intestinalis is native to the NE Atlantic and its 

adjacent seas (North and Baltic Seas), where it occurs in moderate abundances [17,18]. In 

recent years, C. intestinalis has spread globally and is generally regarded as a pest in invaded 

habitats in the NW Atlantic and Bohai and Yellow Seas (China) [17,18]. Ciona intestinalis 

reportedly reduces species richness of the sessile macrobiota in invaded habitats [19]. It is 

also a successful macrofouler on mussels cultivated on long lines and directly competes for 

food and space [17,20]. Fouling by C. intestinalis causes high mussel mortalities (up to 50%), 

leading to significant economic losses for the aquaculture industry [16,21]. Its substantial 

economic impact is well demonstrated in Prince Edward Island (PEI, Canada). Here, the 

tunicate was first observed in 2004 and rapidly became the most problematic fouling species 

[20]. PEI’s aquaculture economy is particularly compromised by invasive ascidians, since it 

produces >80% of all Canadian farmed mussels, accounting for an economic value of approx. 

Can $28 million per annum [22]. Together with the above outlined characteristics of MIS, C. 

intestinalis’ adaptive capacity (eurytherm, −1–35 °C, and euryhaline, 12–40‰) is considered 

as a major factor for its invasiveness [4]. Genetic admixture and epigenetic modifications are 

also regarded as promotive factors for rapid acclimation and the trans-Atlantic spread of C. 

intestinalis [23,24]. However, factors promoting the invasiveness of C. intestinalis are still not 

fully understood. 

Current evidence suggests a prominent role for defensive secondary metabolites and 

associated (potentially pathogenic) microbiota in globally successful MIS [10,13,25]. Herein, 

we aimed at gaining first insights into their potential roles for the invasiveness of C. intestinalis. 

Therefore, integrated metabolome and microbiome studies on C. intestinalis specimens from 

native (Helgoland, Germany, North Sea and Kiel, Germany, Baltic Sea) and invaded (PEI, 
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Canada, Gulf of Saint Lawrence) habitats were performed. The microbiome of the tunic and 

the gut was characterized, comparatively, by amplicon sequencing of the V3-V4 hypervariable 

region of the 16S rRNA gene. Likewise, the tunic and inner body of individual C. intestinalis 

specimens were comparatively profiled by a UPLC-MS/MS-based (ultra-performance liquid 

chromatography-tandem mass spectrometry) untargeted metabolomics approach. 

Furthermore, the global metabolome of the three ascidian populations was investigated by 

untargeted metabolomics using state-of-the-art tools (global natural products social molecular 

networking (GNPS) dereplication workflow [26], in-silico prediction [27], molecular networking 

(MN) [26]). 

2. Materials and Methods 

2.1. Sampling 

Sampling of native C. intestinalis specimens was conducted in September 2017 in 

Helgoland (Germany, North Sea; 54°10’37.6” N 7°53’35.0” E; <1 m depth) and Kiel Fjord 

(Germany, Baltic Sea; 54°22’55.4” N, 10°94’3.4” E; ca. 3 m depth). Invasive specimens were 

sampled in PEI (Canada, Atlantic Ocean; 46°10’12.8” N 62°33’52.1” W; ca. 2 m depth) in 

October 2017. Seawater samples (1 L each) were collected aseptically in triplicate. Ascidian 

and water samples were immediately transported to the laboratory and processed at the same 

day. For individual genetic and chemical analyses of C. intestinalis, 10 intact individuals were 

chosen per sampling location, transferred into sterile 50 mL reaction tubes and promptly frozen 

at −80 °C. For chemical extractions at population level, approximately 0.5 kg of ascidian 

material were collected per sampling site in plastic bags and directly frozen at −80 °C. 

Seawater samples were sterile filtered as described in Parrot et al. 2019 [28] and filters were 

stored until further processing at −80 °C. For genotyping and microbiome analysis, individual 

animals were briefly thawed and dissected under sterile conditions. To ensure reproducibility, 

all dissections were done by the same person. First, the tunic was separated from the mantle 

and the remaining body. An approximately 4 cm2 piece of the tunic was cut for extraction of 

microbial DNA. Subsequently, the gut was removed from the inner body and the gut content 

was removed by flushing it with sterile ultrapure water (sterile filtered and UV-treated) by using 

an injection needle attached to a syringe. A subsample of the gut (0.04 cm2), which was stored 

at −20 °C until further processing, was taken for genotyping the C. intestinalis individuals. 

From individuals with a very short gut (individuals CT4, KT3-5), a small part of the tunic was 

frozen for genotyping instead. Another ca. 2 cm of gut tissue was immediately subjected to 

microbial DNA extraction. For individual metabolomics analysis, the remaining gut, mantle, 

and inner body tissues (hereinafter referred to as “inner body”) were placed into a sterile 50 

mL reaction tube and the remaining tunic into a sterile 15 mL reaction tube. Samples were 

stored at −80 °C until metabolomic analysis. 

2.2. Genotyping 

To validate the taxonomic identification of C. intestinalis for all three sampling locations, 

30 individuals (10 per sampling site) were genotyped with the mitochondrial marker fragment 

COX3-ND1 [29]. Genomic DNA was extracted from gut or tunic tissue using the proteinase K 

method [30]. Amplification of the target DNA fragment was performed with the primers TX3F 

and TN1R [29] in 25 µL reactions containing approximately 100 ng template DNA, 1 U TaKaRa 

Ex Taq (Takara, Dalian, China), 2.5 µL of 10X Ex Taq buffer and 200 µM dNTP mixture. 

Besides an increased elongation time of 45 s, PCR conditions were applied as previously 

described by Zhan et al. 2010 [31]. The target band (ca. 600 bp) was purified from a 1% TBE 

gel by using purification beads (iCloning Beijing Biotech, Beijing, China). Subsequent Sanger 

sequencing was performed with the primer TX3F on an ABI 3130xl capillary sequencer. 

Sequences were aligned in BioEdit [32] using the ClustalW [33] multiple alignment tool. 

Phylogeny was inferred by constructing a Maximum Likelihood tree based on the General 
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Time Reversible model [34] in MEGA7 [35]. All collected specimens were identified as C. 

intestinalis (Figure S1). 

2.3. Microbiome Analysis 

2.3.1. DNA Extraction, Library Preparation, and Sequencing 

For microbial community composition analyses, genomic DNA was extracted from tunic 

(n = 30), gut (n = 30), and seawater samples (n = 9; Table S1) using the DNeasy PowerSoil 

Kit (Qiagen, Hilden, Germany). A piece of the respective tissue (gut: approximately 1 cm in 

length, tunic: approximately 2.5 × 1.5 cm) or a piece of the filter equivalent to 250 mL seawater 

reference sample was transferred into a provided PowerBead Tube containing 60 µL of 

solution C1. The tubes were shaken for 20 min at a frequency of 30/s in a mixer mill MM 200 

(Retsch, Hahn, Germany). All subsequent steps were performed according to the 

manufacturers’ instructions besides the final step. In order to increase the DNA concentration, 

30 µL instead of 100 µL of solution C6 were added to the column. The quantity of the extracted 

DNA was checked with a NanoDrop. The V3-V4 hypervariable region of the 16S rRNA gene 

was amplified with the primer pair 341F/806R [36] using the following thermal cycling 

conditions: 30 s 98 °C; 30 cycles of 9 s 98 °C, 30 s 55 °C, 30 s 72 °C; 10 min 72 °C. Amplified 

DNA fragments were separated by agarose gel (1%) electrophoresis and amplicons of the 

expected size (ca. 465 bp) were excised from the gel, and the DNA purified via gel elution 

(QIAquick Gel Extraction Kit, Qiagen), normalized, and pooled. Sequencing was performed 

on an Illumina MiSeq platform (MiSeqFGx) using the Illumina MiSeq Reagent Kit v. 3 (2 × 300 

bp). Demultiplexing was performed based on 0 mismatches in the barcode sequences. Raw 

amplicon sequences were deposited in the Sequence Read Archive of NCBI (BioProject: 

PRJNA635604). 

2.3.2. Bioinformatic Processing and Statistical Analysis 

Primer and adapter trimming of demultiplexed raw sequences was done with Cutadapt v. 

2.3 [37]. This was followed by quality filtering using BBDuk [38]. Trimmed and quality filtered 

raw sequence reads were further processed with mothur v. 1.42.0 [39] by applying a modified 

version of the established MiSeq SOP [40]. Briefly, contigs containing ambiguous bases or 

homopolymers >8 bp were removed. Filtered contigs were aligned to the SILVA database 

(release 132; [41]). Subsequent filtering steps removed unaligned contigs, gap-only columns, 

and singletons. Contigs were preclustered as suggested by Huse and co-workers [42] and 

non-bacterial sequences were removed by taxonomic sequence classification using the Wang 

et al. method [43] at a bootstrap threshold of 80%. After eliminating chimeric sequences with 

the UCHIME algorithm [44], contigs were binned at a 97% similarity level into operational 

taxonomic units (OTUs). OTUs were classified with the 16S rRNA gene SILVA reference 

alignment file. Two replicates from Helgoland (HG6, HG8) and two replicates from Kiel (KG10, 

KT6) were removed from the dataset since the number of sequence reads was extremely low 

(3–118 reads). 

Subsequent data analysis was done with R v. 3.5.2 [45] using the packages phyloseq 

[46], vegan [47], and picante [48]. The OTU abundance table was rarefied based on the 

maximum number of 3647 sequences common to all samples. Alpha diversity was estimated 

by calculating OTU richness, Chao1, Faith’s phylogenetic diversity (Faith’s PD), Simpson, and 

Shannon indices. Alpha diversity indices were statistically compared across sampling 

locations and sample types via one-way ANOVA and Tukey’s honest significance difference 

(HSD) test by using the aov() and TukeyHSD() functions in R. In order to compare the 

microbial diversity among sample types, non-metric multidimensional scaling (nMDS) was 

performed on OTU counts, which were rarefied and square root transformed for 

standardization (Bray-Curtis similarity index). In order to consider phylogenetic relatedness of 

OTUs, an additional nMDS plot based on weighted UniFrac distances [49] was calculated. 

Statistical testing was done by analysis of similarity (ANOSIM) calculations executed in Past 
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v. 3.12 [50]. The Marker Data Profiling workflow offered by the platform MicrobiomeAnalyst 

[51] was used for detection of bacterial taxa that differed significantly between the sample 

types and sampling locations. Briefly, the original OTU abundance table was rarefied to the 

minimum library size. Significantly different bacterial taxa were statistically identified via the 

Kruskal-Wallis-Test (comparison of multiple groups). P values were adjusted for multiple 

testing using the false discovery rate (FDR) method as suggested by Benjamini and Hochberg 

[52].  

2.4. Metabolome Analysis 

2.4.1. Solvent Extraction 

For individual metabolome analyses, single ascidian specimens were dissected into inner 

body and tunic (n = 60, i.e., 10 replicates per sampling site and tissue; Table S2). Freeze-

dried inner bodies and tunics were separately ground. Solvent extractions were performed by 

maceration in a 1:20 (solid:liquid) ratio in 3 cycles over 24 h (2 × 4 h, 1 × overnight) in the dark 

at 120 rpm and 22 °C. First, samples were extracted with ultrapure water in order to remove 

sea salts. Between the cycles and after the last extraction step, the water was separated from 

the cell material via centrifugation (4500 rpm, 7 min, Beckmann J2-21M centrifuge, Beckman 

Coulter, Brea, CA, USA). Prior to solvent extraction, the leftover cell material was again freeze-

dried. Subsequent solvent extraction was done with methanol (MeOH) and dichloromethane 

(DCM; both purchased at AppliChem, Darmstadt, Germany). The extraction procedure was 

similar to the water extraction described above; the solvent was however removed by 

decantation instead of centrifugation. MeOH and DCM extracts were combined, filtered 

through a 0.2 µM PTFE syringe filter (Carl Roth, Karlsruhe, Germany), and evaporated to 

dryness on a rotary evaporator. Two blank extractions processed in the same manner served 

as control samples for UPLC-MS analysis. Organic extracts were combined and evaporated 

to dryness. The pooled ascidian bulk samples (i.e., approximately 500 g of fresh whole 

ascidians per sampling site) for population analyses were extracted similarly, using 13.0 g of 

freeze-dried samples (n = 3 per sampling site). 

2.4.2. LC-MS/MS Analysis and Data Pre-Processing 

All solvents used for the LC-MS analyses were ULC-MS grade from Biosolve Chimie 

(Dieuze, France) and ultra-purified water was prepared with an Arium Lab water system 

(Sartorius, Goettingen, Germany). Prior to UPLC-QToF-MS/MS measurements, extracts were 

diluted with MeOH to a final concentration of 0.1 mg/mL and blank MeOH samples were used 

as solvent controls. Analyses were performed with an Acquity UPLC I-Class System coupled 

to a Xevo G2-XS QTof Mass Spectrometer (Waters, Milford, MA, USA), which was equipped 

with an Acquity UPLC HSS T3 column (High Strength Silica C18, 1.8 μm, 2.1 × 100 mm, 

Waters) operating at 40 °C. The injection volume was 5.0 µL. A binary mobile phase system 

(A: 0.1% formic acid in ultra-purified water, B: 0.1% formic acid in acetonitrile) was pumped at 

a flow rate of 0.6 mL/min by applying the following gradient (% of A given): initial, 99%; 2.5 

min, 50%; 12.5 min, 0%; followed by washing and reconditioning of the column. The total run 

time was 16 min. The MS and MS/MS spectra were recorded in positive mode as previously 

described by Parrot et al. [28]. 

Recorded data were converted with msconvert [53] to mzXML format. Data pre-

processing was conducted with MZmine v. 2.38 [54] by applying the following parameters. 

The mass list was compiled with a noise level of 500. Using this mass list, chromatograms 

were built with the following thresholds: minimum time span: 0.01 min, minimum peak height: 

500, m/z tolerance: 0.01 (or 10 ppm). Chromatogram deconvolution was done with the 

baseline cut-off algorithm at a baseline level of 500, a minimum peak height of 1000 and a 

peak duration range of 0 to 0.5 min. Grouping of isotopic peaks was performed by applying 

the isotopic peaks grouper algorithm with the following parameters: m/z tolerance: 0.01 (or 10 

ppm), retention time (Rt) tolerance: 1.0 min, maximum charge: 3. In a final step, all samples 
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were combined into one peak list by using the join aligner algorithm (m/z tolerance: 0.01 (or 

10 ppm), Rt tolerance: 0.5 min, weight m/z:Rt: 75:25). Compounds detected in MeOH or 

extraction blanks were removed from this list. The resulting data were saved in the GNPS 

compatible data format MGF and the comprehensive peak list was exported to Microsoft Excel 

2010 for further analysis. The peak area of population level extracts was used to investigate 

whether a peak was homogenously distributed across all sampling locations or showed an 

enhanced (at least 10-fold increase compared to other sampling sites) or exclusive production 

at one sampling site.  

2.4.3. Molecular Networking and Dereplication 

Pre-processed MS/MS data were submitted to the Feature-Based Molecular Networking 

(FBMN) workflow available at the online platform GNPS [26]. Briefly, consensus spectra 

were constructed with a parent mass and MS/MS fragment ion tolerance of 0.02 Da. FBMN 

were created with edges filtered to have a cosine score above 0.5 and more than 6 matched 

peaks (4 for individual metabolomes). The remaining parameters were set as previously 

described by Parrot et al. [28]. The FBMN was visualized with Cytoscape v. 3.7.1 [55] and 

nodes were color-coded by a presence-absence matrix. For automated dereplication, files 

were subjected to the dereplication workflow of GNPS, which was combined with the in-silico 

MS/MS database-based workflow of the Universal Natural Product Database (ISDB-UNPD) 

[27]. In addition, MS chromatograms were manually inspected and putative molecular 

formulae were predicted by MassLynx v. 4.1 (Waters). Putative molecular formulae were 

searched for known chemical entities in common natural products databases (Dictionary of 

Natural Products (DNP): http://dnp.chemnetbase.com, MarinLit: http://pubs.rsc.org/marinlit/ 

and Reaxys: https://www.reaxys.com). Putative hits were validated by biological origin. The 

detected fragmentation pattern was verified with the in-silico fragmentation tool CFM-ID [56] 

for putatively identified compounds. 

2.4.4. Statistical Analysis 

The average yields of population level extracts were statistically compared across the 

three different sampling locations via one-way ANOVA and a subsequent Tukey’s HSD test 

as described above. For statistical comparison of the metabolite profiles at individual (n = 10 

per sampling site and tissue) and population extract level (n = 3 per sampling site), nMDS 

plots were compiled (Bray-Curtis similarity index). Peak areas of individual level extracts were 

normalized by dry weight (Table S3). Significance of observed clusters (location and tissue) 

was tested with ANOSIM (Bray-Curtis similarity index). Finally, a Mantel test was performed 

using the R package vegan in order to test correlation of individual tunic microbiomes and 

metabolomes (Bray-Curtis similarity matrices). 

3. Results 

3.1. Comparative Microbiome Analysis of Tunic and Gut From Invasive and Native C. 

intestinalis 

The microbiome of C. intestinalis and seawater reference samples from three locations 

was explored by amplicon sequencing of the V3-V4 hypervariable region of the bacterial 16S 

rRNA gene. Sampling was conducted at an invaded (PEI, Canada, C) and two native habitats 

of C. intestinalis, i.e., Helgoland (H) and Kiel (K). From each location, three different sample 

types (tunic: T, gut: G, seawater samples: W) were analyzed (Table S1). Quality filtering 

reduced the total number of read pairs from 2443581 to 1292969 (Figure S2). Binning of raw 

read pairs into OTUs at a similarity level of 97% and subsequent rarefying yielded 5211 OTUs. 

Across all samples, considerable proportions of singletons (26.1%) and rare OTUs (99.8% 

with <1% relative abundance) were detected. According to the distribution of singletons, 

rarefaction curves indicated sufficient coverage of gut and not yet completely saturated curves 

http://dnp.chemnetbase.com/
http://pubs.rsc.org/marinlit/
https://www.reaxys.com/
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for tunic and seawater samples (Figure S3). Average OTU richness was higher in tunic (413) 

than in gut (247) samples (ANOVA: df: 2, F: 9.1, p < 0.001, Tukey’s HSD: p = 0.0012; Table 

S4). Similarly, tunic samples showed higher phylogenetic diversity (20.5) than gut samples 

(14.7; ANOVA: df: 2, F: 6.1, p = 0.003, Tukey’s HSD: p = 0.02). The Shannon and Simpson 

diversity indices were similar for both tissues (Shannon: 3.9 (G), 3.7 (T); Simpson: 0.89 (G), 

0.88 (T)). Location-wise, all alpha diversity measures were on average highest for Canadian 

C. intestinalis specimens. For instance, the diversity measures were on average higher in the 

Canadian population (PD: 21.9, Shannon: 4.3, Simpson: 0.93) when comparing to Helgoland 

(PD: 12.1, Shannon: 3.4, Simpson: 0.90) and Kiel Fjord populations (PD: 18.6, Shannon: 3.7, 

Simpson: 0.84). One-way ANOVA verified significantly different OTU richness and PD when 

comparing all samples (ANOVA PD: df: 8, F: 9.3, p < 0.001; ANOVA OTU count and Chao1: 

df: 8, F: 10.0–18.6, p < 0.001), but was insignificant for the Shannon and Simpson diversity 

indices (ANOVA: df: 8, F: 1.3–2.1, p > 0.05). The subsequently calculated Tukey’s HSD test 

revealed for some compared groups significant differences, e.g., the number of detected 

OTUs and the PD was significantly higher in Canadian tunics compared to that of Helgoland 

(p < 0.01), while comparison to Kiel tunics was insignificant (p > 0.05; Table S5). 

Phylogenetic analysis assigned OTUs to 39 different bacterial phyla. Although differential 

abundances across the different samples were observed, the phyla Proteobacteria (53.8%), 

Bacteroidetes (16.6%), Cyanobacteria (8.5%), and Actinobacteria (5.1%) were the most 

abundant across all sample types (Figure 1). Multivariate ordination showed different clusters 

matching the nine different sample groups (i.e., three locations and three sample types; Figure 

2). Hence, microbiome profiling revealed clustering by both sample type and location (Figure 

2 and Figure S4). Ascidian microbiomes from all three sampling sites differed significantly from 

seawater reference samples (R: 0.73–0.96, p = 0.001), but also tunic and gut tissues had 

different microbiome profiles (R: 0.70, p = 0.001; Table S6). ANOSIM also confirmed the 

observed clustering by sampling site statistically (R: 0.73–0.98, p = 0.001). In order to verify 

the robustness of the beta-diversity results, we applied an additional ordination based on 

weighted UniFrac distances. In accordance with the nMDS plot based on the Bray-Curtis 

similarity index, the UniFrac-based ordination plot showed clustering by sample type and 

sampling location while being less apparent (Figure S5). ANOSIM on weighted UniFrac 

distances confirmed distinct clustering of the nine sample groups (R: 0.86, p < 0.001) and 

revealed stronger impact of the sample type (R: 0.73, p < 0.001) compared to the sampling 

locations (R: 0.24, p < 0.001). 



Results – Chapter 1 

 

42 
 

 

Figure 1. Comparative microbiome analysis of three C. intestinalis populations. The 

taxonomic assignment was conducted with SILVA (release 132) and is shown on the phylum 

level. Replicates were combined by calculating the median relative abundance for each 

phylum. Samples were abbreviated with a letter for the respective sampling site (Canada, C; 

Helgoland, H; Kiel, K) and sample type (gut, G; tunic, T; seawater, W). 

 

Figure 2. Across sample type and geographic origin comparison of the C. intestinalis-

associated microbiome. The 2D nMDS plot was calculated using the full set of detected OTUs 

(5211) and is based on a Bray-Curtis similarity matrix. 

In-depth analyses elucidated the main bacterial taxa with significantly differential 

abundance (Tables S7–S10). Gut microbiomes were dominated by Cyanobacteria, 
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Proteobacteria, and Firmicutes (the latter only in Helgoland samples; Figure 1, Table S7). 

Among the most abundant OTUs, four were highly abundant in all gut samples (OTUs 6, 8, 

10, 16), and some were specifically prevalent in guts from one sampling location, i.e., OTU4 

(K), OTU13 (H) and OTU15 (C; Table S9). Tunic tissues from all three sampling locations 

were mainly colonized by Proteobacteria (mainly Alphaproteobacteria) and Bacteroidetes 

(Figure 1, Tables S7 and S8), which matches the dominant OTUs in tunic samples (OTUs 1, 

2, 7: Alphaproteobacteria, OTU3: Bacteroidetes; Table 1, Tables S9 and S10). Comparison of 

the tissue-specific microbiotas showed that the gut was enriched with Actinobacteria, 

Cyanobacteria, Firmicutes, and Tenericutes, whereas the tunic had a higher abundance of 

Bacteroidetes, Proteobacteria, and Verrucomicrobia (Table S7). Tissue-specific bacterial 

associations were corroborated by several OTUs, showing tissue-specificity towards gut 

(OTUs 6, 8, 10, 16) or tunic (OTUs 1–3, 7), irrespective of the geographical origin (Table 1, 

Table S9). Finally, OTU2 (unclassified Rhizobiales) and OTU6 (Synechococcus sp.) were 

present in all tunic and gut samples and are hence regarded as core OTUs (Table 1, Table 

S9 and S10). Notably, among the abundant bacterial OTUs (≥1%) that showed significantly 

different abundances, six OTUs were previously isolated from the gut (OTUs 7, 10, 16) or tunic 

(OTUs 1–3) of C. intestinalis, which matches with the dominant sample type determined in 

this study for the abundant OTUs. 

With regard to the geographic location, the phylum Epsilonbacteraeota was specifically 

associated with all Kiel samples (e.g., OTUs 5, 20, 24 assigned to Arcobacter sp.), while 

Helgoland specimens showed a higher proportion of Actinobacteria (e.g., Bifidobacterium 

OTU13) and various Firmicutes (e.g., OTUs 36, 39 47, 50, 68) in their gut (Tables S7–S9). 

Cyanobacteria (e.g., Leptolyngbya sp. OTU14 (Acrophormium is the heterotypic synonym of 

Leptolyngbya) and unclassified Oxyphotobacteria OTU80) and Alphaproteobacteria (e.g., 

Roseobacter sp. OTU15, Ruegeria sp. OTU106, and unclassified Rhodobacteraceae OTUs 

59 and 74) were elevated in tunics or guts from Canadian specimens, respectively. 

Interestingly, the cyanobacterial genus Leptolyngbya (e.g., OTU 14) was only detected in 

ascidians from PEI, while the actinobacterial genus Bifidobacterium was exclusive to guts of 

ascidians from Helgoland specimens and Pseudomonas sp. were only identified in Kiel Fjord 

samples. 
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Table 1. Frequent bacterial OTUs (≥1%) with significantly different abundance across nine 

different sample groups (sample type and sampling location). The predominant sample type 

and (if applicable) sampling location (in brackets) in this study are indicated for each OTU. 

OTUs were classified with BLAST down to the lowest possible taxonomic rank and are given 

with the accession number and isolation source. Relative abundances, statistics, and full 

BLAST results are given in Tables S9 and S10. Ubc: Uncultured bacterium clone. 

OTU 
Lowest Classification 

(BLAST) 

Accession 
Number 
(BLAST) 

Isolation Source 
According To BLAST 

Dominant Sample 
Type (Location) 

This Study 

OTU1 Kordiimonas sp. KF494349.1 Ciona intestinalis (tunic) Tunic 

OTU2 Rhizobiales MN006421.1 
Various, e.g., Ciona 
intestinalis (tunic) 

Tunic 

OTU3 Arenibacter sp. KF494352.1 Ciona intestinalis (tunic) Tunic 

OTU4 Pseudomonas sp. MH244157.1 Sediment Gut (Kiel) 

OTU6 Synechococcus sp. MH358353.1 Marine environment Gut 

OTU7 
Uncultured 

alphaproteobacterium_1-21 
FJ659126.1 

Ascidian (Aplidium 
conicum; tunic) 

Tunic 

OTU8 Synechococcus sp. KU867940.1 Seawater Gut 

OTU10 Ubc Woods-Hole_a5143 KF798938.1 Ciona intestinalis (gut) Gut 

OTU11 Rhodobacteraceae KU173743.1 Seawater Seawater 

OTU13 Bifidobacterium dentium LR134349.1 Human Gut (Helgoland) 

OTU15 Roseobacter sp. MK224709.1 Red algae Gut (Canada) 

OTU16 Ubc Woods-Hole_a5449 KF799049.1 Ciona intestinalis (gut) Gut 

OTU17 Litoreibacter sp. KJ513684.1 Seawater Several 

Seawater samples from all three sampling sites were dominated by Proteobacteria and 

Bacteroidetes (Figure 1, Table S7). High abundance of Bacteroidetes contributed to the 

differences observed with ascidian microbiomes. Moreover, most of the OTUs abundant in the 

ascidian samples (Table 1 and Table S9) were much less abundant or absent from seawater 

samples. For example, higher abundances of Cyanobacteria in the Canadian population and 

of Firmicutes in Helgoland samples were not observed in the seawater references from the 

same sites (Figure 1, Tables S7–S9). 

Consequently, the microbiome of C. intestinalis clearly correlates with sampling location 

(C, H, K) and sample type (G, T, W) and differed from the surrounding seawater. 

3.2. Comparative Metabolomics of C. intestinalis Extracts 

UPLC-QToF-MS/MS was used to mine the metabolome of organic extracts of the three 

different C. intestinalis populations. Ascidian samples were extracted at (i) population level 

(pooled samples of 13 g freeze-dried whole ascidian specimens per sampling site and 

replicate) to examine the ascidians’ global chemical profile at different locations and at (ii) 

individual level for comparing tunic and inner body tissues (see Table S2). Instead of the gut, 

we extracted the full inner body, since gut tissues did not yield enough extract for 

metabolomics. 

Population extracts from Canadian samples yielded significantly lower quantity of extracts 

(0.3 g ± 0.01) compared to those from Helgoland (0.4 g ± 0.02) and Kiel Fjord (0.5 g ± 0.01; 

Figure S6; ANOVA: df: 2, F: 61.73, p < 0.0001, Tukey’s HSD for all comparisons p < 0.01). 

Manual peak picking yielded 121 abundant metabolites, which were annotated by manual and 

automated dereplication tools, i.e., DNP, MarinLit, GNPS [26], and ISDB-UNPD [27]. The MN, 

which contained 44 clusters, further aided the putative annotation and verification of known 

compounds (Figure 3). This combined approach led to the putative annotation of 41 

compounds to known natural products (NPs) or chemical families, which translates into a high 

annotation rate of 34% (Figure S7, Table S11). Putatively annotated compounds showed a 

broad chemical diversity, such as alkaloids (5, 35, 41, 43, 49, 53, 58, 87, 89, 90, 96, 103, 105, 

108, 117), lipids (6, 12, 14, 15, 25, 26, 50, 59, 64, 73, 79, 88, 95, 101, 104, 107, 111), peptides 

(55), polyketides (75, 100), and terpenoids (24, 56, 60, 69, 99, 120). The high abundance of 

lipids and terpenoids was confirmed by MN, since the three largest clusters were assigned to 
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lipids and tetrapyrrole-type pigments (Figure 3). The majority of the putatively annotated NPs 

derived from ascidians or marine invertebrates (58%), but a considerably high portion of 

metabolites was of microbial origin (32%; Table S11). Nevertheless, two thirds of the detected 

peaks and many clusters in the MN remained unknown and may represent potentially new 

compounds. 

 

Figure 3. Global molecular network (MN) of three different C. intestinalis populations. The MN 

was constructed via the online platform GNPS [26] by using pre-filtered MS/MS-data of the 

population level metabolome study. Nodes are color-coded and reflect their sampling site: 

red: Canada, blue: Helgoland, green: Kiel. Putatively annotated clusters or nodes are 

highlighted. 

With 1156 abundant peaks, the individual inner body and tunic metabolomes also 

exhibited a high chemical diversity (Figure S8). Several clusters in the MN were predominantly 

associated with either inner body or tunic and notably, 195 nodes were exclusively detected 

in tunic tissues, but only 98 in inner body samples. For instance, the tetrapyrrole purpurin 18 

(108) was only present in the inner body of C. intestinalis and two carotenoids (56, 99) were 

exclusively detected in its tunic (Table S11). Several metabolites were highly abundant in one 

tissue, e.g., several lipids were more often detected in either inner body (12, 14, 50) or tunic 

samples (64, 104). Most of the putatively identified compounds, e.g., unsaturated fatty acids 
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(95, 104, 111), indole alkaloids (43, 49, 53), and polyunsaturated amino alcohols (12, 14, 64), 

were detected in both tissues. Comparative metabolome analysis of individual ascidian 

samples proved tissue-specific metabolite profiles (R: 0.68, p = 0.0001; Figure S9, Table S12). 

Individuals from one sampling site showed variability and hence, geography-based 

chemotypes were much less apparent than in the population level analysis, i.e., samples did 

not cluster clearly with respect to the three sampling locations. Statistical testing confirmed 

little separation by sampling site (R: 0.23–0.45, p = 0.0025–0.0001; Table S12). Finally, 

individual tunic metabolite profiles were statistically tested for correlation with the respective 

individual microbial community compositions. In line with the lesser apparent geography-

based clustering of individual metabolomes, no clear correlation was detected (R: 0.26, p = 

0.002; Figure S10, Table S12). 

Comparison of the metabolomes at population level (pooled whole ascidian samples) 

showed distinct clustering relating to the three different sampling locations (Figure 4a). 

However, two replicates (H3, K1) deviated from their respective sample group. The main 

reason for these two outliers is the detection of a few peaks that were specifically enhanced 

or unique to these replicates (Table S11). When only core metabolites (i.e., detected in all 

samples) were compared, samples clearly clustered by their geographic origin (Figure 4b). 

Statistical comparison confirmed the observed clustering by sampling sites (R: 0.6–1), 

although ANOSIM results were insignificant (p > 0.05; Table S12). 

 

Figure 4. Comparative chemical profiling of geographically distinct C. intestinalis populations. 

Chemical profiling was performed with population level extracts. The 2D nMDS plot was 

constructed using (a) the full set of detected metabolites or (b) a restricted dataset containing 

only core metabolites detected in all samples. Similarity matrices were calculated with the 

Bray-Curtis similarity index based on the peak area. Sampling locations are color-coded: red: 

Canada (replicate C1–C3), blue: Helgoland (replicate H1–H3), green: Kiel (replicate K1–K3). 

In-depth chemical investigations of C. intestinalis from different locations revealed that 

most compounds (80%) were common to all population level extracts. However, 24 

metabolites appeared to be unique to one sampling location while 19 metabolites had higher 

quantities in one sampling site (Table S11, Figure 5). Canadian and Helgoland samples were 

chemically the most diverse and contained the highest number of location-specific 

metabolites. Eighteen metabolites were exclusive and another eleven showed enhanced 

production (at least 10-fold higher abundance) in Canadian samples compared to extracts of 

Helgoland and Kiel specimens (Figure 5, Table S11). Only six compounds were exclusive to 

Helgoland population extracts and none were identified from Kiel samples. Eight compounds 

showed enhanced production in Helgoland samples, while only two compounds were 

enhanced in Kiel samples. 
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Figure 5. UPLC-MS chromatograms of C. intestinalis extracts from different sampling sites. 

For each sampling site, one representative extract was selected (Canada: C1, Helgoland: H2, 

Kiel: K2). Metabolites with enhanced or exclusive (underlined numbers) production in one of 

the three sampling locations are labelled with the respective peak number. Peak annotation 

is in accordance with Table S11 and annotated peaks were color-coded reflecting their 

sampling location (red: Canada, blue: Helgoland, green: Kiel). 

Of the 29 compounds that showed enhanced or exclusive production in Canadian 

extracts, nine were putatively identified as the peptide MIP-A3 (55), the sesquiterpenoid 

antibiotic YM 47525 (60), and the anthracycline polyketide rubomycin M (100), plus six 

pigments belonging to carotenoid (69, 99) and tetrapyrrole (35, 90, 96, 103) classes (Figure 

6). Four metabolites specific to Helgoland samples were putatively annotated to the 

sphingolipids crucigasterin 277 (12) and D-erythro-4,8,10-sphingatrienine (15), the alkyl 

sulfate sodium 10-(hydroxymethyl)-2,6,14-trimethylpentadecyl sulfate (79), and the chemical 

family of tetrapyrroles (41). The two compounds with enhanced production in C. intestinalis 

from Kiel Fjord could not be linked to any known NP and remain therefore unknown. 

The crude extracts were visually different, i.e., the Canadian C. intestinalis extracts had a 

strong green color, whereas Helgoland and Kiel Fjord samples appeared orange (Figure S11). 

This color difference may (partly) be explained by the presence of four Canada-specific 

tetrapyrrole-type pigments (35, 90, 96, 103; Figures 5 and 6, Table S11). 
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Figure 6. Metabolites with enhanced or exclusive production in C. intestinalis specimens from 

Canada (red) and Helgoland (blue). Peak annotation of putatively identified compounds from 

Canadian and Helgoland population extracts is in accordance with Table S11. 
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4. Discussion 

In order to gain first insights on potential factors contributing to the invasiveness of C. 

intestinalis, we comparatively profiled the microbiome and metabolome of different tissues of 

native and invasive specimens. The overall bacterial diversity of the tunic of specimens from 

all three locations was comparable to that of C. robusta, but higher than previously reported 

for C. intestinalis and C. savignyi [57,58] (Table S4). Dominance of Alphaproteobacteria and 

Bacteroidetes in the tunic (Figure 1, Tables S7 and S8) is in line with previous results for C. 

intestinalis from the North Atlantic coast [57]. Additionally, the composition of the ascidian’s 

gut microbiome is largely consistent with a previous study [59], although we found higher 

abundances of Actinobacteria, Tenericutes, and Verrucomicrobia. Our results showed a 

higher alpha diversity for specimens from the invasive population (Canada) compared to the 

native populations from Kiel and Helgoland (Tables S4 and S5). Further studies including 

several invasive populations are necessary to confirm this finding and shed light into the 

impact of invasiveness vs. population variation on alpha diversity. 

Species-specific microbial assemblages are well-known for ascidians [60–62], including 

C. intestinalis [58]. Accordingly, ascidian microbiomes analyzed in this study differed 

significantly from the surrounding seawater (Figures 1 and 2, Tables S4, S6–S9). For instance, 

while some bacterial taxa such as Cyanobacteria (Canada) and Firmicutes (Helgoland guts) 

were highly abundant in the ascidian microbiome, these taxa showed extremely low 

abundance in the ambient seawater samples. We detected several abundant ascidian-specific 

OTUs accounting for 20% of the total sequence reads (OTUs 1–3, 7, 10, 16), which were 

previously reported for C. intestinalis from e.g., the NW Atlantic US-coast [57,59] (Table 1, 

Table S9 and S10). This corroborates that some abundant bacteria are stably associated with 

C. intestinalis across different geographic scales and seasons [58,59]. We further 

demonstrated tissue-specific associations of bacteria (Figure 2 and Figure S4, Tables S6–

S9), which represents to our knowledge the first comparative study of the gut and tunic 

microbiome. Location-specific microbial patterns were more prevalent than tissue-specificity 

contrasting a previous study showing a geographically conserved microbiome of Ciona spp. 

[58]. This may be explained by different sampling strategies; we sampled from different 

regions (Atlantic Ocean, North and Baltic Seas), while the previous study had comparably low 

levels of geographic separation (<300 km distance; [58]). Geography-based microbial 

variation is a well-known phenomenon that was previously described for e.g., the invasive 

ascidian Herdmania momus [61]. Site-specific microbial patterns can be attributed to different 

environmental conditions, such as salinity, i.e., oceanic (Helgoland, Canada) versus brackish 

(Kiel), and different levels of anthropogenic input (high: Kiel, Canada; low: offshore-island 

Helgoland). For example, the high abundance of Arcobacter sp. (Epsilonproteobacterium; 

Tables S8 and S9) in Kiel samples may point to fecal pollution at this location, since Arcobacter 

sp. correlates with fecal pollution but not salinity [63]. Firmicutes dominated the gut of 

Helgoland ascidians, including Clostridium sp. (Figure 1, Tables 1, S7–S9) that is known as a 

common gut symbiont of marine fish supplying them with e.g., fatty acids [64]. Nevertheless, 

reasons for this specific association of Firmicutes with the gut of Helgoland C. intestinalis 

remain obscure. 

In addition to environmental factors shaping the microbiome of the three different 

populations, haplotype-diversity of the host may also have impacted the microbial diversity of 

C. intestinalis. A recent study on the microbiome of colonial ascidian Clavelina oblonga 

revealed lower haplotype-diversity in the invasive populations, suggesting that lower genetic 

diversity correlates with the decreased microbial diversity detected in the invasive specimens 

[65]. However, the investigation of the impact of genetic diversity on microbial diversity is 

beyond the scope of the present study. 

To investigate the contribution of the microbiome to the overall fitness of C. intestinalis, 

we focused on bacterial taxa conveying potential beneficial effects for C. intestinalis (Tables 

S7–S10). Cyanobacteria, which were abundant in the gut and tunic (only Canadian 

specimens) of C. intestinalis, are known to produce a variety of toxins against e.g., marine 
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invertebrates and fishes [66]. For instance, cytotoxic and antibacterial compounds were 

already isolated from Leptolyngbya spp. [67,68], a cyanobacterial genus detected only in 

Canadian C. intestinalis samples. The Alphaproteobacteria Roseobacter sp. (mainly Canada), 

Ruegeria sp. (mainly Canada and Helgoland), and Kiloniella sp. (mainly Helgoland and Kiel) 

and the Cyanobacterium Synechococcus sp. (all sites) are known producers of bioactive 

compounds such as antimicrobial and antifouling agents [69–72]. Moreover, several bacteria 

such as Arcobacter sp. (mainly Kiel), Roseobacter sp. (mainly Canada), and Ruegeria sp. 

(mainly Canada and Helgoland) play a role in nitrogen cycling [65,72] and hence, may thrive 

in eutrophic habitats such as PEI and Kiel Fjord [60,61]. Additionally, symbiosis with heavy 

metal resistant bacteria (known from some Alteromonadales and Vibrio spp., observed at all 

three sampling sites) may be beneficial for C. intestinalis, especially in marine areas with high 

anthropogenic activity [60,61]. Specific associations of bacterial taxa with capacity to provide 

ecologically relevant functions (e.g., chemical defense, heavy metal resistance) may enhance 

the overall performance of C. intestinalis. Further investigations analyzing several invasive 

populations are needed to verify the role of these microbes, in particular those specific to 

Canadian ascidians, for the global expansion of C. intestinalis. 

Previous studies suggested that both symbiont recruitment strategies, vertical and 

horizontal transmission, play crucial, complementary roles for survival, but also establishment 

of invasive ascidians in new ecosystems [25,60,61,73]. Vertical symbiont transmission 

(intergenerational transfer of core microbes) ensures stability of core microbiota and their 

functions in host health, but is considered to lower the adaptability of the macrobiont [25,61]. 

Horizontal transmission (active recruitment of beneficial microorganisms from the surrounding 

seawater) plays an important role for invasive species by enabling rapid acclimation to the 

new habitat [25,61,74]. In this study, we also observed a combination of location-independent 

core and site-specific microbial signatures in all three sampled populations, i.e., several 

abundant OTUs were detected either across broad geographical ranges (in this and previous 

studies; core microbes) or were exclusive to one sampling site (site-specific microbes). Hence, 

these results corroborate previous findings indicating a combination of vertical and horizontal 

symbiont transmission [25,60,61,73]. 

The integrated metabolomics approach combining automated and manual dereplication 

tools clearly outperformed classical dereplication techniques [75] by significantly increasing 

annotation rates (this study: combined 34%, max. 12% for single methods, Table S11). Similar 

to previous studies on ascidians [62,76], we detected a high abundance of lipids (41%; Figure 

3 and Figure S7, Table S11). Alkaloids were also abundant (37%), which was expected since 

ascidians are prolific producers of alkaloids [77,78]. Being the sister group of vertebrates, 

ascidians have a rich repertoire of secondary metabolites [78,79] and with 19 putatively 

annotated molecular families, C. intestinalis showed a diverse metabolome. Many putatively 

annotated metabolites were previously isolated from other marine invertebrates indicating a 

microbial/microalgal origin, as reported for 10-hydroxyphaeophorbide a (90, 96) [80]. We 

putatively identified a comparably high share of microbial metabolites (32%), providing support 

for higher abundance of microbial metabolites in ascidians than previously estimated [78,81]. 

Furthermore, we detected the bacterial producers (e.g., Moorea sp. and Bacillus sp.) of 

several putatively identified compounds (26, 43, 59, 88, 117) in the tunicate microbiome. 

However, we did not observe a clear correlation between the individual tunic microbiomes and 

metabolomes (Figure S10), which may be due to multiple drivers, such as diet, age, stress, 

abiotic environmental parameters, phenotypic plasticity, and inter-individual genetic variations, 

influencing the microbial community and metabolite production on individual level [82–84]. 

Remarkable location- and tissue-specific patterns were also observed in the metabolome 

of individual and population samples (Figures 4 and 5, Figure S9, Tables S11 and S12). 

Location-specific metabolites are commonly reported, also from ascidians [62]. The individual 

metabolomes revealed lesser pronounced site-specific signatures possibly due to high inter-

individual variability [82,85]. Moreover, the tissue type (inner body vs. tunic) had a significant 

impact on individual metabolomes. This is in line with a study reporting differential lipid 
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composition of inner body and tunic extracts of C. intestinalis [76]. Notably, the native 

population from Kiel Fjord showed the lowest chemical diversity. In the brackish Kiel Fjord 

salinities go down to approximately 12 psu (average salinity 18 psu), which is at the lower 

tolerance limit of C. intestinalis [4]. Salinity can influence the metabolite production of e.g., the 

clam Ruditapes philippinarum [86] and therefore, the comparably low salinity in Kiel Fjord may 

have contributed to the lower chemical diversity. 

Similar to the microbiome, we inspected putatively annotated compounds with regard to 

their known bioactivities. Several putatively annotated metabolites are reportedly cytotoxic 

(43, 87, 89, 103, 105) or have antimicrobial activities (14, 60, 87, 89, 100). Notably, while most 

bioactive compounds were present in all three populations (14, 43, 87, 89, 103, 105), two 

metabolites (60, 100) were only detected in the invasive population from Canada. The 

putatively identified antibiotic YM 47525 (60) has been shown to be fungicidal against Candida 

albicans [87], thus may provide C. intestinalis with protection against pathogenic fungi. 

Likewise, the anthracycline polyketide rubomycin M (100) that was putatively annotated in the 

Canadian population is a potent antibiotic [88]. The detected bioactive secondary metabolites 

may contribute to the chemical defense of C. intestinalis, a finding previously reported from 

various other ascidians [62,83]. 

Evidence from the terrestrial biosphere suggests that the invasion success of plants is 

promoted via a richer and more specific chemical repertoire [89,90]. This may also account 

for C. intestinalis, since we observed higher chemical diversity in invasive specimens (Figures 

5 and 6, Table S11). Furthermore, we observed significantly lower extract yields with invasive 

C. intestinalis specimens (Figure S6). As outlined above, this phenomenon, a shifted 

metabolism towards growth and reproduction, is known as the “evolution of increased 

competitive ability hypothesis” [8], which may be one explanation for the lower quantity of the 

Canadian ascidian extracts. These two interesting findings require further studies on additional 

invasive populations to identify the impact of invasiveness, population variation, and 

environmental variation. 

In this study, we simultaneously examined for the first time the metabolome and 

microbiome of native and invasive specimens of C. intestinalis. Both the geographical location 

and the tissue type (either gut or tunic) significantly impacted the microbial community 

composition and metabolite profiles of different C. intestinalis populations. Stable core OTUs 

and tissue- or location-specific bacterial taxa and metabolites suggest a high degree of 

flexibility when adapting to new environmental conditions. While additional sampling is needed 

to verify the role of microbes and metabolites during invasion, our results give first evidence 

that invasive C. intestinalis contain a richer microbiome and metabolome that may enhance 

its adaptive capacity in the new environment. Several ascidian-associated microbes have 

reported bioactivities (e.g., antimicrobial) or other ecologically relevant functions (e.g., nitrogen 

metabolization, antifouling), potentially contributing to the health and fitness of C. intestinalis. 

Some putatively annotated metabolites may provide beneficial bioactivities (e.g., 

antimicrobial) supporting the ascidian’s chemical defense. Hence, beneficial microbiota and 

chemical weapons may be relevant factors in addition to other reported characteristics (e.g., 

broad tolerance of abiotic environmental parameters, fast accumulation of biomass, high 

fertility) regarding the global expansion of Ciona species. Additional studies on several 

invasive and native populations across broad geographical scales will be necessary to 

understand the contribution of the microbiota and metabolome to its global invasion success. 

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-
2607/8/12/2022/s1, Figure S1: Genotyping of C. intestinalis with the mitochondrial marker gene COX3-
ND1, Figure S2: Influence of the quality filtering steps on the total number of observed read pairs from 
amplicon sequencing, Figure S3: Rarefaction curves of OTU abundances for C. intestinalis and 
seawater samples, Figure S4: Multivariate ordination plots of the bacterial community associated with 
C. intestinalis, Figure S5: Across sample type and geographic origin comparison of the C. intestinalis 
associated microbiome, Figure S6: Extraction yields of crude extracts from population level extractions, 
Figure S7: Chemical structures of putatively identified compounds in crude extracts of C. intestinalis by 

http://www.mdpi.com/2076-2607/8/12/2022/s1
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UPLC-MS/MS analysis, Figure S8: Molecular network (MN) of individual C. intestinalis metabolomes, 
Figure S9: Multivariate ordination plots of UPLC-MS profiles of C. intestinalis extracts, Figure S10: 
Statistical correlation of individual tunic microbiomes and metabolomes, Figure S11: Solvent extracts 
of different C. intestinalis samples, Table S1: Metadata for microbiome samples analyzed in this study, 
Table S2: Metadata for metabolome samples analyzed in this study, Table S3: Parameters of the 
individual extractions, Table S4: Alpha diversity measures of amplicon sequences, Table S5: Tukey’s 
HSD test comparing observed (OTU count), estimated (Chao1) OTUs, and phylogenetic diversity (PD) 
detected in ascidian samples at three different sampling sites, Table S6: ANOSIM comparison of 
amplicon sequencing results, Table S7: Significantly different abundant bacterial phyla, Table S8: 
Significantly different abundant bacterial classes, families and genera, Table S9: Significantly different 
abundant OTUs, Table S10: Classification of abundant OTUs detected in this study, Table S11: Putative 
annotation of metabolites detected in C. intestinalis bulk extracts (population level), Table S12: ANOSIM 
comparison of UPLC-MS/MS profiles of C. intestinalis extracts. 
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Abstract: Ascidians and their associated microbiota are prolific producers of bioactive marine 

natural products. Recent culture-independent studies have revealed that the tunic of the 

solitary ascidian Ciona intestinalis (sea vase) is colonized by a diverse bacterial community, 

however, the biotechnological potential of this community has remained largely unexplored. 

In this study, we aimed at isolating the culturable microbiota associated with the tunic of C. 

intestinalis collected from the North and Baltic Seas, to investigate their antimicrobial and 

anticancer activities, and to gain first insights into their metabolite repertoire. The tunic of the 

sea vase was found to harbor a rich microbial community, from which 89 bacterial and 22 

fungal strains were isolated. The diversity of the tunic-associated microbiota differed from that 

of the ambient seawater samples, but also between sampling sites. Fungi were isolated for 

the first time from the tunic of Ciona. The proportion of bioactive extracts was high, since 45% 

of the microbial extracts inhibited the growth of human pathogenic bacteria, fungi or cancer 

cell lines. In a subsequent bioactivity- and metabolite profiling-based approach, seven 

microbial extracts were prioritized for in-depth chemical investigations. Untargeted 

metabolomics analyses of the selected extracts by a UPLC-MS/MS-based molecular 

networking approach revealed a vast chemical diversity with compounds assigned to 22 

natural product families, plus many metabolites that remained unidentified. This initial study 

indicates that bacteria and fungi associated with the tunic of C. intestinalis represent an 

untapped source of putatively new marine natural products with pharmacological relevance. 

Keywords: Ciona intestinalis; tunic; marine microorganisms; antimicrobial activity; anticancer 

activity; metabolomics; feature-based molecular networking 

 

1. Introduction 

Marine organisms are highly valuable sources for bioactive natural products (NPs) [1,2] 

and have yielded about 30,000 compounds so far [3]. With over 1000 described marine natural 

products (MNPs), ascidians (phylum Chordata, subphylum Tunicata) range among the most 

prolific producers of MNPs [4–6]. Being soft-bodied, sessile organisms, ascidians rely on 

chemical defense strategies that involve secondary metabolites for repelling predators, 

pathogens, and fouling organisms [6–8]. The tunic, the outermost tissue of ascidians, 

represents the initial defense barrier [9,10]. Similar to other marine living surfaces, the tunic is 

the site of various chemical communications and of particular interest for discovery of bioactive 

MNPs [11,12]. Ascidians are holobionts [6,13] that are hosts to a diverse, stable and species-

specific microbial community [14,15]. Accordingly, many secondary metabolites originally 

isolated from ascidians are nowadays believed to be produced by symbiotic microorganisms 

[4,6,7]. Strikingly, the majority of MNPs derived from ascidian-associated microbes show 

potent bioactivities, in particular cytotoxicity and antimicrobial activities [6,16]. The most 
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prominent examples of anticancer MNPs of bacterial origin include the alkaloid trabectedin, 

the source of the approved anticancer drug Yondelis®, and the cyclic peptide didemnin B that 

once progressed to phase II clinical trial as anticancer drug candidate [1,16–18]. Trabectedin 

is produced by the Ecteinascidia turbinata symbiont Candidatus Endoecteinascidia 

frumentensis [1,16,17] and didemnin B was suggested to originate from culturable bacteria 

affiliated to Tistrella spp. rather than from its original source, the ascidian Trididemnum 

solidum [16,18]. Moreover, the polyketide arenimycin that inhibits multidrug-resistant 

Staphylococcus aureus [19] is only one out of several antibiotics produced by actinobacteria 

associated with E. turbinata [16,20,21]. Another example is trichodermamide B, an 

antimicrobial and cytotoxic dipeptide that was isolated from the Didemnum molle–associated 

fungus Trichoderma virens [22]. 

Ciona intestinalis (family Cionidae; formerly C. intestinalis type B), also known as sea 

vase, is a solitary tunicate distributed in the North Atlantic Ocean as well as Baltic, North, 

Bohai and Yellow Seas [23–25]. The sea vase is one of the most notorious invasive species 

with cross-continental expansion in the northern hemisphere causing significant ecological 

and economic problems [23,25,26]. Due to its vertebrate-like larvae, rapid embryogenesis, 

translucent body, short life cycle, and its fully sequenced genome, it is also a popular model 

organism for developmental biology [23,27]. Little is known about the chemical inventory of 

Ciona spp. [5], but a few compounds with promising biological activities have been reported, 

such as the cytotoxic metabolite iodocionin [28] and the antimicrobial peptide Ci-MAM-A24 

[29]. Previous culture-independent microbiome studies have demonstrated a broad bacterial 

diversity associated with the tunic of Ciona spp. [9,30], however, only a few reports are 

available on the isolation of bacterial strains from the tunic of Ciona spp. [9,16,31]. Indeed, the 

gammaproteobacterium Pseudoalteromonas tunicata represents the only example of a tunic-

associated bacterial isolate from C. intestinalis producing metabolites with antibacterial and 

antifouling activities [31,32]. 

In order to fill this gap, this study investigated the culture-dependent microbial diversity 

associated with the tunic of the solitary ascidian C. intestinalis and gained first insights into 

the biotechnological potential of the culturable tunic-associated microbiota. Taking the large 

adaptive capacity of C. intestinalis and its microbiome to a broad range of environmental 

conditions into account, we selected two collection sites: a location in the North Sea 

(Helgoland) with marine salinity (~30 psu) and another collection site in the Baltic Sea (Kiel 

Fjord) characterized as brackish (~18 psu). A culture-dependent approach yielded overall 111 

tunic-associated isolates, of which 89 were bacterial and 22 were fungal strains. In addition, 

microbes were isolated from seawater samples (bacteria: 92 isolates, fungi: 9 isolates), which 

served as reference for comparison of the microbial diversity of the ascidian’s tunic. As 

ascidian-associated microbes have previously yielded novel metabolites with promising 

antibiotic and anticancer activities, the organic extracts of tunic-derived strains were tested 

against a panel of human pathogens (bacteria and fungi) and cancer cell lines. The most 

bioactive and promising extracts were selected and subjected to an UPLC-MS/MS-based 

untargeted metabolomics study. The putative annotation of known MNPs was aided by 

automated dereplication tools such as feature-based molecular networking (FBMN; [33]) and 

the in-silico MS/MS database-based (ISDB) dereplication pipeline [34]. By employing the 

bioactivity and chemical diversity as main filters, several promising extracts were prioritized 

for in-depth chemical studies in future. 

2. Materials and Methods  

2.1. Sampling 

Specimens of C. intestinalis were sampled in September 2017 in Helgoland (Germany, 

North Sea; 54.177102, 7.893053) and Kiel Fjord (Germany, Baltic Sea; 54.382062, 

10.162059). In Helgoland, samples were collected from below a pontoon by scuba diving (<1 

m) and in Kiel from an overgrown mussel-cultivation basket at approximately 3 m depth. 
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Seawater reference samples were collected aseptically at the same sites. Ascidian and water 

samples were immediately transported to the local laboratory and processed on the same day. 

2.2. Isolation of Microorganisms 

To isolate a broad diversity of bacteria and fungi from C. intestinalis, we used six different 

agar media (1.8% agar each). Two of the media were designed to mimic the original habitat 

of the microorganisms, namely C. intestinalis media adjusted to Baltic (CB) or North Sea (CN) 

salinity. Therefore, C. intestinalis was freeze-dried (Alpha 2-4 LSC, Martin Christ 

Gefriertrocknungsanlagen, Osterode, Germany) at 0.52 mbar and − 80 °C. The freeze-dried 

material was processed into a semi-coarse powder using a pulverisette (Pulverisette 14, sieve 

ring p-14, 1 mm pore size, trapezoidal perforation; Fritsch, Idar-Oberstein, Germany). 1.5% of 

C. intestinalis powder was added and the salt concentration was adjusted to the salinity of the 

Baltic Sea (1.8% Instant Ocean (Blacksburg, VA, USA)) or of the North Sea (3% Instant 

Ocean). 

The other four solid media used were MB (3.74% Marine Broth 2216), PDA (potato 

dextrose agar) [35], TSB (0.3% trypticase soy broth, 1% sodium chloride) and modified WSP 

(Wickerham medium) [36]. Ingredients were purchased from AppliChem (Darmstadt, 

Germany; agar bacteriology grade, sodium chloride), Becton Dickinson (Sparks, MD, USA; 

Marine Broth 2216, malt extract, trypticase soy broth), Merck (Darmstadt, Germany; D (+)-

glucose monohydrate, peptone from soymeal, yeast extract granulated) and Sigma Aldrich 

(Steinheim, Germany; potato infusion powder). In order to remove planktonic bacteria loosely 

attached to the tunic, the tunic was thoroughly rinsed with sterile artificial seawater (3% and 

1.8% Instant Ocean for Helgoland and Kiel samples, respectively) prior to dissection. Four 

individuals per sampling site were selected and their tunic was removed using sterilized 

scissors. Two different strategies, i.e., tissue homogenization and imprinting, were applied for 

isolation of tunic-associated microbes. For homogenization, the tunic tissue was placed into a 

sterile 15 mL reaction tube, which was filled to a final ratio of 1:1:1 with glass beads (0.5–2 

mm diameter) and sterile artificial seawater (n = 2). The mixture was homogenized for 2 min 

at 2000 rpm on a Vortex mixer (HS120212, Heathrow Scientific, IL, USA). Homogenates 

(original concentration) and their 1:10 and 1:100 dilutions were plated as 100 µL aliquots onto 

the different agar media. For imprinting, tunic samples were imprinted on the respective agar 

plates (n = 2). Additionally, 100 µL and 500 µL aliquots of seawater reference samples were 

plated in duplicate. Inoculated petri dishes were kept for three weeks in the dark at 22 °C. 

After one week and after three weeks, all plates were evaluated and different colony 

morphotypes were selected for purification. The selected isolates were transferred to fresh 

medium until pure cultures were obtained. Purified strains were cryopreserved at − 80 °C until 

further analyses by using the ready-to-use MicrobankTM system (Pro Lab Diagnostics, 

Richmond Hill, ON, Canada). 

2.3. Identification of Bacterial and Fungal Strains 

DNA extraction of bacteria and fungi was performed as described previously [37]. A slight 

modification in the respective protocols was applied by repeating the centrifugation step. When 

the DNA extraction was not successful, the extraction process was repeated by using the 

DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). For this, bacterial strains were cultivated 

for 2 days in liquid MB medium and fungal strains for 5 days in liquid PDA. A 2 mL subsample 

of the culture was centrifuged for 10 min at 5000 g and the supernatant was discarded. The 

cell pellet was incubated with 400 µL AP1 buffer, 4 µL RNase A, and 4 µL Proteinase K (20 

mg/mL, Analytik Jena, Jena, Germany) for approximately 2 h at 65 °C and rotation at 700 rpm 

(TMix 220, Analytik Jena). Afterwards, DNA extraction was performed according to the 

manufacturer’s instructions from step 9 onwards. DNA was eluted using 50 µL AE buffer and 

step 19 was skipped. PCR amplification of bacterial and fungal DNA was realized by using 

universal primers amplifying the 16S rRNA gene or the ITS1-5.8S-ITS2 region as described 



Results – Chapter 2 

 

62 
 

before [37]. Those fungal specimens, for which ITS1-2 sequencing did not allow identification 

at genus level, were additionally amplified with primers spanning the small (18S) and large 

(28S) subunit of the rRNA gene [38,39]. The protocol for amplification of the 28S rRNA gene 

[39] was modified as follows: initial denaturation at 94 °C for 3 min, 35 cycles of denaturation 

(94 °C, 1 min), annealing (55 °C, 30 s), and elongation (72 °C, 2 min), as well as a final 

elongation step at 72 °C for 5 min. PCR products were Sanger sequenced [40] at LGC 

Genomics GmbH (Berlin, Germany). Sequences were trimmed and transformed to FASTA 

format with ChromasPro V1.33 (Technelysium Pty. Ltd., South Brisbane, Australia). FASTA 

files were submitted to BLAST (Basic Local Alignment Search Tool, [41]) at NCBI (National 

Center for Biotechnology Information). Whenever BLAST comparison did not allow 

identification of bacteria to genus level, FASTA sequences were additionally submitted to the 

Naive Bayesian rRNA Classifier v2.11 of the Ribosomal Database Project (RDP, [42]). The 

taxonomical hierarchy was inferred at a 95% confidence threshold with the RDP 16S rRNA 

training set. DNA sequences of all microbial isolates are available in GenBank under the 

accession numbers MW012283-371 (tunic-associated bacteria), MW012374-78 (tunic-

associated fungi, 18S), MW012380-87 (seawater-derived fungi, ITS), MW013337-428 

(seawater-derived bacteria), MW014884-87 (seawater-derived fungi, 18S), MW017476-94 

(tunic-associated fungi, ITS), MW017496-97 (tunic-associated fungi, 28S), and MW017498-

99 (seawater-derived fungi, 28S).  

2.4. Cultivation of Tunic-Associated Microbial Strains 

In total, 111 microbial strains were isolated from the tunic of C. intestinalis. Safety level 

determination in accordance with the German safety guidelines TRBA 460 (Technical Rules 

for Biological Agents, July 2016) and TRBA 466 (August 2015) excluded 19 strains from 

further analyses. When ≥2 strains belonged to the same species, only one representative 

strain was selected, leading to the exclusion of another 23 strains. Hence, 69 tunic-associated 

strains were cultivated on 2 different media: bacteria were grown on glucose-yeast-malt (GYM) 

[43] and MB media while the fungal isolates were grown on casamino-acids-glucose (CAG) 

[44] and PDA media. If not stated otherwise, ingredients for CAG and GYM were purchased 

at Carl Roth (Karlsruhe, Germany). CAG, GYM, and PDA media were selected as culture 

media, since they proved in previous studies as particularly suitable for production of a variety 

of novel bioactive compounds (e.g., [35,36,45]). The commonly used MB medium was 

selected in addition to ensure sufficient growth of all bacterial isolates for chemical 

investigations. Precultures were inoculated by streaking a bead from the cryo-preservation 

tube onto the respective solid agar media, which was then grown in the dark at 22 °C until the 

agar was completely covered by microbial colonies. For main cultures, 5 (fungi) or 10 

(bacteria) agar plates per strain were inoculated on each medium in duplicate (i.e., 20 or 40 

plates per strain) by gentle streaking with an inoculation loop. For colonies that could not be 

transferred by an inoculation loop, a small piece of overgrown agar was cut and streaked onto 

the main culture plates. Main cultures were incubated in the dark at 22 °C for 7 (bacteria) or 

21 days (fungi). Notably, 61% of the bacterial strains did not grow on GYM and were hence 

only cultivated on MB.  

2.5. Solvent Extraction 

The agar was cut into pieces with a flat spatula and transferred into a glass bottle. 

Following the addition of ethyl acetate (EtOAc; VWR International, Leuven, Belgium) to fungal 

(200 mL) and bacterial cultures (400 mL), the mixture was homogenized for 30 s at 13,000 

rpm (T25 basic Ultra Turrax IKA-Werke, Staufen, Germany). Homogenization was followed by 

maceration overnight in the dark at 120 rpm and 22 °C. EtOAc was decanted into a separatory 

funnel and partitioned against the equal volume of ultra-purified water (Arium Lab water 

systems, Sartorius, Goettingen, Germany) to remove mainly salts and water-soluble media 

ingredients. The aqueous phase was discarded and the EtOAc phase was collected in a round 
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bottom flask. Another 200 or 400 mL EtOAc was added to the agar and after 15 min sonication, 

a second round of extraction was performed. The EtOAc extracts were combined and 

evaporated to dryness using a rotary evaporator. Dried extracts were resuspended in 4 mL 

methanol (MeOH; ULC-MS grade, Biosolve Chimie, Dieuze, France), filtered into pre-weighed 

vials through a 0.2 μm PTFE filter (VWR International, Darmstadt, Germany) and re-dried 

under nitrogen blow. Vials were stored at − 20 °C until further processing. Extracts were coded 

as follows: C. intestinalis (C), location (Helgoland = H or Kiel = K), tissue (tunic = T), strain 

number and medium (CAG, GYM, MB, PDA), e.g., CHT56-CAG refers to the extract of strain 

56 isolated from the tunic of C. intestinalis sampled in Helgoland cultured on medium CAG. 

As a control, the four different cultivation media were extracted using the same protocol.  

2.6. Bioactivity Screening 

Crude extracts were screened for antimicrobial and anticancer activities. For this aim, 

dried organic crude extracts were re-dissolved in dimethyl sulfoxide (DMSO; Carl Roth) at a 

concentration of 20 mg/mL. The antimicrobial test panel comprised the pathogenic yeast 

Candida albicans (Ca, DSM 1386), the yeast-like fungus Cryptococcus neoformans (Cn, DSM 

6973), and the bacterial ESKAPE panel (Enterococcus faecium, Efm, DSM 20477; methicillin-

resistant Staphylococcus aureus, MRSA, DSM 18827; Klebsiella pneumoniae, Kp, DSM 

30104; Acinetobacter baumannii, Ab, DSM 30007; Pseudomonas aeruginosa, Psa, DSM 

1128; Escherichia coli, Ec, DSM 1576). Since none of the tested crude extracts showed 

inhibition of the Gram-negative pathogens (Kp, Ab, Psa, Ec), only results from bioassays 

against Gram-positive test strains (MRSA, Efm) are described herein. Anticancer activities 

were assessed by testing inhibition of proliferation of the following cell lines: A375 (malignant 

melanoma cell line), A549 (lung carcinoma cell line), HCT116 (colon cancer cell line), and 

MB231 (human breast cancer line MDA-MB231). Test organisms and cell lines were ordered 

either at Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures 

(Braunschweig, Germany) or at CLS-Cell Lines Service (Eppelheim, Germany). All bioassays 

were performed in 96-well microplates at a final extract concentration of 100 µg/mL, as 

described previously [46]. The following chemicals were used as positive controls: 

chloramphenicol (MRSA), ampicillin (Efm), nystatin (Ca), amphotericin (Cn), and doxorubicin 

(cancer cell lines). The half maximal inhibitory concentration (IC50) was determined as 

previously described [46] for extracts selected for in-depth metabolomic analyses (for 

selection see results Section 3.3.). 

2.7. UPLC–QToF–MS/MS Analyses 

Chemical diversity of the selected bioactive crude extracts was explored via an untargeted 

UPLC-QToF-MS/MS-based metabolomics approach. ULC-MS grade solvents were 

purchased from Biosolve Chimie or from LGC Standards (Wesel, Germany). LC-MS/MS 

analyses were performed on an Acquity UPLC I-Class system coupled to a Xevo G2-XS QToF 

mass spectrometer (Waters, Milford, MA, USA), equipped with an Acquity UPLC HSS T3 

column (High Strength Silica C18, 1.8 μm, 2.1 × 100 mm, Waters) operating at 40 °C. Crude 

extracts were dissolved in MeOH at a concentration of 1.0 mg/mL and the injection volume 

was 0.3 µL. A binary mobile phase system (A: 0.1% formic acid in ultra-purified water, B: 0.1% 

formic acid in acetonitrile) was pumped at a flow rate of 0.6 mL/min by applying a linear 

gradient (% of A given): initial, 99%; 11.5 min, 1%; 14.5 min, 1%; washing and reconditioning 

of the column until 16 min. Acquisition of MS and MS/MS spectra was performed as previously 

described [47], despite the following modifications: spectra were recorded in positive mode 

and the acquisition range was set to m/z 50–1200. The capillary voltage was kept at 3 kV. 

Solvent (MeOH) and media controls (CAG, GYM, MB, PDA) were analyzed using the same 

conditions. 

2.8. Bioinformatic Processing and Dereplication Workflow 
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Acquired LC-MS/MS data were converted to the mzXML format using the ProteoWizard 

tool msconvert 3.0.20010 [48]. The publicly available software MZmine 2 [49] was used to 

denoise data and for automatic generation of peak lists (for parameters see Table S1). 

Compounds also detected in MeOH or media blanks were removed from the peak lists. 

Comparative analysis of the metabolite profiles based on generated peak lists was performed 

by PCoA plotting (Euclidean distance) in Past v3.12 [50] and sample clustering was 

statistically tested using ANOSIM (Euclidean distance). 

Metabolite profiling led to selection of seven crude extracts for in-depth dereplication 

(CHT56-CAG, CHT58-PDA, CKT35-PDA, CKT43-GYM and -MB, CKT91-CAG and -PDA; for 

selection see results Section 3.3.). Pre-processed MS/MS data were exported in MGF format, 

uploaded to the Global Natural Products Social Molecular Networking (GNPS) online platform 

[51] and submitted to the FBMN workflow [33]. Consensus spectra were constructed with a 

parent mass tolerance and a MS/MS fragment ion tolerance of 0.02 Da. Edges of the MN were 

filtered to have a cosine score >0.7 (CHT58: 0.8) and more than 6 matched peaks. Cytoscape 

v3.7.1 [52] was used for visualization of the computed FBMN. 

For identification of known chemical scaffolds, LC-MS/MS chromatograms were 

inspected manually and putative molecular formulae were predicted by MassLynx v4.1 

(Waters). The obtained molecular formulae were compared against common natural products 

databases (Dictionary of Natural Products (DNP): http://dnp.chemnetbase.com, MarinLit: 

http://pubs.rsc.org/marinlit/, The Natural Products Atlas (NP Atlas) [53] and Reaxys: 

https://www.reaxys.com). In addition, automated dereplication of detected metabolites was 

realized via the GNPS dereplication workflow and the ISDB dereplication pipeline [34]. 

Putative hits were validated based on the criteria biological origin, retention time and -if 

detected- their fragmentation pattern, which was aided by the in-silico fragmentation prediction 

tool CFM-ID [54]. 

3. Results 

3.1. The Culture-Dependent Microbial Diversity of C. intestinalis 

In total, 111 bacterial and fungal isolates were obtained from the tunic of C. intestinalis 

and 101 from seawater references sampled at two sites (Figure 1a, Table S2). Bacteria clearly 

dominated the strain collection (85%). Both tunic and seawater samples collected in the Baltic 

Sea (Kiel Fjord) yielded a higher number of isolates (tunic: 53 bacteria and 14 fungi; seawater: 

63 bacteria and 4 fungi) than the Helgoland samples (tunic: 36 bacteria and 8 fungi, seawater: 

29 bacteria and 5 fungi; Figure S1). Application of different isolation media revealed 

considerable differences with respect to the number of isolates obtained (Figure 1b). Most 

strains were isolated on WSP (24%) and MB (23%) media, whereas PDA medium yielded the 

least number of isolates (4%). One third of isolates was derived from the C. intestinalis media 

adjusted to Baltic Sea (CB) and North Sea salinity (CN). Moreover, 19 strains, e.g., the tunic-

associated microbes Kiloniella laminariae (CKT60, Alphaproteobacteria) and Pithomyces 

chartarum (CKT81, Dothideomycetes; Table S2) were only retrieved from the isolation media 

CB and CN. Hence, the in-house designed C. intestinalis media CB and CN proved 

successful, highlighting the importance of mimicking the environmental conditions for isolation 

of a diverse microbial community [55,56]. 

http://dnp.chemnetbase.com/
http://pubs.rsc.org/marinlit/
https://www.reaxys.com/
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Figure 1. Number of microbial strains isolated from the tunic of C. intestinalis and seawater 

reference. Numbers are given separately for bacteria and fungi from tunic and seawater 

samples (a) and for the six different cultivation media (b). CB: C. intestinalis medium adjusted 

to the salinity of the Baltic Sea, CN: C. intestinalis medium adjusted to the salinity of the North 

Sea, MB: marine broth, PDA: potato dextrose agar, TSB: trypticase soy broth and WSP: 

modified Wickerham medium. 

Phylogenetic analyses assigned the tunic- and seawater-derived isolates to six different 

microbial phyla (bacteria: Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria; fungi: 

Ascomycota, Basidiomycota), which can be further split up into 30 orders and 82 genera 

(Table S2). Seven isolates were identified only to a higher taxonomic rank (family or order 

level). 

Seven bacterial orders (Alteromonadales, Bacillales, Corynebacteriales, 

Flavobacteriales, Micrococcales, Rhodobacterales, Vibrionales) were detected in all samples 

(Figure 2a, Figures S2 and S3). Vibrionales was the most abundant order across the four 

different samples. The tunics of C. intestinalis sampled in Kiel showed by far the highest 

microbial diversity with isolates being affiliated to 22 different microbial orders, of which eight 

were exclusive to this sample type (bacteria: Burkholderiales, Enterobacterales, Kiloniellales, 

Xanthomonadales, Streptomycetales; fungi: Glomerellales, Helotiales, Microascales). Tunic 

samples from Helgoland specimens contained only two exclusive orders, i.e., Caulobacterales 

and Leotiomycetes incertae sedis. Tunic samples from Helgoland and Kiel Fjord yielded a 

higher microbial diversity than seawater reference samples, where microbial orders exclusive 

to the tunic (HT = 2, KT = 8, shared = 1) exceeded those exclusive to seawater samples (HW 

= 1, KW = 2, shared = 1; Figure 2a). The exclusive microbial orders of the ambient seawater 

samples were affiliated to the fungal orders Chaetosphaeriales (KW), Filobasidiales (HW), 

Sakaguchiales (KW), and the bacterial order Sphingomonadales (HW and KW; Figures S2 

and S3). 

At genus level, only little overlap of tunic and seawater samples was observed (Figure 

2b), since Vibrio was the only microbial genus that was identified in all samples (Figure 3). 

Tunic isolates showed 41 specific microbial genera (Figure 2b), among them the abundant 

bacterial genera Arenibacter (Flavobacteria; 3 isolates), Ruegeria (Alphaproteobacteria; 5 

isolates), Streptomyces (Actinobacteria; 4 isolates), and the Sordariomycete fungus Fusarium 

sp. (4 isolates; Figure 3). Most bacterial tunic isolates were affiliated to the genera Bacillus (9 

isolates), Pseudomonas (13 isolates; only detected in Kiel samples), and Vibrio (19 isolates; 

Figure 3a). Vibrio sp. was the predominant genus in seawater samples (15 isolates) along with 

the genera Pseudoalteromonas (14 isolates) and Psychrobacter (6 isolates). Seawater 

samples yielded also several exclusive bacterial genera, such as Erythrobacter 

(Alphaproteobacteria; 4 isolates), the gammaproteobacterial genera Pseudoalteromonas (14 

isolates) and Psychrobacter (6 isolates) as well as the actinobacterial genus Rhodococcus (4 

isolates). Fungi were much lesser abundant (22 isolates) in the tunic than bacteria (89 

isolates). The isolated tunic-associated fungal community was dominated by Fusarium sp. (4 

isolates) and Penicillium sp. (4 isolates; Figure 3b). Seawater samples yielded only nine fungal 
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isolates of which five (Candida sp., Cryptococcus sp., Dendrophoma sp., Purpureocillium sp., 

and Sakaguchia sp.) were exclusive to the seawater samples. 

 

Figure 2. Venn diagrams showing the number of shared and exclusive microbial taxa across 

sample types and sampling locations. The distribution of taxa is given for microbial orders (a) 

and genera (b). H, Helgoland; K, Kiel; T, Tunic; W, Seawater. 
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Figure 3. Taxonomic distribution of microorganism genera associated with the tunic of C. 

intestinalis and in seawater samples. Abundances of bacterial (a) and fungal (b) genera are 

given. Higher taxa: strain was not identified to a genus but to family or order level. Others: 

bacterial genera comprising ≤2 strains. * = fungal genera that were exclusive to one sample 

group. H, Helgoland; K, Kiel; T, Tunic; W, Seawater. 

3.2. Anticancer and Antimicrobial Activities of Bacterial and Fungal Extracts 

In total, 105 microbial extracts from tunic-derived isolates were screened for their in vitro 

antimicrobial and anticancer activities. Nearly half of these extracts (45%) exhibited 

considerable bioactivity (≥80% inhibition at 100 µg/mL test concentration) in at least one 

bioassay (Table S3). Most of the microbial crude extracts showed antimicrobial activity (44%; 

Figure 4). None of the tested extracts had an inhibitory effect towards Gram-negative 

pathogens but many extracts were active against the Gram-positive bacteria methicillin-

resistant S. aureus (MRSA) (n = 44) and E. faecium (n = 29). Of these, only nine extracts 

inhibited additionally the growth of C. albicans (inhibition between 88 and 100% at 100 µg/mL 

test concentration), i.e., crude extracts of the fungi Fusarium sp. (CKT84-CAG and CKT84-

PDA), Penicillium sp. (CKT35-CAG and CKT35-PDA), Penicillium brasilianum (CKT49-PDA), 
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the crude extract of the Pithomyces chartarum (CKT81-CAG and CKT81-PDA), and 

Pyrenochaeta sp. (CHT58-PDA) as well as the extract from the bacterium Streptomyces sp. 

(CKT43-GYM). Antifungal activity against C. neoformans was only detected in the 

Pyrenochaeta sp. extract CHT58-PDA and in the extracts of Streptomyces sp. strain CKT43 

(CKT43-GYM and CKT43-MB; inhibition between 87 and 100% at 100 µg/mL test 

concentration). Only six extracts inhibited the proliferation of cancer cell lines (inhibition 

between 81 and 98% at 100 µg/mL test concentration). They belonged to Boeremia exigua 

(CKT91-CAG and CKT91-PDA), Cadophora luteo-olivacea (CKT85-CAG), Emericellopsis 

maritima (CHT37-PDA), Pseudogymnoascus destructans (CHT56-CAG), and Streptomyces 

sp. (CKT43-GYM). Notably, the fungal extract CHT56-CAG (P. destructans) showed selective 

activity against the breast cancer cell line MB231 (81% inhibition at 100 µg/mL test 

concentration; other tested cancer cell lines ≤20% inhibition at 100 µg/mL test concentration). 

 

Figure 4. Bioactivities of microbial extracts (n = 105). Number of active extracts (≥80% 

inhibition at 100 µg/mL test concentration) in the categories antibacterial (MRSA: Methicillin-

resistant Staphylococcus aureus, Efm: Enterococcus faecium), antifungal (Ca: Candida 

albicans, Cn: Cryptococcus neoformans) or anticancer activity (A375: Malignant melanoma 

cell line, A549: Lung carcinoma cell line, HCT116: Colon cancer cell line, MB231: Human 

breast cancer cell line). 

3.3. Extract Selection for Metabolomic Analyses and IC50 Determinations  

Due to the high number of extracts with bioactivity (n = 47), further prioritization steps 

were necessary to select the most promising candidates for in-depth chemical analyses. The 

first criterion we applied was a high bioactivity threshold (≥80% inhibitory activity at 100 μg/mL) 

selecting extracts with (1) antimicrobial (combined antibacterial and antifungal) or (2) 

anticancer or (3) both antimicrobial (antibacterial plus antifungal) and anticancer activity (Table 

S4). Hence, extracts showing (1) high antibacterial activity against the human pathogens 

MRSA and E. faecium plus high antifungal activity against at least one of the pathogenic 

yeasts (C. albicans, C. neoformans) or (2) high activity against at least one of the cancer cell 

lines (A375, A549, HCT116, MB231) or (3) a combination of both high antimicrobial and 

anticancer activity, were selected (Tables S3 and S4). This approach led to the selection of 

12 extracts deriving from the fungi E. maritima (CHT37-PDA), P. destructans (CHT56-CAG), 

Pyrenochaeta sp. (CHT58-PDA), Penicillium sp. (CKT35-PDA), P. brasilianum (CKT49-PDA), 

P. chartarum (CKT81-CAG and CKT81-PDA), Fusarium sp. (CKT84-CAG and CKT84-PDA), 

C. luteo-olivacea (CKT85-CAG), B. exigua (CKT91-CAG and CKT91-PDA), and two bacterial 

extracts from Streptomyces sp. (CKT43-GYM and CKT43-MB). 
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The second criterion for prioritization relied on the chemical distinctiveness of the fungal 

extracts, which was judged by a comparative LC-MS/MS-based metabolite profiling strategy. 

UPLC-MS/MS data of the 12 fungal extracts were pre-processed with MZmine 2. The 

automatically generated peak lists were statistically compared with regard to chemical 

diversity (number and intensity of peaks, m/z value and retention time of detected compounds) 

resulting in a PCoA plot (Figure 5). Four extracts, deriving from Pyrenochaeta sp. strain 

CHT58 (PDA medium), Penicillium sp. strain CKT35 (PDA medium), and the B. exigua isolate 

CKT91 (CAG and PDA media), showed a statistically different clustering from the remaining 

samples, indicating considerable chemical differences in their metabolomes (Figure 5; R: 0.78, 

p: 0.0001; Table S5). Notably, the crude extract of the fungus Pyrenochaeta sp. CHT58 (PDA 

medium) had the most different metabolome (R: 0.98, p: 0.007), reflected by the exceptionally 

high number of detected peaks (284 peaks, compared to 74–187 peaks in all other extracts; 

Table S1). These four extracts were prioritized and subjected to in-depth chemical 

investigations.  

 

Figure 5. UPLC-MS/MS-based metabolite profiling of 12 pre-selected bioactive tunic-derived 

fungal extracts. The PCoA plot (Euclidean distance) was calculated using a pre-processed 

peak list based on UPLC-MS/MS data. *: cluster comprises the following extracts: CHT37-

PDA, CHT56-CAG, CKT49-PDA, CKT81-CAG, CKT81-PDA, CKT84-CAG, CKT84-PDA, 

CKT85-CAG. 

Since Streptomyces sp. strain CKG43 (GYM and MB media) was the only bacterial extract 

showing considerable bioactivities (Table S3), it was also selected for in-depth metabolomic 

analyses. In addition, the extract of the ascomycete-type fungus P. destructans CHT56 grown 

on CAG medium was chosen for chemical analyses due to its selective anticancer activity 

against breast cancer cell line MB231 (Table S3). In summary, the bioactivity- and chemical 

diversity-based selection approach led to the prioritization of five fungal and two bacterial 

extracts for in-depth untargeted metabolomics analyses.  

Half maximal inhibitory concentrations (IC50) against the tested microbial pathogens and 

cancer cell lines were determined for all seven prioritized extracts (Table 1). B. exigua strain 

CKT91 grown on media CAG and PDA showed the lowest IC50 values against the tested 

cancer cell lines, e.g., lung cancer cell line A549 was inhibited with IC50 values of 4.3 and 5.4 

µg/mL. Considerable antimicrobial activity was detected in all extracts (IC50 values between 

1.4 and 74.8 µg/mL), except for the extract B. exigua CKT91-CAG. In particular, the P. 

destructans extract CHT56-CAG and the Streptomyces sp. extracts CKT43-GYM and CKT43-
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MB showed remarkable activity against MRSA with IC50 values between 6.1 µg/mL and 12 

µg/mL. Moreover, Streptomyces sp. extract CKT43-GYM showed the strongest activity 

against E. faecium with an IC50 value of 5.1 µg/mL. The lowest IC50 values against the tested 

pathogenic yeasts C. albicans and C. neoformans were exhibited by the Streptomyces 

extracts CKT43-GYM and CKT43-MB, respectively, and the fungal extract CHT58-PDA 

(Pyrenochaeta sp.). 

Table 1. Antimicrobial and anticancer activities of selected extracts. IC50 values are expressed 

in µg/mL. MRSA: Methicillin-resistant Staphylococcus aureus, Efm: Enterococcus faecium, 

Ca: Candida albicans, Cn: Cryptococcus neoformans, A375: Malignant melanoma, A549: 

Lung carcinoma, HCT116: Colon cancer, MB231: Breast cancer. Positive controls: 

Chloramphenicol (MRSA), ampicillin (Efm), nystatin (Ca), amphotericin (Cn), doxorubicin 

(A375, A549, HCT116, MB231). 

Extract Code 
Taxonomic 

Classification 
MRSA Efm Ca Cn A375 A549 HCT116 MB231 

CHT56-CAG P. destructans 6.1 16.7 >100 >100 >100 >100 >100 51.2 
CHT58-PDA Pyrenochaeta sp. 35.4 17 12 14 >100 >100 >100 >100 
CKT35-PDA Penicillium sp. 74.8 38 21 51 >100 >100 >100 >100 
CKT91-CAG B. exigua >100 >100 >100 >100 42.4 4.3 29.8 8.3 
CKT91-PDA B. exigua 19.8 67 >100 >100 37.6 5.4 23.0 7.8 
CKT43-GYM Streptomyces sp. 12 5.1 7.1 6.8 26.1 31.9 30.9 40.9 
CKT43-MB Streptomyces sp. 9.3 20 12 1.4 >100 >100 >100 >100 

Positive control  1.2 2.4 7.2 0.1 0.4 16.3 33.1 7.9 

3.4. Metabolomic Analyses of Bioactive Tunic-Associated Microbial Strains 

The metabolome of the seven prioritized crude extracts of P. destructans (CHT56-CAG), 

Pyrenochaeta sp. (CHT58-PDA), Penicillium sp. (CKT35-PDA), Streptomyces sp. (CKT43-

GYM and CKT43-MB), and B. exigua (CKT91-CAG and CKT91-PDA) was investigated by 

state-of-the-art automated dereplication tools (FBMN, ISDB) combined with multiple 

databases (DNP, MarinLit, NP Atlas, Reaxys). Putative annotations of abundant compounds 

(i.e., compounds showing distinct peaks in the LC-MS chromatograms above the set minimum 

peak height) are shown in Supplementary Tables S6–S10 and in Figure S4. The respective 

annotated FBMNs are depicted in Supplementary Figures S5–S8. The analyzed chemical 

space of the seven selected microbial extracts comprised in total 22 different chemical 

families. Overall annotation rates varied between 24% (Streptomyces sp. strain CKT43) and 

73% (Penicillium sp. strain CKT35). This highlights the strength of the dereplication strategy 

applied herein, as the annotation rates in untargeted metabolomics experiments are 

approximately 1.8% [57]. 

The global FBMN of the five selected fungal extracts consisted of 817 nodes, of which 

394 fell into 36 clusters containing at least three nodes (Figure 6). Many clusters (70%) were 

putatively annotated to various NP classes, such as alkaloids (cytochalasans and 

phenylalanine derivatives), polyketides (benzofuran, hydropyranoindeno, napthoquinone and 

phthalide derivatives), and terpenoids (di- and meroterpenoids). Most molecular clusters were 

produced by only one fungal extract, but two clusters, putatively identified as terpenoids, were 

represented by several nodes from all five fungal extracts. 
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Figure 6. Global FBMN of five bioactive fungal extracts. The FBMN was constructed in Global 

Natural Products Social Molecular Networking (GNPS) with pre-processed MS/MS data. 

Molecular clusters containing at least three nodes are displayed and the width of edges 

corresponds to the respective cosine score. Putatively annotated clusters are highlighted in 

grey. Fungal extracts are color-coded as follows: red = P. destructans extract CHT56-CAG, 

yellow = Pyrenochaeta sp. extract CHT58-PDA, green = Penicillium sp. extract CKT35-PDA, 

blue = B. exigua extract CKT91-CAG, pink = CKT91-PDA. Putatively annotated compounds 

are listed in Tables S6–S9 in the Supplementary Materials. 

The Pyrenochaeta sp. strain CHT58 (PDA medium) showed an extraordinarily high 

chemical diversity (284 nodes; Figure 6 and Figure S5, Table S6). Most compounds were 

putatively identified as diterpenoids, such as the aphidicolins (5,7–10,12–14,16–

18,20,24,27,29,32,34,41,46). Furthermore, the macrolide talarodilactone B (28), the 

cytochalasan alkaloid periconiasin I (23), a pyrrolizidine alkaloid (30) and some polyketides 

(2,6,47) were putatively annotated. No match to any known compound was found for 18 

abundant compounds (1,3,4,11,21,22,25,33,35–40,43,44,48,49; Table S6) in any of the 

databases used, hence they may represent compounds not described in the literature. 

The P. destructans isolate cultivated on medium CAG (CHT56-CAG) produced 

compounds of polyketide (55,60–62) and terpenoid (56,65,67,70) origin (Figure 6 and Figure 
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S6, Table S7). Accordingly, the two largest clusters in the FBMN, which consisted in total of 

78 nodes, were putatively assigned to benzofuran-type polyketides and sesquiterpenoids. 

Dereplicated terpenoids belonged to the chemical families of di-(70), mero- (65,67) and 

sesquiterpenoids (56), isolated from marine-derived fungi from the orders of Eurotiales, 

Hypocreales, and Pleosporales. Sixteen abundant compounds (52–54,57–

59,63,64,66,68,69,71–75) and two clusters in the MN could not be annotated to any known 

metabolite and may therefore represent new compounds. 

The antimicrobial extract of Penicillium sp. (CKT35-PDA) contained a broad chemical 

diversity with six different putatively identified chemical families (Figure 6 and Figure S7, Table 

S8). Its FBMN profile was dominated by one large cluster, which contained the benzofuran 

derivatives penibenzone C (77), penicifuran C (79), and D (82) as well as mycophenolic acid 

and its methyl ester derivative (85, 90). In addition, the naphthoquinone derivative flaviolin 

(76), the phenylalanine derivative asperphenamate (96) and its analog B (89), the quinolone 

alkaloid quinolactacin A (81), and several meroterpenoids (83,84,86,87,92,93) were putatively 

identified from extract CKT35-PDA. However, six abundant compounds (78,88,91,94,95,97) 

and three molecular clusters in the FBMN could not be annotated to any known NP classes. 

The metabolome of the tunic-associated fungus B. exigua strain CKT91 (former scientific 

name: Phoma exigua) cultivated on the media CAG and PDA was dominated by the PKS-

NRPS hybrid family of cytochalasans (100–107,110; Figure 6 and Figure S8, Table S9), which 

were detected in crude extracts from both culture media. The three largest clusters in the 

FBMN were putatively annotated to this chemical family, which is well known from Phoma spp. 

For instance, deoxaphomin C (107) and proxiphomin (110) were putatively identified 

compounds in this family. Moderate to weak antibacterial activity was observed in extract 

CKT91-PDA and interestingly, this extract contained more specific nodes (n = 25) in the FBMN 

than CKT91-CAG (n = 16). Two compounds specific to medium PDA were putatively identified 

as cytochalasin Z11 (105) and the ergosterol-type steroid dankasterone B (109). 

The extracts from Streptomyces sp. strain CKT43, CKT43-GYM, and CKT43-MB, showed 

a diverse metabolome, with 187 nodes in the FBMN and two different NP classes (Figure 7, 

Table S10). The alkylphenol anaephene A (141), the deformylated antimycin derivative A1a 

(146), the butenolide MKN-003A (123), and surugamides (126–129) were detected in extracts 

derived from both cultivation media (GYM, MB). The Streptomyces sp. crude extract CKT43-

MB accounted for the majority of nodes in the FBMN and contained 15 unique compounds 

(112,116,117,119,122,124,125,130–133,135–137,145) whereas the fermentation of this 

strain on medium GYM yielded only seven unique compounds 

(118,121,134,142,144,147,148; Table S10). Notably, only extract CKT43-GYM showed 

anticancer activities, but none of its unique compounds was annotated to a known NP. 

Moreover, several unknown clusters in the FBMN were not assigned to any known compound 

and remain potentially new. 
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Figure 7. The global metabolome of Streptomyces sp. strain CKT43. The annotated global 

FBMN was constructed in GNPS with pre-processed MS/MS data. Single nodes are not 

displayed and the width of edges corresponds to the respective cosine score. Putatively 

annotated clusters are highlighted in grey and putatively identified compounds are annotated 

in the MN (for identification see Table S10). Nodes are color-coded by the respective 

cultivation medium: yellow = GYM, green = MB. 

In summary, the prioritized extracts derived from diverse microorganisms showed 

differential and diverse metabolomes. Two to seven chemical families were putatively 

annotated in the seven extracts from five microbial strains. In particular, P. destructans strain 

CHT56 and Pyrenochaeta sp. strain CHT58 promise to be versatile MNPs producing strains, 

due to the high diversity of putatively annotated chemical families (Tables S6 and S7). 

4. Discussion 

This study aimed to assess the biotechnological potential of the culturable microbial 

community associated with the tunic of the solitary ascidian C. intestinalis. Therefore, 

ascidians were sampled at two collection sites with different salinity levels. Isolation efforts 

yielded 89 bacterial and 22 fungal tunic-associated strains affiliated to 51 microbial genera 

(Figure 1, Figure 3 and Figure S1, Table S2). As expected [9,30], tunic-derived isolates 

differed from the surrounding seawater (Figures 1–3, Figures S2 and S3). The comparably 

higher abundance of tunic-associated Alphaproteobacteria, such as the tunic-specific 
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Rhodobacteraceae Ruegeria, Leisingera and Litoreibacter, Flavobacteria (e.g., Arenibacter) 

and Firmicutes (mainly Bacillus) is in accordance with reports on the culture-dependent [58,59] 

or -independent [9,30,60] microbiome of C. intestinalis and other ascidian species. In 

particular, Rhodobacteraceae and the ubiquitous Bacillus sp. are common associates of 

marine invertebrates [60,61]. Notably, several bacterial taxa isolated from the tunic, e.g., 

Bacillus sp., are mobile. Although mobility is not necessary when being associated with the 

ascidian’s tunic, one way of active movement described from Bacillus sp. is swarming on solid 

surfaces as a response to various environmental cues [62,63]. Moreover, it is likely that 

several tunic-associated bacteria were recruited from the seawater [60,64], where flagella 

enable their movement in the water column [62,63]. Tunic- and seawater-derived isolates also 

differed between the sampling sites. This finding can be attributed to the different 

environmental conditions of the Baltic and North Sea, as Kiel Fjord in the Baltic is 

characterized by brackish water (~18 psu), whereas seawater around Helgoland island (which 

is in ca. 50 km distance to mainland Germany) in the North Sea has oceanic salinity (~30 psu). 

The high abundance of some bacterial genera such as Pseudomonas in Baltic samples may 

be attributed to the lower salt tolerance described for some strains affiliated to these genera 

(e.g., [65]). In addition, the higher microbial diversity of Kiel Fjord samples may be attributed 

to the fact that Kiel Fjord is an area with high anthropogenic impact featuring several harbors, 

the highly frequented Kiel Canal (ship traffic) and industry, while Helgoland is an offshore 

island with substantially lower anthropogenic input. Despite the observed differences between 

the sampling sites and sample types, culture-dependent studies usually capture only 0.001–

1% of the actual microbial diversity of a habitat, a phenomenon well-known as the “great plate 

count anomaly” [66,67]. Moreover, isolation of microorganisms is usually biased towards 

easily culturable, fast growing microorganisms and therefore, does not necessarily reflect the 

complete microbial diversity of the explored environmental sample [66,67]. Out of 37 bacterial 

genera isolated from the tunic of C. intestinalis, only Arenibacter and Kiloniella were previously 

isolated from the same source [9]. Previous culture-independent studies [9,30] on the bacterial 

diversity of the tunic of C. intestinalis identified sequences affiliated to the four bacterial phyla 

that were also detected in this study (Actinobacteria, Bacteroidetes, Firmicutes, 

Proteobacteria). Although fungi were reported from other ascidians [68], we provide here the 

first evidence for fungi associated with the tunic of C. intestinalis. In combination, these results 

indicate that C. intestinalis hosts a diverse and specific culture-dependent microbiota 

associated with its tunic. This is in line with previous results presenting a further evidence that 

ascidians are a rich source of microorganisms [6,16,68].  

The in vitro screening effort performed in this study revealed a high number of bioactive 

crude extracts (45%), pointing out the exceptional potential of the tunic-associated microbiota 

of C. intestinalis for pharmaceutical applications (Figure 4, Table S3,). Most of the active 

extracts inhibited the Gram-positive pathogens MRSA (94%) and E. faecium (62%), but only 

few showed anticancer activity (13%). This contrasts with a recent review that analyzed 

bioactive ascidian-derived microbial compounds that showed higher rates of cytotoxicity (47%) 

than antimicrobial activity (31%) [16]. However, the vast potential of marine-derived 

microorganisms for discovery of novel antibiotics from ascidians and other marine 

invertebrates is known [69–71]. The fact that pathogenic Gram-negative bacteria were not 

inhibited by any of our tunic-associated microorganisms is in line with their general lesser 

susceptibility towards antibiotics due to their additional outer membrane [70,72].  

The only microorganism isolated from the tunic of European C. intestinalis so far, 

Pseudoalteromonas tunicata, shows a variety of bioactivities such as antibacterial and larval 

toxicity preventing micro- and macrofouling on the ascidian’s tunic [32,73]. For C. intestinalis, 

the allocation of defensive compounds on the tunic is crucial, since the tunic lacks other 

physical defense strategies, such as spicules or accumulation of acid or vanadium [74,75]. 

Although potential chemical defense functions of the screened tunic-associated microbiota 

cannot be clarified within the scope of this study, the high number of bioactive extracts 
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detected in this study is in line with numerous reports of ascidian-derived microorganisms 

producing novel MNPs with various pharmaceutical properties [1,6,16]. 

In order to prioritize the most promising extracts for in-depth metabolomic analyses out of 

the 47 bioactive extracts in total, two selection criteria were applied, i) an 80% bioactivity 

threshold (at 100 µg/mL test concentration) for anticancer or antimicrobial (antibacterial and 

antifungal) activity, and ii) chemical distinctiveness based on a statistical comparison of 

metabolite profiles. Application of these selection criteria resulted in the prioritization of four 

extracts derived from three tunic-associated fungal strains (Pyrenochaeta sp. extract CHT58-

PDA, Penicillium sp. extract CKT35-PDA, B. exigua extracts CKT91-CAG and -PDA), and two 

extracts from a Streptomyces sp. bacterium (CKT43-GYM and -MB). Additionally, one fungal 

extract (P. destructans extract CHT56-CAG) was selected for further chemical investigations 

because of its selective anticancer activity.  

The fungal genera Pseudogymnoascus and Pyrenochaeta are relatively rare in marine 

habitats but were previously isolated from a few marine invertebrates [76,77]. Diterpenoids 

dominated the metabolome of the crude extract of Pyrenochaeta sp. (CHT58-PDA) with two 

big molecular clusters in the FBMN (Figure S5, Table S6). Diterpenoids frequently form 

sodium adducts during ionization (e.g., [78]) explaining the appearance of a large cluster of 

sodiated diterpenoids in the network (Figure S5). These diterpenoids were previously reported 

from other members of the fungal class Dothideomycetes (Pyrenochaeta is affiliated to this 

class) but also from various other fungal taxa (Eurotiomycetes, Leotiomycetes, 

Sordariomycetes) underlining their ubiquitous distribution in terrestrial and marine fungi [79]. 

Surprisingly, the PDA extract of the underexplored Pyrenochaeta sp. showed by far the most 

diverse metabolome (Figure 6 and Figure S5, Tables S1 and S7) reflected by the highest 

number of detected metabolites. None of the putatively annotated compounds in this extract 

has reported activities against C. albicans or C. neoformans, although the extract showed 

strong antifungal activity (Table 1). This may suggest that one or several of the putatively novel 

metabolites (1,3,4,11,21,22,25,33,35–40,43,44,48,49; Table S6) are responsible for the 

detected antifungal activity. The moderate antibacterial activity of this extract may be due to 

the putatively identified anthraquinone derivative 10-deoxybostrycin (6) as well as the 

pyrrolizidine alkaloid CJ-16,264 (30), both of which have been reported to display antibacterial 

activities against S. aureus [20,80].  

Among the putatively identified compounds detected in the CAG extract of P. destructans 

strain CHT56, the polyketides phialofurone (60) and 3,4-dihydro-6-methoxy-8-hydroxy-3,4,5-

trimethyl-isocoumarin-7-carboxylic acid methyl ester (61) and the diterpenoid (9ξ,13α)-6,9-

dihydroxypimara-5,8(14),15-trien-7-one (70) are reportedly cytotoxic against several human 

cancer cell lines [81–83]. Hence, these putatively identified compounds may be responsible 

for the detected moderate anticancer activity, which is being observed for the first time in a 

Pseudogymnoascus sp. extract. However, none of the putatively identified compounds of the 

CHT56-CGA extract is known for activity against MRSA, E. faecium or the cancer cell line 

MB231. 

The largely unexplored fungal strains CHT56 (P. destructans) and CHT58 (Pyrenochaeta 

sp.) thus emerge as a promising source for the discovery of (novel) bioactive MNPs. Observed 

antibacterial or antifungal activities of extracts from both strains were not explained by the 

putatively identified compounds. Finally, both extracts contained several compounds and 

molecular clusters that could not be linked to any known compounds neither by automated 

nor manual dereplication using multiple pipelines and databases. These extracts deserve 

attention in future chemical isolation studies, as the unidentified metabolites may represent 

new bioactive MNPs. 

The remaining five selected bioactive extracts were derived from strains affiliated to 

extensively studied microbial taxa, B. exigua (formerly P. exigua, strain CKT91), Penicillium 

(strain CKT35) and Streptomyces (strain CKT43), all of which are prolific producers of MNPs 

[79,84–86] with hundreds (Phoma: 378) to thousands of described NPs (Penicillium: 2634, 

Streptomyces: 8769; number of isolated NPs retrieved from DNP on 04.09.2020). Penicillium, 
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Phoma (former taxonomic classification of strain CKT91, B. exigua) and Streptomyces spp. 

are facultative marine microorganisms frequently isolated from various marine environments 

[16,85,87], including Kiel Fjord habitats [88,89]. 

Penicillium is among the best studied and richest fungal genera with enormous metabolic 

capacity to produce diverse types of pharmaceutically relevant metabolites with antibiotic, 

anticancer and anti-inflammatory activities (e.g., [90,91]). Interestingly, the selected 

Penicillium sp. extract CKT35-PDA showed a completely different chemical profile compared 

to that of strain Penicillium brasilianum CKT49 grown in the same medium (Figure 5). Species- 

and even strain-specific metabolomes have been demonstrated for Penicillium spp. For 

example, the putatively identified compounds andrastin A (92) and 4′-hydroxy-mycophenolic 

acid (83) were previously described as chemotaxonomic markers for Penicillium spp. or strains 

[92,93]. Notably, one third of the putatively identified compounds from the Penicillium sp. 

CKT35-PDA extract were also detected in three sea foam-derived Penicillium spp. strains 

analyzed in our previous study [93]. The dereplicated polyketides penicifuran C and D (77,79), 

the meroterpenoid mycophenolic acid (85), and the phenylalanine derivative asperphenamate 

(96) reportedly inhibit the growth of Staphylococcus spp. [94–96]. Antifungal activity against 

C. albicans and C. neoformans has never been reported for any putatively annotated 

compound in this extract. Moreover, six compounds (78,88,91,94,95,97; Table S8) and some 

clusters in the Penicillium sp. CKT35 FBMN (Figure S7) remain unannotated and may 

represent novel metabolites.  

The B. exigua (formerly P. exigua) extracts CKT91-CAG and -PDA were clearly 

dominated by cytochalasans, hybrids of polyketides and amino acids (Figure 6 and Figure S8, 

Table S9). Cytochalasans are a large chemical family produced by several fungal taxa with 

various bioactivities such as antimicrobial, antiparasitic, antiviral, and cytotoxic activities 

[97,98]. Several of the putatively identified cytochalasans (100,102–104,106,107,110) have 

been reported to inhibit the proliferation of lung carcinoma cell line A549, which may underlie 

the strong anticancer bioactivities observed in both B. exigua extracts [97,99]. However, 

neither the putatively annotated cytochalasans nor the sterol dankasterone B (110) have 

reported antimicrobial activities.  

Dereplication of the GYM and MB extracts of Streptomyces sp. (CKT43) generated the 

lowest annotation rate (24%; Figure 7, Table S10) suggesting a highly unexplored chemical 

space. Streptomyces spp. are a very prolific source of novel bacterial MNPs (for example 

marine-derived Streptomyces spp. yielded 167 novel metabolites in 2018 [79]), and they still 

remain a treasure trove for biodiscovery of new MNPs. According to our literature survey, no 

antimicrobial activity has been reported from the putatively annotated compounds. Notably, 

anticancer activity was only detected in CKT43-CAG extract but none of the specific 

compounds for this extract could be annotated to a known NP. Only the putatively identified 

deformylated antimycins (160,161), detected in both extracts, inhibit the proliferation of HeLa 

cells [100]. It remains to be proven whether the putatively novel compounds detected in 

CKT43-CAG (118,121,134,142,144,147,148; Table S10) are responsible for the anticancer 

activities of this extract.  

The five prioritized strains isolated from the tunic of C. intestinalis appear to produce 

unknown chemical scaffolds with potential bioactivities for the discovery of novel anticancer 

or antimicrobial lead compounds. All extracts deserve further scientific attention with regard to 

isolation and characterization of their putatively novel and bioactive constituents. Particularly 

the Streptomyces sp. isolate CKT43 is promising for in-depth chemical studies, since the 

majority of compounds could not be matched to any known compound in multiple databases 

and Streptomyces spp. are some of the most prolific producers of antibiotics and anticancer 

drugs [3,79,84].  

In summary, the present study identified a diverse culturable microbiome associated with 

the tunic of C. intestinalis that differed from the ambient seawater, but also between the two 

sampling sites. To our knowledge, this is the first report of fungi being associated with the tunic 

of C. intestinalis. The isolated tunic microbiota appeared as a highly rich reservoir of MNPs 
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with antimicrobial and cytotoxic activities. Untargeted metabolomics studies on seven selected 

extracts indicated a high chemical diversity with compounds putatively assigned to alkaloids, 

lipids, peptides, polyketides, and terpenoids. However, many detected metabolites could not 

be annotated to any known NP and may therefore be new. Their chemical structure and 

bioactivity profiles need to be verified in future scale-up studies following their purification and 

structure elucidation. Hence, this study suggests that the so far unexplored tunic-associated 

microbiota of C. intestinalis from Helgoland and Kiel Fjord may be an excellent resource for 

replenishing the MNPs discovery pipeline with novel bioactive compounds. 
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Abstract: It is widely accepted that the commensal gut microbiota contributes to the health 

and well-being of its host. The solitary tunicate Ciona intestinalis emerges as a model 

organism for studying host–microbe interactions taking place in the gut, however, the 

potential of its gut-associated microbiota for marine biodiscovery remains unexploited. In this 

study, we set out to investigate the diversity, chemical space, and pharmacological potential 

of the gut-associated microbiota of C. intestinalis collected from the Baltic and North Seas. 

In a culture-based approach, we isolated 61 bacterial and 40 fungal strains affiliated to 33 

different microbial genera, indicating a rich and diverse gut microbiota dominated by 

Gammaproteobacteria. In vitro screening of the crude microbial extracts indicated their 

antibacterial (64% of extracts), anticancer (22%), and/or antifungal (11%) potential. Nine 

microbial crude extracts were prioritized for in-depth metabolome mining by a bioactivity- and 

chemical diversity-based selection procedure. UPLC-MS/MS-based metabolomics 

combining automated (feature-based molecular networking and in silico dereplication) and 

manual approaches significantly improved the annotation rates. A high chemical diversity 

was detected where peptides and polyketides were the predominant classes. Many 

compounds remained unknown, including two putatively novel lipopeptides produced by a 

Trichoderma sp. strain. This is the first study assessing the chemical and pharmacological 

profile of the cultivable gut microbiota of C. intestinalis. 

Keywords: tunicate; Ciona intestinalis; gut-associated microbiota; marine natural products; 

antimicrobial activity; anticancer activity; untargeted metabolomics; feature-based molecular 

networking; in silico MS/MS-based dereplication 

1. Introduction 

The animal gut is one of the most densely colonized microbial habitats representing a 

highly specialized internal ecosystem [1–3]. The commensal gut microbiota is known for 

contributing to the host’s health and homeostasis by assisting, e.g., chemical defense, 

immunity, metabolic capacity, and digestion [1–3]. For instance, vertebrate-associated gut 

bacteria provide “colonization resistance” through, e.g., short-chain fatty acids to inhibit 

proliferation of pathogenic microorganisms such as Salmonella enterica [3,4]. Commensal gut 

bacteria also induce immune reactions by producing antimicrobial peptides or aid nutrient 

uptake by breaking down complex polysaccharides [3,4]. In the marine world, cultivable gut-

associated bacteria of farmed fish, such as Vibrio sp., have been reported to inhibit common 

aquaculture pathogens, e.g., Vibrio anguillarum and Pasteurella piscicida [5,6]. The current 

evidence suggests that Vibrio spp. residing in the alimentary tract of the alga-feeding sea 
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urchin Strongylocentrotus spp. promote the animal´s digestion by breaking down large algal 

polysaccharides such as alginates [7].  

Marine microorganisms represent unparalleled resources for biodiscovery of compounds 

with great pharmaceutical application potential [8,9]. The majority of marine natural products 

(MNPs) discovered between 2014 and 2018 originate from bacteria or fungi [9]. 

Microorganisms associated with invertebrate hosts such as sponges and tunicates are 

promising resources for marine biodiscovery [8,10–12]. For example, ascidian-associated 

bacteria are prolific producers of antibiotics and anticancer drug leads [11,13] including the 

anticancer drug Yondelis® produced by a gammaproteobacterial symbiont of the colonial sea 

squirt Ecteinascidia turbinata [14]. However, the gut microbiota of marine sessile animals has 

rarely been studied. The few available examples include the ascomycete fungi Aspergillus sp. 

and Letendraea sp., which were isolated from the gut of marine crustaceans [15–17]. They 

yielded novel cytotoxic aspochalazines [15,16] and the anti-inflammatory polyketide 

phomopsiketone D [17], rendering the gut-associated microbiota of marine invertebrates as a 

valuable and underexploited source for MNP biodiscovery. 

Host-associated microbial communities can be analyzed by culture-dependent and -

independent methods. Culture-based studies capture only a small fraction of the actual 

microbiota (~ 0.001 to 1%), often select for easily culturable microorganisms, and, therefore, 

do not adequately reflect the microbial diversity [18,19]. In contrast, culture-independent 

approaches such as metagenomics and amplicon sequencing allow comprehensive 

description of the microbiota of interest, although the large majority of the detected 

microorganisms remains uncultivable [19]. Hence, comparison of the microbial diversity 

obtained by both methodologies often reveals a huge discrepancy [20], mainly due to the large 

fraction of uncultured microorganisms and the strong impact of the applied cultivation media 

on the culture-dependent microbial diversity [18,19]. Despite recent advances enabling, e.g., 

the access to compounds of yet uncultivable microorganisms via heterologous expression, 

marine biodiscovery studies still largely apply cultivation-dependent methods, mainly due to 

their high efficiency for bioactivity screening [21]. 

For decades, the sea vase Ciona spp. (chordate subphylum Tunicata) has served as a 

model organism for developmental biology, evolution, and chordate immunity [22,23]. 

Recently, C. intestinalis and C. robusta were introduced as model organisms for studying 

host–microbe interactions in animal gastrointestinal tracts, because they feature a 

compartmentalized gut resembling that of the vertebrates [2,23,24]. The gut of the filter feeder 

is in constant contact with millions of microbial cells posing a great challenge for the tunicate; 

on the one hand it must defend against pathogenic microorganisms, but at the same time 

allow colonization of commensals [2,25]. Initial studies have reported a few gut-associated 

Gammaproteobacteria (e.g., Shewanella sp. and Vibrio sp. [23,26,27]) and Ascomycota (e.g., 

Penicillium sp. and Trichoderma sp. [28]) from C. intestinalis and C. robusta. In line with this, 

amplicon sequencing of the bacterial community associated with C. intestinalis and C. robusta 

described a specific and diverse gut community dominated by Gammaproteobacteria [29], 

while culture-dependent and -independent studies on the tunic-associated microbiota of Ciona 

spp. revealed comparably high abundance of Alphaproteobacteria [30,31]. However, no 

information exists on chemical composition or biological activities of the gut-associated 

microbial community of C. intestinalis. This fact prompted us to isolate and study cultivable 

bacteria and fungi associated with the gut of C. intestinalis to explore their chemical 

machinery. Dissected guts of C. intestinalis sampled at two sites in Germany (Helgoland, 

North Sea and Kiel Fjord, Baltic Sea) yielded 61 bacterial and 40 fungal isolates. An initial 

bioactivity screening (antimicrobial and anticancer) and chemical profiling of the crude extracts 

of these microorganisms allowed selection of nine microbial extracts for LC-MS/MS-based 

untargeted metabolomics employing feature-based molecular networking (FBMN) [32], in 

silico [33] and manual dereplication tools. This study enabled us to prioritize two bacterial and 

three fungal strains for purification and characterization of their bioactive constituents in future. 
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2. Results 

2.1. Cultivable Fraction of the Gut Microbiota of C. intestinalis 

Application of six different cultivation media led to 61 bacterial and 40 fungal isolates from 

the gut of C. intestinalis sampled in Helgoland (H) and Kiel Fjord (K; Figure 1a, Table S1). The 

number of bacterial isolates was much higher in the Baltic Sea samples than in the North Sea 

samples (H: 24, K: 37). However, samples from Kiel Fjord (Baltic Sea) and the North Sea 

island Helgoland yielded similar numbers of fungal isolates (H: 18, K: 22). As expected, the 

applied isolation media had a remarkable influence on the number of isolated microorganisms 

(Figure 1b). Isolation on modified Wickerham medium (WSP) yielded the highest number of 

isolates (32, compared to other media: 7–24 isolates). Bacterial isolates derived mainly from 

Marine Broth (MB; 26%) and tryptic soy broth (TSB; 31%) media, while gut-associated fungal 

strains were mainly obtained from WSP medium (20 isolates; other media: 1–7 fungal 

isolates). Similar to our previous study that reported the tunic-associated microbiota of C. 

intestinalis [31], we used media resembling the natural habitat of the isolates, i.e., media 

adjusted to Baltic (CB) or North Sea (CN) salinity containing C. intestinalis powder. They 

yielded many microbial strains (n = 20), and the microbial genera Acrostalagmus, 

Arthopyrenia, Cordyceps, and Sporosarcina were exclusively isolated from these media. 

Accordingly, the C. intestinalis media CB and CN proved valuable for isolating a diverse 

tunicate-associated microbiota.  

 

Figure 1. Distribution of bacterial (n = 61) and fungal (n = 40) isolates deriving from the gut of 

Ciona intestinalis sampled in the North (Helgoland) and Baltic Seas (Kiel Fjord). Numbers of 

bacterial and fungal isolates are displayed for (a) the two different sampling sites and (b) with 

respect to the used isolation media. CB/CN: C. intestinalis media adjusted to Baltic (CB) or 

North Sea (CN) salinity; MB: Marine Broth; PDA: potato dextrose agar; TSB: trypticase soy 

broth; WSP: modified Wickerham medium. 

Compositionally, the cultivable microbiota was affiliated to three bacterial (Actinobacteria, 

Firmicutes, Proteobacteria) and two fungal phyla (Ascomycota, Mucoromycota; Table S1). 

Sanger sequencing allowed identification of all but one isolate to species (31 isolates) or genus 

(69 isolates) level. The gut-associated bacterial community was dominated by Shewanella sp. 

(H: 7 isolates, K: 6 isolates) and Vibrio sp. (H: 6 isolates, K: 8 isolates; Figure 2a). Out of 13 

bacterial genera, six were exclusively found in Baltic C. intestinalis gut samples (Klebsiella, 

Micromonospora, Nocardiopsis, Pseudomonas, Rhodococcus, and Sporosarcina), while only 

two were exclusive to Helgoland (Escherichia and Ruegeria). Moreover, Bacillus sp. showed 
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higher abundance in Kiel (9 isolates) compared to samples from Helgoland (2 isolates). 

Penicillium was the predominant fungal genus with four (from H) or five isolates (from K), 

respectively (Figure 2b). Out of 20 detected fungal genera, only Fusarium, Galactomyces, 

Penicillium, and Trichoderma were common to both locations indicating a differential fungal 

diversity of the gut of C. intestinalis collected from Helgoland and Kiel Fjord. Helgoland-

exclusive fungal genera included, e.g., Arthrinium sp. (2 isolates) and Aspergillus sp. (3 

isolates). The gut of Baltic C. intestinalis delivered 10 exclusive fungal genera such as Mucor 

sp. (2 isolates), Purpureocillium sp. (3 isolates), and Sarocladium sp. (2 isolates). 

 

Figure 2. Diversity of (a) bacterial and (b) fungal isolates associated with the gut of C. 

intestinalis at genus level. The designation “Higher taxon” refers to isolate CHG49 (only 

identified to family level, Pleosporaceae). 

2.2. Biological Activities of Gut-Derived Microbial Extracts 

To assess the biotechnological potential of the gut-associated microbiota, bacterial 

isolates were cultured on the agar media glucose–yeast–malt (GYM) and Marine Broth (MB), 

while fungi were grown on solid casamino acids–glucose (CAG) and potato dextrose agar 

(PDA) media. Extracts received identification codes referring to the host organism C. 

intestinalis (C), the sampling site (H or K), the origin of the microbial isolates (gut, G), the 

respective strain number, and cultivation medium (CAG, GYM, MB or PDA). For example, 

CHG2-MB is the Marine Broth extract of strain 2 that was isolated from the gut of C. intestinalis 

sampled in Helgoland. 
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In vitro bioactivities were determined for 103 microbial crude extracts against eight human 

microbial pathogens including the ESKAPE panel (see Section 4.4.), Candida albicans, and 

Cryptococcus neoformans, and against four cancer cell lines. A total of 68 extracts (reflecting 

66%) were active at a bioactivity threshold of ≥ 80% inhibition (= highly active, test 

concentration of 100 µg/mL) in at least one assay (Table S2). Most frequently, activity was 

observed against the Gram-positive bacterial pathogens methicillin-resistant Staphylococcus 

aureus (MRSA; 62%) and Enterococcus faecium (50%; Figure 3, Table S2). Notably, twelve 

crude extracts derived from the fungi Acrostalagmus luteoalbus (CKG66-CAG), Galactomyces 

candidum (CKG25-CAG, -PDA), Penicillium sp. (CHG25-CAG, -PDA, CHG35-CAG, -PDA, 

CKG23-CAG, -PDA, CKG63-PDA), and Pleosporaceae sp. (CHG49-CAG, -PDA) inhibited the 

growth of at least one Gram-negative test strain. The Penicillium sp. extract CHG25-CAG 

showed 98% to 100% growth inhibitory activity against all four Gram-negative bacterial 

pathogens (Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and 

Pseudomonas aeruginosa). Eleven extracts exhibited antifungal activity against Candida 

albicans and/or Cryptococcus neoformans. Among them, three extracts, namely, extracts 

produced by Streptomyces sp. (CHG48-GYM) and Trichoderma sp. (CHG34-PDA and 

CKG62-PDA), were active against both fungal pathogens. Anticancer activity was detected in 

23 crude extracts. Proliferation of all four cancer cell lines was inhibited by five bacterial 

(Micromonospora sp. CKG20-GYM; Nocardiopsis prasina CKG58-GYM; Streptomyces sp. 

CHG40-GYM, CHG48-GYM, CHG64-GYM) as well as ten fungal extracts (A. luteoalbus 

CKG66-CAG; G. candidum CKG25-CAG, -PDA; Penicillium sp. CHG25-CAG, -PDA, CKG23-

CAG; Pleosporaceae CHG49-CAG; and Trichoderma sp. CHG34-CAG, -PDA, CKG62-PDA). 

Five extracts showed somewhat narrow spectrum anticancer activity, for example, Fusarium 

sp. extract CHG38-CAG strongly inhibited the growth of the human melanoma cells (A375, 

98%) and colon cancer cells (HCT116, 93%), but was only moderately or poorly active against 

the lung cancer (A549, 65%) and breast cancer cells (MB231, 40%). 

 

Figure 3. Antimicrobial and anticancer activities of 103 microbial crude extracts. Extracts were 

classified as active when showing inhibitory activity ≥ 80% at a test concentration of 100 

µg/mL. Activities were determined against Gram-positive bacterial pathogens (red; MRSA: 

methicillin-resistant Staphylococcus aureus, Efm: Enterococcus faecium), Gram-negative 

bacterial pathogens (yellow; Ab: Acinetobacter baumannii, Ec: Escherichia coli, Kp: Klebsiella 

pneumoniae, Psa: Pseudomonas aeruginosa), fungal pathogens (green; Ca: Candida 

albicans, Cn: Cryptococcus neoformans) and cancer cell lines (blue; A375: malignant 

melanoma, A549: lung carcinoma, HCT116: colon cancer, MB231: breast cancer). 
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2.3. Bioactivity- and Metabolome-Based Selection of Microbial Extracts 

In order to prioritize the most promising candidates out of 68 active crude extracts, we 

applied a two-step selection approach. In the first step, all extracts with i) high antimicrobial 

activity (≥ 80% inhibition) against at least one bacterial and one fungal pathogen, or ii) high 

anticancer activity (≥ 80% inhibition) against at least one cancer cell line, or iii) both, high 

antimicrobial and anticancer activity (≥ 80% inhibition), were selected. This approach allowed 

us to prioritize 26 extracts, including eight bacterial extracts obtained from Bacillus sp. 

(CKG24-GYM), Micromonospora sp. (CKG20-GYM), N. prasina (CKG58-GYM), 

Pseudomonas anguilliseptica (CKG38-GYM, -MB), and Streptomyces sp. (CHG40-GYM, 

CHG48-GYM, CHG64-GYM), as well as 18 fungal extracts originating from A. luteoalbus 

(CKG66-CAG), Fusarium sp. (CHG38-CAG, -PDA, CKG32-CAG), G. candidum (CKG25-

CAG, -PDA), Penicillium sp. (CHG25-CAG, -PDA, CHG35-CAG, -PDA, CKG23-CAG, -PDA, 

CKG63-PDA), Pleosporaceae (CHG49-CAG, -PDA), and Trichoderma sp. (CHG34-CAG, -

PDA, CKG62-PDA). 

In the second step, metabolite profiling by an untargeted UPLC-MS/MS-based approach 

was applied to the 26 pre-selected extracts in order to detect those with the richest and most 

diverse chemistry. Pre-processed MS/MS data were converted into peak lists (m/z value, 

retention time, intensity) to generate PCoA (Principal Coordinates Analysis) plots reflecting 

the chemical distinctiveness of the bacterial (Figure 4) and fungal extracts (Figure 5).  

 

Figure 4. UPLC-MS/MS-based selection of bacterial extracts for in-depth metabolomics. (a) 

PCoA (Principal Coordinates Analysis) plot of eight pre-selected bioactive extracts. Cluster 

B2 includes extracts produced by Pseudomonas anguilliseptica (CKG38-glucose–yeast–malt 

(GYM) and -MB) and Streptomyces sp. (CHG40-GYM and CHG64-GYM). (b) Solid cultures 

of three bacterial extracts prioritized for further chemical investigations. 

  



Results – Chapter 3 

 

91 
 

 

Figure 5. UPLC-MS/MS-based selection of fungal extracts for in-depth metabolomics. (a) 

PCoA plot of 18 pre-selected bioactive extracts. Cluster F2 includes extracts produced by 

Acrostalagmus luteoalbus (CKG66-casamino acids–glucose (CAG)), Galactomyces 

candidum (CKG25-CAG and -PDA), Penicillium sp. (CHG25-CAG and -PDA, CHG35-CAG 

and -PDA, CKG23-CAG, and CKG63-PDA), and Pleosporaceae sp. (CHG49-CAG and -

PDA). (b) Solid cultures of six fungal extracts prioritized for further chemical investigations. 

The PCoA plot of the eight pre-selected bacterial extracts clustered into four groups (B1–

B4; Figure 4a). Three clusters, i.e., B1, B3, and B4, showed significant differences in their 

chemical profiles compared to cluster B2 (R = 1, p < 0.05; Table S3). The chemically distinct 

extracts in clusters B1, B3, and B4 had a higher number of detected peaks (80–110) compared 

to those clustering as B2 (9–66 peaks). Micromonospora sp. extract CKG20-GYM and Bacillus 

sp. extract CKG24-GYM clustered separately as B1 and B4, respectively. Accordingly, both 

were selected for further analysis. Cluster B3 was formed by two actinobacterial extracts with 

similar chemistry, namely, N. prasina extract CKG58-GYM and Streptomyces sp. extract 

CHG48-GYM. The latter extract was selected from cluster B3, since it showed higher 

bioactivity against C. neoformans (100% inhibition at 100 µg/mL; Table S2), and displayed, 

with 103 peaks, a more distinct metabolome than the other Streptomyces extracts CHG40-

GYM (61 peaks) and CHG64-GYM (66 peaks) in cluster B2 (Figure S1). Hence, metabolite 

profiling aided the prioritization of the three bacterial extracts CHG48-GYM (Streptomyces 

sp.), CKG20-GYM (Micromonospora sp.), and CKG24-GYM (Bacillus sp.) for subsequent 

metabolomics studies (Figure 4b). 

The same process was applied to 18 bioactive fungal extracts resulting in four different 

clusters in the PCoA plot (clusters F1–F4; Figure 5a). Extracts of three clusters (F1, F3, and 

F4) had significantly different metabolite profiles compared to extracts from cluster F2 (R = 

0.68–1, p < 0.01; Table S4). Cluster F1 contained only one extract (Penicillium sp. CKG23-

PDA), which was selected due to its strikingly different chemical profile. Cluster F3 consisted 

of three extracts obtained from two Fusarium sp. strains CHG38 (CAG and PDA) and CKG32 

(PDA). From those, we selected strain CHG38 (CAG and PDA) because of the additional 

antifungal and anticancer bioactivities observed for the extract CHG38-CAG (96% inhibition 

against C. neoformans, 98% and 93% inhibition against cancer cell lines A375 and HCT116, 

respectively; Table S2). Similarly, cluster F4 contained in total three extracts from two 

Trichoderma sp. isolates CHG34 (CAG and PDA) and CKG62 (PDA). Revisiting these 

extracts´ bioactivities led to the selection of Trichoderma sp. strain CHG34 (CAG and PDA), 
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as its PDA extract showed in addition strong antibacterial (MRSA, 94%) and antifungal (C. 

neoformans, 92%) activities (Table S2). In addition, we added Penicillium sp. CKG23-CAG 

(cluster F2) to the analysis pipeline, although it did not fulfill the chemical distinctiveness 

criterion. It shared only few metabolites with the PDA extract from the same Penicillium sp. 

strain (CKG23-PDA), which clustered in F1. Therefore, we aimed to analyze, comparatively, 

these two chemically different extracts (CKG23-CAG and CKG23-PDA) produced by the same 

Penicillium sp. strain. In total, six fungal extracts were prioritized for further chemical analyses, 

namely CHG34-CAG and -PDA (Trichoderma sp.), CHG38-CAG and -PDA (Fusarium sp.), 

and CKG23-CAG and -PDA (Penicillium sp.; Figure 5b). This sums up to a total of nine 

microbial crude extracts for subsequent in-depth metabolomic analyses. 

2.4. IC50 Determinations of Prioritized Microbial Extracts 

All nine prioritized extracts were subjected to IC50 determinations (half maximal inhibitory 

concentration) against bacterial and fungal human pathogens (Table 1) as well as cancer cell 

lines (Table 2). The lowest IC50 values against the Gram-positive test strains MRSA and E. 

faecium were obtained for Streptomyces sp. CHG48-GYM, Micromonospora sp. CKG20-

GYM, Bacillus sp. CKG24-GYM, and Fusarium sp. CHG38-CAG (Table 1). Notably, the anti-

MRSA potency of Bacillus sp. extract CKG24-GYM (IC50 value 0.4 µg/mL) was about eight 

times higher than the positive control chloramphenicol (IC50 3.1 µg/mL). Another very potent 

bacterium was Micromonospora sp. grown in GYM medium (CKG20-GYM), which showed 

superior activity (IC50 0.1 µg/mL) to the reference antibiotic ampicillin (IC50 0.4 µg/mL) against 

E. faecium. Only Penicillium sp. extracts CKG23-CAG and -PDA showed inhibitory activity 

against the four Gram-negative bacterial test strains A. baumannii, E. coli, K. pneumoniae, 

and P. aeruginosa. Notably, IC50 values of the CAG extract were more potent (IC50 values 

between 4.9 and 15.8 µg/mL) than those of the PDA extract (IC50 values between 31.4 and 

42.6 µg/mL). Concerning antifungal activity, the lowest IC50 value against C. albicans was 

exerted by the PDA extract of Trichoderma sp. isolate CHG34 (IC50 value 3.7 µg/mL). With an 

IC50 value of 13.1 µg/mL, Streptomyces sp. CHG48-GYM emerged as the most potent extract 

towards the yeast-like pathogen C. neoformans. When tested against cancer cell lines, all 

extracts showed inhibitory activity against at least one cancer cell line (IC50 values between 

0.02 and 92.3 µg/mL; Table 2). Streptomyces sp. extract CHG48-GYM showed the strongest 

anticancer activity with an IC50 value 0.02 µg/mL against the lung carcinoma cell line A549, 

which was much lower compared to the positive control (IC50 1.3 µg/mL). Micromonospora sp. 

extract CKG20-GYM showed potent in vitro cytotoxicity against all four cancer cell lines (IC50 

values between 0.8 and 1.6 µg/mL). Among the fungal extracts, Penicillium sp. extract 

CKG23-CAG exerted the strongest antiproliferative effects (IC50 values between 2.0 and 8.5 

µg/mL). 
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Table 1. IC50 values (in µg/mL) of selected extracts against eight microbial human pathogens. 

MRSA: methicillin-resistant S. aureus; Efm: E. faecium; Ab: A. baumannii; Ec: E. coli; Kp: K. 

pneumoniae; Psa: P. aeruginosa; Ca: C. albicans; Cn: C. neoformans. Positive controls: 

chloramphenicol (MRSA, Ec, Kp), ampicillin (Efm), doxycycline (Ab), polymyxin B (Psa), 

nystatin (Ca), and amphotericin (Cn). 

Extract Identification MRSA Efm Ab Ec Kp Psa Ca Cn 

CHG48-GYM Streptomyces sp.  5.0 4.5 > 100 > 100 > 100 > 100 12.9 13.1 

CKG20-GYM Micromonospora sp. 10.3 0.1 > 100 > 100 > 100 > 100 > 100 > 100 

CKG24-GYM Bacillus sp. 0.4 2.0 > 100 > 100 > 100 > 100 > 100 17.1 

CHG34-CAG Trichoderma sp. > 100 > 100 > 100 > 100 > 100 > 100 > 100 > 100 

CHG34-PDA Trichoderma sp. 36.8 32.0 > 100 > 100 > 100 > 100 3.7 58.8 

CHG38-CAG Fusarium sp. 4.0 3.0 > 100 > 100 > 100 > 100 9.9 20.9 

CHG38-PDA Fusarium sp. 10.8 7.6 > 100 > 100 > 100 > 100 11.4 > 100 

CKG23-CAG Penicillium sp. 19.8 29.8 4.9 15.6 8.9 15.8 > 100 > 100 

CKG23-PDA Penicillium sp. 8.3 18.1 42.5 41.0 31.4 42.6 > 100 > 100 

Positive control   3.1 0.4 0.02 1.4 0.4 0.4 1.3 0.1 

Table 2. IC50 values (µg/mL) of selected extracts against four cancer cell lines. A375: 

malignant melanoma cell line; A549: lung carcinoma cell line; HCT116: colon cancer cell line; 

MB231: breast cancer cell line. Positive control: doxorubicin. 

Extract Identification A375 A549 HCT116 MB231 

CHG48-GYM Streptomyces sp.  5.8 0.02 21.4 22.1 

CKG20-GYM Micromonospora sp. 0.8 1.6 1.3 1.4 

CKG24-GYM Bacillus sp. 70.7 67.9 86.6 > 100 

CHG34-CAG Trichoderma sp. 67.9 70.1 71.9 69.7 

CHG34-PDA Trichoderma sp. 19.3 31.1 24.1 32.8 

CHG38-CAG Fusarium sp. 35.9 70.1 62.1 > 100 

CHG38-PDA Fusarium sp. 92.3 > 100 > 100 > 100 

CKG23-CAG Penicillium sp. 2.0 4.9 8.5 2.5 

CKG23-PDA Penicillium sp. 5.2 17.5 27.6 9.0 

Positive control   0.8 1.3 13.3 2.3 

2.5. Feature-Based Molecular Networking and Dereplication of Nine Prioritized Microbial 

Extracts 

We comparatively analyzed the metabolome of the nine prioritized extracts by an 

integrated dereplication strategy combining FBMN, in silico dereplication tools, and manual 

approaches. Chemical structures of the putatively annotated metabolites, dereplication tables, 

and generated FBMNs are shown in the Supplementary Figures S2–S8 and Tables S5–S10.  

Global metabolome analyses of three selected bacterial extracts, Streptomyces sp. 

CHG48-GYM, Micromonospora sp. CKG20-GYM, and Bacillus sp. CKG24-GYM, revealed a 

high metabolite diversity with a total of 220 nodes (ions) organized into 35 molecular clusters 

(Figure 6). Out of the 35 molecular clusters, 21 were putatively annotated as acetamide 

derivatives, cyclic peptides (including lipo- and depsipeptides), diterpenoid glycosides, 

glycerophospholipids, isocoumarin derivatives, nonactic acid polyketides, oxazolidone 

alkaloids, phenazine alkaloids, and polyketide glycosides. The global FBMN was dominated 

by several types of cyclic peptides, produced by Micromonospora sp. (CKG20-GYM) and 

Bacillus sp. (CKG24G-GYM). The Bacillus sp. extract CKG24-GYM exhibited the richest 

metabolite diversity (89 nodes), followed by Streptomyces sp. CHG48-GYM (73 nodes), and 

Micromonospora sp. CKG20-GYM (61 nodes). The chemical diversity of Bacillus sp. extract 

CKG24-GYM was also reflected in the number of exclusive clusters (15 exclusive molecular 

clusters) compared to CHG48-GYM (11 exclusive molecular clusters) and CKG20-GYM (6 
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exclusive molecular clusters). Most molecular clusters (91%) in the composite FBMN were 

exclusive to one bacterial extract. Shared metabolites, only detected in two molecular clusters, 

remained unannotated.  

In-depth chemical investigations of Streptomyces sp. extract CHG48-GYM led to the 

putative annotation of the alkaloids streptazolin (2) and streptenol E (3), the diterpenoid 

glycoside platensimycin B4 (6), the linear polyketide alpiniamide A (7), and four nonactic acid 

polyketides (12,14,18,33; Figure 6 and Figure S3 and Table S5). Nonactic-acid-type 

polyketides formed the two largest clusters in the molecular network of Streptomyces sp., 

representing protonated ([M + H]+) and sodiated adducts ([M + Na]+) detected from this 

chemical family (Figure S3). FBMN-based dereplication led to the putative annotation of, e.g., 

nonactic acid polyketides. MS/MS library spectra of bonactin (14) and homononactyl 

homononactate (18) deposited at the Global Natural Products Social Molecular Networking 

platform (GNPS, [34]) revealed a precise match with the MS/MS spectra detected for m/z 

401.2540 [M + H]+ (14) and m/z 415.2702 [M + H]+ (18; Figures S9 and S10). This aided 

manual identification of nonactyl nonactoate (12) and nonactin (33). Nevertheless, most 

compounds and clusters could not be linked to any known chemical entity, and, therefore, 

many compounds (76%) in Streptomyces sp. extract CHG48-GYM remained unknown. 
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Figure 6. UPLC-MS/MS-based metabolome of three bacterial extracts. The feature-based 

molecular network (FBMN) displays only clusters containing ≥ 2 nodes. The width of edges 

represents the cosine similarity between 2 nodes. Nodes are color-coded by the respective 

extract: red: Streptomyces sp. extract CHG48-GYM; orange: Micromonospora sp. extract 

CKG20-GYM; yellow: Bacillus sp. extract CKG24-GYM. 

The Micromonospora sp. isolate CKG20 (GYM medium) showed the lowest chemical 

diversity of all prioritized bacterial extracts (Figure 6 and Figure S4, Table S6). Putatively 

identified compounds belonged to phenazine alkaloids (44,48) and cyclic depsipeptides (51–

53), of which the latter was the dominant chemical family in this extract. Cyclic depsipeptides 
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were represented in three molecular clusters in the FBMN, since MS/MS analysis detected 

three different adduct types ([M + H]+, [M + Na]+, [M + K]+) that formed their own clusters due 

to their specific fragmentation patterns. In addition, the GNPS dereplication workflow 

annotated three compounds to known ubiquitous cell membrane components, i.e., 

glycerophospholipids (42,45,50). The majority (60%) of the detected metabolites and two 

molecular clusters did not match with any known compound. 

Putatively identified compounds of Bacillus sp. extract CKG24-GYM were classified into 

three different chemical families, namely, isocoumarin derivatives (55,59,60), polyketide 

glycosides (64), and various cyclic lipopeptides (61–63,65,66,68–72,74,76,77,79,81,82,84–

87; Figure 6, Figure S5, Table S7). In the FBMN, the dominance of cyclic lipopeptides was 

reflected by eight molecular clusters putatively annotated to this NP family. Putatively 

annotated cyclic lipopeptides can be further classified into bacillomycins (61-63; m/z 

1071.5811-1099.6122 [M + H]+), plipistatins (65,66,68–72; m/z 731.4171–753.4296 [M + 

2H]2+), and surfactins (74,76,77,79,81,82,84–87; m/z 994.6426–1064.7209 [M + H]+; Figure 

S5, Table S7). The putative assignment to three different subfamilies (bacillomycins, 

plipistatins, surfactins) and the detection of different adduct types (e.g., surfactins: [M + H]+ 

and [M + Na]+ adducts) explain the formation of several distinct lipopeptide clusters. The 

highest annotation rate in this study (71%) was achieved for this extract, i.e., only 10 

compounds (54,56–58,67,73,75,78,80,83) remained unannotated. 

FBMN-based analysis also proved the high metabolite diversity (411 ions in total, 52 

distinct molecular clusters) of the six selected fungal extracts (Figure 7). Putatively annotated 

clusters included alkaloids (indole and cytochalasan alkaloids), peptides (e.g., peptaibols), 

polyketides (e.g., macrolides), steroids (ergosterols), and terpenoids (mero- and 

sesquiterpenoids). The largest molecular cluster, putatively annotated by GNPS and in silico 

dereplication workflows, is xanthone and zearalenone type polyketides. It contained 

metabolites produced by all three fungal strains. With the exception of this shared polyketide 

cluster, the chemical diversity of the selected strains differed. As an example, Trichoderma 

sp. showed 171–173 nodes and 24 exclusive clusters in the global network and was the most 

chemically diverse. Fusarium sp. and Penicillium sp. produced only eight and fifteen exclusive 

clusters, respectively. 

Trichoderma sp. isolate CHG34 produced ergosterols, sorbicillinoid-type polyketides, and 

peptaibols (Figure 7, Figure S6 and Table S8), of which the latter dominated the metabolome. 

Various peptaibols such as trichokindins (125,143,144,147,150,151,154,155,157) and 

neoatroviridins (149,156,160) were putatively annotated. As depicted in the FBMN (Figure 

S6), peptaibols are often detected as doubly charged (sodiated) ions ([M + 2H]2+ and [M + 

2Na]2+) [35,36]. Accordingly, several distinct peptaibol clusters such as trichokindins and 

neoatroviridins were annotated. Despite our integrated dereplication efforts, most compounds 

(73%) in the Trichoderma extracts remained unannotated (Table S8). The amino acid 

sequence of two unannotated compounds, m/z 770.5386 [M + H]+ (103) and m/z 754.5424 [M 

+ H]+ (105) (highlighted as “putatively novel lipopeptides” in the global MN; Figure 7 and S6 

and Table S8), were putatively predicted based on characteristic MS/MS fragments (Figure 8 

and Figure S11). Tandem mass spectrometry (MS/MS) is an essential tool in peptide 

chemistry since mass differences of produced fragment ions allow the determination of the 

amino acid sequence of peptides [37]. Analysis of the MS/MS spectra of 103 and 105 revealed 

that both compounds contained seven amino acid residues. The first observed fragment of 

103 (m/z value of 184.1341) reflects the fatty acyl moiety Oc (octanoyl) connected to Gly 

(C10H18NO2) at the N-terminus of the putative peptide. The loss of m/z 230.1994 (C12H26N2O2) 

positioned Leu/Ile-Leuol/Ileol at the C-terminus of 103. The full sequence of 103 (m/z 770.5386 

[M + H]+) determined by MS/MS fragmentation was proposed as N-Oc-Gly-Gly-Leu/Ile-Val-

Ser-Leu/Ile-Leuol/Ileol. The second putatively novel linear peptide (105, m/z 754.5424 [M + 

H]+) had a similar amino acid sequence as 103 but with Ser replaced by Ala. Accordingly, 

these two molecular ions may be novel linear seven-residue lipopeptides produced by 
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Trichoderma sp. strain CHG34. The CAG and PDA extract of Trichoderma sp. CHG34 showed 

a high overlap of their chemical space (82%) with 61 shared metabolites (Table S8). 

In Fusarium sp. extracts CHG38-CAG and -PDA, the cyclic lipopeptide fusaristatin A (182) 

and chromone (164,165), isocoumarin (166), naphthoquinone (162,163,168), xanthone 

(171,178), and zearalenone (169,176,179) polyketides were annotated (Figure 7, Figure S7 

and Table S9). According to the cluster analysis, xanthone and zearalenone polyketides 

dominated the FBMN by forming the two largest clusters. Zearalenone (176) was predicted by 

the GNPS-based MS/MS spectral match and guided us to putatively annotate 2'-

hydroxyzearalanol (169) and zearalanone (179) in the same cluster. The majority of 

compounds (62%) remained unidentified. Notably, cultivation of Fusarium sp. strain CHG38 

triggered the production of several metabolites that were exclusive to either CAG (10 

compounds) or PDA (16 compounds) medium. 
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. 

Figure 7. Global UPLC-MS/MS-based metabolome of six fungal extracts. The FBMN displays 

only molecular clusters containing ≥ 2 nodes. The width of edges represents the cosine 

similarity between 2 nodes. Nodes are color-coded by the respective extract (CAG: light color; 

PDA: strong color): green: Trichoderma sp. strain CHG34; blue: Fusarium sp. strain CHG38; 

purple: Penicillium sp. strain CKG23. 
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Figure 8. Two putatively novel seven-residue lipopeptides detected in Trichoderma sp. 

extracts CHG34-CAG and CHG34-PDA. Structures were putatively predicted based on the 

experimentally determined MS/MS fragments for (a) compound 103 (m/z 770.5386 [M + H]+) 

and (b) compound 105 (m/z 754.5423 [M + H]+). Ala: alanine; Gly: glycine; Leu/Ile: (iso)leucine 

(leucine is displayed); Leuol/Ileol: (iso)leucinol (leucinol is displayed); Oc: octanoyl; Ser: 

serine; Val: valine. 

The metabolome of Penicillium sp. strain CKG23 contained eight different chemical 

families, such as cytochalasans (209,212), indole alkaloids (206,219), meroterpenoids (222), 

sesquiterpenoids (213), and various types of polyketides including zearalenone derivatives 

(197,199,205,208,224; Figure 7 and Figure S8, Table S10). The largest cluster in the FBMN 

belonged to the polyketide family xanthones, which were also detected in Fusarium and 

Trichoderma sp. extracts in the global FBMN. Notably, the CAG and PDA extracts of 

Penicillium sp. strain CKG23 shared only seven molecular ions (Figure S12). Moreover, 

CKG23-PDA showed a strikingly higher chemical diversity with 185 detected peaks compared 

to CKG23-CAG (51 peaks). For example, most putatively identified compounds in the 

zearalenone cluster were only detected in the PDA extract of Penicillium sp. 

(197,199,205,224), while no compound was exclusive to extract CKG23-CAG. 

The untargeted metabolomics approach employed here revealed the huge chemical 

inventory of nine microbial extracts (Table 3). The metabolomes showed large variations 

between the different microbial taxa, but also the applied cultivation media impacted the 

chemical diversity. Compared to low annotation rates of < 2% normally achieved in untargeted 

metabolomics studies [38], the integrated dereplication effort applied herein significantly 

improved the putative annotation rates ranging from 24% (Streptomyces sp. extract CHG48-

GYM) to 71% (Bacillus sp. extract CKG24G). Nevertheless, many compounds and molecular 
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clusters did not match any known compounds, suggesting that they could represent putatively 

new compounds. 

Table 3. Summary of the chemical inventory of nine selected crude extracts explored by 

untargeted FBMN-based metabolomics. Each extract is given with the number of nodes 

detected in the global bacterial (Figure 6) or fungal (Figure 7) FBMNs. In addition, putatively 

identified chemical families and annotation rates are indicated for each strain. 

Extract Identification Nodes Putatively annotated chemical families 
Annotation 

rate (%) 

CHG48-GYM Streptomyces sp. 73 

Acetamides, diterpenoid glycosides, linear 

polyketides, nonactic acid polyketides, 

oxazolidone alkaloids 

24 

CKG20-GYM Micromonospora sp. 61 
Cyclic depsipeptides, phenazine alkaloids, 

glycerophospholipids 
40 

CKG24-GYM Bacillus sp. 89 
Cyclic lipopeptides, isocoumarins, polyketide 

glycosides 
71 

CHG34-CAG Trichoderma sp. 173 
Ergosterols, peptaibols, sorbicillinoids 27 

CHG34-PDA Trichoderma sp. 171 

CHG38-CAG Fusarium sp. 53 Chromones, cyclic lipopeptides, isocoumarins, 

naphthoquinones, xanthones, zearalenones 
38 

CHG38-PDA Fusarium sp. 54 

CKG23-CAG Penicillium sp. 29 Cytochalasans, indole alkaloids, mero- and 

sesquiterpenoids, styrylpyrones, tetrapeptides, 

xanthones, zearalenones 

48 
CKG23-PDA Penicillium sp. 108 

3. Discussion 

In the present study, the unexplored gut microbiota of the tunicate C. intestinalis was 

investigated for its potential to deliver novel MNPs with pharmaceutical potential. The obtained 

strain collection represents with 101 gut-associated bacteria and fungi (Figure 1a, Table S1) 

the most comprehensive strain collection from the tunicate’s gut available to date. A diverse 

microbial community (i.e., 33 different genera) was obtained from six different isolation media, 

which showed different suitability for growth of a diverse array of microorganisms (Figure 1b). 

For instance, glucose is a common carbon source for fungi [39], and, accordingly, most fungi 

were obtained from the glucose-containing media, WSP and PDA. In addition, media 

containing several carbon sources and other complex compounds often yield the highest 

microbial diversity [18], and this is in line with our finding that most isolates were obtained from 

the complex WSP medium (glucose, malt extract, peptone, and yeast extract). This indicates 

that the selection of isolation media has a huge impact on the isolated microbiota due to 

specific nutrient requirements of different microorganisms [18,19]. Furthermore, other 

cultivation conditions such as temperature (22 °C) also significantly influence the cultivable 

fraction of bacteria and fungi [18,19].  

Although highly abundant bacterial genera such Shewanella and Vibrio and fungal genera 

such as Penicillium and Trichoderma (Figure 2) were previously isolated from the gut of Ciona 

spp. [23,26–28], most microbial genera were isolated for the first time from the gut of C. 

intestinalis. The high abundance of Gammaproteobacteria is in accordance with a previous 

culture-independent study performed on the gut microbiome of Ciona spp. [29]. We have 

recently described the cultivable microbiota of the tunic of C. intestinalis [31] that differed 

strikingly from the gut-associated microbial community isolated herein. Both tissues shared 

only few microbial genera (e.g., bacteria: Bacillus and Vibrio; fungi: Fusarium and Penicillium), 

which is in accordance with culture-independent microbiome studies on the gut and tunic of 

Ciona spp., indicating tissue-specific microbial communities [29,30]. Moreover, the diversity of 

culture-dependent fungi was higher in the gut (gut: 40 isolates assigned to 20 genera; tunic: 

22 isolates, 15 genera), while bacteria were more prominent in the tunic (89 isolates assigned 

37 genera; gut: 61 isolates, 13 genera) [31]. In line with our previous study on the tunic-
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associated microbiota [31], the gut-associated microbiota, especially the bacterial community, 

was more diverse in Kiel than in Helgoland samples (Figures 1 and 2). This may be attributed 

to different salinity levels (Kiel: brackish, Helgoland: oceanic salinity) and the comparably 

higher anthropogenic input, i.e., more eutrophic conditions, at the sampling site in Kiel Fjord 

[31]. Moreover, samples were obtained from different depths (Helgoland: < 1 m depth; Kiel: 

approx. 3 m depth) and different artificial surfaces (Helgoland: pontoon; Kiel: mussel-

cultivation basket), which both may have influenced the obtained microbial diversity. Other 

parameters not determined in this study, e.g., diet, water temperature, and the age and genetic 

background of the sampled specimens, may be additional factors shaping the diversity of the 

cultivable microbiota [18,40,41]. 

Gut-derived microbial extracts (n = 103) were screened against a panel of cancer cell 

lines and microbial pathogens, since ascidians and their associated microorganisms are well-

known producers of MNPs with antimicrobial and anticancer properties [11,13,42]. The 

antimicrobial assays included the so-called ESKAPE panel, drug-resistant bacterial pathogens 

that were categorized by the WHO as priority level 1 and 2 for the discovery of new 

antimicrobial agents [43]. Most extracts (n = 65) exhibited activity against MRSA and/or E. 

faecium, but also anticancer (n = 23) and antifungal (n = 11) activities were observed (Figure 

3, Table S2), exceeding bioactivity levels previously reported for cultivable bacteria associated 

with solitary ascidians [44,45]. The high rate of bioactivity observed in this study is in line with 

the excellent biodiscovery potential reported for tunicates and their microbial associates 

[11,13,42]. As outlined before, an intact gut microbiota has crucial functions for the health and 

performance of its host [1,3]. Possible functions related to chemical defense and nutrition were 

already proposed for cultivable bacteria obtained from the intestine of a solitary ascidian and 

a sea urchin [46,47]. The high proportion of microorganisms with, e.g., antibacterial properties 

(64%) indicates their potential involvement in the tunicate’s chemical defense. However, it was 

beyond the scope of this study to detect specific functions fulfilled by specific cultivable gut-

associated microorganisms in the host–microbiota interplay. 

Bioactive crude extracts (n = 68) were subjected to a two-step selection procedure 

considering the bioactivity profile and chemical diversity of the extracts to prioritize the most 

promising extracts for in-depth metabolome mining. This strategy aided prioritization of nine 

microbial extracts affiliated to the bacterial genera Bacillus, Micromonospora, and 

Streptomyces as well as the fungal genera Fusarium, Penicillium, and Trichoderma (Figures 

4 and 5). These microbial genera are known as the most talented producers of MNPs 

highlighting the strength of the applied prioritization pipeline (e.g., [9,48,49]).  

The integrated dereplication approach combining automated and manual dereplication 

tools allowed the putative identification of 94 metabolites (Tables S5–S10). They belonged to 

various NP classes such as alkaloids, lipids, peptides, polyketides, steroids, and terpenoids, 

revealing a huge metabolic capacity of the prioritized microbial strains. Dereplication was 

substantially supported by the recently released FBMN workflow [32], which, in combination 

with other tools, led to annotation rates of up to 71%. Increasing annotation rates in untargeted 

metabolomic experiments is crucial to overcome time-consuming re-isolation of known 

compounds, which severely hampers biodiscovery efforts [33]. 

Untargeted metabolomics studies on fungi (e.g., Fusarium and Penicillium spp. 

[31,50,51]) and bacteria (e.g., Streptomyces and Salinispora spp. [52]) cultured on the same 

medium already revealed huge chemical variations at both species and strain level and are 

therefore used as chemotaxonomic species discrimination markers ([51] and references 

therein). Hence, we expected to find distinct chemical profiles of strains from the same genus, 

e.g., Penicillium or Streptomyces (Figure 4, Figure 5 and Figure S1, Tables S3–S4). Beyond 

this, variations in metabolite diversity in different media is also a well-known phenomenon in 

the OSMAC (one strain–many compounds) approach [53]. In line with this, Fusarium sp. strain 

CHG38 and Penicillium sp. strain CKG23 showed differential bioactivities and metabolomes 

when cultured on two different media (Figure 7, Figure S7–S8 and S12, Table 1, Table 2 and 

Tables S9–S10). Furthermore, the fungal cultivation media CAG and PDA appeared to trigger 
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the production of various (bioactive) metabolites, e.g., the metabolomes of Fusarium sp. 

CHG38 and Penicillium sp. CKG23 were richer when cultured on PDA medium, while 

cultivation of Trichoderma sp. on CAG yielded more compounds (Figure 7, Tables S8–S10). 

Both media contain the simple sugar glucose, an ideal carbon source for fungal growth [39], 

plus an additional mixed carbon source, which seemingly meets requirements for fungal 

growth and production of secondary metabolites. In contrast, GYM and MB media used for 

bacterial strains were not equally suitable as only one bacterial extract obtained from 

cultivation on MB medium met the bioactivity selection criterion (P. anguilliseptica extract 

CKG38-MB), while seven GYM extracts exerted strong antimicrobial and/or anticancer 

activities (Table S2). While MB medium mimics the major mineral composition of seawater, 

GYM medium lacks these minerals, but contains glucose and malt extract, which are easily 

accessible carbon sources. However, eleven bacterial strains, including all Vibrio sp. isolates, 

failed to grow on GYM medium. This may be attributed to the lack of sodium chloride (NaCl) 

in this medium, since most Vibrio spp. require NaCl for growth [54]. Apart from the media 

composition, other parameters such as the temperature, solid regime (in contrast to liquid 

cultures) or aeration may have influenced the observed chemical composition [53,55]. 

Moreover, artificial laboratory conditions often lack important environmental cues such as 

multispecies interactions, which can lead to, e.g., silencing of important biosynthetic gene 

clusters [55]. Therefore, the obtained metabolomic compositions may not necessarily reflect 

the true metabolite repertoire of the organism [55]. 

The observed anti-MRSA and E. faecium activity of Streptomyces sp. extract CHG48 

(Table 1) might be explained by the diterpenoid glycoside platensimycin B (6) and two nonactic 

acid polyketides (18,33), all with reported antibacterial activities [56-59]. The putatively 

annotated polyketide homononactyl homononactate (18) shows weak activity against colon 

cancer cell line HCT116 [60], but not against lung cancer cell line A549 [56]. Hence, this 

compound cannot explain the detected selective anticancer activities against cell lines A549 

and A375 (Table 2). Moreover, none of the dereplicated metabolites can explain the detected 

antifungal activities of Streptomyces sp. extract CHG48-GYM against C. albicans and C. 

neoformans (Table 1), and the annotation rate was the lowest detected in this study (24%; 

Table S5). We therefore consider Streptomyces sp. isolate CHG48 as a promising candidate 

strain for isolation of its chemical constituents. 

The antibacterial and anticancer activities (Tables 1 and 2) of Micromonospora sp. 

(CKG20-GYM) may be attributed to the putatively annotated cyclic depsipeptides rakicidins 

(51–53) [61-63] and the phenazine alkaloid diazepinomicin (44) [49,64] (Figure 6 and Figure 

S4, Table S6), for which these activities are known. About 60% of the detected compounds 

remained unannotated, including a putatively novel rakicidin derivative (49), which is worth 

investigating in future studies.  

The Bacillus sp. extract CKG24-GYM inhibited the growth of microbial pathogens and 

showed antiproliferative activity against cancer cell lines A375, A549 and HCT116 (Tables 1 

and 2). Anti-MRSA activity has been described for the putatively identified isocoumarin 

derivative amicoumacin-A (55) [65] and the polyketide glycoside aurantinin B (64) [66]. 

Inhibitory activities against colon cancer cell line HCT116 are reported for some surfactin-like 

lipopeptides (79,82,84,86) [67]. Bacillomycins (61–63) [68] and some cyclic lipopeptides 

(65,66,68–72) reportedly show antifungal properties [69] possibly relating to the observed 

fungicidal activity of CKG24-GYM. In combination with the high annotation rate (71%), these 

results render Bacillus sp. extract CKG24-GYM not favorable for future studies. 

Among the fungi, Trichoderma spp. are the major source of peptaibols [70,71] and, 

accordingly, extracts of Trichoderma sp. strain CHG34 were dominated by this NP class 

(Figure 7 and Figure S6, Table S8). Moderate anticancer activities were observed in both 

Trichoderma sp. extracts (CHG34-CAG, -PDA; Table 2), which may originate from the 

putatively identified peptaibols neoatroviridin B–D (149,156,160) [72]. Antibacterial activity 

was only detected in the PDA extract of Trichoderma sp. strain CHG34 (Table 1), but none of 

the compounds exclusive to this extract (90,92,111) could be putatively identified as 



Results – Chapter 3 

 

103 
 

annotation rates remained low for Trichoderma sp. strain CHG34 (27%). Two new lipopeptide 

structures (103,105) were proposed based on the predicted amino acid sequences from the 

product ions. Future efforts will encompass isolation and confirmation of the putative structures 

and also exploration of this strain for other novel MNPs for the treatment of infectious diseases. 

As outlined above, Fusarium sp. extracts showed different bioactivities and metabolomes 

(Figure 7, Figure S7, Table 1, Table 2 and Table S9). The antimicrobial and anticancer 

properties of Fusarium sp. extract CHG38-PDA may originate from the putatively annotated 

xanthone derivative griseoxanthone C (178) [73,74] and the naphthoquinone norjavanicin 

(163) [75]. In addition, the shared metabolite fusaristatin A (182) reportedly inhibits the 

proliferation of lung cancer cells [76]. Fusarium spp. are also prominent producers of 

mycotoxins, including the macrolide zearalenone (176) detected in this study [77]. 

Zearalenone (176) shows antifungal but no antibacterial activities [78]. Hence, antibacterial 

activities of Fusarium sp. extract CHG38-CAG remain unresolved, since none of its putatively 

annotated compounds have been shown to possess antibacterial activities. Accordingly, 

extract CHG38-CAG is highlighted for future chemical investigations.  

Detailed LC-MS/MS analyses of the Penicillium sp. isolate CKG23 revealed distinct 

chemical profiles of its CAG and PDA extracts (Figure 5a, Figure 7, Figures S8 and S12, Table 

S10). Anticancer activities of CKG23-CAG may be attributed to the putatively identified indole 

alkaloid communesin B (219) and the cytochalasan chaetoglobosin A (212) that were shown 

to inhibit the proliferation of cancer cell lines A549 (212,219) and HCT116 (219) [79,80]. In 

addition, the meroterpenoid andrastin A (222) putatively annotated in CKG23-CAG is a 

farnesyltransferase inhibitor that prevents correct functioning of, e.g., RAS proteins (common 

oncogenes), rendering it a promising anticancer lead compound [81]. Antiproliferative activity 

of CKG23-PDA and observed antibacterial activities (including Gram-negative pathogens) of 

both Penicillium sp. extracts could not be linked to any of the dereplicated compounds. 

Moreover, extract CKG23-PDA had the most distinct chemistry of all Penicillium sp. extracts 

(Figure 5a), indicating that the PDA extract of Penicillium sp. CKG23 is worth pursuing in future 

studies. 

In this study, we showed that the cultivable fraction of the gut-associated microbiota of C. 

intestinalis is diverse and specific. The majority of the yet unexplored gut-associated cultivable 

microorganisms showed antimicrobial and/or anticancer activities, suggesting a significant 

potential for discovery of new drug leads. Computationally assisted metabolome mining of 

nine prioritized bioactive crude extracts led to the putative identification of 94 metabolites 

assigned to 24 different chemical families. Nevertheless, most compounds and molecular 

clusters remained unannotated and may therefore be novel MNPs. Several extracts containing 

putatively novel and bioactive metabolites were highlighted, in particular Streptomyces extract 

CHG48-CAG, Trichoderma sp. extracts CHG34-CAG and CHG34-PDA, Fusarium sp. extract 

CHG38-CAG, and Penicillium sp. extract CKG23-PDA. This emphasizes the benefit of 

working with marine microorganisms obtained from previously unexplored sources and is in 

line with the strongly increasing contribution of microorganisms in MNP discovery [9]. It is 

widely accepted that MNPs have higher success rates in drug discovery compared to their 

terrestrial counterparts [82]. Being evolved and prevalidated by natural pressures and 

adaptation processes for millions of years, NPs represent “privileged scaffolds in drug 

discovery” [83], whose bioactivity and structural diversity surpass any synthetic compound 

prepared in the laboratory [84]. To conclude, the obtained cultivable gut-associated microbial 

community of C. intestinalis delivered several promising microorganisms that seem to harbor 

an unexplored chemical space. Putatively novel compounds and their bioactivities need to be 

verified in future isolation and structure elucidation studies. 

4. Materials and Methods  

4.1. Sampling and Isolation of Microorganisms 
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Ciona intestinalis was sampled in September 2017 at two locations, the German North 

Sea island Helgoland (Germany, 54.177102, 7.893053) and Kiel Fjord (Kiel, Germany, Baltic 

Sea, 54.382062, 10.162059). Samples were collected in local harbors from a pontoon 

(Helgoland, < 1 m depth) or from a mussel cultivation basket (Kiel Fjord, approximately 3 m 

depth). Dissection and inoculation of microbiological samples were conducted at the same 

day.  

Six solid media (1.8% agar) were used to isolate a diverse bacterial and fungal community 

from the ascidian’s gut: two C. intestinalis media adjusted to Baltic (CB) and North Sea salinity 

(CN; [31]), MB (3.74% Marine Broth 2216), potato dextrose agar (PDA [85]), TSB (0.3% 

trypticase soy broth, 1% sodium chloride) and modified Wickerham medium (WSP [86]). Agar 

(bacteriology grade) and sodium chloride were purchased from AppliChem (Darmstadt, 

Germany), malt extract, Marine Broth, and trypticase soy broth from Becton Dickinson 

(Sparks, MD, USA), glucose, peptone (from soymeal), and granulated yeast extract from 

Merck (Darmstadt, Germany), and potato infusion powder was ordered at Sigma Aldrich 

(Steinheim, Germany).  

The gut (n = 2 biological replicates per sampling site) was carefully dissected and placed 

into a sterile 1.5 mL reaction tube. The dissected gut was diluted 1:1 with sterile artificial 

seawater (1.8% (K) or 3% (H) Instant ocean, Blacksburg, VA, USA) and gently homogenized 

with a sterile pestle. Agar media were inoculated with 100 µL aliquots and their 1:10 and 1:100 

dilutions. Petri dishes were checked for growth of fungi and bacteria after incubation for one 

and three weeks in the dark at 22 °C. Microbial colonies showing distinct macroscopic 

phenotypes were transferred to fresh agar plates until pure cultures were obtained. Microbial 

strains were cryo-conserved at −80 °C using the ready-to-use MicrobankTM system (Richmond 

Hill, ON, Pro Lab Diagnostics, Canada). 

4.2. DNA Extraction and Identification of Microbial Isolates 

DNA was extracted by applying a freeze and thaw protocol (bacteria) or by mechanical 

lysis (fungi) as described elsewhere [31,87]. If subsequent PCR amplification of the target 

fragment failed, DNA extraction was repeated with the DNeasy Plant Mini Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. Some modifications of the protocol 

were applied as previously described [31]. 

Molecular identification was performed following established protocols for amplification of 

the 16S rRNA gene (bacteria) or the ITS1-5.8S-ITS2 region (fungi) [87]. The 18S and 28S 

rRNA gene were additionally amplified for fungal strains with ambiguous identification (for 

protocols see [88,89]). PCR conditions for amplifying the large ribosomal subunit of the rRNA 

were modified as previously described [31]. Sanger sequencing [90] of successfully amplified 

DNA fragments was conducted at LGC Genomics GmbH (Berlin, Germany). FASTA files of 

quality checked and trimmed DNA sequences were searched against the NCBI (National 

Center for Biotechnology Information) nucleotide database using BLAST (Basic Local 

Alignment Search Tool [91]). One bacterial isolate (CKG60) could only be identified at family 

level. Application of Naive Bayesian rRNA Classifier v2.11 of the Ribosomal Database Project 

using the 16S rRNA training set at a 95% confidence threshold [92] resulted in identification 

of this isolate to genus level. Bacterial and fungal DNA sequences were deposited in GenBank 

under the accession numbers MW065489-549 (gut-associated bacteria), MW064137-74 (gut-

associated fungi, ITS), and MW064175-6 (gut-associated fungi, 18S; Table S1). 

4.3. Cultivation and Extraction of Gut-Associated Microbial Strains 

Out of 101 gut-derived microbial isolates, 29 were excluded from cultivation due to 

laboratory safety concerns based on the Technical Rules for Biological Agents (TRBA 460, 

TRBA 466). Fifteen additional strains were excluded, since they were affiliated to the same 

species as another strain isolated from the same sampling site, which led to the final selection 

of 27 bacterial and 30 fungal strains for cultivation (n = 57; Table S2). Microbial isolates were 
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cultured in duplicate (i.e., two biological replicates) on two different media. Bacterial isolates 

were cultured on the solid agar media glucose–yeast–malt (GYM [93]) and MB. Solid 

casamino acids–glucose (CAG [94]) and PDA media were used for growing fungal strains. 

Ingredients not listed in Section 4.1. were purchased from Carl Roth (Karlsruhe, Germany). 

CAG, GYM and PDA were chosen due to their excellent potential to trigger production of novel 

and bioactive compounds (see [31] and references therein). MB medium was chosen to 

ensure sufficient growth of all bacterial isolates. For cultivation of precultures, solid media were 

inoculated with cryo-conservation beads and incubated in the dark at 22 °C until the agar was 

completely overgrown. Main cultures were inoculated by transferring microbial colonies or an 

overgrown piece of agar with an inoculation loop to the respective agar medium. Fungi were 

inoculated on five agar plates and bacteria on ten plates in parallel. As outlined above, each 

strain was cultivated on two respective media in duplicate yielding 20 (fungi) or 40 (bacteria) 

petri dishes per strain. Microbial cultures were grown in the dark for seven (bacteria) or 21 

(fungi) days at 22 °C. Eleven bacterial strains did not grow on GYM medium, hence were only 

cultivated on MB medium. 

For solvent extractions, the agar was cut with a flat spatula and mixed with 200 mL (fungi) 

or 400 mL (bacteria) ethyl acetate (EtOAc; VWR International, Leuven, Belgium) in a glass 

bottle. The mixture was homogenized with a T25 basic Ultra Turrax (IKA-Werke, Staufen, 

Germany; 30 s at 13,000 rpm), which was followed by maceration overnight (120 rpm, 22 °C). 

The solvent was decanted and washed with an equal volume of ultra-purified water to remove 

salts (Arium Lab water systems, Sartorius, Goettingen, Germany) in a liquid–liquid partitioning 

experiment. The EtOAc phase was transferred to a round bottom flask. The extraction process 

was repeated in the same manner, with the only exception that the extraction process was 

reduced to 15 min in an ultrasonic bath. Combined EtOAc extracts were evaporated to dryness 

and re-solubilized in 4 mL methanol (MeOH; ULC-MS grade, Biosolve Chimie, Dieuze, 

France). Extracts were filtered through a 0.2 μm PTFE (polytetrafluoroethylene) filter (VWR 

International, Darmstadt, Germany), dried again in pre-weighed vials to determine their extract 

weight, and stored at −20 °C. Media blanks were prepared as controls by using the same 

protocol. 

4.4. Biological Assays 

Dried crude extracts were dissolved in dimethyl sulfoxide (Carl Roth) at a concentration 

of 20 mg/mL. Microbial pathogens included the ESKAPE panel (Enterococcus faecium, Efm, 

DSM 20477; methicillin-resistant Staphylococcus aureus, MRSA, DSM 18827; Klebsiella 

pneumoniae, Kp, DSM 30104; Acinetobacter baumannii, Ab, DSM 30007; Pseudomonas 

aeruginosa, Psa, DSM 1128; Escherichia coli, Ec, DSM 1576), as well as the pathogenic fungi 

Candida albicans (Ca, DSM 1386) and Cryptococcus neoformans (Ca, DSM 6973). The 

following four cancer cell lines were selected for anticancer assays: A375 (malignant 

melanoma cell line), A549 (lung carcinoma cell line), HCT116 (colon cancer cell line), and 

MDA-MB231 (human breast cancer line). Test organisms and cell lines were purchased from 

Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures 

(Braunschweig, Germany) and CLS Cell Lines Service (Eppelheim, Germany). Tests were 

performed in 96-well plates at a final concentration of 100 µg/mL as previously described 

[95,96]. For each extract, its two biological replicates were tested in duplicate each (i.e., two 

technical replicates). The antibiotics amphotericin (Cn), ampicillin (Efm), chloramphenicol 

(MRSA, Ec, Kp), doxycycline (Ab), nystatin (Ca), polymyxin B (Psa), and the cytostatic agent 

doxorubicin (cancer cell lines) served as positive controls. Prioritized extracts were additionally 

subjected to IC50 determinations (also two biological and two technical replicates) by applying 

a previously published protocol [95]. 

4.5. Metabolomic Analyses 

4.5.1. UPLC-QToF-MS/MS Measurements 
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All solvents used for UPLC-based metabolomic analyses were ordered at Biosolve Chimie 

or LGC Standards (Wesel, Germany) in ULC-MS grade. Crude extracts (two biological 

replicates each) re-dissolved in MeOH (final concentration of 1.0 mg/mL) were measured on 

an Acquity UPLC I-Class System connected to a Xevo G2-XS QToF Mass Spectrometer 

(Waters, Milford, MA, USA). Crude extracts were injected (0.3 µL) and separated on an 

Acquity UPLC HSS T3 column (High Strength Silica C18, 1.8 μm, 2.1 × 100 mm, Waters) 

operating at 40 °C. The binary mobile phase consisted of ultra-purified water (A) and 

acetonitrile (B), both spiked with 0.1% formic acid. The elution gradient pumped at a flow rate 

of 0.6 mL/min was as follows (% of A given): initial, 99%; 11.5 min, 1%; 14.5 min, 1%; 14.5–

16 min 99%. LC-MS chromatograms and MS/MS fragmentation spectra were recorded as 

previously described [31]. The same settings were applied to analyze MeOH (solvent control) 

and media blanks. 

4.5.2. Pre-Processing of UPLC-MS/MS Data and Statistics 

The ProteoWizard tool msconvert 3.0.20010 was used to transform acquired spectra to 

mzXML format [97]. Quality filtering and removal of media and contaminant peaks were carried 

out in MZmine 2.53 [98]. Briefly, mass lists were compiled for compounds with a retention time 

(Rt) between 1 and 12 min with an intensity above 30,000 (MS) or 50 (MS/MS). 

Chromatograms were built at a minimum peak height of 60,000 and an m/z tolerance of 0.005 

Da or 15 ppm. Deconvolution of chromatograms was performed with the baseline cut-off 

algorithm using the same noise level and peak height as above. Isotope grouping and 

alignment of peaks was performed with an m/z tolerance of 0.001 Da or 10 ppm and an Rt 

tolerance of 0.5 min. The alignment of peaks was conducted with the join aligner method by 

using an m/z to Rt ratio of 75:25. Finally, peak lists were filtered with an m/z range of 150–

1200 Da. Media and solvent control peaks were detected using the same approach (noise 

level: 1000; peak height: 3000) and subsequently removed from the filtered peak list. Filtered 

peak lists were subjected to statistical analyses to assess the chemical distinctiveness of the 

microbial extracts. Therefore, PCoA plots reflecting the metabolomic (dis)similarities of the 

selected extracts and ANOSIM scores (Euclidean distance) were calculated in Past v3.12 [99]. 

4.5.3. Feature-Based Molecular Networking and Dereplication 

Processed MS/MS data of prioritized extracts (see Section 2.3.) were submitted in MGF 

format to the FBMN workflow [32] available at the open access platform GNPS [34]. FBMNs 

were compiled as previously described [31] and visualized with Cytoscape v3.7.1 [100].  
Compounds showing distinct peaks in the LC-MS chromatograms above the noise threshold 

were subjected to a dereplication workflow combining automated and manual dereplication 

tools. The prediction of putative molecular formulae was performed in MassLynx v4.1 

(Waters). Four NP databases, i.e., Dictionary of Natural Products 

(http://dnp.chemnetbase.com), MarinLit (http://pubs.rsc.org/marinlit/), The Natural Products 

Atlas (https://www.npatlas.org/joomla/index.php/search/basic-search [101]) and Reaxys 

(https://www.reaxys.com), were inspected for putative hits for the predicted molecular 

formulae. In parallel, pre-processed MS/MS data were subjected to the dereplication 

workflow of GNPS [34]. The same dataset was also automatically dereplicated by applying 

the in silico MS/MS database of the Universal Natural Product Database [33]. Putatively 

annotated NPs were verified by comparing the biological sources, Rt, and MS/MS spectra (if 

detected), of which the latter was aided by the in-silico prediction tool CFM-ID 3.0 [102]. 

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-
3397/19/1/6/s1, Figure S1: Venn diagram of exclusive and shared peaks of N. prasina and 
Streptomyces sp. extracts. Figure S2: Structures of putatively identified compounds. Figures S3–S8: 
FBMNs of prioritized crude extracts. Figures S9–S11: MS/MS spectra of putatively annotated 
compounds. Figure S12: Comparative metabolome analyses of Penicillium sp. isolate CKG23. Table 
S1: Taxonomic classification of microbial strains isolated from the gut of C. intestinalis sampled in 
Helgoland and Kiel Fjord. Table S2: Antimicrobial and anticancer activities of microbial crude extracts. 

http://dnp.chemnetbase.com/
http://pubs.rsc.org/marinlit/
https://www.npatlas.org/joomla/index.php/search/basic-search
https://www.reaxys.com/
https://www.mdpi.com/1660-3397/19/1/6/s1
https://www.mdpi.com/1660-3397/19/1/6/s1
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Tables S3–S4: Statistical comparison of chemically distinct microbial crude extracts. Tables S5–S10: 
Putatively identified compounds in prioritized microbial crude extracts. 
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Invasive ascidians represent a global threat for biodiversity, aquaculture, and shipping 

industries (Lambert 2007, Shenkar and Swalla 2011, Zhan et al. 2015). The spread of 

C. intestinalis along the coast of the Canadian province PEI is a particularly striking example, 

since massive fouling of the ascidian on cultivated blue mussels causes enormous losses at 

local mussel farms (Ramsay et al. 2008, Daigle and Herbinger 2009). Despite some general 

eco-physiological and habitat characteristics potentially promoting C. intestinalis during 

propagation in PEI, research on other aspects contributing to its invasive character is lacking. 

In order to shed light on additional factors influencing the invasiveness of C. intestinalis, the 

present study aimed to investigate for the first time the potential contribution of metabolites 

and associated microorganisms (Chapter 1), which have been reported to be involved in the 

invasion success of other marine species (Svensson et al. 2013, Vilcinskas 2015). Therefore, 

microbiomes and metabolomes of native (Helgoland, North Sea; Kiel, Baltic Sea) and invasive 

(PEI) C. intestinalis populations were comparatively analyzed. Prior to this, the taxonomic 

classification of C. intestinalis was verified by sequencing the mitochondrial marker gene 

COX3-ND1. In line with the proposed distribution of C. intestinalis and C. robusta 

(Bouchemousse et al. 2016), all samples were clearly assigned to C. intestinalis. 

16S rRNA gene amplicon sequencing data showed a vast bacterial diversity in the 

ascidian’s tunic. It was comparable to that of the invasive ascidian Polyandrocarpa spp. 

collected in North Carolina (Evans et al. 2017), but higher than previously reported for 

C. intestinalis (Blasiak et al. 2014). Higher bacterial diversity of C. intestinalis’ tunic detected 

in this study may be related to the application of different hypervariable regions (this study: 

V3-V4, Blasiak et al. 2014: V1-V3), sequencing technologies (this study: Illumina MiSeq; 

Blasiak et al. 2014: 454 pyrosequencing), and databases for taxonomic classification of OTUs 

(this study: SILVA; Blasiak et al. 2014: Ribosomal Database Project, RDP). Since similar 

sequencing-based studies for ascidian gut microbiomes are either lacking (Chen et al. 2017) 

or not reporting alpha diversity measures (Dishaw et al. 2014), a similar comparison was not 

possible. In addition, microbiome analysis revealed significant differences in the distribution of 

the 39 bacterial phyla detected in the host (gut, tunic) and seawater references. Ciona 

intestinalis’ microbiome did not merely reflect seawater conditions suggesting species-

specificity of the associated microbial community as already shown for Ciona spp. and various 

other ascidians (Tianero et al. 2015, Cahill et al. 2016). Beyond this, acquired bacterial profiles 

also showed taxa specific to one sampling site, exemplified by OTU14 (Leptolyngbya sp.), 

OTU13 (Bifidobacterium sp.), and OTU4 (Pseudomonas sp.), which exclusively occurred in 

Canadian, Helgoland and Kiel samples. Location-specificity of bacterial taxa indicates that 

part of the ascidian microbiome relates to the environmental conditions of the habitat. 

Moreover, the bacterial consortium of C. intestinalis contained a stable fraction. For example, 

several bacteria specifically associated with the tunic (OTU1, Kordiimonas sp.; OTU3 

Arenibacter sp.) and gut (OTU10 and OTU16, unclassified) were detected across all sampling 

sites. These OTUs were also detected in the same tissues of C. intestinalis and C. robusta 

sampled in different geographical areas (Blasiak et al. 2014, Dishaw et al. 2014, Cahill et al. 

2016), further corroborating their stable association with the tunic or the gut of C. intestinalis.  

The first metabolome study on C. intestinalis (Chapter 1) was based on UPLC-MS/MS 

data analyzed by state-of-the-art automated dereplication tools (FBMN, ISDB) as well as 

manual comparison to (M)NP databases (DNP, MarinLit, Reaxys). Generated FBMN 

contained >1000 nodes and dereplication efforts putatively annotated compounds to 19 

different chemical families. Hence, this comprehensive analysis of the sea squirt’s chemical 

space showed a huge chemical diversity, confirming that ascidians are prolific producers of 

MNPs (Schmidt et al. 2012). Previous LC-MS-based studies on solitary (Palanisamy et al. 
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2017b) and colonial (Buedenbender et al. 2017) ascidians reported lower numbers of detected 

metabolites. This observation may indicate a comparably rich metabolome of C. intestinalis 

but also methodological differences such as the use of different solvents (this study: 

MeOH/DCM; Palanisamy et al. 2017b: MeOH/CHCl3; Buedenbender et al. 2017: MeOH) may 

play a role. Compounds putatively identified in this study were dominated by alkaloids (37%) 

and lipids (41%). This finding matches literature, since ascidians are an excellent source of 

alkaloids (Palanisamy et al. 2017a, Dou and Dong 2019) and a previous study on 

C. intestinalis evinced high abundance of lipids such as the omega-3 fatty acids 

docosahexaenoic and eicosapentaenoic acid (Zhao et al. 2015). Despite the combined 

automated and manual dereplication strategy, most compounds detected in this study 

remained unannotated (66%), thus underlining the knowledge gap regarding the chemical 

composition of C. intestinalis. In line with the microbiome analysis, also metabolomics showed 

location- and tissue-specificity in combination with ubiquitous metabolites detected in all 

samples. For instance, the FBMN of individual inner body and tunic metabolomes contained 

1156 nodes in total, of which most (863) were detected in both tissues, while 98 and 195 

nodes were exclusively detected in inner body and tunic tissues, respectively. Overall stable 

metabolomes with tissue-specific signatures are well-known from other marine invertebrates. 

For example, the metabolome of Mytilus galloprovincialis contained a considerable proportion 

(30%) of metabolites specifically produced in either digestive glands, gills, or posterior 

adductor muscles (Cappello et al. 2018). Taken together, these findings are in accordance 

with a global study investigating the microbiome and metabolome of 32 phylogenetically 

diverse ascidians. They demonstrated species-specificity and stable core microbes/ubiquitous 

metabolites in conjunction with location-specific signatures across all samples (Tianero et al. 

2015). This pattern indicates high microbial and metabolic flexibility, which may be 

advantageous for C. intestinalis when adapting to changing environmental conditions. 

In-depth analyses of microbial and metabolite data obtained from native and invasive 

C. intestinalis populations highlighted bacterial taxa and SMs, which may contribute to the 

overall fitness of C. intestinalis but also to its invasion success in PEI. Its chemical defense 

may be supported by associated microorganisms producing antifouling and antimicrobial 

compounds (Schmidt 2015). Such bioactive metabolites are reportedly produced by several 

bacterial taxa particularly abundant in Canadian tunicates, e.g., the cyanobacteria 

Leptolyngbya (Choi et al. 2010) and Synechococcus (Brilisauer et al. 2019) or the 

alphaproteobacteria Roseobacter sp. (Brinkhoff et al. 2004) and Ruegeria sp. (Muscholl-

Silberhorn et al. 2008, Pujalte et al. 2014). Similarly, the metabolome of Canadian specimens 

contained two exclusive microbe-derived compounds (antibiotic YM 47525 and rubomycin M) 

with reported antimicrobial properties (Zbarskiĭ et al. 1991, Sugawara et al. 1997). 

Furthermore, some putatively annotated metabolites and identified cyanobacteria such as the 

Canada-specific bacterial genus Leptolyngbya show toxicity to invertebrates (Choi et al. 

2010). Hence, these compounds may be toxic for (some) native invertebrates, which may 

enhance the competitiveness of C. intestinalis in its new habitat as predicted by the NWH. 

Further experiments are needed to verify the supposed contribution of bioactive SMs to the 

invasion success of C. intestinalis. These could include, e.g., common garden experiments or 

feeding assays testing the palatability of C. intestinalis and its competitors (e.g., S. clava and 

M. edulis) against common generalist predators in PEI (e.g., C. maenas and A. rubens). 

Moreover, the Canadian population showed a more diverse microbiota and a richer 

metabolome compared to both native populations. To the best of our knowledge, no 

comparable metabolomics studies have been performed on invasive ascidian populations yet, 

but few microbiome studies are available. Notably, there is no consistency between their 
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results. Microbial diversity was either increased (Styela plicata, Dror et al. 2019) or decreased 

(Herdmania momus, Dror et al. 2019; Clavelina oblonga, Goddard-Dwyer et al. 2020) in 

invasive populations or no clear trend regarding the microbial diversity was detected for native 

vs. invasive specimens (Didemnum vexillum, Casso et al. 2020). This may indicate different 

microbial community structures and microbial colonization strategies in different invasive 

ascidian species. Regarding C. intestinalis, higher metabolite and microbial diversity may 

guarantee rapid and flexible adaption to new habitats. Differences between invasive and 

native specimens were also observed with regard to extract yield, i.e., Canadian populations 

gave lower extract yields compared to native specimens (Helgoland and Kiel Fjord). In 

combination with the extraordinarily high biomass production of C. intestinalis in PEI, this may 

provide evidence for a metabolism shift towards biomass accumulation as described for the 

EICA hypothesis. However, these findings regarding invasive C. intestinalis need verification 

in future studies analyzing several invasive and native populations to exclude that the 

observed invasion-specific patterns are resulting from different environmental conditions in 

three habitats. 

The combined analysis of microbiome and metabolome data represents a novelty in 

invasive ascidian research and provided profound knowledge on C. intestinalis’ chemical 

repertoire and microbiota as well as first insights into their putative roles for the invasiveness 

of the sea vase tunicate. Such combined microbiome-metabolome analyses are 

recommended for future studies due to the intimate alliance of hosts and their microbial 

colonizers, which significantly contribute to the chemical makeup of the ascidian (Schmidt et 

al. 2012, Tianero et al. 2015). Our results gave first indications that the NWH and EICA may 

contribute to the invasion success of C. intestinalis in PEI. Hence, in addition to known 

beneficial eco-physiological traits facilitating the propagation of C. intestinalis in new habitats, 

associated microorganisms and metabolites may promote the invasion success C. intestinalis. 

In line with this, there is increasing evidence that often the interplay of several factors 

contributes to the invasiveness of an organism (Lau and Schultheis 2015, Murphy et al. 2019). 

In contrast to their harmful environmental and economic effects as non-native fouling 

species, ascidians are an important source for pharmaceutical agents (Blunt et al. 2008, 

Schmidt et al. 2012, Palanisamy et al. 2017a). This is impressively illustrated by the fact that 

one third of approved marine-derived anticancer drugs derive from ascidians (Dyshlovoy and 

Honecker 2020). In line with the ascent of microorganisms as primary source for novel MNPs 

(Carroll et al. 2020), Proteobacteria were shown to be the actual producers of two approved 

ascidian-derived anticancer drugs (Rath et al. 2011, Xu et al. 2012). One major advantage of 

microbial biotechnology is the sustainable supply, since microorganisms isolated from any 

source can be unlimitedly cultured in the laboratory and require no exploitation of marine 

habitats (Romano et al. 2017). Accordingly, the second part of this doctoral research project 

set out to explore the MNP discovery potential of the cultivable microbial consortium 

associated with the tunic (Chapter 2) and gut (Chapter 3) of C. intestinalis. Although Ciona 

spp. are widely used model organisms in biology (Satoh et al. 2003, Carver et al. 2006, Dishaw 

et al. 2012), the biotechnological potential of their associated microbiota remained largely 

unknown, with only one tunic-derived bacterium studied so far (Holmström et al. 2002 and 

references therein).  

The cultivation of microorganisms from tunic and seawater reference samples (Chapter 

2) and gut tissues (Chapter 3) yielded in total 313 microbial isolates (242 bacteria and 71 

fungi). Obtained isolates received identification codes referring to the host organism 

C. intestinalis (C), sampling site (Helgoland = H or Kiel = K), sample type (tunic = T, seawater 

= W, gut = G), and strain number, e.g., CKT60 relates to isolate 60 isolated from the tunic of 
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C. intestinalis sampled in Kiel. Two ‘C. intestinalis media’ adjusted to Baltic Sea (CB) and 

North Sea salinity (CN) were designed to mimic the natural habitat of the microorganisms. 

They proved as suitable isolation media, since they yielded 27% of all obtained isolates and 

several bacterial and fungal taxa were exclusively isolated from these cultivation media. The 

isolation of strain CKT60 highlights the added value of these media. Isolate CKT60 showed 

exactly the same BLAST match (i.e., Kiloniella laminariae, accession number NR_042646) as 

OTU9, which, fittingly, was exclusive to C. intestinalis from Kiel Fjord and particularly abundant 

in its tunic (Chapter 1, Table S9). Hence, as mentioned in a recent review (Romano et al. 

2017), imitation of natural growth conditions is a valuable tool for decreasing the proportion of 

unculturables. In line with the culture-independent microbiome analysis (Chapter 1), the 

isolation-based approach detected tissue- and location-specific bacterial communities. For 

instance, bacterial richness as well as abundance of Alphaproteobacteria were higher in 

C. intestinalis’ tunic (89 bacterial isolates, 22% assigned to Alphaproteobacteria) compared to 

the ascidian’s gut (61 bacterial isolates, 3% assigned to Alphaproteobacteria). Both 

approaches also revealed higher microbial richness in specimens from Kiel Fjord compared 

to samples from Helgoland, which may be attributed to, e.g., higher nutrient levels in the 

strongly anthropogenically influenced Kiel Fjord (Hans and Elmgren 1990, Nikulina et al. 

2008). Another overarching result is the clear differentiation of the ascidian microbiota from its 

surrounding seawater, e.g., 79% of culturable microbial genera detected in tunic and gut 

samples were absent in seawater references. Nevertheless, cultivation studies usually 

represent only a minute fraction of the actual microbial diversity and often target easily 

culturable microorganisms (Alain and Querellou 2009). This so-called “great plate count 

anomaly” (Staley and Konopka 1985) also applies in this study to, e.g., the lack of several 

bacterial phyla such as Epsilonbacteraeota, Tenericutes, and Verrucomicrobia, which were 

abundant in the gut and tunic of C. intestinalis according to the amplicon sequencing data 

(Chapter 1, Figure 1).  

The cultivable fraction of fungi was larger in the ascidian samples (gut: 40 isolates, tunic: 

22 isolates) compared to the ambient seawater (9 isolates). Higher fungal diversity in marine 

hosts compared to surface seawater is common. Due to their osmotrophic feeding style, fungi 

preferably grow on nutrient-rich substrates such as animal hosts and sediments (Richards et 

al. 2012). Interestingly, saprotrophic fungi have been reported to decompose major 

constituents of the ascidians’ tunic (tunicin) and gut mucus (chitin; Kohlmeyer and Kohlmeyer 

1979, Hartl et al. 2012), which may also attribute to the comparably high abundance of 

cultivable fungi in the ascidian’s gut and tunic. Hence, this study showed for the first time that 

C. intestinalis hosts a diverse culturable fungal community in its gut and tunic. 

Microbial crude extracts (n = 208) produced by tunic- (Chapter 2) and gut-derived 

microbial strains (Chapter 3) were tested in a series of in vitro antibacterial, antifungal, and 

anticancer assays. Since an enormous amount of crude extracts showed activity in at least 

one assay, we decided to set a high bioactivity threshold (≥ 80% inhibition at a test 

concentration of 100 µg/mL in at least one bioassay), which was fulfilled by 45% of tunic- and 

66% of gut-derived extracts. Gut- and tunic-associated microorganisms delivered 21 crude 

extracts in total (i.e., 10%) with activity against C. albicans and/or C. neoformans, which range 

among the most harmful fungal pathogens (Karkowska-Kuleta et al. 2009). While generally 

lesser susceptible Gram-negative human pathogens (Pages et al. 2008, Zgurskaya et al. 

2015) were only inhibited by few gut-derived fungal extracts, antibacterial activity was 

ubiquitously observed and mainly detected against MRSA (tunic: 42% of microbial extracts, 

gut: 62%), one of the most threatening drug-resistant pathogens (Liu et al. 2019). Notably, 

antibacterial activities were more prevalent than anticancer activities (gut: 22%, tunic: 6%), 
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contradicting a recent review on ascidian-associated microorganisms that identified more 

MNPs with anticancer (47%) than with antimicrobial properties (31%; Casertano et al. 2020). 

According to Newman and Cragg 2016, the overall low number of antimicrobial MNPs and the 

lack of approved marine-derived antibiotics may partly be related to the well supported funding 

schemes on anticancer MNP discovery, while antibiotic research is only scarcely supported 

(Newman and Cragg 2016). Hence, lacking funds for antimicrobial MNP discovery may have 

led to a discrepancy between the actual and the reported proportion of antimicrobial and 

anticancer MNPs. 

The overwhelming amount of 115 highly bioactive microbial crude extracts guided us to 

apply further prioritization steps for selecting the most promising microbial extracts for in-depth 

chemical studies. A 2-step selection procedure was developed that considered bioactivity 

profiles and chemical diversity of each extract. This approach prioritized seven microbial 

extracts produced by the tunic-associated microbiota (Chapter 2) and nine crude extracts 

obtained from the gut microflora of C. intestinalis (Chapter 3). Except for one extract, the 

applied prioritization strategy selected only actinobacterial (n = 4) and fungal extracts (n = 11). 

This predominance of Actinobacteria and fungi as most diverse and promising MNPs 

producers is in line with a recent review stating that these two taxa delivered 72.3% of MNPs 

isolated from ascidian-associated microorganisms (Casertano et al. 2020).  

Prioritized microbial extracts were subjected to in-depth chemical investigations based 

on the sophisticated methods already used for the analysis of the ascidian metabolome 

(Chapter 1). Putatively annotated compounds (n = 170) revealed a vast chemical diversity as 

they were assigned to nearly 50 different chemical families. In line with literature, polyketides 

were highly abundant among putatively identified fungal secondary metabolites (Keller et al. 

2005) and peptides dominated annotated bacterial chemical profiles (Gulder and Moore 

2009). Many detected compounds could not be assigned to known chemical scaffolds and 

putatively annotated metabolites did often not (fully) explain the observed biological activities. 

The gut-derived Penicillium sp. strain CKG23 (Chapter 3) showed strikingly different chemistry 

on different cultivation media (CAG, PDA) and altogether, eight different chemical families 

were putatively annotated. Therefore, Penicillium sp. strain CKG23 is the most versatile 

metabolite producer discovered in this study. Its CAG extract is particularly attractive because 

anticancer and antibacterial activities could not be linked to putatively identified compounds. 

The observed activity against Gram-negative bacteria is of high interest due to the urgent need 

of effective treatments against Gram-negatives. Multidrug-resistance is widespread in Gram-

negative nosocomial pathogens raising mortality rates to up to 50% (Pages et al. 2008, 

Zgurskaya et al. 2015). Several additional fungal extracts and one Streptomyces sp. strain 

(CKT43-GYM) showed antibacterial and/or antifungal activities, which could not be related to 

any of the putatively annotated metabolites. Three additional microbial extracts 

(P. destructans CHT56-CAG; Streptomyces sp. CHG48-GYM and CKT43-GYM) are 

particularly favorable for isolation of putatively novel anticancer lead compounds. 

Streptomyces spp. are the most rewarding source for natural pharmaceuticals (Anandan et al. 

2016). Moreover, actinomycetes are the major source for clinically used antibiotics (Culp et al. 

2019, van Bergeijk et al. 2020). Thus, the selection of Streptomyces sp. strains CHG48 and 

CKT43 for purification of novel bioactive compounds is particularly favorable. In addition, it is 

recommended to purify unidentified compound 49 of Micromonospora sp. extract CKG20-

GYM (Chapter 3). According to FBMN, this metabolite is a putatively novel rakicidin derivative. 

Rakicidins reportedly exhibit broad-spectrum antibacterial activities (Landwehr et al. 2016) 

and are also promising anticancer lead compounds due to their hypoxia-selective cytotoxicity 

(Oku et al. 2014) rendering compound 49 a promising candidate for isolation and structure 
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elucidation. MS/MS-based prediction of the linear structure of two putatively novel lipopeptides 

(m/z values of 754.5424 and 770.5386 [M + H]+) detected in Trichoderma sp. CHG34 (Chapter 

3) should be confirmed in a prospective study. Bioactive fungal-derived linear lipopeptides 

were already described in the literature. For example, Penicillium fellutanum isolated from the 

intestine of a marine fish yielded fellutamide A and B, which exhibited potent cytotoxicity 

against three cancer cell lines (Shigemori et al. 1991). Structurally related linear lipopeptides 

were also isolated from terrestrial ascomycetes Metulocladosporiella sp. (fellutamide C and 

D) and Colispora cavincola (cavinafungin A and B), both showing broad-spectrum antifungal 

activity against six different Candida species and Aspergillus fumigatus (Xu et al. 2011, Ortiz-

Lopez et al. 2015). Thus, putatively novel lipopeptides produced by Trichoderma sp. strain 

CHG34 are valuable targets for compound purification and structure elucidation, also due to 

the unresolved antimicrobial activities of its PDA extract. Based on the variety of promising 

microbial crude extracts for the discovery of novel anticancer and antimicrobial lead 

compounds, it can be concluded that the applied 2-step selection strategy performed well and 

allowed time- and resource-efficient screening of crude extracts. Moreover, this study clearly 

evinced that so far unstudied culturable fungi associated with C. intestinalis harbor a huge 

potential for marine biodiscovery and are the most precious source for bioactive and novel 

MNPs. This exceeded expectations, since so far Actinobacteria were reported as primary 

source for MNPs from microbial associates of ascidians (Casertano et al. 2020). 

Several compounds putatively annotated in bacterial and fungal extracts have other 

relevant bioactivities, indicating that the pharmaceutical potential of tunic- and gut-associated 

microorganisms may go beyond anticancer and antimicrobial activities. For instance, anti-

inflammatory (e.g., amicoumacin-A in Bacillus sp. extract CKG24-GYM, Itoh et al. 1981) and 

anti-viral (e.g., mycophenolic acid in Penicillium sp. extract CKG35-PDA, Williams et al. 1968) 

activities are reported from putatively identified compounds. Moreover, Bacillus sp. strain 

CKG24 produced nine surfactin-like lipopeptides. These Bacillus-specific NPs show multiple 

bioactivities (e.g., anticancer and antiviral) and are excellent biosurfactants with high industrial 

application potential due to their amphiphilic character (Peypoux et al. 1999, Abdel-Mawgoud 

et al. 2008). 

Phylogenetic analysis excluded 23 tunic- and 15 gut-derived strains from the initial 

bioactivity screening, i.e., only one representative strain was selected if strains isolated from 

the same sampling site and tissue were affiliated to the same species. Since the metabolic 

repertoire is often phylogenetically conserved, the taxonomy-based selection of representative 

strains is well justified (Macia-Vicente et al. 2018). However, a MN-based study detected 

between 8 and 288 nodes in the crude extracts of several Salinispora arenicola strains 

evincing strikingly different chemistry of strains affiliated to the same species (Crüsemann et 

al. 2016). Hence, these so far untouched strains may still represent an additional valuable 

reservoir for discovery of bioactive MNPs worth to examine in future studies. 

The integrated dereplication workflow applied in this study (Chapters 1-3) proved very 

successful to increase annotation rates to up to 73%, which is a significant improvement 

compared to annotation scores usually ≤10% (da Silva et al. 2015, Oppong-Danquah et al. 

2020). The key advantage of the applied FBMN is the clustering of closely related compounds 

based on their isotopic patterns and retention times. At the same time redundant and 

contaminant peaks are automatically removed, which significantly improves compound 

annotation. The present study delivered many examples of successful FBMN-aided 

dereplication, such as the putative identification of tetrapyrroles in the ascidian’s crude extracts 

(Chapter 1) as well as of cyclic octapeptides (surugamides; Chapter 2) and nonactic acids 

(Chapter 3) in Streptomyces sp. extracts. The ISDB workflow delivered additional hits, such 
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as the putative identification of indole alkaloids and polyunsaturated amino alcohols 

(crucigasterins) in the metabolome of C. intestinalis (Chapter 1). Including additional 

computational dereplication tools may not further enhance annotation rates, since the 

underlying algorithms highly depend on data deposition by database curators and users and 

this is particularly problematic for rarely studied taxa and unusual chemical families (Dührkop 

et al. 2020). For instance, the GNPS workflow DEREPLICATOR+ (Mohimani et al. 2018) did 

not generate any additional putative hits for P. destructans strain CHT56 (data not shown), 

indicating that the applied dereplication strategy is reaching the limits of successful compound 

annotation. Nevertheless, the brand-new tool CANOPUS (published end of 2020) may allow 

the chemical classification of further compounds or molecular clusters. CANOPUS uses a 

combination of two machine learning techniques that allow prediction of compound classes 

independent from deposited MS/MS spectra (Dührkop et al. 2020). 

To conclude, the applied sequencing- and LC-MS/MS-based technologies proved 

successful to study the microbiome and chemical inventory of native and invasive 

C. intestinalis populations (Chapter 1). Our study showed an interplay of stable core microbes 

and tissue- and location-specific bacteria and metabolites, indicating a large capacity to rapidly 

adapt to changing environmental conditions. Moreover, bacterial and chemical diversity was 

highest in invasive specimens, although this needs verification in future studies probing 

C. intestinalis at a global scale. This study showed, also for the first time, that the associated 

microbiota of C. intestinalis and its (microbial) metabolites may provide beneficial functions, 

such as antimicrobial activity, promoting the overall fitness of the sea vase tunicate and its 

proliferation in new habitats. In a culture-based approach (Chapters 2 and 3), most of the 150 

bacteria and 62 fungi isolated from the tunic and gut of native C. intestinalis specimens 

exhibited antimicrobial or anticancer activities. In-depth metabolome mining of selected 

microorganisms showed a rich chemistry, while many compounds represent putatively novel 

metabolites. Several promising candidate strains were highlighted for future studies to isolate 

novel antibiotic or anticancer leads. Fungi, which have been isolated for the first time from 

C. intestinalis, proved as particularly rich source of diverse and bioactive MNPs. Hence, the 

conducted MNP screening of tunic- and gut-derived microbiota of C. intestinalis demonstrated 

an excellent potential for discovery of therapeutic agents against cancer and infectious 

diseases, also emphasizing the developed prioritization and applied dereplication strategy as 

a powerful workflow for MNP discovery. 

Outlook 

The presented doctoral thesis delivered intriguing comparative insights into the microbial 

and metabolite composition of native and invasive C. intestinalis populations and determined 

the potential of the tunic- and gut-associated microbiota of native C. intestinalis in marine 

biodiscovery. This study delivered the first results on so far unexplored research fields and 

thereby lays the foundation for future research projects on this model organism that go beyond 

the specific aims of this study. Prospective studies could include but may not be limited to: 

• Global sampling campaign of native and invasive C. intestinalis populations with an 

extended experimental design 

Expanding the sampling campaign to additional invasive and native populations will allow 

to verify observed differences in their microbiome and metabolome profiles and their 

potential contribution to the invasiveness of C. intestinalis. Several invasive populations 

along the Canadian (e.g., Nova Scotia, Newfoundland) and US Atlantic coast (e.g., 

Massachusetts, New Hampshire) as well as the Chinese coastline (e.g., Yellow and/or 
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Bohai Sea) should be included and compared to additional native populations (e.g., 

Swedish Baltic Sea, European North Atlantic). Furthermore, it is advised to acquire 

metagenomic datasets. This would (1) provide valuable information regarding the 

metabolic capacity of the associated microbiota and (2) inform about potentially associated 

fungi. The mycobiome has not been studied on NGS basis for any ascidian species so far, 

but the re-occurring isolation of fungi from Ciona spp. (this study and Liberti et al. 2019) 

and other ascidians (López-Legentil et al. 2015) suggests their specific association. 

Metatranscriptomic analysis would further complement this dataset by elucidating 

activated genes and thereby, allow to identify active metabolic pathways (Bashiardes et 

al. 2016). Manual comparison of, e.g., metagenomic and metabolomic data would allow 

an ultimate link between produced metabolites and their potential microbial producers. 

This assessment of so-called “product–producer pairs” will provide deep insights into the 

microbial contribution to C. intestinalis’ metabolome (van der Hooft et al. 2020) and 

therefore, allow further conclusions regarding its potential support during colonization of 

new habitats. Integration of these omics datasets is still a challenge and automated tools 

are missing; hence, it remains a future challenge to generate and optimize chemical and 

bioinformatic workflows allowing a fully automated and comprehensive metagenome-

metatranscriptome-metabolome comparison (Aguiar-Pulido et al. 2016). 

• Isolation, structure elucidation, and bioactivity studies of novel anticancer and 

antimicrobial lead compounds 

The most promising gut- and tunic-derived microbial strains should be subjected to large-

scale cultivation to produce enough microbial biomass for compound purification, structure 

elucidation and bioactivity assessments of pure compounds. It is advisable to probe the 

production of target compounds in liquid cultures, since this facilitates upscaling of 

promising lead compounds at an industrial scale. Isolation of novel and bioactive 

compounds would further validate the applied prioritization pipeline and may also allow 

optimization of the applied selection and dereplication strategies. To verify the MS/MS-

based prediction, purification of the putatively novel linear lipopeptides produced by 

Trichoderma sp. CHG34 should be targeted as well. Pure compounds should also be 

tested for general cytotoxicity, a common obstacle for development of anticancer drugs 

(Remesh 2012), by including normal cells such as human skin keratinocytes to the 

bioassay panel. Beyond this, anticancer/antimicrobial bioactivities of pure compounds 

would need verification in in vivo studies and studies determining the mechanism of action 

should be conducted as well. 

• Explore hidden metabolite repertoire 

Several techniques, such as OSMAC and co-cultivation, to enhance the chemical space 

of an organism are successfully established in our laboratory (Oppong-Danquah et al. 

2018, Fan et al. 2019). Such manipulation strategies may trigger the activation of so far 

silent BGCs, and thereby, the production of additional novel and bioactive metabolites. 

Hence, promising microbial producer strains could be subjected to additional cultivation 

experiments to further explore their chemical repertoire. To fully exhaust the 

biotechnological potential of the gut and tunic microbiota of C. intestinalis, previously 

excluded strains (see above) should be subjected to the same MNP discovery pipeline. 

This would allow a comparison of their bioactivities and chemistry to that of the tested 

representative strains.  
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Figure S1. Genotyping of C. intestinalis with the mitochondrial marker gene COX3-ND1. A 
maximum likelihood tree was constructed in MEGA7. Genotyped individuals (n = 30) are in bold. 
Sampling sites and types are abbreviated as follows: C = Canada, H = Helgoland, K = Kiel; G = gut, T 
= tunic.  
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Figure S2. Influence of the quality filtering steps on the total number of observed read pairs from 
amplicon sequencing. Amplicon sequences were quality filtered in seven steps. The corresponding 
number of read pairs remaining after each filtering step is shown.  
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Figure S3. Rarefaction curves of OTU abundances for C. intestinalis and seawater samples. The 
number of sequences is plotted against the number of detected OTUs. Sampling sites are color coded: 
red = Canada, blue = Helgoland, green = Kiel Fjord. Top: gut, middle: tunic, bottom: seawater reference 
samples. 
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Figure S4. Multivariate ordination plots of the bacterial community associated with 
C. intestinalis. NMDS plots are based on Bray-Curtis similarity. Sampling sites and types are 
abbreviated as follows: C = Canada, H = Helgoland, K = Kiel; G = gut, T = tunic. 
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Figure S5. Across sample type and geographic origin comparison of the C. intestinalis 
associated microbiome. The 2D nMDS plot was calculated using the full set of detected OTUs (5211) 
and is based on weighted UniFrac distances. 

 

 

  
Figure S6. Extraction yields of crude extracts from population level extractions. Whole body 
bulk samples consisting of each 13 g of dry powder were extracted (n = 3 for each sampling site). 
Yields are given as average values with standard deviation in g. 
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Figure S7. Chemical structures of putatively identified compounds in crude extracts of 
C. intestinalis by UPLC-MS/MS analysis. Structures are given with their respective peak number (see 
Table S11). The following compounds are shown in Figure 6 in the original publication: 12, 15, 55, 60, 
69, 79, 90, 96, 99, 100, 103. 



Appendix – Chapter 1 

135 
 

 
Figure S7. (continued) 
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Figure S8. Molecular network (MN) of individual C. intestinalis metabolomes. The MN was 
constructed via the online platform GNPS [1] by using pre-filtered MS/MS-data of individual level 
extracts from inner body and tunic (ions must occur in ≥5 replicates). Nodes are color-coded and reflect 
the respective tissue: pink = tunic, cyan = inner body. Proportions are given by the number of replicates 
containing a respective node. Single nodes are numbered and were putatively annotated to the 
following chemical families: 1, 3, 4 = polyunsaturated amino alcohols; 2 = sesquiterpenoid; 5 = 
lipoamide; 6 = alkylpyridine; 7 = unsaturated fatty acid; 8 = acetylenic alcohol; 9 = hopanoid; 10 = 
tetrapyrrole; 11 = linear peptide. Putative annotations are in accordance with population metabolomes 
(Table S11). 
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Figure S9. Multivariate ordination plots of UPLC-MS profiles of C. intestinalis extracts. NMDS 
plots are based on a Bray-Curtis similarity matrix. Sampling sites and types are abbreviated as follows: 
C = Canada, H = Helgoland, K = Kiel; I = inner body, T = tunic.  
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Figure S10. Statistical correlation of individual tunic microbiomes and metabolomes. The 
regression plot is based on the respective Bray-Curtis similarity matrices of both datasets and the 
regression line is given with its confidence interval (95%). 

 

 

 

 

Figure S11. Solvent extracts of different C. intestinalis samples. Crude methanol extracts from 
population and individual level ascidian samples are shown. Sampling sites and types are abbreviated 
as follows: C = Canada, H = Helgoland, K = Kiel; T = tunic. Pictures by Caroline Utermann.  
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Table S1. Metadata for microbiome samples analyzed in this study. Sample labels are a 
combination of the sampling site (C: Canada, H: Helgoland, K: Kiel Fjord) and the respective sample 
type (G: gut, T: tunic, W: seawater). 

Sampling site Sample type Replicates (n) Sample labels 

Canada 

Ascidian, gut 

10 CG1-10 

Helgoland 8 HG1-5, HG7, HG9-10 

Kiel 9 KG1-9 

Canada 

Ascidian, tunic 

10 CT1-10 

Helgoland 10 HT1-10 

Kiel 9 KT1-5, KT7-10 

Canada 

Seawater 

3 CW1-3 

Helgoland 3 HW1-3 

Kiel 3 KW1-3 

 

Table S2. Metadata for metabolome samples analyzed in this study. Sample labels are a 
combination of the sampling site (C: Canada, H: Helgoland, K: Kiel) and the respective sample type (I: 
inner body, T: tunic). 

Sampling site Extraction series Sample type Replicates (n) Sample labels 

Canada 

Population level Whole animal 

3 C1-3 

Helgoland 3 H1-3 

Kiel 3 K1-3 

Canada 

Individual level 

Ascidian, tunic 

10 CT1-10 

Helgoland 10 HT1-10 

Kiel 10 KT1-10 

Canada 

Ascidian, inner body 

10 CI1-10 

Helgoland 10 HI1-10 

Kiel 10 KI1-10 

 

Table S3. Parameters of the individual extractions. Samples are given with their dry weight prior 
extraction and the respective extract weight. Sampling sites and types are abbreviated as follows: C = 
Canada, H = Helgoland, K = Kiel; I = inner body, T = tunic.  

Sample Dry weight (mg) Extract (mg) 

CI1 33 3.0 

CI2 43.6 3.1 

CI3 14.8 2.6 

CI4 14.5 1.5 

CI5 16.2 2.1 

CI6 15.3 2.4 

CI7 21.4 2.6 

CI8 32.8 3.2 

CI9 23.3 3.0 

CI10 31.1 2.0 

CT1 74.2 1.7 

CT2 73.1 1.7 

CT3 23.7 0.5 

CT4 27.9 0.7 

CT5 60.5 1.2 

CT6 72.4 3.1 

CT7 32.8 1.0 

CT8 63 2.9 

CT9 30.7 0.5 

CT10 47.2 1.2 

HI1 26.1 5.4 

HI2 67.8 12.0 

HI3 46.5 14.0 

HI4 27.2 5.3 

HI5 45.6 6.9 

HI6 55.6 11.1 

HI7 26.2 9.1 

HI8 56.7 8.5 

HI9 53 8.4 

HI10 46.9 8.5 

HT1 14.1 1.4 

HT2 137 14.8 

HT3 68.4 6.9 

HT4 70.6 4.8 
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Sample Dry weight (mg) Extract (mg) 

HT5 28.8 0.8 

HT6 99.1 8.8 

HT7 70.9 8.7 

HT8 60.6 4.4 

HT9 60.3 4.0 

HT10 57.3 4.2 

KI1 6.4 0.8 

KI2 22.5 2.3 

KI3 17.8 0.9 

KI4 26.4 2.8 

KI5 24.9 1.4 

KI6 12.7 0.5 

KI7 13.8 1.4 

KI8 20.3 1.2 

KI9 45.5 2.0 

KI10 16.6 1.2 

KT1 18.7 0.6 

KT2 36.2 1.2 

KT3 21.3 0.4 

KT4 38.5 1.6 

KT5 21.3 0.5 

KT6 3.1 0.8 

KT7 24.4 0.5 

KT8 31.8 1.7 

KT9 26.5 1.2 

KT10 26.8 0.6 

 

Table S4. Alpha diversity measures of amplicon sequences. The five different indices are given as 
average values with standard deviation (SD). Sampling sites and types are abbreviated as follows: C = 
Canada, H = Helgoland, K = Kiel; G = gut, T = tunic, W = seawater. 

Group 
OTU 

count 
(Count) 

SD 
(Count) 

Chao1 
SD 

(Chao1) 

Faith’s 
Phylogenetic 
Diversity (PD) 

SD 
(PD) 

Shannon 
(H’) 

SD 
(H’) 

Simpson 
(D) 

SD 
(D) 

CG 337 145 387 181 18.7 6.7 4.5 0.7 0.96 0.03 

HG 148 74 181 134 9.7 3.9 3.6 0.4 0.93 0.04 

KG 256 89 317 111 14.8 4.6 3.5 1.5 0.79 0.29 

CT 506 88 961 183 25.2 3.5 4.1 0.6 0.91 0.07 

HT 289 125 535 210 14.1 5.5 3.2 1.0 0.86 0.10 

KT 445 168 850 325 22.3 8.0 3.9 1.1 0.88 0.12 

CW 308 55 522 127 15.6 2.9 4.1 0.3 0.95 0.02 

HW 334 16 601 34 18.4 0.7 4.2 0.1 0.96 0.00 

KW 722 52 1381 73 35.7 2.5 5.2 0.3 0.97 0.01 

G (all) 247 134 295 169 14.7 6.5 3.9 1.1 0.89 0.19 

T (all) 413 159 782 305 20.5 7.6 3.7 1.0 0.88 0.10 

W (all) 455 194 835 397 23.3 9.2 4.5 0.5 0.96 0.02 

C (G, T) 421 147 674 339 21.9 6.3 4.3 0.7 0.93 0.06 

H (G, T) 219 126 358 251 12.1 5.3 3.4 0.8 0.90 0.09 

K (G, T) 350 164 583 360 18.6 7.6 3.7 1.4 0.84 0.23 
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Table S5. Tukey’s HSD test comparing observed (OTU count), estimated (Chao1) OTUs, and 
phylogenetic diversity (PD) detected in ascidian samples at three different sampling sites. 
Sampling sites and types are abbreviated as follows: C = Canada, H = Helgoland, K = Kiel; G = gut, T 
= tunic. 

Compared groups p (OTU count) p (Chao1) p (PD) 

CG x HG 0.045 0.477 0.039 

CG x HT 0.993 0.802 0.673 

CG x KG 0.869 0.998 0.857 

CG x KT 0.607 <0.001 0.901 

CT x HG <0.001 <0.001 <0.001 

CT x HT 0.006 0.001 0.002 

CT x KG 0.001 <0.001 0.006 

CT x KT 0.973 0.959 0.974 

HG x KG 0.675 0.911 0.660 

HG x KT <0.001 <0.001 0.001 

HT x KG 1.000 0.357 1.000 

HT x KT 0.147 0.038 0.061 

 

Table S6. ANOSIM comparison of amplicon sequencing results. ANOSIM was computed based on 
the Bray-Curtis similarity index in order to statistically compare the different sample groups. Results are 
given with the respective R and p value. 

Test Compared groups R p 

Sample type 

Gut x Seawater 0.7280 0.0001 

Gut x Tunic 0.7035 0.0001 

Tunic x Seawater 0.9592 0.0001 

Sampling site 
 

Gut 

Canada x Helgoland 0.9716 0.0001 

Canada x Kiel 0.7331 0.0001 

Helgoland x Kiel 0.9839 0.0001 

Tunic 

Canada x Helgoland 0.8362 0.0001 

Canada x Kiel 0.8337 0.0001 

Helgoland x Kiel 0.8038 0.0001 

 

Table S7. Significantly different abundant bacterial phyla. Significance testing was performed with 
the Kruskal-Wallis-Test. Significant phyla with a relative abundance >0.05% are shown. Sampling sites 
and types are abbreviated as follows: C = Canada, H = Helgoland, K = Kiel; G = gut, T = tunic, W = 
seawater. 

Phylum Statistics p 
Relative abundance (%) 

All CG CT CW HG HT HW KG KT KW 

Acidobacteria 24.8 1.7E-03 0.3 0.6 0.4 0.0 0.3 0.1 0.0 0.2 0.5 0.2 

Actinobacteria 52.8 1.2E-08 5.4 5.2 0.9 3.5 19.4 0.3 5.1 8.3 1.2 7.7 

Bacteroidetes 43.0 8.9E-07 16.6 9.6 21.0 30.8 3.8 19.8 46.3 3.7 21.6 28.3 

Chloroflexi 21.5 5.9E-03 1.2 2.7 0.7 0.0 0.5 2.2 0.2 1.1 0.5 0.4 

Cyanobacteria 49.0 6.5E-08 8.5 19.0 11.6 1.3 13.9 0.1 1.6 11.0 0.1 8.1 

Epsilonbacteraeota 42.9 9.1E-07 3.2 1.5 0.4 0.5 0.7 0.0 0.5 5.8 12.9 3.4 

Firmicutes 52.3 1.5E-08 3.9 1.5 0.0 0.1 26.9 0.0 0.3 1.8 0.2 1.0 

Patescibacteria 18.4 1.9E-02 0.6 0.8 0.2 0.0 1.0 0.6 0.1 0.6 1.3 0.3 

Planctomycetes 29.9 2.2E-04 0.3 0.2 0.3 0.0 0.0 0.4 0.2 0.2 0.4 0.1 

Proteobacteria 36.1 1.7E-05 53.8 50.1 60.7 62.4 19.5 74.3 42.0 56.1 58.7 47.6 

Spirochaetes 21.8 5.4E-03 0.1 0.1 0.1 0.0 0.0 0.2 0.0 0.1 0.0 0.1 

Tenericutes 47.5 1.3E-07 2.3 4.7 0.0 0.0 8.1 0.1 0.0 4.2 0.1 0.3 

Verrucomicrobia 25.8 1.2E-03 1.6 1.5 3.2 1.1 0.7 1.6 2.9 0.6 1.8 0.6 
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Table S8. Significantly different abundant bacterial classes, families and genera. Significance testing was performed with the Kruskal-Wallis-Test. Significant 
phyla with a relative abundance ≥1% are shown. Sampling sites and types are abbreviated as follows: C = Canada, H = Helgoland, K = Kiel; G = gut, T = tunic, W 
= seawater. 

Taxonomic identification Statistics p 
Relative abundance (%) 

All CG CT CW HG HT HW KG KT KW 

Class 

Acidimicrobiia 42.2 1.27E-06 1.6 2.8 0.8 0.8 0.5 0.2 3.9 2.7 1.0 3.5 

Actinobacteria 54.6 5.19E-09 3.6 2.2 0.0 2.8 17.5 0.1 1.1 4.9 0.1 3.9 

Alphaproteobacteria 48.0 9.95E-08 39.2 35.2 51.7 43.7 15.2 67.6 26.5 18.5 46.4 29.2 

Anaerolineae 28.7 3.57E-04 1.1 2.5 0.7 0.0 0.3 2.2 0.0 0.8 0.5 0.3 

Bacteroidia 43.2 8.03E-07 16.5 9.5 20.9 30.1 3.8 19.8 46.1 3.7 21.5 28.0 

Campylobacteria 40.7 2.38E-06 3.2 1.5 0.4 0.5 0.7 0.0 0.5 5.8 12.9 3.4 

Clostridia 52.7 1.25E-08 3.4 1.2 0.0 0.1 23.4 0.0 0.2 1.5 0.2 1.0 

Deltaproteobacteria 28.5 3.85E-04 1.9 3.6 1.8 0.2 1.0 1.2 2.2 2.8 1.3 2.4 

Gammaproteobacteria 40.3 2.82E-06 12.6 11.2 7.1 18.5 3.2 5.4 13.3 34.7 10.9 16.0 

Mollicutes 42.3 1.20E-06 2.3 4.7 0.0 0.0 8.1 0.1 0.0 4.2 0.1 0.3 

Oxyphotobacteria 49.3 5.61E-08 8.5 18.9 11.6 1.2 13.8 0.1 1.6 11.0 0.1 8.1 

Verrucomicrobiae 26.9 7.41E-04 1.6 1.5 3.2 1.1 0.7 1.6 2.9 0.6 1.8 0.6 

Family 

Alphaproteobacteria (unclassified) 46.4 2.03E-07 6.0 2.0 12.5 0.0 0.8 17.4 0.4 0.3 6.5 0.1 

Arcobacteraceae 37.9 7.88E-06 2.4 0.5 0.4 0.2 0.0 0.0 0.2 3.3 12.6 0.7 

Bifidobacteriaceae 50.7 2.96E-08 1.4 0.0 0.0 0.0 11.5 0.0 0.0 0.0 0.0 0.0 

Cyanobiaceae 52.9 1.14E-08 5.8 16.7 0.1 1.1 10.7 0.1 1.6 10.5 0.1 7.3 

Entomoplasmatales incertae sedis 48.0 9.90E-08 2.2 4.5 0.0 0.0 7.9 0.0 0.0 4.1 0.0 0.0 

Flavobacteriaceae 43.6 6.78E-07 13.0 7.3 18.2 19.1 2.0 19.2 30.2 2.4 20.0 10.4 

Gammaproteobacteria (unclassified) 30.7 1.57E-04 1.0 1.2 2.1 0.1 0.1 0.9 0.4 0.4 1.4 0.5 

Halieaceae 36.1 1.70E-05 1.4 1.9 0.9 1.5 0.6 0.3 2.6 2.7 0.7 2.9 

Kiloniellaceae 26.1 9.98E-04 1.1 0.1 0.0 0.0 1.8 0.0 0.0 0.0 6.1 0.0 

Kordiimonadaceae 53.6 8.11E-09 5.4 0.1 19.5 0.0 0.0 13.0 0.0 0.0 2.6 0.0 

Lachnospiraceae 38.4 6.22E-06 1.1 0.1 0.0 0.0 8.6 0.0 0.1 0.1 0.0 0.1 

Oxyphotobacteria (unclassified) 55.3 3.94E-09 1.1 0.9 3.0 0.1 3.0 0.0 0.1 0.4 0.0 0.6 

Phormidesmiaceae 48.4 8.14E-08 1.1 0.4 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

Pseudomonadaceae 44.9 3.89E-07 2.9 0.0 0.0 0.0 0.0 0.0 0.0 20.6 0.3 0.8 

Rhizobiaceae 32.3 8.11E-05 2.9 2.9 2.9 0.1 1.3 4.2 0.0 1.2 6.9 0.3 

Rhizobiales (unclassified) 50.0 4.09E-08 1.3 0.0 1.2 0.0 0.0 6.9 0.0 0.1 0.6 0.0 

Rhodobacteraceae 41.9 1.42E-06 13.5 24.6 5.4 33.4 8.2 7.3 21.4 9.2 13.7 23.8 

S25_593 (Rickettsiales) 47.9 1.03E-07 1.6 0.1 2.2 0.0 0.3 7.4 0.0 0.1 0.7 0.0 

Sphingomonadaceae 40.0 3.26E-06 1.4 1.2 1.7 0.0 0.1 3.8 0.0 0.5 2.3 0.3 

Terasakiellaceae 26.1 1.02E-03 1.1 0.1 0.9 0.2 0.8 4.0 0.0 0.2 1.1 0.2 

Genus 

Acrophormium (PCC_7375) 51.1 2.48E-08 1.1 0.3 6.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Alphaproteobacteria (unclassified) 46.4 2.03E-07 6.0 2.0 12.5 0.0 0.8 17.4 0.4 0.3 6.5 0.1 

Arcobacter 37.9 7.88E-06 2.4 0.5 0.4 0.2 0.0 0.0 0.2 3.3 12.6 0.7 

Bifidobacterium 50.7 2.96E-08 1.4 0.0 0.0 0.0 11.5 0.0 0.0 0.0 0.0 0.0 

Candidatus Hepatoplasma 48.0 9.90E-08 2.2 4.5 0.0 0.0 7.9 0.0 0.0 4.1 0.0 0.0 



Appendix – Chapter 1 

143 
 

Taxonomic identification Statistics p 
Relative abundance (%) 

All CG CT CW HG HT HW KG KT KW 

Flavobacteriaceae (unclassified) 41.8 1.50E-06 3.2 2.3 6.4 1.2 0.2 6.0 4.4 0.3 3.4 2.3 

Gammaproteobacteria (unclassified) 30.7 1.57E-04 1.0 1.2 2.1 0.1 0.1 0.9 0.4 0.4 1.4 0.5 

Kiloniella 27.0 7.02E-04 1.1 0.0 0.0 0.0 1.7 0.0 0.0 0.0 6.1 0.0 

Kordiimonas 53.6 8.11E-09 5.4 0.1 19.5 0.0 0.0 13.0 0.0 0.0 2.6 0.0 

Lentibacter 34.8 2.89E-05 1.3 0.5 0.1 3.6 0.1 0.2 0.1 1.2 4.7 3.8 

Oxyphotobacteria (unclassified) 55.3 3.94E-09 1.1 0.9 3.0 0.1 3.0 0.0 0.1 0.4 0.0 0.6 

Planktomarina 44.3 5.08E-07 2.1 0.0 0.0 19.0 0.0 0.0 12.7 0.0 0.0 13.2 

Pricia 41.6 1.58E-06 4.7 2.0 5.8 0.0 0.0 9.4 0.0 1.0 14.0 0.0 

Pseudahrensia 27.2 6.53E-04 1.2 0.6 1.1 0.0 1.2 2.5 0.0 0.3 3.0 0.1 

Pseudomonas 44.9 3.89E-07 2.9 0.0 0.0 0.0 0.0 0.0 0.0 20.6 0.3 0.8 

Rhizobiales (unclassified) 50.0 4.09E-08 1.3 0.0 1.2 0.0 0.0 6.9 0.0 0.1 0.6 0.0 

Rhodobacteraceae (unclassified) 28.2 4.32E-04 4.6 9.1 3.0 1.0 3.2 4.3 1.1 5.3 5.1 2.6 

Roseobacter 35.0 2.70E-05 1.6 9.0 0.2 0.1 0.6 0.1 0.0 0.3 0.0 0.1 

Rickettsiales group S25_593 47.9 1.03E-07 1.6 0.1 2.2 0.0 0.3 7.4 0.0 0.1 0.7 0.0 

Synechococcus (CC9902) 52.7 1.21E-08 5.4 15.8 0.0 1.1 10.6 0.1 1.6 8.9 0.1 6.8 

 

Table S9. Significantly different abundant OTUs. Significance testing across all sample groups was performed with the Kruskal-Wallis-Test for abundant OTUs 
(≥0.15%). Sampling sites and types are abbreviated as follows: C = Canada, H = Helgoland, K = Kiel; G = gut, T = tunic, W = seawater. 

OTU Phylum Lowest taxonomic classification  Statistics p 
Relative abundance (%) 

All CG CT CW HG HT HW KG KT KW 

OTU1 Proteobacteria Kordiimonas sp. 53.7 8E-09 5.28 0.13 19.33 0.00 0.00 12.61 0.00 0.01 2.50 0.00 

OTU2 Proteobacteria Alphaproteobacteria 46.5 2E-07 5.60 1.43 11.82 0.00 0.80 16.94 0.00 0.09 6.12 0.02 

OTU3 Bacteroidetes Pricia sp. 41.6 2E-06 4.65 2.02 5.65 0.00 0.00 9.27 0.00 1.01 13.78 0.02 

OTU4 Proteobacteria Pseudomonas sp. 47.8 1E-07 2.93 0.00 0.00 0.00 0.00 0.00 0.00 20.54 0.31 0.84 

OTU5 Epsilonbacteraeota Arcobacter sp. 40.4 3E-06 0.98 0.00 0.00 0.04 0.00 0.00 0.03 0.14 6.89 0.09 

OTU6 Cyanobacteria Synechococcus sp. (CC9902) 55.9 3E-09 2.90 9.72 0.03 0.64 8.44 0.05 1.28 1.54 0.03 1.08 

OTU7 Proteobacteria Rickettsiales group S25_593 47.9 1E-07 1.64 0.08 2.25 0.00 0.34 7.39 0.00 0.05 0.69 0.00 

OTU8 Cyanobacteria Synechococcus sp. (CC9902) 51.7 2E-08 2.52 6.09 0.02 0.38 2.20 0.01 0.25 7.39 0.05 5.36 

OTU9 Proteobacteria Kiloniella sp. 33.3 5E-05 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.03 5.94 0.00 

OTU10 Bacteria (unclassified) Bacteria (unclassified) 25.9 1E-03 1.48 1.54 0.00 0.00 4.98 0.00 0.00 4.55 0.00 0.00 

OTU11 Proteobacteria Planktomarina sp. 44.3 5E-07 1.94 0.03 0.00 17.96 0.00 0.00 11.63 0.00 0.00 12.34 

OTU12 Proteobacteria Terasakiellaceae 43.6 7E-07 0.78 0.03 0.90 0.01 0.04 3.88 0.00 0.00 0.24 0.00 

OTU13 Actinobacteria Bifidobacterium sp. 52.3 1E-08 1.13 0.00 0.00 0.00 9.16 0.02 0.01 0.00 0.00 0.00 

OTU14 Cyanobacteria Acrophormium sp. (PCC-7375) 53.3 1E-08 0.86 0.27 5.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OTU15 Proteobacteria Roseobacter sp. 56.9 2E-09 1.32 8.51 0.02 0.08 0.00 0.01 0.00 0.00 0.00 0.00 

OTU16 Tenericutes Candidatus Hepatoplasma 43.0 9E-07 1.22 4.44 0.00 0.00 1.75 0.00 0.00 2.31 0.00 0.00 

OTU17 Proteobacteria Lentibacter sp. 35.8 2E-05 1.24 0.46 0.04 3.50 0.07 0.16 0.06 1.17 4.57 3.77 

OTU18 Bacteroidetes Flavobacteriaceae 63.4 1E-10 0.70 0.00 0.00 0.00 0.00 4.55 0.00 0.00 0.00 0.00 

OTU19 Proteobacteria Rhizobiales 46.8 2E-07 0.85 0.00 0.10 0.00 0.00 5.36 0.00 0.00 0.04 0.00 

OTU20 Epsilonbacteraeota Arcobacter sp. 53.0 1E-08 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.64 1.92 0.08 

OTU21 Actinobacteria PeM15 47.2 1E-07 0.70 0.50 0.00 0.05 3.24 0.07 0.93 0.92 0.02 0.88 

OTU22 Proteobacteria Candidatus Gigarickettsia 26.1 1E-03 0.51 0.00 0.00 0.00 0.00 0.00 0.00 3.67 0.00 0.00 
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OTU Phylum Lowest taxonomic classification  Statistics p 
Relative abundance (%) 

All CG CT CW HG HT HW KG KT KW 

OTU23 Bacteroidetes Formosa sp. 56.6 2E-09 0.57 0.00 0.00 0.39 0.00 0.00 11.94 0.00 0.00 0.00 

OTU24 Epsilonbacteraeota Arcobacter sp. 41.5 2E-06 0.54 0.00 0.00 0.00 0.00 0.00 0.00 1.44 2.44 0.14 

OTU25 Tenericutes Candidatus Hepatoplasma 63.6 9E-11 0.75 0.00 0.00 0.00 6.12 0.00 0.00 0.00 0.00 0.00 

OTU26 Proteobacteria Rhizobiales 55.7 3E-09 0.34 0.01 0.98 0.00 0.00 1.26 0.00 0.00 0.00 0.00 

OTU27 Proteobacteria Pseudahrensia sp. 41.5 2E-06 0.46 0.16 0.79 0.01 0.00 1.10 0.00 0.06 0.94 0.02 

OTU28 Bacteroidetes Maritimimonas sp. 49.4 5E-08 0.44 0.18 2.50 0.00 0.00 0.18 0.00 0.00 0.01 0.00 

OTU29 Proteobacteria Filomicrobium sp. 32.9 6E-05 0.39 0.44 0.50 0.00 0.06 0.53 0.01 0.21 0.94 0.03 

OTU30 Proteobacteria Neptunomonas sp. 44.9 4E-07 0.40 0.02 0.01 0.00 0.00 0.00 0.00 1.44 1.36 0.07 

OTU31 Cyanobacteria Oxyphotobacteria 56.9 2E-09 0.46 0.50 0.00 0.00 3.04 0.00 0.05 0.00 0.00 0.05 

OTU32 Chloroflexi Ardenticatenaceae 58.9 8E-10 0.28 0.00 0.00 0.00 0.00 1.83 0.00 0.00 0.00 0.00 

OTU33 Proteobacteria Tateyamaria sp. 47.3 1E-07 0.42 0.43 0.00 0.03 1.34 0.01 0.12 1.15 0.01 0.40 

OTU34 Proteobacteria Litoreibacter sp. 46.2 2E-07 0.35 0.41 0.62 0.00 0.07 1.09 0.00 0.00 0.09 0.00 

OTU35 Proteobacteria Devosiaceae 35.8 2E-05 0.32 0.10 0.71 0.00 0.00 0.66 0.00 0.07 0.58 0.00 

OTU36 Firmicutes Anaerostipes sp. 55.0 4E-09 0.37 0.00 0.00 0.00 2.99 0.00 0.03 0.00 0.00 0.00 

OTU38 Bacteroidetes Flavobacteriaceae 44.1 5E-07 0.34 0.15 1.26 0.00 0.00 0.70 0.00 0.01 0.12 0.00 

OTU39 Firmicutes Romboutsia sp. 43.5 7E-07 0.42 0.03 0.00 0.00 3.20 0.01 0.00 0.17 0.00 0.01 

OTU40 Epsilonbacteraeota Sulfurovum sp. 42.0 1E-06 0.44 0.70 0.01 0.05 0.21 0.00 0.13 1.63 0.08 1.25 

OTU41 Proteobacteria Sphingorhabdus sp. 42.9 9E-07 0.30 0.21 0.25 0.00 0.00 1.29 0.00 0.02 0.18 0.00 

OTU42 Proteobacteria Amylibacter sp. 40.1 3E-06 0.55 0.01 0.01 7.97 0.01 0.04 2.68 0.00 0.01 0.98 

OTU43 Proteobacteria Rhizobiaceae 28.0 5E-04 0.24 0.18 0.14 0.00 0.00 0.31 0.00 0.06 1.00 0.00 

OTU44 Proteobacteria Ahrensia sp. 33.5 5E-05 0.28 0.52 0.55 0.00 0.00 0.36 0.01 0.01 0.42 0.00 

OTU45 Bacteroidetes Flavobacteriaceae 54.0 7E-09 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.08 2.00 0.03 

OTU46 Proteobacteria Candidatus Tenderia 36.6 1E-05 0.25 0.19 0.35 0.02 0.00 0.71 0.00 0.04 0.38 0.03 

OTU47 Firmicutes Clostridium sensu stricto 1 49.1 6E-08 0.34 0.00 0.00 0.00 2.77 0.00 0.00 0.00 0.00 0.00 

OTU48 Proteobacteria HOC36 43.1 9E-07 0.34 1.24 0.02 0.01 0.35 0.00 0.00 0.69 0.02 0.09 

OTU49 Proteobacteria Pseudahrensia sp. 26.6 8E-04 0.26 0.06 0.09 0.00 0.79 0.79 0.00 0.00 0.15 0.01 

OTU50 Firmicutes Intestinibacter sp. 59.5 6E-10 0.30 0.00 0.00 0.00 2.45 0.00 0.00 0.00 0.00 0.00 

OTU51 Proteobacteria Sphingorhabdus sp. 40.1 3E-06 0.25 0.05 0.21 0.00 0.00 0.04 0.00 0.19 1.26 0.03 

OTU52 Actinobacteria Bifidobacterium sp. 54.1 7E-09 0.27 0.00 0.00 0.00 2.17 0.01 0.00 0.00 0.00 0.00 

OTU53 Proteobacteria Rhodobacteraceae 44.8 4E-07 0.25 0.58 0.13 0.00 0.00 0.01 0.00 0.93 0.08 0.09 

OTU54 Proteobacteria Rhizobiaceae 35.4 2E-05 0.25 0.05 0.04 0.00 0.00 0.00 0.00 0.31 1.36 0.04 

OTU55 Proteobacteria Ruegeria sp. 41.7 2E-06 0.28 0.61 0.10 0.00 1.18 0.15 0.00 0.01 0.00 0.00 

OTU56 Bacteroidetes Cryomorphaceae 33.7 5E-05 0.25 0.00 0.00 0.05 0.01 0.00 5.26 0.00 0.00 0.00 

OTU57 Proteobacteria Pseudahrensia sp. 22.2 4E-03 0.24 0.02 0.01 0.00 0.00 0.01 0.00 0.10 1.59 0.05 

OTU58 Verrucomicrobia Rubritalea sp. 26.1 1E-03 0.20 0.12 1.02 0.00 0.05 0.00 0.02 0.02 0.13 0.00 

OTU59 Proteobacteria Rhodobacteraceae 38.4 6E-06 0.34 2.06 0.07 0.05 0.05 0.01 0.00 0.00 0.00 0.00 

OTU61 Proteobacteria Gammaproteobacteria 48.3 9E-08 0.24 0.27 0.87 0.00 0.00 0.03 0.00 0.01 0.40 0.01 

OTU62 Proteobacteria SAR86 clade 54.7 5E-09 0.33 0.01 0.00 3.93 0.00 0.00 2.99 0.00 0.00 0.22 

OTU63 Proteobacteria Rhodobacteraceae 27.0 7E-04 0.18 0.14 0.23 0.02 0.03 0.67 0.00 0.05 0.06 0.06 

OTU64 Proteobacteria Ascidiaceihabitans sp. 58.9 8E-10 0.27 0.00 0.00 0.64 0.00 0.00 4.14 0.00 0.00 1.04 

OTU66 Proteobacteria Pseudorhodobacter sp. 39.9 3E-06 0.20 0.19 0.01 0.00 0.00 0.00 0.00 0.19 0.99 0.12 

OTU67 Bacteroidetes Flavobacteriaceae 41.7 2E-06 0.18 0.34 0.80 0.00 0.00 0.02 0.00 0.00 0.00 0.00 

OTU68 Firmicutes Lachnospiraceae sp. 58.0 1E-09 0.24 0.00 0.00 0.00 1.97 0.00 0.00 0.00 0.00 0.00 

OTU69 Proteobacteria Rhodobacteraceae 51.5 2E-08 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.08 1.35 0.05 
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OTU Phylum Lowest taxonomic classification  Statistics p 
Relative abundance (%) 

All CG CT CW HG HT HW KG KT KW 

OTU70 Proteobacteria PS1 clade 36.9 1E-05 0.15 0.04 0.15 0.00 0.00 0.64 0.00 0.03 0.11 0.00 

OTU71 Bacteroidetes Psychroserpens sp. 41.0 2E-06 0.17 0.21 0.37 0.03 0.00 0.32 0.00 0.00 0.17 0.03 

OTU72 Proteobacteria Beijerinckiaceae 37.2 1E-05 0.19 0.11 0.17 0.01 0.00 0.02 0.00 0.05 0.97 0.00 

OTU73 Proteobacteria Rhizobiaceae 32.4 8E-05 0.18 0.17 0.47 0.01 0.01 0.26 0.00 0.07 0.21 0.03 

OTU74 Proteobacteria Rhodobacteraceae 54.0 7E-09 0.31 1.95 0.00 0.07 0.00 0.00 0.00 0.03 0.00 0.00 

OTU75 Actinobacteria Ilumatobacter sp. 39.0 5E-06 0.23 0.66 0.07 0.00 0.02 0.01 0.00 0.55 0.06 0.55 

OTU76 Bacteroidetes Flavobacteriaceae 49.2 6E-08 0.19 0.33 0.89 0.01 0.00 0.00 0.00 0.00 0.01 0.00 

OTU77 Proteobacteria Filomicrobium sp. 19.0 1E-02 0.17 0.26 0.15 0.00 0.22 0.39 0.00 0.09 0.09 0.00 

OTU78 Proteobacteria Hyphomonadaceae 47.3 1E-07 0.16 0.10 0.75 0.01 0.00 0.18 0.00 0.00 0.02 0.00 

OTU79 Proteobacteria Kiloniella sp. 31.2 1E-04 0.21 0.00 0.00 0.00 1.65 0.04 0.00 0.00 0.00 0.00 

OTU80 Cyanobacteria Oxyphotobacteria 43.8 6E-07 0.18 0.01 1.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OTU81 Proteobacteria Rhodobacteraceae 37.7 8E-06 0.15 0.06 0.21 0.00 0.02 0.49 0.00 0.09 0.10 0.00 

OTU82 Proteobacteria Rhizobiaceae 33.3 5E-05 0.16 0.41 0.24 0.02 0.08 0.29 0.00 0.00 0.02 0.00 

OTU83 Bacteroidetes Cryomorphaceae 58.6 9E-10 0.27 0.00 0.00 1.98 0.00 0.00 1.95 0.00 0.00 1.90 

OTU85 Proteobacteria Anderseniella sp. 33.9 4E-05 0.18 0.28 0.29 0.00 0.00 0.05 0.00 0.18 0.40 0.11 

OTU86 Epsilonbacteraeota Arcobacter sp. 35.4 2E-05 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.76 0.59 0.04 

OTU87 Proteobacteria Rhizobiaceae 31.3 1E-04 0.15 0.24 0.27 0.00 0.00 0.21 0.00 0.09 0.19 0.04 

OTU88 Actinobacteria Ilumatobacter sp. 40.3 3E-06 0.16 0.36 0.05 0.00 0.11 0.01 0.49 0.37 0.02 0.18 

OTU89 Bacteroidetes Formosa sp. 64.0 8E-11 0.19 0.00 0.00 0.41 0.00 0.00 3.73 0.00 0.00 0.00 

OTU90 Bacteroidetes NS3a marine group 59.0 7E-10 0.33 0.00 0.00 4.91 0.00 0.00 0.16 0.00 0.00 2.09 

OTU91 Bacteroidetes Ulvibacter sp. 44.3 5E-07 0.15 0.18 0.27 0.00 0.00 0.00 0.00 0.11 0.43 0.03 

OTU92 Proteobacteria SUP05 cluster 46.0 2E-07 0.19 0.00 0.00 0.00 0.00 0.00 0.00 1.10 0.23 0.01 

OTU93 Proteobacteria Altererythrobacter sp. 32.7 7E-05 0.15 0.03 0.07 0.00 0.00 0.63 0.00 0.01 0.22 0.05 

OTU94 Proteobacteria Sphingomonadaceae 35.8 2E-05 0.15 0.06 0.17 0.00 0.00 0.30 0.00 0.20 0.26 0.00 

OTU95 Proteobacteria Rhodobacteraceae 24.8 2E-03 0.15 0.18 0.06 0.00 0.12 0.00 0.00 0.62 0.10 0.05 

OTU96 Bacteroidetes Tenacibaculum sp. 31.4 1E-04 0.16 0.17 0.17 0.00 0.77 0.06 0.02 0.00 0.00 0.00 

OTU98 Actinobacteria Mycobacterium sp. 49.5 5E-08 0.18 0.27 0.01 0.02 0.00 0.00 0.00 0.75 0.02 0.58 

OTU99 Proteobacteria Rhodobacteraceae 34.6 3E-05 0.15 0.14 0.25 0.01 0.00 0.23 0.00 0.02 0.33 0.07 

OTU100 Bacteroidetes Bacteroidia 37.2 1E-05 0.15 0.00 0.00 0.00 1.14 0.07 0.00 0.00 0.00 0.00 

OTU103 Proteobacteria Candidatus Puniceispirillum 64.0 8E-11 0.24 0.00 0.00 2.99 0.00 0.00 0.84 0.00 0.00 1.40 

OTU104 Firmicutes Terrisporobacter sp. 63.6 9E-11 0.15 0.00 0.00 0.00 1.17 0.00 0.01 0.00 0.00 0.00 

OTU105 Proteobacteria Halioglobus sp. 33.3 5E-05 0.15 0.11 0.01 0.00 0.12 0.01 0.00 0.71 0.03 0.23 

OTU106 Proteobacteria Ruegeria sp. 36.9 1E-05 0.16 0.76 0.11 0.00 0.16 0.04 0.00 0.00 0.00 0.00 

OTU114 Firmicutes Dorea sp. 37.4 1E-05 0.17 0.00 0.00 0.00 1.36 0.01 0.01 0.00 0.00 0.00 

OTU123 Proteobacteria Rhodobacteraceae 30.9 1E-04 0.15 0.34 0.01 0.00 0.31 0.00 0.00 0.37 0.02 0.05 

OTU161 Bacteroidetes NS5 marine group 63.9 8E-11 0.17 0.00 0.01 2.71 0.00 0.00 0.49 0.00 0.00 0.45 
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Table S10. Classification of abundant OTUs detected in this study. Abundant OTUs: ≥1% of overall relative abundance. Rel. abund. = Relative abundance, Id. 
= Identity, Ubc = uncultured bacterium clone, Uncult. = Uncultured. 

OTU 

Rel. 

abund. 

(%) 

Silva classification 

(lowest taxonomic rank; 

class, genus) 

Next related hit according to BLAST Lowest taxonomic classification according to BLAST 

Classification 
Accession 

no. 

Id. 

(%) 
Source Classification 

Accession 

no. 
Id. (%) Source 

OTU1 5.3 
Alphaproteobacteria, 

Kordiimonas 
Ubc SanDiego_a6487 KF799727.1 98.76 

Ascidian (Ciona 

intestinalis; gut) 
Kordiimonas sp. KF494349.1 98.76 

Ascidian (Ciona 

intestinalis; tunic) 

OTU2 5.6 
Alphaproteobacteria, 

unclassified 
Ubc Woods-Hole_a4133 KF799375.1 98.75 

Ascidian (Ciona 

intestinalis; gut) 
Rhizobiales 

e.g. 

MN006421.1 
93.27 Various 

OTU3 4.7 Bacteroidia, Pricia Ubc Woods-Hole_a5311 KF799010.1 98.57 
Ascidian (Ciona 

intestinalis; gut) 
Arenibacter sp. KF494352.1 98.57 

Ascidian (Ciona 

intestinalis; tunic) 

OTU4 2.9 
Gammaproteobacteria, 

Pseudomonas 
Pseudomonas sp. MH244157.1 99.30 Sediment  

OTU6 2.9 
Oxyphotobacteria, 

Synechococcus_CC9902 
Ubc DNA47 MG011059.1 99.75 

Krill (Euphausia 

mucronata; stomach) 

Synechococcus 

sp. 
MH358353.1 99.75 

Marine 

environment 

OTU7 1.6 

Alphaproteobacteria, 

unclassified (S25-593 

group) 

Ubc SanDiego_a6337 KF799711.1 99.01 
Ascidian (Ciona 

intestinalis; gut) 

Uncult. 

alphaproteo-

bacterium_1-21 

FJ659126.1 95.04 
Ascidian (Aplidium 

conicum; tunic) 

OTU8 2.5 
Oxyphotobacteria, 

Synechococcus_CC9902 
Ubc HAMb1_059 JX983984.1 98.77 Marine biofilm 

Synechococcus 

sp. 
KU867940.1 98.52 Seawater 

OTU10 1.5 Unclassified (Bacteria) Ubc Woods-Hole_a5143 KF798938.1 99.51 
Ascidian (Ciona 

intestinalis; gut) 
n.a. (only 76% identity) 

OTU11 1.9 
Alphaproteobacteria, 

Planktomarina 

Uncult. 

alphaproteobacterium 

clone PI_4d12b 

AY580449.1 99.26 Seawater 
Rhodo-

bacteraceae 

KU173743.1 

or 

NR_125550.1 

99.01 Seawater 

OTU13 1.1 
Actinobacteria, 

Bifidobacterium 
Bifidobacterium dentium LR134349.1 100 

Human (Dental 

Caries) 
 

OTU15 1.3 
Alphaproteobacteria, 

Roseobacter 
Marine bacterium BPY-W9 AB562975.1 98.01 

Red algae (Porphyra 

yezoensis, Japan) 
Roseobacter sp. MK224709.1 97.27 

Red algae 

(Neogoniolithon 

brassica-florida) 

OTU16 1.2 
Mollicutes, 

Candidatus_Hepatoplasma 
Ubc Woods-Hole_a5449 KF799049.1 91.08 

Ascidian (Ciona 

intestinalis; gut) 
n.a. (only 82% identity) 

OTU17 1.2 
Alphaproteobacteria, 

Lentibacter 

Uncult. marine bacterium, 

clone 85PALMAR09 
HE981604.1 99.50 Seawater Litoreibacter sp. KJ513684.1 99.26 Seawater 
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Table S11. Putative annotation of metabolites detected in C. intestinalis bulk extracts (population level). Each detected compound is given with the 
experimentally determined m/z value. Putative molecular formulae were calculated by the elemental composition tool in the MassLynx software. The dereplication 
tool(s) (Derep. tool(s)) used to annotate the compounds are DNP (Dictionary of Natural Products [2]), GNPS (Dereplication workflow available at Global Natural 
Product Social Molecular Networking [1]), ISDB-UNPD (in silico MS/MS database of the Universal Natural Product Database [3]), ML (MarinLit [4]) and MN 
(molecular networking [1]). Occurrence of abundant peaks (detected in ≥5 replicates) in individual extracts is given with the respective number of replicates for 
inner body (IB) and tunic (T) extracts separately. Rt: Retention time. IC: Identification confidence level after Sumner et al. 2007 [5]. Nf: No fragmentation pattern 
detected. ↑: Metabolite production was specifically enhanced (at least 10-fold larger peak area) in the respective sampling location (sampling locations are 
abbreviated: C = Canada, H = Helgoland, K = Kiel). Underlined occurrence: enhancement/specificity was manually detected from MS chromatograms (peak 
intensity), since compound was not in automatic peak list. Refs: references. 

Peak 
no. 

m/z 
[M+H]+ 

Rt 
(min) 

Putative 
molecular 
formula 

IC 
Fragmentation 

pattern 
Putative identification 

Derep. 
tool(s) 

Chemical family Biological origin Occurrence IB T Refs 

1 248.161 3.04 C10H21N3O4 4 124.0692     H3, K1 5 6  

2 466.2826 3.10 C26H35N5O3 4 Nf     K↑    

3 386.3221 3.10 C13H39N9O4 4 Nf     K↑    

4 361.3556 3.10 C19H44N4O2 4 
140.1747, 157.2030, 

290.3256 
    not C 13 9  

5 429.4159 3.10 C29H52N2 2 

72.1032, 140.1747, 
155.1360, 220.0516, 
228.2256, 340.2377, 

351.1815 

Halichonine B 
ISDB-
UNPD 

Sesquiterpene 
alkaloid 

Sponge: Halichondria 
okadai 

not C 13 7 [6] 

6 517.2661 3.12 C31H48O6 3 
345.2962, 363.3029, 

439.3996 
 DNP, 

ML 
Sterol 

Various marine 
invertebrates, e.g. 
sponge (Dysidea 
herbacea), coral 

(Nephthea bayeri) 

H3, K1   [7], [8] 

7 211.0554 3.28 C5H10N2O7 4 193.0851     H3, K1 5 8  

8 667.4767 3.31 C35H58N10O3 4 Nf         

9 335.1791 3.45 C26H22 4 Nf      7 1  

10 480.3527 3.46 C33H41N3 4 318.3422     C↑ 21 18  

11 480.3527 3.52 C33H41N3 4 318.3422      4 6  

12 278.2424 3.69 C18H31NO 2 250.2857, 262.3000 Crucigasterin 277 
ISDB-
UNPD 

Polyunsaturated 
amino alcohol 

Ascidian: Pseudodistoma 
crucigaster 

H↑ 16 2 [9] 

13 545.296 3.77 C27H44O11 4 373.3291, 391.3394     H3, K1 3 7  

14 280.2590 3.74 C18H33NO 2 Nf Crucigasterin E 
ISDB-
UNPD 

Polyunsaturated 
amino alcohol 

Ascidian: Pseudodistoma 
crucigaster 

 18 3 [10] 

15 310.2712 3.92 C19H35NO2 2 

81.0943, 86.0830, 
95.1129, 135.1490, 
145.1371, 257.2605, 

274.2864 

D-erythro-4,8,10-
sphingatrienine 

ISDB-
UNPD 

Glycosphingolipid 
Sea cucumber: 

Stichopus variegates 
H only   [11] 

16 413.3359 3.97 C19H40N8O2 4 Nf     H3, K1 1 6  

17 554.5435 4.20 C37H67N3 4 
72.1018, 137.1615, 
197.2366, 276.3089, 
279.3187, 333.3840 

    H only 7 3  

18 340.2194 4.42 C12H29N5O6 4 Nf     C↑    
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Peak 
no. 

m/z 
[M+H]+ 

Rt 
(min) 

Putative 
molecular 
formula 

IC 
Fragmentation 

pattern 
Putative identification 

Derep. 
tool(s) 

Chemical family Biological origin Occurrence IB T Refs 

19 468.3076 4.41 C24H41N3O6 4 Nf      26 4  

20 349.1927 4.57 C10H28N4O9 4 Nf      18 13  

21 454.3291 4.73 C25H39N7O 4 104.1345     not K 24 3  

22 317.1698 4.81 C10H20N8O4 4 Nf         

23 349.1927 4.84 C10H28N4O9 4 Nf     H3, K1 3 4  

24 277.2130 4.86 C17H24O3 2 
107.1138, 121.1301, 
135.1430, 149.1648, 

195.9527 
Spirodysin 

ISDB-
UNPD 

Sesquiterpenoid Sponge: Dysidea sp.  17 2 [12] 

25 599.4107 4.92 C37H58O4S 3 221.1886, 507.3958  MN Alkyl sulfate  H3, K1 0 8  

26 301.2123 4.98 C15H28N2O4 2 
187.1823, 265.2364, 

283.2443 
Lipoamide A 

DNP, 
ML 

Lipoamide 
Bacterium: Bacillus 

pumilus 
 27 21 [13] 

27 568.3410 5.20 C20H49N5O13 4 Nf      24 13  

28 520.3409 5.20 C33H45NO4 4 Nf     C only 10 11  

29 488.2342 5.20 C20H33N5O9 4 Nf      22 23  

30 453.2224 5.20 C18H28N8O6 4 Nf     H3 21 23  

31 468.3430 5.27 C25H45N3O5 4 
104.1349, 427.2712, 

363.9669 
     29 21  

32 842.5110 5.35 C38H63N15O7 4 Nf     C only 3 8  

33 480.3438 5.36 C26H45N3O5 4 Nf     not H 18 26  

34 454.2899 5.47 C19H35N9O4 4 313.3146     not K 18 0  

35 376.2775 5.47 C14H33N9O3 3 Nf  MN Tetrapyrrole  C only    

36 506.4057 5.54 C27H55NO7 4 104.1349     H↑ 11 8  

37 235.1639 5.57 C6H18N8O2 4 Nf     C↑    

38 542.3815 5.57 C29H47N7O3 4 Nf     C only 9 0  

39 512.3700 5.61 C27H49N3O6 4 104.135      10 19  

40 321.2397 5.67 C15H32N2O5 4 151.1442     H↑ 2 7  

41 270.3127 5.69 C18H39N 3 Nf  MN Tetrapyrrole  H only    

42 496.3393 5.72 C27H41N7O2 4 
104.1346, 184.1077, 

478.3760 
     27 21  

43 438.2986 5.88 C27H39N3O2 2 
266.3131, 284.3345, 

420.3313 
Lyngbyatoxin A 

ISDB-
UNPD 

Indole alkaloid 
E.g. Cyanobacterium: 

Moorea producens 
 15 8 [14] 

44 276.2263 5.94 C9H25N9O 4 Nf     C↑ 4 2  

45 494.3591 5.94 C27H47N3O5 4 104.1345, 184.1088      23 18  

46 522.3537 6.08 C28H47N3O6 4 
104.1343, 184.1078, 

504.3933 
     27 22  

47 480.3438 6.14 C21H46N7O3Cl 4 Nf     not H 20 27  

48 985.7030 6.18 C64H92N2O6 4 Nf     H only    

49 452.3128 6.46 C28H41N3O2 2 
280.3400, 298.3514, 

434.3490 
Blastmycetin E 

ISDB-
UNPD 

Indole alkaloid 
Bacterium: 

Streptoverticillium 
blastmyceticum 

 28 22 [15] 

50 510.3580 6.49 C26H56NO6P 2 
104.1346, 184.1077, 

327.3210 
Lyso-platelet-activating 

factor (C18) 
GNPS Phospholipid 

Sponge: Spirastrella 
purpurea 

 19 6 [16] 

51 506.3597 6.50 C23H48N7O3Cl 4 Nf     not H 13 17  

52 508.3776 6.55 C29H45N7O 4 104.1350, 184.1079     H↑ 13 11  
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Peak 
no. 

m/z 
[M+H]+ 

Rt 
(min) 

Putative 
molecular 
formula 

IC 
Fragmentation 

pattern 
Putative identification 

Derep. 
tool(s) 

Chemical family Biological origin Occurrence IB T Refs 

53 452.3128 6.63 C28H41N3O2 2 
280.3400, 298.3514, 

434.3490 
Blastmycetin E 

ISDB-
UNPD 

Indole alkaloid 
Bacterium: 

Streptoverticillium 
blastmyceticum 

 27 14 [15] 

54 302.2427 6.70 C11H27N9O 4 Nf     C only 5 2  

55 588.3503 6.70 C29H45N7O6 2 Nf MIP-A3 DMNP Linear peptide Snail: Achatina fulica C only 9 7 [17] 

56 581.4004 6.75 C40H52O3 2 221.1906, 489.3869 α-Doradecin DNP Carotenoid 
Crab: Chiromantes 

haematocheir 
H3, K1 0 6 [18] 

57 494.3591 6.77 C27H47N3O5 4 Nf      20 23  

58 452.3128 6.77 C28H41N3O2 4 Nf Blastmycetin E 
ISDB-
UNPD 

Indole alkaloid 
Bacterium: 

Streptoverticillium 
blastmyceticum 

   [15] 

59 428.3738 6.77 C25H49NO4 2 Nf 
(4E)-N-[(2R)-1-hydroxy-3-
methoxypropan-2-yl]-7-
methoxyicos-4-enamide 

DNP, 
ML 

Lipopeptide 
Cyanobacterium (not 

identified) 
 12 6 [19] 

60 619.3134 6.77 C33H46O11 2 Nf Antibiotic YM 47525 DNP Sesquiterpenoid Fungus (not identified) C only   [20] 

61 344.3479 6.91 C17H41N7 4 Nf      28 27  

62 508.3776 6.91 C29H45N7O 4 104.1351     not H 18 25  

63 482.3227 6.91 C25H43N3O6 4 Nf      26 3  

64 254.2425 6.99 C16H31NO 3 
184.2121, 219.2468, 

237.2642 
a: Crucigasterin D, b: 

Obscuraminol C 
DNP 

Polyunsaturated 
amino alcohol 

Ascidian: Pseudodistoma 
crucigaster (a) or 
Pseudodistoma 
obscurum (b) 

 2 6 
(a) [10], 
(b) [21] 

65 377.2661 7.03 C19H32N6O2 4 201.2046, 285.2580     H↑ 13 1  

66 349.2691 7.03 C17H36N2O5 4 Nf     H↑ 3 10  

67 494.3591 7.03 C27H47N3O5 4 Nf     C↑ 16 13  

68 639.4067 7.12 C30H58N2O12 4 Nf     C only 1 13  

69 599.4107 7.12 C40H54O4 2 
109.1296, 185.1529, 
233.1781, 341.3246, 

544.3911 

a: Crassostreaxanthin A, 
b: Crassostreaxanthin B 

DNP, 
ML 

Carotenoid 
Bivalve: Crassostrea 

gigas 
C↑   [22] 

70 466.3312 7.12 C30H43NO3 4 
448.3555, 312.3705, 

294.3555 
        

71 370.3654 7.12 C19H43N7 4 Nf      14 10  

72 277.2130 7.21 C13H28N2O4 4 Nf      26 19  

73 524.3705 7.32 C26H54NO7P 2 
104.1354, 184.1063, 
341.3518, 506.4213 

Platelet-activating factor 
(PAF) 

GNPS Phospholipid 
Various types of cells 

and animals 
 27 17 [23] 

74 466.3268 7.41 C25H43N3O5 4 
294.3566, 312.3678, 

448.3652 
     29 23  

75 627.3563 7.57 C36H50O9 2 
469.3168, 367.3693, 

283.0604 
Milbemycin α20 DNP Macrolide 

Bacterium: Streptomyces 
hygroscopicus subsp. 

aureolacrimosus 
   [24] 

76 550.3897 7.63 C35H51NO4 4 
104.1348, 184.1081, 

532.4282 
     27 21  

77 597.2744 7.63 C23H36N10O9 4 Nf      4 2  

78 376.3172 7.63 C19H41N3O4 4 Nf     C↑ 1 12  
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Peak 
no. 

m/z 
[M+H]+ 

Rt 
(min) 

Putative 
molecular 
formula 

IC 
Fragmentation 

pattern 
Putative identification 

Derep. 
tool(s) 

Chemical family Biological origin Occurrence IB T Refs 

79 403.2805 7.76 C19H39NaO5S 2 293.2614, 311.2804 

Sodium 10-
(hydroxymethyl)-2,6,14-

trimethylpentadecyl 
sulfate 

ML Alkyl sulfate 
Ascidian: Ciona 

edwardsii 
H↑ 13 2 [25] 

80 552.4021 7.76 C31H49N7O2 4 Nf     C only 1 6  

81 441.2969 7.76 C23H40N2O6 4 Nf     H↑ 8 5  

82 508.3776 7.83 C29H45N7O 4 104.1351     not H 12 27  

83 303.2285 7.91 C15H30N2O4 4 Nf      29 30  

84 320.2177 8.14 C14H29N3O5 3 
140.1022, 166.0831, 

302.2524 
    H3, K1 4 7  

85 451.2999 8.51 C33H38O 4 Nf     H3 8 1  

86 317.2417 8.51 C12H28N8O2 4 235.3066      15 11  

87 305.2441 8.55 C19H32N2O 2 163.1834 Ikimine A 
ISDB-
UNPD 

Alkylpyridine Sponge (not identified)  4 6 [26] 

88 329.2441 8.60 C17H32N2O4 2 
175.1824, 215.2166, 

311.2789 
Lipoamide C 

DNP, 
ML 

Lipoamide 
Bacterium: Bacillus 

pumilus 
 17 22 [13] 

89 305.2441 8.79 C19H32N2O 2 163.1834 Ikimine A 
ISDB-
UNPD 

Alkylpyridine Sponge (not identified)    [26] 

90 609.2709 8.87 C35H36N4O6 2 
531.2986, 559.2847, 

591.3218 
10-hydroxyphaeophorbide 

a 
DNP Tetrapyrroles 

E.g. ascidian: 
Trididemnum solidum 

C↑ 7 15 [27] 

91 289.2116 9.00 C14H28N2O4 4 
215.2158, 229.2335, 
239.2176, 257.2284 

    H only    

92 625.2678 9.02 C36H33N8O3 4 
538.3119, 566.3060, 
581.3383, 608.3168 

    C only 2 15  

93 400.4145 9.09 C25H53NO2 4 Nf      27 30  

94 603.2276 9.09 C27H43N2O8Br 4 
501.2975, 527.2592, 

529.2766 
    not K    

95 331.2587 9.10 C22H34O2 2 Nf Clupanodonic acid 
ISDB-
UNPD 

Unsaturated fatty 
acid 

Fish oil not K 12 13 [28] 

96 609.2709 9.28 C35H36N4O6 2 
531.2986, 559.2847, 

591.3218 
10-hydroxyphaeophorbide 

a 
DNP Tetrapyrrole 

E.g. ascidian: 
Trididemnum solidum 

C↑, not K 10 16 [27] 

97 641.4202 9.36 C26H56N8O10 4 Nf     C only 1 12  

98 681.4148 9.36 C28H56N8O11 4 Nf     C only 0 10  

99 581.4004 9.36 C40H52O3 2 

109.1293, 147.1132, 
149.1319, 157.1320, 
185.1702, 197.1720, 
237.1925, 355.2922 

Trikentriorhodin DNP Carotenoid 
Sponge: Trikentrion 

helium 
C only 0 11 [29] 

100 658.4239 9.37 C33H39NO13 2 
109.1300, 127.130, 

223.1872 
Rubomycin M DNP 

Anthracycline 
glycoside 

Bacterium: Streptomyces 
coeruleorubidus 

C only 1 12 [30] 

101 291.2291 9.60 C19H30O2 3 
121.1306,135.1477, 
149.1646, 163.1814, 
241.2334, 259.2451 

 DNP, 
ML 

Unsaturated fatty 
acid 

Various marine origins, 
e.g. sponge (e.g. 

Stelletta sp.) and alga 
(e.g. Lobophora 

variegata) 

H3, K1 4 11 [31], [32] 
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Peak 
no. 

m/z 
[M+H]+ 

Rt 
(min) 

Putative 
molecular 
formula 

IC 
Fragmentation 

pattern 
Putative identification 

Derep. 
tool(s) 

Chemical family Biological origin Occurrence IB T Refs 

102 348.2455 9.68 C23H29N3 2 
140.1022, 166.0836, 

330.2850 
     5 13  

103 593.2771 9.69 C35H36N4O5 2 533.3050 Pheophorbide A DNP Tetrapyrrole 
E.g. ascidian: 

Trididemnum solidum 
C↑ 26 11 [27] 

104 317.2454 10.18 C21H32O2 2 267.2503, 285.2617 

a: 5E,7E,9E,14Z,17Z- 
eicosapentaenoic acid, b: 

5Z,7E,9E,14Z,17Z- 
eicosapentaenoic acid 

ISDB-
UNPD 

Unsaturated fatty 
acid 

Alga: Ptilota filicina  2 15 [33] 

105 535.2693 10.25 C33H34N4O3 2 507.3204 Pyropheophorbide A 
DNP, 
ML 

Tetrapyrrole 
E.g. bivalve: Ruditapes 

philippinarum 
 28 29 [34] 

106 293.2431 10.44 C14H32N2O4 4 

81.0950, 95.1122, 
109.1295, 123.1465, 
137.1631, 243.2490, 

261.2608 

     2 3  

107 363.2984 10.46 C24H42O2 2 Nf Strongylodiol G 
ISDB-
UNPD 

Acetylenic alcohol Sponge: Petrosia sp.  22 11 [35] 

108 565.2440 10.48 C33H32N4O5 2 Nf Purpurin 18 DNP Tetrapyrrole 
E.g. bivalve: Ruditapes 

philippinarum 
 18 0 [34] 

109 681.4148 10.48 C44H56O6 4 Nf     C only 4 12  

110 639.3239 10.64 C43H38N6 4 566.3386. 579.3464     H3, K1 1 6  

111 343.2594 10.71 C23H34O2 2 
269.2657, 293.2670, 

311.2781 
Docosahexaenoic acid 

methyl ester 
ISDB-
UNPD 

Unsaturated fatty 
acid 

Ascidian: Pseudodistoma 
aureum 

 7 13 [36] 

112 647.5734 10.89 C43H76O2 4 Nf     H only    

113 732.5054 10.99 C42H63N9O 4 Nf      11 25  

114 518.4949 11.30 C34H63NO2 4 
250.2922, 262.2921, 

280.3038 
    H↑ 15 2  

115 793.4943 11.60 C53H64N2O4 4 Nf     C only 1 9  

116 564.3982 11.79 C27H49N9O4 4 Nf     C only 0 14  

117 549.2866 11.91 C34H36N4O3 2 461.2792, 436.2999 
Methyl pyropheophorbide 

a 
DNP Tetrapyrrole 

E.g. cyanobacterium: 
Spirulina maxima 

H3, K1 1 13 [37] 

118 748.5408 11.99 C35H75N5O10 4 Nf      28 10  

119 573.1493 11.99 C24H29N2O12Cl 4 135.1505, 554.5661     C↑    

120 546.4907 11.99 C35H63NO3 2 Nf 
Bacteriohopane-

aminotriol 
DNP Hopanoid 

Bacterium: e.g. 
Rhodopseudomonas 

acidophila 
 19 1 [38] 

121 543.1011 12.10 C21H21N6O8Cl 4 Nf     C only    
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Table S12. ANOSIM comparison of UPLC-MS/MS profiles of C. intestinalis extracts. ANOSIM 

calculations were based on the Bray-Curtis similarity index and results are given with the respective R 

score and p value. 

Test 
Extraction 

procedure 
Tissue(s) Compared groups R p 

Sampling sites (all metabolites) 

Population 

level 
Whole body 

Canada x Helgoland 0.6667 0.1 

Canada x Kiel 0.5556 0.09 

Helgoland x Kiel 0.8889 0.1 

Sampling sites (core metabolites only) 

Canada x Helgoland 1 0.1 

Canada x Kiel 1 0.1 

Helgoland x Kiel 1 0.1 

Tissue 

Individual 

level 

Inner body & tunic Inner body x tunic 0.6768 0.0001 

Sampling sites 

Inner body 

Canada x Helgoland 0.2502 0.0025 

Canada x Kiel 0.2342 0.0011 

Helgoland x Kiel 0.3184 0.0003 

Tunic 

Canada x Helgoland 0.2484 0.0049 

Canada x Kiel 0.3562 0.0027 

Helgoland x Kiel 0.4518 0.0012 
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Figure S1. Number of microbial strains isolated from the tunic of C. intestinalis and seawater 
reference. Left: number of the isolates from Helgoland samples, right: number of the isolates from Kiel 
samples. 
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Figure S2. Distribution of bacterial orders across the sample types and their geographic 
locations. Sample types are abbreviated as: HT: Helgoland, tunic; KT: Kiel, tunic; HW: Helgoland, 
seawater; KW: Kiel, seawater. 

 

 

 

 

 

 

Figure S3. Distribution of fungal orders across the sample types and their geographic locations. 
Sample types are abbreviated as: HT: Helgoland, tunic; KT: Kiel, tunic; HW: Helgoland, seawater; KW: 
Kiel, seawater. i.s. = incertae sedis (taxonomic placement of order uncertain). 
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Figure S4. Chemical structures of putatively identified compounds in the crude extracts of five 
selected microbial strains isolated from the tunic of C. intestinalis. Structures are given with their 
respective peak number (see Tables S6-S10). The following compounds are shown in Figure 7 in the 
original publication: 123, 126, 129, 141 and 145. 
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Figure S4. (continued) 
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Figure S4. (continued) 
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Figure S4. (continued) 
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Figure S4. (continued)
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Figure S5. FBMN of the crude extract of Pyrenochaeta sp. strain CHT58 cultivated on PDA 
medium. Putatively annotated clusters are highlighted in grey (see Table S6 for putatively annotated 
compounds). 
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Figure S6. FBMN of the crude extract of Pseudogymnoascus destructans strain CHT56 
cultivated on CAG medium. Putatively annotated clusters are highlighted in grey (see Table S7 for 
putatively annotated compounds). 
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Figure S7. FBMN of the crude extract of Penicillium sp. strain CKT35 cultivated on PDA medium. 
Putatively annotated clusters are highlighted in grey (see Table S8 for putatively annotated 
compounds). 
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Figure S8. FBMN of the crude extracts of Boeremia exigua strain CKT91 cultivated on CAG (blue 
nodes) and PDA (red nodes) media. Putatively annotated clusters are highlighted in grey (see Table 
S9 for putatively annotated compounds).
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Table S1. Parameters for MZmine-processing of UPLC-MS/MS data. The applied parameters are given for the global MN (four selected fungal strains) 
and for the selected seven crude extracts separately for each processing step. Rt = retention time in minutes. 

Processing 
step 

Parameter 

Four 
selected 
fungal 
strains 

CHT56-CAG 
(Pseudogymnoascus 

destructans) 

CHT58-PDA 
(Pyrenochaeta sp.) 

CKT35-PDA 
(Penicillium sp.) 

CKT43-GYM, 
CKT43-MB 

(Streptomyces sp.) 

CKT91-CAG, 
CKT91-PDA 
(Boeremia 

exigua) 

Mass list 

MS1 noise level 1.00E+04 1.00E+04 3.00E+04 3.00E+04 3.00E+04 3.00E+04 

MS2 noise level 5.00E+01 

Rt 2-12 3-11 3-10 2-12 1-11 2-12 

Chromatogram 
building 

Min. peak height 3.00E+04 3.00E+04 6.00E+04 6.00E+04 6.00E+04 6.00E+04 

m/z tolerance 0.05 Da or 15 ppm 

Deconvolution 

Min. peak height 3.00E+04 3.00E+04 6.00E+04 6.00E+04 6.00E+04 6.00E+04 

Peak duration 0.0-0.5 min 

Baseline level 1.00E+04 1.00E+04 3.00E+04 3.00E+04 3.00E+04 3.00E+04 

Isotope 
grouping 

m/z tolerance 0.01 Da or 10 ppm 

Rt tolerance 0.5 min  

Maximum charge 3 

Alignment 

Algorithm Join aligner 

m/z tolerance 0.01 Da or 10 ppm 

Rt tolerance 0.5 min  

Weight m/z:Rt 75/25 

Detected peaks 817 78 284 74 187 86 
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Table S2. Identification of microbial strains isolated from C. intestinalis and seawater reference in Helgoland and Kiel Fjord. Strains were named after 
their respective sample type and sampling location (CHT = C. intestinalis from Helgoland, tunic; CKT = C. intestinalis from Kiel, tunic; HW = Helgoland, seawater; 
KW = Kiel, seawater) and are given with their isolation medium as well as Genbank accession number (acc. no.). Closest three related strains are given 
according to BLAST [1] and the resulting lowest possible taxonomic classification. RG = risk group (according to TRBA 460 and TRBA 466), uncult. = uncultured, 
* = identification to genus by Ribosomal Database Project (RDP; [2]). 

Strain Medium Acc. no. Amplicon Closest related species (Blast) 
Acc. no. closest 
related species 

Lowest taxonomic classification 
(order) 

RG 

CHT2 CMN MW012283 16S 
Vibrio sp. 
Vibrio sp. 

Vibrio splendidus 

MG309537.1 
MG309367.1 
LS483022.1 

Vibrio sp. (Vibrionales) 2 

CHT3 MA MW012284 16S 

Leisingera aquimarina 
Leisingera aquimarina 

Marine alpha proteobacterium 
BBAT3 

KX218295.1 
KX218294.1 
AF365994.1 

Leisingera aquimarina 
(Rhodobacterales) 

1 

CHT5 MA MW012285 16S 
Shewanella pneumatophori 

Uncult. bacterium 6-36A 
Uncult. bacterium 5-20A 

MH169286.1 
MG952522.1 
MG952508.1 

Shewanella sp. (Alteromonadales) 1 

CHT6 MA MW012286 16S 
Vibrio sp. 
Vibrio sp. 

Vibrio gigantis 

KF188534.1 
KF188493.1 
GU194170.1 

Vibrio gigantis (Vibrionales) 1 

CHT7 MA MW012287 16S 

Ruegeria sp. 
Uncult. bacterium Woods-

Hole_a4093 
Ruegeria faecimaris 

KY513434.1 
KF799356.1 

NR_104546.1 

Ruegeria faecimaris 
(Rhodobacterales) 

1 

CHT8 MA MW012288 16S 
Ruegeria sp. 
Ruegeria sp. 

Ruegeria atlantica 

KY363633.1 
KX833139.1 
JN128252.1 

Ruegeria atlantica 
(Rhodobacterales) 

1 

CHT9 CMN MW012289 16S 
Vibrio hemicentroti 

Vibrio sp. 
Vibrio sp. 

LS482994.1 
LC416556.1 
LC416555.1 

Vibrio sp. (Vibrionales) 1 

CHT10 CMN MW012290 16S 
Kangiella sp. 
Kangiella sp. 

Kangiella sediminilitoris 

MG889588.2 
KP795388.1 
CP012418.1 

Kangiella sp. (Oceanospirillales) 1 

CHT13 WSP30 MW012291 16S 
Aurantimonas coralicida 
Aurantimonas litoralis 

Aurantimonas manganoxydans 

MH725320.1 
KR140222.1 
LC066380.1 

Aurantimonas sp. (Rhizobiales) 1 
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CHT14 WSP30 MW012292 16S 
Photobacterium damselae 
Photobacterium damselae 
Photobacterium damselae 

MG386399.1 
MH368432.1 
CP018297.1 

Photobacterium damselae 
(Vibrionales) 

2 

CHT15 TSB3+10 MW012293 16S 
Bacillus sp. 
Bacillus sp. 

Bacillus altitudinis 

MG970354.1 
MG970353.1 
MG970351.1 

Bacillus sp. (Bacillales) 1 

CHT16 MA MW012294 16S 
Uncult. Vibrio sp. 
Uncult. Vibrio sp. 
Vibrio anguillarum 

MG554532.1 
MG554529.1 
CP022468.1 

Vibrio sp. (Vibrionales) 2 

CHT17 MA MW012295 16S 
Uncult. bacterium JS10_F09 

Vibrio chagasii 
Vibrio chagasii 

KT318724.1 
LN832958.1 
LN832949.1 

Vibrio sp. (Vibrionales) 1 

CHT18 TSB3+10 MW012296 16S 
Brevundimonas vesiculari 
Brevundimonas vesiculari 
Brevundimonas nasdae 

MG819328.1 
MG685726.1 
MG322225.1 

Brevundimonas sp. 
(Caulobacterales) 

2 

CHT22a CMN MW012297 16S 
Marixanthomonas ophiurae 

Uncult. bacterium denovo39636 
Uncult. bacterium denovo37181 

MK215855.1 
KU635267.1 
KU633651.1 

Marixanthomonas ophiurae 
(Flavobacteriales) 

1 

CHT22b MA MW012298 16S 
Marine bacterium I4017  

Uncult. Vibrio sp. MUM_Aug34 
Vibrio pectenicida 

KJ469389.1 
KC108888.1 

NR_118241.1 
Vibrio sp. (Vibrionales) 1 

CHT23 MA MW012299 16S 
Amphritea sp. 

Bacterium GAA07 
Amphritea spongicola 

KP843673.1 
KP684316.1 

NR_135881.1 

Amphritea spongicola 
(Oceanospirillales) 

1 

CHT25 TSB3+10 MW012300 16S 
Pseudorhodobacter aquimaris  

Rhodobacter sp.  
Rhodobacter sp. 

NR_108680.1 
EU979476.1 
EU979477.1 

Pseudorhodobacter aquimaris 
(Rhodobacterales) 

1 

CHT27 WSP30 MW012301 16S 
Bacillus velezensis 
Bacillus velezensis 
Bacillus velezensis 

MG970354.1 
MG970353.1 
MG970351.1 

Bacillus sp. (Bacillales) 1 

CHT28 WSP30 MW012302 16S 

Leisingera aquimarina 
Leisingera aquimarina 

Marine alpha proteobacterium 
BBAT3 

KX218295.1 
KX218294.1 
AF365994.1 

Leisingera aquimarina 
(Rhodobacterales) 

1 
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CHT29 TSB3+10 MW012303 16S 
Arenibacter sp. 
Arenibacter sp. 

Arenibacter troitsensis 

KY810503.1 
HG529986.1 
JQ898112.1 

Arenibacter sp. (Flavobacteriales) 1 

CHT30 WSP30 MW012304 16S 
Micrococcus yunnanensis 

Micrococcus aloeverae 
Micrococcus aloeverae 

MG649988.1 
MG028596.1 
MG561895.1 

Micrococcus sp. (Micrococcales) 1 

CHT32 PDA MW017476 ITS 
Fusarium venenatum 
Fusarium venenatum 
Fusarium venenatum 

MH681155.1 
MH681152.1 
NR_156290.1 

Fusarium sp. (Hypocreales) 2 

CHT33 PDA MW017477 ITS 
Fusarium venenatum 
Fusarium venenatum 
Fusarium venenatum 

MH681155.1 
MH681152.1 
NR_156290.1 

Fusarium sp. (Hypocreales) 2 

CHT34 WSP30 MW012305 16S 
Vibrio sp. 
Vibrio sp. 

Vibrio parahaemolyticus 

MK167378.1 
MH997741.1 
MK053885.1 

Vibrio sp. (Vibrionales) 2 

CHT35 WSP30 MW017478 ITS 
Cladosporium sp. 

Cladosporium cf. cladosporioides 
Cladosporium cf. cladosporioides 

MF510502.1 
MH399546.1 
MH399542.1 

Cladosporium sp. (Capnodiales) 1 

CHT37 WSP30 
MW017479, 
MW012374, 
MW017496 

ITS,  
18S,  
28S 

Emericellopsis maritima 
Acremonium breve 

Acremonium persicinum, 
Emericellopsis pallida 
Emericellopsis pallida 

Emericellopsis maritima, 
Acremonium sp. 

Emericellopsis alkalina 
Emericellopsis alkalina 
Emericellopsis alkalina 

MH871998.1 
MH859569.1 
MG813195.1, 
MH443384.1 
NG_062927.1 
NG_062926.1, 
KC987248.1 
KC987247.1 
KC987234.1 

Emericellopsis maritima 
(Hypocreales) 

1 

CHT39 MA MW012306 16S 
Vibrio sp. 

Vibrio anguillarum 
Vibrio anguillarum 

MG788349.1 
CP023433.1 
CP023293.1 

Vibrio sp. (Vibrionales) 2 

CHT40 WSP30 MW012375 18S 

Pseudochaetosphaeronema 
larense 

Pseudochaetosphaeronema 
martinelli 

Didymosphaeria variabile 

NG_061147.1 
NG_062412.1 
NG_064914.1 

Pseudochaetosphaeronema 
larense (Pleosporales) 

1 
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CHT41 WSP30 MW012307 16S 
Mycolicibacterium monacense 

Mycolicibacterium doricum 
Mycolicibacterium aichiense 

AP022617.1 
AP022605.1 
AP022561.1 

Mycolicibacterium sp. 
(Corynebacteriales) 

1 

CHT42 WSP30 MW012308 16S 
Ruegeria lacuscaerulensis 

Ruegeria sp. 
Ruegeria sp. 

MH283809.1 
MG819700.1 
MG996714.1 

Ruegeria sp. (Rhodobacterales) 1 

CHT43 WSP30 MW012309 16S 
Primorskyibacter sp. 
Thalassococcus sp. 

Thalassococcus lentus 

KY086433.2 
MG889583.2 
NR_109663.1 

Primorskyibacter sp. 
(Rhodobacterales) 

1 

CHT46 MA MW012310 16S 
Litoreibacter albidus 

Litoreibacter sp. 
Litoreibacter ascidiaceicola 

KX961718.1 
KJ786461.1 

NR_134068.1 

Litoreibacter sp. 
(Rhodobacterales) 

1 

CHT47 MA MW012311 16S 
Roseovarius arcticus 
Roseovarius arcticus 

Sulfitobacter sp. 

MK617616.1 
NR_169499.1 
FJ889642.1 

Roseovarius arcticus 
(Rhodobacterales) 

1 

CHT48 MA MW012312 16S 
Vibrio rumoiensis 

Vibrio sp. 
Vibrio sp. 

AP018685.1 
MF537054.1 
MF537053.1 

Vibrio sp. (Vibrionales) 1 

CHT49 CMN MW012313 16S 
Ruegeria atlantica 

Ruegeria sp. 
Bacterium CSR-55 

HE584803.1 
LC053425.1 
KJ018058.1 

Ruegeria atlantica 
(Rhodobacterales) 

1 

CHT50 TSB3+10 
MW017480, 
MW012376, 
MW017497 

ITS, 
18S,  
28S 

Uncult. fungus C2_EH11 
Melanized limestone ascomycete 

CR-2004 
Cladophialophora chaetospira, 

Cladophialophora boppii 
Cladophialophora boppii 

Fonsecaea nubica, 
Phialophora verrucosa 
Phialophora verrucosa 
Phialophora verrucosa 

JX042985.1 
AY559331.1 
EU035403.1, 
NG_062637.1 
AJ232946.1 

GU197483.1, 
AB550778.1 
AB550777.1 
AB550776.1 

Herpotrichiellaceae unclassified 
(Chaetothyriales) 

2 

CHT51 CMN MW012314 16S 
Vibrio alginolyticus 

Vibrio sp. 
Vibrio sp. 

CP017916.1 
KX453258.1 
KX453256.1 

Vibrio sp. (Vibrionales) 2 
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CHT52 TSB3+10 MW012315 16S 
Arenibacter sp. 
Arenibacter sp. 

Arenibacter latericius 

KY810503.1 
HG529986.1 
NR_024893.1 

Arenibacter sp. (Flavobacteriales) 2 

CHT53 WSP30 MW012316 16S 

Ochrobactrum sp. 
Ochrobactrum sp. 

Ochrobactrum 
pseudogrignonense 

KX822681.1 
KJ777141.1 
GU991856.1 

Ochrobactrum 
pseudogrignonense (Rhizobiales) 

1 

CHT54 WSP30 MW012317 16S 
Bacillus amyloliquefaciens 
Bacillus amyloliquefaciens 

Bacillus sp. 

MH910761.1 
MH910713.1 
MG309364.1 

Bacillus sp. (Bacillales) 1 

CHT55 WSP30 MW012318 16S 
Ochrobactrum sp. 
Ochrobactrum sp. 

Ochrobactrum grignonense 

KX822681.1 
KJ777141.1 
FJ950543.1 

Ochrobactrum grignonense 
(Rhizobiales) 

1 

CHT56 PDA MW012377 18S 
Pseudogymnoascus destructans 

Geomyces destructans 
Geomyces destructans 

KF866376.1 
GU350433.1 
GQ489025.1 

Pseudogymnoascus destructans 
(Leotiomycetes incertae sedis) 

1 

CHT58 PDA MW017481 ITS 
Pyrenochaeta unguis-hominis 
Pyrenochaeta unguis-hominis 
Pyrenochaeta unguis-hominis 

KP794081.1 
KP132548.1 
KP132547.1 

Pyrenochaeta sp. (Pleosporales) 1 

CKT1 MA MW012319 16S 
Pseudomonas sp. 
Pseudomonas sp. 

Pseudomonas anguilliseptica 

NR_042607.1 
NR_042451.1 
NR_044569.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT2* MA MW012320 16S 
Litoreibacter janthinus 

Thalassobacter sp. 
Roseovarius sp. 

NR_112983.1 
FR821226.1 
FJ425225.1 

Litoreibacter sp. 
(Rhodobacterales) 

1 

CKT3* MA MW012321 16S 
Pelagicola litoralis 
Roseobacter sp.  

Uncult. bacterium SF-Oct-32 

NR_044158.1 
EU195951.1 
HQ225294.1 

Pelagicola sp. (Rhodobacterales) 1 

CKT4 MA MW012322 16S 
Neptunomonas concharum 
Uncult. bacterium Q31008 

Uncult. bacterium Stn3_Sep_26 

NR_118152.1 
JX193435.1 
KX014554.1 

Neptunomonas concharum 
(Oceanospirillales) 

1 

CKT5 MA MW012323 16S 
Pseudomonas peli 
Pseudomonas sp. 
Pseudomonas sp. 

MF077147.1 
MG786374.1 
MG758017.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 
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CKT6 MA MW012324 16S 
Flaviramulus sp. 
Flaviramulus sp. 

Flaviramulus ichthyoenteri 

KC756867.1 
JX431889.1 

NR_118464.1 

Flaviramulus ichthyoenteri 
(Flavobacteriales) 

1 

CKT7 MA MW012325 16S 
Vibrio aestuarianus 
Vibrio aestuarianus 
Vibrio aestuarianus 

AJ845015.1 
AJ845014.1 
AJ845012.1 

Vibrio aestuarianus (Vibrionales) 1 

CKT8 CMB MW012326 16S 
Pseudomonas peli 
Pseudomonas sp. 
Pseudomonas sp. 

MF077147.1 
MG786374.1 
MG758017.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT10 CMB MW012327 16S 

Pseudomonas guineae 
Pseudomonas peli 

Pseudomonas 
cuatrocienegasensis 

MH392634.1 
KJ643969.1 
MF077147.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT11 CMB MW012328 16S 
Vibrio aestuarianus  

Vibrio sp. 
Vibrio sp. 

NR_113780.1 
HQ449463.1 
HM012774.1 

Vibrio aestuarianus (Vibrionales) 1 

CKT12 CMB MW012329 16S 
Pseudomonas peli 
Pseudomonas sp. 
Pseudomonas sp. 

MF077147.1 
MG786374.1 
MG758017.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT14 CMN MW012330 16S 
Pseudomonas sp. 

Uncult. bacterium HJ-38 
Pseudomonas peli 

MH392634.1 
KJ643969.1 
MF077147.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT15 TSB3+10 MW012331 16S 
Pseudomonas sp. 

Uncult. bacterium HJ-38 
Pseudomonas peli 

MH392634.1 
KJ643969.1 
MF077147.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT16 TSB3+10 MW012332 16S 

Hydrogenophaga sp. 
Hydrogenophaga crassostreae 
Uncult. Hydrogenophaga sp. 

TST2N32 

KU198320.2 
CP017476.1 
KX119551.1 

Hydrogenophaga crassostreae 
(Burkholderiales) 

1 

CKT17 TSB3+10 MW012333 16S 
Bacterium BW3PhG33 

Lysobacter sp. 
Lysobacter spongiicola 

KC012871.1 
GU217698.1 
NR_041587.1 

Lysobacter spongiicola 
(Xanthomonadales) 

1 

CKT18 TSB3+10 MW012334 16S 
Vibrio aestuarianus  

Vibrio sp. 
Vibrio sp. 

NR_113780.1 
HQ449463.1 
HM012774.1 

Vibrio aestuarianus (Vibrionales) 1 
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CKT19 TSB3+10 MW012335 16S 
Vibrio anguillarum 
Vibrio anguillarum 
Vibrio anguillarum 

MG264177.1 
CP023310.1 
CP023054.1 

Vibrio anguillarum (Vibrionales) 2 

CKT20 WSP30 MW012336 16S 
Bacillus pumilus 
Bacillus pumilus 
Bacillus pumilus 

MF077157.1 
MH045994.1 
MH045860.1 

Bacillus sp. (Bacillales) 1 

CKT21 CMN MW012337 16S 
Pseudomonas guineae 

Pseudomonas peli 
Pseudomonas glareae 

NR_042607.1 
NR_042451.1 
NR_145562.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT22 CMN MW012338 16S 

Uncult. Roseobacter sp. 
C139300178 

Uncult. Roseobacter sp. 
C139300006 

Phaeobacter arcticus 

JX528567.1 
JX528395.1 

NR_043888.1 

Phaeobacter arcticus 
(Rhodobacterales) 

1 

CKT23 CMN MW012339 16S 
Shewanella sp. 
Shewanella sp. 

Shewanella colwelliana 

MF045124.1 
MF045122.1 
KX756553.1 

Shewanella sp. (Alteromonadales) 1 

CKT24 CMN MW012340 16S 
Arenibacter sp. 
Arenibacter sp. 

Arenibacter echinorum 

KU948154.1 
KF273918.1 
KF911336.1 

Arenibacter echinorum 
(Flavobacteriales) 

1 

CKT25 TSB3+10 MW012341 16S 
Vibrio aestuarianus  

Vibrio sp. 
Vibrio sp. 

NR_113780.1 
HQ449463.1 
HM012774.1 

Vibrio aestuarianus (Vibrionales) 1 

CKT28 WSP30 MW017482 ITS 
Cyphellophora reptans 
Cyphellophora reptans 

Phialophora reptans 

NR_121346.1 
EU514699.1 
AB190380.1 

Cyphellophora reptans 
(Chaetothyriales) 

1 

CKT29 MA MW012342 16S 
Marinobacter sp.  

Uncult. bacterium AB-4 
Marinobacter litoralis 

KY770365.1 
KX651417.1 
KY926903.1 

Marinobacter litoralis 
(Alteromonadales) 

1 

CKT30* MA MW012343 16S 

Uncult. Bacteroidetes bacterium 
D 

Salegentibacter sp. 
Salinimicrobium marinum 

KC169760.1 
AY576719.1 
GQ866113.1 

Salinimicrobium sp. 
(Flavobacteriales) 

1 

CKT32 TSB3+10 MW012344 16S 
Pseudomonas sp. 
Pseudomonas sp. 
Pseudomonas peli 

MH815093.1 
MH814721.1 
MG581693.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 
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CKT33 CMN MW012345 16S 
Vibrio splendidus 

Vibrio sp.  
Vibrio anguillarum 

MH010050.1 
MG788349.1 
CP023433.1 

Vibrio sp. (Vibrionales) 2 

CKT34 CMN MW012346 16S 
Arthrobacter sp. 
Arthrobacter sp. 

Arthrobacter citreus 

MH018914.1 
JN006271.1 
GQ149484.1 

Arthrobacter sp. (Micrococcales) 1 

CKT35 WSP30 MW017483 ITS 
Penicillium bialowiezense 

Penicillium brevicompactum 
Penicillium biourgeianum 

MH854996.1 
MH481701.1 
KX067821.1 

Penicillium sp. (Eurotiales) 1 

CKT36 WSP30 MW012347 16S 
Bacillus pumilus 
Bacillus pumilus  
Bacillus pumilus 

MF077157.1 
MH045994.1 
MH045860.1 

Bacillus sp. (Bacillales) 1 

CKT37 TSB3+10 MW012348 16S 
Vibrio aestuarianus 
Vibrio aestuarianus 
Vibrio aestuarianus 

AJ845015.1 
AJ845014.1 
AJ845012.1 

Vibrio aestuarianus (Vibrionales) 1 

CKT38 TSB3+10 MW012349 16S 
Bacillus mycoides 

Bacillus sp. 
Bacillus sp. 

MH169305.1 
MF948894.1 
MH096031.1 

Bacillus sp. (Bacillales) 1 

CKT39 CMN MW012350 16S 
Streptomyces sp. 
Streptomyces sp. 

Streptomyces badius 

MK292047.1 
MK271721.1 
MK156399.1 

Streptomyces sp. 
(Streptomycetales) 

1 

CKT41 WSP30 MW012351 16S 
Bacillus amyloliquefaciens 

Bacillus halotolerans 
Bacillus amyloliquefaciens 

MH236415.1 
MH236414.1 
MH236413.1 

Bacillus sp. (Bacillales) 1 

CKT43 WSP30 MW012352 16S 
Streptomyces sampsonii 

Streptomyces sp. 
Streptomyces sp. 

MK878388.1 
MK129408.1 
MK129407.1 

Streptomyces sp. 
(Streptomycetales) 

1 

CKT48 WSP30 MW012353 16S 
Bacillus pumilus 
Bacillus pumilus  
Bacillus pumilus 

MF077157.1 
MH045994.1 
MH045860.1 

Bacillus sp. (Bacillales) 1 

CKT49 WSP30 MW017484 ITS 
Penicillium brasilianum 
Penicillium brasilianum 
Penicillium brasilianum 

KY469061.1 
KY469042.1 
LT558939.1 

Penicillium brasilianum 
(Eurotiales) 

1 

CKT50 WSP30 MW012354 16S 
Uncult. bacterium f6h4 
Uncult. bacterium f4s2 
Yokenella regensburgei 

DQ068814.1 
DQ068792.1 
KJ397957.1 

Enterobacteriaceae unclassified 
(Enterobacterales) 

2 
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CKT51-I WSP30 MW012355 16S 
Shewanella putrefaciens 
Shewanella hafniensis 

Shewanella putrefaciens 

CP028435.1 
MF612155.1 
KX271690.1 

Shewanella sp. (Alteromonadales) 2 

CKT51-II WSP30 MW012356 16S 
Bacillus sp. 
Bacillus sp. 

Bacillus megaterium 

MF418041.1 
MF418038.1 
MH179091.1 

Bacillus sp. (Bacillales) 1 

CKT52 MA MW012357 16S 
Bizionia sp. 
Bizionia sp. 

Bizionia fulviae 

KX066849.1 
HF912806.2 

NR_137258.1 
Bizionia fulviae (Flavobacteriales) 1 

CKT54 TSB3+10 MW017485 ITS 
Fusarium sp. 

Fusarium oxysporum 
Fusarium oxysporum 

KU556574.1 
HQ603748.1 
KY949601.1 

Fusarium sp. (Hypocreales) 2 

CKT55 WSP30 MW017486 ITS 
Boeremia exigua 
Boeremia exigua 
Boeremia exigua 

KY949620.1 
KY419536.1 
MF925487.1 

Boeremia exigua (Pleosporales) 1 

CKT56 MA MW012358 16S 
Ruegeria sp. 

Uncult. bacterium APY15 
Ruegeria atlantica 

MH023307.1 
JQ347396.1 
HE584803.1 

Ruegeria atlantica 
(Rhodobacterales) 

1 

CKT57 MA MW012359 16S 
Pseudomonas sp. 

Uncult. bacterium HJ-38 
Pseudomonas peli 

MH392634.1 
KJ643969.1 
MF077147.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT58 CMN MW017487 ITS 
Penicillium bialowiezense 

Fungal sp. PdlM07-12 
Penicillium biourgeianum 

MH854996.1 
MG923832.1 
KX067821.1 

Penicillium sp. (Eurotiales) 1 

CKT59 CMN MW012360 16S 
Pseudomonas sp. 

Uncult. bacterium HJ-38 
Pseudomonas peli 

MH392634.1 
KJ643969.1 
MF077147.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT60 CMN MW012361 16S 

Kiloniella laminariae  
Kiloniella sp. 

Uncult. alpha proteobacterium 
MERTZ_0CM_263 

NR_042646.1 
KM101108.2 
AF425762.1 

Kiloniella laminariae (Kiloniellales) 1 

CKT61 CMB MW012362 16S 
Pseudomonas guineae 

Pseudomonas peli 
Pseudomonas glareae 

NR_042607.1 
NR_042451.1 
NR_145562.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 
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CKT62 CMB MW012363 16S 
Vibrio aestuarianus  

Vibrio sp. 
Vibrio sp. 

NR_113780.1 
HQ449463.1 
HM012774.1 

Vibrio aestuarianus (Vibrionales) 1 

CKT65 MA MW012364 16S 

Salegentibacter sp.  
Uncult. bacterium 

BF2009_Sep_21m_E5 
Salegentibacter salarius 

FR772274.1 
JX864700.1 

NR_044244.1 

Salegentibacter sp. 
(Flavobacteriales) 

1 

CKT67 TSB3+10 MW012365 16S 
Serinicoccus sp. 
Serinicoccus sp. 

Serinicoccus chungangensis 

CP014989.1 
DQ985074.1 
NR_117788.1 

Serinicoccus sp. (Micrococcales) 1 

CKT68 WSP30 MW012366 16S 
Paracoccus aquimaris 

Paracoccus sp. 
Paracoccus aquimaris 

NR_148324.1 
LC094992.1 
KP716798.1 

Paracoccus sp. (Rhodobacterales) 2 

CKT74 CMB MW012367 16S 
Pseudomonas sp. 

Uncult. bacterium HJ-38 
Pseudomonas peli 

MH392634.1 
KJ643969.1 
MF077147.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 

CKT75 CMN MW012368 16S 
Mycobacterium sp. 
Mycobacterium sp. 

Mycobacterium lutetiense 

MG835594.1 
MG835593.1 
NR_151953.1 

Mycobacterium sp. 
(Corynebacteriales) 

2 

CKT76 TSB3+10 MW012369 16S 
Vibrio aestuarianus  

Vibrio sp. 
Vibrio sp. 

NR_113780.1 
HQ449463.1 
HM012774.1 

Vibrio sp. (Vibrionales) 1 

CKT77 CMN MW012370 16S 
Streptomyces sp. 
Streptomyces sp. 

Streptomyces badius 

MK292047.1 
MK271721.1 
MK156399.1 

Streptomyces sp. 
(Streptomycetales) 

1 

CKT78 CMB MW017488 ITS 
Penicillium crustosum 
Penicillium crustosum 
Penicillium crustosum 

MG975627.1 
MG596635.1 
KT876714.1 

Penicillium crustosum (Eurotiales) 1 

CKT79 CMB MW012378 18S 
Pseudallescheria ellipsoidea 
Pseudallescheria ellipsoidea 

Pseudallescheria boydii 

NG_063099.1 
U43911.1 
U43915.1 

Pseudallescheria sp. 
(Microascales) 

2 

CKT80 MA MW012371 16S 
Streptomyces sp. 
Streptomyces sp. 

Streptomyces badius 

MK292047.1 
MK271721.1 
MK156399.1 

Streptomyces sp. 
(Streptomycetales) 

1 
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CKT81 CMB MW017489 ITS 
Pithomyces chartarum 

Fungal sp. strain A210A 
Pithomyces chartarum 

MH860227.1 
KU837820.1 
KX664331.1 

Pithomyces chartarum 
(Pleosporales) 

1 

CKT84 CMN MW017490 ITS 
Fusarium graminearum 
Fusarium graminearum 
Fusarium graminearum 

MK212898.1 
MK212894.1 
MK212893.1 

Fusarium sp. (Hypocreales) 1 

CKT85 PDA MW017491 ITS 
Cadophora luteo-olivacea 
Cadophora luteo-olivacea 
Cadophora luteo-olivacea 

MH859460.1 
MG944391.1 
MG944390.1 

Cadophora luteo-olivacea 
(Helotiales) 

1 

CKT86 TSB3+10 MW017492 ITS 
Plectosphaerella cucumerina 
Plectosphaerella cucumerina 
Plectosphaerella cucumerina 

KT596812.1 
KU204705.1 
MH791266.1 

Plectosphaerella cucumerina 
(Glomerellales) 

1 

CKT90 PDA MW017493 ITS 
Pichia sp. 

Uncult. ascomycete BF-OTU252 
Wickerhamomyces onychis 

EU877913.1 
AM901934.1 
KT207216.1 

Wickerhamomyces sp. 
(Saccharomycetales) 

1 

CKT91 WSP30 MW017494 ITS 
Phoma sp. 
Phoma sp. 

Boeremia exigua 

MH550515.1 
MH550514.1 
MH859059.1 

Boeremia exigua (Pleosporales) 1 

HW2 MA MW013337 16S 
Vibrio owensii 
Vibrio owensii 
Vibrio owensii 

LC369696.1 
MG896198.1 
MG896189.1 

Vibrio sp. (Vibrionales) 1 

HW3 MA MW013338 16S 
Vibrio splendidus  

Vibrio sp. 
Vibrio anguillarum 

MH010050.1 
MG788349.1 
CP023433.1 

Vibrio sp. (Vibrionales) 2 

HW4 MA MW013339 16S 
Vibrio comitans 
Vibrio comitans 
Vibrio comitans 

KR347260.1 
AB681692.1 
DQ922917.1 

Vibrio comitans (Vibrionales) 1 

HW5 MA MW013340 16S 

Pseudoalteromonas 
carrageenovora 

Pseudoalteromonas 
carrageenovora 

Pseudoalteromonas arctica 

LT965929.1 
LT965928.1 
MG681184.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 

HW6 MA MW013341 16S 
Vibrio alginolyticus 

Vibrio sp. 
Vibrio sp. 

CP017916.1 
KX453212.1 
KX453210.1 

Vibrio sp. (Vibrionales) 2 
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HW8 MA MW013342 16S 
Vibrio sp. 

Vibrio breoganii 
Vibrio sp. 

MH807583.1 
CP016177.1 
KX197382.1 

Vibrio sp. (Vibrionales) 1 

HW9 MA MW013343 16S 
Marine bacterium I4017  

Vibrio pectenicida 
Vibrio pectenicida 

KJ469389.1 
NR_118241.1 
NR_029344.1 

Vibrio pectenicida (Vibrionales) 1 

HW10 TSB3+10 MW013344 16S 
Kocuria sp. 

Kocuria palustris 
Kocuria palustris 

KY296995.1 
MF319775.1 
KY933468.1 

Kocuria palustris (Micrococcales) 1 

HW11 TSB3+10 MW013345 16S 
Knoellia sp. 

Knoellia subterranea 
Knoellia sp. 

DQ812538.1 
NR_028932.1 
KP191088.1 

Knoellia subterranea 
(Micrococcales) 

1 

HW12 TSB3+10 MW013346 16S 
Paracoccus sp. 

Uncult. bacterium isolate RA2-73 
Paracoccus alkenifer 

KU163256.1 
KT834758.1 
LT221244.1 

Paracoccus alkenifer 
(Rhodobacterales) 

1 

HW13 TSB3+10 MW013347 16S 
Uncult. Vibrio 
Uncult. Vibrio 
Vibrio owensii 

MG554543.1 
MG554505.1 
CP025797.1 

Vibrio sp. (Vibrionales) 1 

HW14 CMN MW013348 16S 
Vibrio splendidus  
Cellulophaga sp. 
Cellulophaga sp. 

CP031055.1 
JX435328.1 
JX435323.1 

Vibrio sp. (Vibrionales) 2 

HW15 CMN MW013349 16S 

Chryseomicrobium imtechense 
Chryseomicrobium 

palamuruense 
Chryseomicrobium sp. 

MH643668.1 
MG461542.1 
KX889925.1 

Chryseomicrobium sp. (Bacillales) 1 

HW16 CMN MW013350 16S 

Uncult. bacterium 
Shelves_A_113 

Uncult. bacterium Shelves_A_62 
Corynebacterium casei 

MF092438.1 
MF092420.1 
KP790025.1 

Corynebacterium casei 
(Corynebacteriales) 

1 

HW18 CMN MW013351 16S 
Cellulophaga fucicola 
Cellulophaga fucicola 

Cellulophaga sp. 

KX453201.1 
KX453191.1 
LN881203.1 

Cellulophaga fucicola 
(Flavobacteriales) 

1 

HW23 WSP30 MW013352 16S 
Idiomarina sp. 
Idiomarina sp. 

Idiomarina loihiensis 

EF409425.1 
EF409424.1 
KM407721.1 

Idiomarina loihiensis 
(Alteromonadales) 

1 
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HW25 TSB3+10 MW013353 16S 
Staphylococcus pasteuri 
Staphylococcus pasteuri 
Staphylococcus pasteuri 

MG815139.1 
MG757632.1 
MG680735.1 

Staphylococcus pasteuri 
(Bacillales) 

2 

HW27 MA MW013354 16S 
Vibrio ostreicida 
Vibrio ostreicida 
Vibrio ostreicida 

NR_133887.1 
EU652412.2 
KX130913.1 

Vibrio sp. (Vibrionales) 1 

HW28 WSP30 MW013355 16S 
Epibacterium mobile 
Epibacterium mobile 

Bacterium strain InAD-034 

MK493584.1 
MK493561.1 
MF401241.1 

Rhodobacteraceae unclassified 
(Rhodobacterales) 

1 

HW30 TSB3+10 MW012380 ITS 
Cryptococcus magnus 

Cryptococcus sp. 
Cryptococcus magnus 

JQ425367.1 
HQ426594.1 
EU871517.1 

Cryptococcus magnus 
(Filobasidiales) 

1 

HW32 TSB3+10 MW013356 16S 
Sphingomonas sp. 

Uncult. bacterium YD200-16 
Sphingomonas aquatilis 

KJ606800.1 
JX441481.1 

NR_024997.1 

Sphingomonas sp. 
(Sphingomonadales) 

1 

HW33 TSB3+10 MW013357 16S 
Staphylococcus capitis 
Staphylococcus capitis 

Uncult. bacterium 16s_M.Zamir 

MF033474.1 
MG557816.1 
MG461572.1 

Staphylococcus sp. (Bacillales) 1 

HW35 CMN MW013358 16S 
Palleronia abyssalis 
Palleronia abyssalis 
Palleronia abyssalis 

KJ638255.1 
MG383388.1 
KJ638254.1 

Palleronia abyssalis 
(Rhodobacterales) 

1 

HW36 CMN MW013359 16S 
Erythrobacter sp. 

Erythrobacter citreus 
Erythrobacter citreus 

KT185356.1 
AB012062.1 
LN846110.1 

Erythrobacter sp. 
(Sphingomonadales) 

1 

HW37 TSB3+10 MW013360 16S 
Vibrio aestuarianus  

Vibrio sp. 
Vibrio sp. 

NR_113780.1 
HQ449463.1 
HM012774.1 

Vibrio aestuarianus (Vibrionales) 1 

HW38 PDA 
MW012381, 
MW014884 

ITS,  
18S 

Uncult. fungus C2_EH11 
Melanized limestone ascomycete 

CR-2004 
Cladophialophora chaetospira, 

Cladophialophora boppii 
Exophiala lecanii-corni 

Fonsecaea nubica 

JX042985.1 
HM239803.1 
EU035403.1, 
NG_062637.1 
CP034379.1 
GU197483.1 

Herpotrichiellaceae unclassified 
(Chaetothyriales) 

2 
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HW40 WSP30 
MW012382, 
MW014885, 
MW017498 

ITS,  
18S,  
28S 

Capnodiales sp. 
Capnodiales sp. 

Extremus antarcticus, 
Capnodiales sp. CCFEE 5271 
Capnodiales sp. CCFEE 5389 
Extremus antarcticus CCFEE 

451, 
Saxophila tyrrhenica 
Saxophila tyrrhenica 

Capnodiales sp. CCFEE 5551 

KC315866.1 
GU250338.1 

NG_064939.1, 
KC315866.1 
GU250338.1 

NG_064939.1, 
NG_059571.1 
KR781051.1 
KC315879.1 

Capnodiales unclassified 1 

HW41 TSB3+10 MW013361 16S 
Methylobacterium sp. 
Methylobacterium sp. 

Methylobacterium oryzae 

FN868948.1 
MG807376.1 
MF692767.1 

Methylobacterium sp. 
(Rhizobiales) 

1 

HW42 TSB3+10 MW013362 16S 
Vibrio owensii 

Vibrio campbellii  
Vibrio sp. 

MG896198.1 
CP026321.1 
KY655411.1 

Vibrio sp. (Vibrionales) 1 

HW43 TSB3+10 MW013363 16S 

Rhodococcus cerastii 
Unidentified microorganism 

edSeq16_20-D3 
Unidentified microorganism 

edSeq14_4-D1 

MG645219.1 
MG271100.1 
MG270621.1 

Rhodococcus sp. 
(Corynebacteriales) 

1 

HW44 PDA 
MW012383, 
MW014886, 
MW017499 

ITS,  
18S,  
28S 

Uncult. fungus C2_EH11 
Melanized limestone ascomycete 

CR-2004 
Cladophialophora chaetospira, 

Cladophialophora boppii 
Cladophialophora boppii 

Fonsecaea nubica, 
Phialophora verrucosa 
Phialophora verrucosa 
Phialophora verrucosa 

JX042985.1 
AY559331.1 
EU035403.1, 
NG_062637.1 
AJ232946.1 

GU197483.1, 
AB550778.1 
AB550777.1 
AB550776.1 

Herpotrichiellaceae unclassified 
(Chaetothyriales) 

2 

HW45 PDA MW013364 16S 
Methylobacterium sp. 
Methylobacterium sp. 

Methylobacterium oryzae 

KP128697.1 
KF441619.1 
MF692767.1 

Methylobacterium sp. 
(Rhizobiales) 

1 
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HW47 CMN MW012384 ITS 
Purpureocillium lilacinum 
Purpureocillium lilacinum 
Purpureocillium lilacinum 

MH865347.1 
MH865301.1 
MH865154.1 

Purpureocillium lilacinum 
(Hypocreales) 

2 

HW48 CMN MW013365 16S 
Uncult. bacterium A1_27 
Uncult. bacterium A1_27  
Psychrobacter glacincola 

HG795730.1 
HG795728.1 
KU579265.1 

Psychrobacter sp. 
(Pseudomonadales) 

1 

KW1 MA MW013366 16S 
Psychrobacter sp. 
Psychrobacter sp. 

Psychrobacter maritimus 

MF537176.1 
MF537175.1 
MH368410.1 

Psychrobacter sp. 
(Pseudomonadales) 

1 

KW2 MA MW013367 16S 
Pseudoalteromonas tunicata 
Pseudoalteromonas tunicata 

Pseudoalteromonas sp. 

KY319053.1 
CP011032.1 
KX755364.1 

Pseudoalteromonas tunicata 
(Alteromonadales) 

1 

KW3 MA MW013368 16S 
Shewanella sp. 
Shewanella sp. 

Shewanella colwelliana 

MF594130.1 
MF045123.1 
KX756553.1 

Shewanella colwelliana 
(Alteromonadales) 

1 

KW4 MA MW013369 16S 
Pseudoalteromonas tunicata 
Pseudoalteromonas tunicata 

Pseudoalteromonas sp. 

KY319053.1 
CP011032.1 
KX755364.1 

Pseudoalteromonas tunicata 
(Alteromonadales) 

1 

KW5 MA MW013370 16S 
Pseudoalteromonas sp.  
Pseudoalteromonas sp.  

Pseudoalteromonas ulvae 

KU647930.1 
MK743964.1 
KF472191.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 

KW6 MA MW013371 16S 
Lentibacter sp. strain HYO3 

Uncult. bacterium SEM1C041 
Lentibacter algarum 

KX755376.1 
KJ094194.1 

NR_108333.1 

Lentibacter algarum 
(Rhodobacterales) 

1 

KW7 MA MW013372 16S 

Pseudoalteromonas 
carrageenovora 

Pseudoalteromonas sp. 
Pseudoalteromonas sp. 

MH362718.1 
MH333259.1 
MF401566.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 

KW8 MA MW013373 16S 
Psychrobacter glaciei 

Psychrobacter fjordensis  
Psychrobacter cryohalolentis 

NR_148850.1 
NR_148330.1 
NR_075055.1 

Psychrobacter sp. 
(Pseudomonadales) 

2 

KW9* MA MW013374 16S 

Uncult. Flavobacteriaceae 
bacterium C114Chl024 

Mesonia algae 
Mesonia algae 

JX525404.1 
LT601221.2 
LT601219.2 

Mesonia sp. (Flavobacteriales) 1 
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KW10 MA MW013375 16S 

Vibrio anguillarum 
Uncult. bacterium 2010ECS-

StA#54 
Uncult. bacterium 
SanDiego_a6617 

CP011460.1 
KM471344.1 
KF799860.1 

Vibrio anguillarum (Vibrionales) 2 

KW11* CMB MW013376 16S 
Cobetia marina 
Halomonas sp. 

Cobetia amphilecti 

MH169273.1 
CP028367.1 
KX418494.1 

Cobetia sp. (Oceanospirillales) 1 

KW12 CMB MW013377 16S 
Pseudoalteromonas tunicata 
Pseudoalteromonas tunicata 

Pseudoalteromonas sp. 

KY319053.1 
CP011032.1 
KX755364.1 

Pseudoalteromonas tunicata 
(Alteromonadales) 

1 

KW13 CMB MW013378 16S 
Erythrobacter sp. 
Erythrobacter sp. 

Erythrobacter vulgaris 

MG953322.1 
MG833278.1 
LK391640.1 

Erythrobacter sp. 
(Sphingomonadales) 

1 

KW14 CMB MW013379 16S 
Arthrobacter sp.  

Glutamicibacter protophormiae  
Arthrobacter protophormiae 

MF801344.1 
KX768287.1 
KT261110.1 

Glutamicibacter protophormiae 
(Micrococcales) 

1 

KW15 CMB MW013380 16S 
Paracoccus sp. 

Uncult. bacterium ncd2046h03c1 
Paracoccus zhejiangensis 

FJ267566.1 
JF168258.1 
CP025430.1 

Paracoccus sp. (Rhodobacterales) 1 

KW16 CMB MW013381 16S 
Erythrobacter sp. 

Erythrobacter citreus 
Erythrobacter citreus 

MN435731.1 
MK254653.1 
MK254652.1 

Erythrobacter sp. 
(Sphingomonadales) 

1 

KW18 CMB MW013382 16S 
Pseudoalteromonas sp. 
Pseudoalteromonas sp. 

Pseudoalteromonas undina 

MG388120.1 
MF289546.1 
KU588389.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 

KW19 CMB MW013383 16S 
Psychrobacter nivimaris 

Psychrobacter sp. 
Psychrobacter proteolyticus 

MH978646.1 
MG309426.1 
LS483016.1 

Psychrobacter sp. 
(Pseudomonadales) 

1 

KW21 CMN MW013384 16S 
Olleya marilimosa 
Olleya marilimosa 

Olleya algicola 

JN175350.2 
NR_104945.2 
KY341922.1 

Olleya marilimosa 
(Flavobacteriales) 

1 

KW22 CMN MW013385 16S 
Aurantimonas coralicida 

Aurantimonas manganoxydans 
Aurantimonas coralicida 

NR_042319.1 
NR_114936.1 
NR_115134.1 

Aurantimonas sp. (Rhizobiales) 1 
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KW23 CMN MW013386 16S 

Pseudoalteromonas 
carrageenovora 

Pseudoalteromonas sp. 
Pseudoalteromonas sp. 

MH362718.1 
MH333259.1 
MF401566.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 

KW24 CMN MW013387 16S 
Pseudomonas sp. 
Pseudomonas sp. 

Pseudomonas stutzeri 

KR012328.1 
KR012234.1 
AJ270454.1 

Pseudomonas stutzeri 
(Pseudomonadales) 

1 

KW25* CMN MW013388 16S 
Mesonia algae 
Mesonia algae 
Mesonia algae 

LT601221.2 
LT601219.2 
LT601217.2 

Mesonia sp. (Flavobacteriales) 1 

KW26 CMN MW013389 16S 
Bacillus sp.  
Bacillus sp.  

Bacillus pumilus 

MH411221.1 
MH411112.1 
MF079375.1 

Bacillus sp. (Bacillales) 1 

KW27 CMN MW013390 16S 
Pseudoalteromonas sp. 

Pseudoalteromonas marina 
Pseudoalteromonas marina 

MF537048.1 
MH362719.1 
MH362716.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 

KW28 CMN MW013391 16S 
Agrococcus sp. 
Agrococcus sp. 

Agrococcus baldri 

KM362887.1 
KY476554.1 
HF913436.1 

Agrococcus baldri (Micrococcales) 1 

KW29 CMN MW013392 16S 

Uncult. alpha proteobacterium 
SGSH999 

Sphingopyxis baekryungensis 
Uncult. bacterium CFL_Lb37 

GQ347702.1 
NR_043014.1 
KJ365389.1 

Sphingopyxis baekryungensis 
(Sphingomonadales) 

1 

KW30 WSP30 MW013393 16S 

Uncult. bacterium 
Shelves_A_110 

Psychrobacter sp. 
Psychrobacter nivimaris 

MF092435.1 
KY382827.1 
MH478336.1 

Psychrobacter nivimaris 
(Pseudomonadales) 

1 

KW31 TSB3+10 MW013394 16S 
Serinicoccus sp. 
Serinicoccus sp. 

Serinicoccus chungangensis 

DQ985074.1 
KM886154.1 
NR_117788.1 

Serinicoccus sp. (Micrococcales) 1 

KW33 TSB3+10 MW013395 16S 
Shewanella algicola  
Shewanella gelidii 
Shewanella arctica 

NR_149298.1 
NR_151921.1 
NR_117528.1 

Shewanella sp. (Alteromonadales) 2 

KW34 TSB3+10 MW013396 16S 
Pseudomonas sp. 
Pseudomonas sp. 
Pseudomonas peli 

MH109498.1 
MH109497.1 
MF077147.1 

Pseudomonas sp. 
(Pseudomonadales) 

1 
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KW36 TSB3+10 MW013397 16S 
Shewanella putrefaciens 
Shewanella hafniensis 
Shewanella hafniensis 

MH304320.1 
KX271693.1 
KX271692.1 

Shewanella sp. (Alteromonadales) 2 

KW37 TSB3+10 MW013398 16S 
Pseudoalteromonas ulvae 

Pseudoalteromonas tunicata 
Pseudoalteromonas piscicida 

NR_025032.1 
NR_029365.1 
NR_114583.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 

KW38 TSB3+10 MW013399 16S 
Arthrobacter echini 
Arthrobacter echini 

Arthrobacter sp. 

NR_148833.1 
KJ789956.1 
FR693359.1 

Arthrobacter echini 
(Micrococcales) 

2 

KW39* WSP30 MW013400 16S 
Cobetia sp. 
Cobetia sp. 

Cobetia litoralis 

LN881270.1 
LN881234.1 
AB646235.1 

Cobetia sp. (Oceanospirillales) 1 

KW40 MA MW013401 16S 
Vibrio sp. 
Vibrio sp. 

Vibrio anguillarum 

MF537054.1 
MF537053.1 
CP022468.1 

Vibrio sp. (Vibrionales) 2 

KW41 MA MW013402 16S 

Pseudoalteromonas agarivorans 
Pseudoalteromonas prydzensis 

Pseudoalteromonas 
carrageenovora 

MH362723.1 
MH362721.1 
MH362718.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 

KW42 TSB3+10 MW013403 16S 
Planococcus sp. 

Planococcus maritimus 
Planococcus maritimus 

KX645673.1 
MF405217.1 
MF276799.1 

Planococcus sp. (Bacillales) 1 

KW43 WSP30 MW013404 16S 
Arthrobacter echini 
Arthrobacter echini 

Arthrobacter sp. 

NR_148833.1 
KJ789956.1 
FR693359.1 

Arthrobacter echini 
(Micrococcales) 

2 

KW44 WSP30 MW013405 16S 
Exiguobacterium sp. 
Exiguobacterium sp. 

Exiguobacterium aurantiacum 

MF537096.1 
MF537083.1 
KY196514.1 

Exiguobacterium sp. (Bacillales) 1 

KW45 WSP30 MW013406 16S 
Sulfitobacter dubius 
Sulfitobacter dubius 

Sulfitobacter sp. 

MH725548.1 
MH725547.1 
MG210570.1 

Sulfitobacter dubius 
(Rhodobacterales) 

1 

KW46 WSP30 MW013407 16S 
Rhodococcus sp. 
Rhodococcus sp. 

Rhodococcus cerastii 

MH173295.1 
KY405925.2 
MG645219.1 

Rhodococcus sp. 
(Corynebacteriales) 

1 
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Strain Medium Acc. no. Amplicon Closest related species (Blast) 
Acc. no. closest 
related species 

Lowest taxonomic classification 
(order) 

RG 

KW47 WSP30 MW013408 16S 
Shewanella baltica 
Shewanella baltica 

Shewanella putrefaciens 

MH304331.1 
MH304326.1 
MH304324.1 

Shewanella sp. (Alteromonadales) 2 

KW48 CMN MW013409 16S 
Pseudoalteromonas tunicata 
Pseudoalteromonas tunicata 

Pseudoalteromonas sp. 

CP031961.1 
KY319053.1 
CP011032.1 

Pseudoalteromonas tunicata 
(Alteromonadales) 

1 

KW49 WSP30 MW012385 ITS 
Candida sequanensis 
Candida sequanensis 
Candida sequanensis 

FM178365.1 
NR_111302.1 
KM435341.1 

Candida sequanensis 
(Saccharomycetales) 

2 

KW50* WSP30 MW013410 16S 
Cobetia sp. 
Cobetia sp. 

Cobetia litoralis 

LN881270.1 
LN881234.1 
AB646235.1 

Cobetia sp. (Oceanospirillales) 1 

KW51 WSP30 MW013411 16S 
Rhodococcus sp. 
Rhodococcus sp. 

Rhodococcus cerastii 

MH236179.1 
KY405925.2 
MG645219.1 

Rhodococcus sp. 
(Corynebacteriales) 

1 

KW52 WSP30 MW013412 16S 
Halomonas sulfidaeris 
Halomonas titanicae 
Halomonas titanicae 

NR_027185.1 
NR_116997.1 
NR_117300.1 

Halomonas sulfidaeris 
(Oceanospirillales) 

1 

KW53 WSP30 MW013413 16S 
Vibrio porteresiae 
Vibrio porteresiae 

Uncult. Vibrio sp. 12L_112 

HM749744.1 
NR_044248.1 
KP183078.1 

Vibrio porteresiae (Vibrionales) 1 

KW54 WSP30 MW013414 16S 
Alteromonas sp.  

Uncult. bacterium SS-23C02 
Alteromonas stellipolaris 

MF443678.1 
KX177874.1 
CP015345.1 

Alteromonas sp. 
(Alteromonadales) 

1 

KW55 CMB MW013415 16S 
Pseudoalteromonas tunicata 
Pseudoalteromonas tunicata 

Pseudoalteromonas sp. 

KY319053.1 
CP011032.1 
KX755364.1 

Pseudoalteromonas tunicata 
(Alteromonadales) 

1 

KW56 CMN MW013416 16S 
Uncult. bacterium CFL_Lb37 
Sphingopyxis baekryungensis 
Sphingopyxis baekryungensis 

KJ365389.1 
HF913434.1 
HE800827.1 

Sphingopyxis baekryungensis 
(Sphingomonadales) 

1 

KW57 TSB3+10 MW013417 16S 
Okibacterium sp. 
Okibacterium sp. 

Mycetocola zhadangensis 

KU507611.1 
HM224472.1 
NR_109597.1 

Microbacteriaceae unclassified 
(Micrococcales) 

1 

KW58 TSB3+10 MW013418 16S 
Microbacterium phyllosphaerae 

Microbacterium foliorum 
Microbacterium sp. 

MF541529.1 
MG195155.1 
MF458881.1 

Microbacterium sp. 
(Micrococcales) 

1 
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Strain Medium Acc. no. Amplicon Closest related species (Blast) 
Acc. no. closest 
related species 

Lowest taxonomic classification 
(order) 

RG 

KW60 CMN MW013419 16S 
Vibrio cortegadensis 
Vibrio cyclitrophicus 
Vibrio cyclitrophicus 

NR_148247.1 
NR_115806.1 
NR_042467.1 

Vibrio sp. (Vibrionales) 1 

KW61 WSP30 MW012386 ITS 
Penicillium sp. 
Penicillium sp. 

Penicillium chrysogenum 

MK268129.1 
MK267794.1 
MH048884.1 

Penicillium sp. (Eurotiales) 1 

KW63 MA MW013420 16S 
Shewanella sp. 
Shewanella sp. 

Shewanella colwelliana 

MF045122.1 
MF045121.1 
KX756553.1 

Shewanella colwelliana 
(Alteromonadales) 

1 

KW65 CMN MW013421 16S 
Serinicoccus sp. 
Serinicoccus sp. 

Serinicoccus chungangensis 

KP872112.1 
KM886155.1 
NR_117788.1 

Serinicoccus sp. (Micrococcales) 1 

KW66 CMN MW013422 16S 
Erythrobacter sp. 
Erythrobacter sp. 

Erythrobacter litoralis 

KX989363.1 
KX989361.1 
KY047411.1 

Erythrobacter sp. 
(Sphingomonadales) 

1 

KW67 CMN MW013423 16S 
Arthrobacter agilis 
Arthrobacter agilis 
Arthrobacter sp. 

LT984721.1 
CP024915.1 
MG860335.1 

Arthrobacter sp. (Micrococcales) 1 

KW68 CMN MW013424 16S 
Psychrobacter sp. 
Psychrobacter sp. 

Psychrobacter nivimaris 

MG309426.1 
MH707184.1 
MH478336.1 

Psychrobacter nivimaris 
(Pseudomonadales) 

1 

KW69 TSB3+10 MW013425 16S 
Arthrobacter echini 
Arthrobacter echini 

Arthrobacter sp. 

NR_148833.1 
KJ789956.1 
FR693359.1 

Arthrobacter echini 
(Micrococcales) 

2 

KW71 TSB3+10 MW013426 16S 
Rhodococcus sp. 
Rhodococcus sp. 

Rhodococcus cerastii 

MH236179.1 
KY405925.2 
MG645219.1 

Rhodococcus sp. 
(Corynebacteriales) 

1 

KW72 WSP30 MW013427 16S 
Aurantimonas coralicida 
Aurantimonas litoralis 

Aurantimonas manganoxydans 

MH725320.1 
KR140222.1 
LC066380.1 

Aurantimonas sp. (Rhizobiales) 1 

KW74 WSP30 MW012387 ITS 
Dendrophoma cytisporoides 
Dendrophoma cytisporoides 

Uncult. fungus OTU_F382_R420 

NR_153978.1 
JQ889273.1 
MF976669.1 

Dendrophoma cytisporoides 
(Chaetosphaeriales) 

1 

KW75 WSP30 MW014887 18S 
Sakaguchia lamellibrachiae 
Sakaguchia lamellibrachiae 

Symmetrospora marina 

AB126646.1 
AB263120.1 
KJ806313.1 

Sakaguchia lamellibrachiae 
(Sakaguchiales) 

2 
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Strain Medium Acc. no. Amplicon Closest related species (Blast) 
Acc. no. closest 
related species 

Lowest taxonomic classification 
(order) 

RG 

KW76 WSP30 MW013428 16S 

Pseudoalteromonas agarivorans 
Pseudoalteromonas 

carrageenovora 
Pseudoalteromonas sp. 

MH362723.1 
MH362718.1 
MH333259.1 

Pseudoalteromonas sp. 
(Alteromonadales) 

1 
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Table S3. Bioactivity (%) of crude extracts derived from tunic-associated microbial strains at a test concentration of 100 µg/mL. Values are given as 
average values of the two biological replicates, which were tested twice (technical replicate). Test organisms and cell lines are abbreviated as follows: MRSA: 
Methicillin-resistant Staphylococcus aureus, Efm: Enterococcus faecium, Ca: Candida albicans, Cn: Cryptococcus neoformans, A375: Malignant melanoma, 
A549: Lung carcinoma, HCT116: Colon cancer, MB231: Breast cancer. Several bacterial strains did not grow on GYM medium and hence, were only cultivated 
on MB medium. “-“: Inhibition values ≤ 20%. Bold: Inhibition values ≥ 80%.  

Strain Lowest taxonomic classification Medium MRSA Efm Ca Cn A375 A549 HCT116 MB231 

CHT3 Leisingera aquimarina 
GYM - - - 21 - - - 22 

MB 80 - - - - - - - 

CHT5 Shewanella sp. MB 36 - - - - - - - 

CHT6 Vibrio gigantis MB 60 - - - - - - - 

CHT7 Ruegeria faecimaris MB 35 - - - - - - - 

CHT9 Vibrio sp. MB - - - - - - - - 

CHT10 Kangiella sp. MB 100 99 - - - - - - 

CHT13 Aurantimonas sp. 
GYM 46 - - - - - - - 

MB 85 - - - - - - - 

CHT15 Bacillus sp. 
GYM 54 44 - 48 - - - - 

MB 61 - - - - - - - 

CHT17 Vibrio sp. MB 70 - - - - - - - 

CHT22a Marixanthomonas ophiurae MB 52 - - - - - - - 

CHT22b Vibrio sp. MB 100 - - - - - - - 

CHT23 Amphritea spongicola MB 91 100 - - - - - - 

CHT25 Pseudorhodobacter aquimaris MB 74 - - - - - - - 

CHT27 Bacillus sp. 
GYM 42 39 - 37 - - - - 

MB 44 - - - - - - - 

CHT29 Arenibacter sp. MB - - - - - - - - 

CHT30 Micrococcus sp. 
GYM 100 100 - 32 - - - - 

MB 42 - - 37 20 - - - 

CHT35 Cladosporium sp. 
CAG 92 38 - - - - - - 

PDA 85 - - - - - - - 

CHT37 Emericellopsis maritima 
CAG - - - - 28 45 - - 

PDA - - - - 56 57 72 81 

CHT40 Pseudochaetosphaeronema larense 
CAG - - - - - - - - 

PDA 50 - - - 63 - 40 59 

CHT41 Mycolicibacterium sp. MB - - - - - - - - 

CHT42 Ruegeria sp. MB 23 - - 29 59 - 30 - 

CHT43 Primorskyibacter sp. MB 66 - - - - - - - 

CHT46 Litoreibacter sp. MB 75 - - - - - - - 
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Strain Lowest taxonomic classification Medium MRSA Efm Ca Cn A375 A549 HCT116 MB231 

CHT47 Roseovarius arcticus MB 66 - - - - - - - 

CHT48 Vibrio sp. MB 52 - - - - - - - 

CHT49 Ruegeria atlantica MB 60 - - - - - - - 

CHT53 Ochrobactrum pseudogrignonense 
GYM 60 - - - - - - - 

MB 76 - - - - - - - 

CHT54 Bacillus sp. 
GYM 33 67 - 38 - - - - 

MB 61 - - - - - - - 

CHT55 Ochrobactrum grignonense 
GYM 86 - - - - - - - 

MB 58 - - - - - - - 

CHT56 Pseudogymnoascus destructans 
CAG 100 100 - 31 30 - - 81 

PDA 88 - - - - - - - 

CHT58 Pyrenochaeta sp. 
CAG 99 43 36 44 - - 48 - 

PDA 100 99 99 87 23 33 62 36 

CKT1 Pseudomonas sp. MB 49 - - - - - - - 

CKT2 Litoreibacter sp. MB 59 - - - - - - - 

CKT3 Pelagicola sp. MB 47 - - - - - - - 

CKT4 Neptunomonas concharum MB 85 72 - - - - - - 

CKT6 Flaviramulus ichthyoenteri MB - - - - - - - - 

CKT10 Pseudomonas sp. MB 99 97 - - - - - - 

CKT11 Vibrio aestuarianus MB 59 27 - - - - - - 

CKT12 Pseudomonas sp. 
GYM 79 - - - - - - - 

MB 48 - - - - - - - 

CKT16 Hydrogenophaga crassostreae 
GYM 100 100 - 33 - - - - 

MB 100 100 - - - - - - 

CKT17 Lysobacter spongiicola 
GYM 100 100 - 26 - - - - 

MB 100 100 - - - - - - 

CKT20 Bacillus sp. 
GYM 46 46 - 30 - - - - 

MB 27 - - - - - - - 

CKT21 Pseudomonas sp. 
GYM 74 - - - 41 23 34 39 

MB 74 - - - - - - - 

CKT22 Phaeobacter arcticus MB 73 - - - - - - - 

CKT23 Shewanella sp. MB 100 100 - - - - - - 

CKT24 Arenibacter echinorum MB - - - - - - - - 

CKT28 Cyphellophora reptans 
CAG 98 - - - - - - - 

PDA 70 - - - - - - - 

CKT29 Marinobacter litoralis MB 97 100 - - - - - - 
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Strain Lowest taxonomic classification Medium MRSA Efm Ca Cn A375 A549 HCT116 MB231 

CKT30 Salinimicrobium sp. MB - - - - - - - - 

CKT34 Arthrobacter sp. 
GYM 90 100 - - - - 25 - 

MB - - - - - 30 - - 

CKT35 Penicillium sp. 
CAG 98 51 100 76 42 - 33 22 

PDA 99 100 100 76 34 - 29 - 

CKT38 Bacillus sp. 
GYM 88 100 - 70 - - - 25 

MB 55 50 - - - - - - 

CKT39 Streptomyces sp. 
GYM 100 100 - 31 - - - - 

MB 95 45 - 25 55 - 33 - 

CKT41 Bacillus sp. 
GYM 100 35 - - - - - - 

MB 99 92 - - - - - - 

CKT43 Streptomyces sp. 
GYM 100 100 91 100 98 89 97 95 

MB 100 99 56 100 43 51 49 49 

CKT49 Penicillium brasilianum 
CAG 46 - - - 55 45 53 50 

PDA 99 100 98 47 41 20 44 36 

CKT51-II Bacillus sp. 
GYM - - - 41 - - - - 

MB 66 38 - - - - - - 

CKT52 Bizionia fulviae 
GYM 71 72 - - - - 25 - 

MB 95 100 - - - - - - 

CKT56 Ruegeria atlantica MB 49 - - - - - - - 

CKT60 Kiloniella laminariae MB 85 86 - - - - 38 - 

CKT65 Salegentibacter sp. MB - - 22 - - - - - 

CKT67 Serinicoccus sp. 
GYM 99 97 - 49 - - - - 

MB - - - 23 20 - - - 

CKT78 Penicillium crustosum 
CAG - - - - - - 21 27 

PDA - - - - - - - 21 

CKT81 Pithomyces chartarum 
CAG 85 93 99 65 23 27 24 49 

PDA 100 97 100 65 43 48 35 73 

CKT84 Fusarium sp. 
CAG 98 97 88 52 45 55 30 35 

PDA 100 98 100 75 51 65 42 47 

CKT85 Cadophora luteo-olivacea 
CAG - 25 - - 90 78 87 84 

PDA - - - - 35 - 21 21 

CKT86 Plectosphaerella cucumerina 
CAG 100 100 - - 34 21 32 20 

PDA 70 - - - 37 22 - 33 

CKT90 Wickerhamomyces sp. 
CAG 83 98 - - - - - - 

PDA 100 44 - - - - - - 
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Strain Lowest taxonomic classification Medium MRSA Efm Ca Cn A375 A549 HCT116 MB231 

CKT91 Boeremia exigua 
CAG - - - - 62 82 63 78 

PDA 100 77 25 22 85 86 78 86 
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Table S4. Bioactivity-based selection criterion for the prioritization of extracts for in-depth 
chemical analyses. A high bioactivity threshold was applied, i.e. extracts are considered active against 
a test strain or cancer cell line if ≥ 80% inhibitory activity at a test concentration of 100 µg/mL was 
observed. For each possible combination of observed bioactivities, it is indicated, whether this 
combination led to the selection of an extract (yes) or not (no). Activities are defined as follows: 
antibacterial: activity against MRSA and E. faecium; antifungal: activity against at least one pathogenic 
yeast (C. albicans or C. neoformans); antimicrobial: antibacterial + antifungal activity (as defined 
before); anticancer: activity against at least one of the four cancer cell lines (A375, A549, HCT116, 
MB231). 

Observed bioactivities 

Selected? Antimicrobial 
Anticancer 

Antibacterial Antifungal 

Yes Yes Yes Yes (antimicrobial + anticancer) 

Yes Yes No Yes (antimicrobial) 

Yes No No No 

Yes No Yes Yes (anticancer) 

No Yes Yes Yes (anticancer) 

No Yes No No 

No No Yes Yes (anticancer) 

No No No No 

 

Table S5. ANOSIM comparison of chemically different extracts. ANOSIM (Euclidean distance) was 
computed to statistically verify differential clustering of the extracts CHT58-CAG (Pyrenochaeta sp.), 
CKT35-PDA (Penicillium sp.), CKT91-CAG and CKT91-PDA (Boeremia exigua). Remaining: extracts 
CHT37-PDA (Emericellopsis maritima), CHT56-CAG (Pseudogymnoascus destructans), CKT49-PDA 
(Penicillium brasilianum), CKT81-CAG and CKT81-PDA (Pithomyces chartarum), CKT84-CAG and 
CKT84-PDA (Fusarium sp.) and CKT85-CAG (Cadophora luteo-olivacea). 

Compared groups R value p value 

All 0.7849 0.0001 

CHT58-PDA x remaining 0.9824 0.0069 

CKT35-PDA x remaining 0.8843 0.0064 

CKT91-CAG and CKT91-PDA x remaining 0.5588 0.0071 
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Table S6. Putative annotation of metabolites detected in the crude extract of Pyrenochaeta sp. strain CHT58 cultivated on PDA medium. Each detected 
compound is given with the experimentally determined m/z value and the predicted putative molecular formula. Putative identifications were based on the 
accurate mass, predicted putative molecular formulae, the retention time (Rt in min), the fragmentation pattern and biological origin. *Only putative molecular 
formula with best ppm shown (more than 1 molecular formula possible). ∆Different isomers with same m/z value and molecular formula, which cannot be 
differentiated based on MS/MS data. IC: Identification confidence level after Sumner et al. 2007 [3]. Nf: No fragmentation pattern detected or fragmentation 
below noise threshold of 5e1. n.a. = putatively novel compound (known NPs do not match). Ref = reference. 

No. 
m/z 

value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical family Biological origin Ref 

1 377.1941 3.17 [M+Na]+ C19H30O6 4 0.3 Nf n.a.    

2 309.0978 3.24 [M+H]+ C15H16O7 3 1.3 
291.0882, 273.0760, 255.0653, 245.0816, 
227.0710, 221.0426, 181.0141, 93.0706 

Ascolactone A or B 
Phthalide 
derivative 

Ascochyta salicorniae 
(fungus) 

[4] 

3 290.1008 3.36 [M+H]+ C11H11N7O3 4 2.1 272.0908, 245.0808 n.a.    

4 377.1938 3.47 [M+Na]+ C19H30O6 4 -0.5 Nf n.a.    

5 373.1993 3.62 [M+Na]+ C20H30O5 3 0.6 Nf Aphidicolin A9 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

6 321.0981 3.85 [M+H]+ C16H16O7 3 2.2 
303.0897, 289.0728, 271.0616, 243.0652, 
254.0514, 243.0652, 229.0875, 227.0695, 

217.0504, 207.0651, 151.0392 
10-deoxybostrycin 

Anthraquinone 
derivative 

Nigrospora sp. 
(fungus) 

[6] 

7 335.2215 3.96 [M+H]+ C20H30O4 3 -2.1 Nf Aphidicolin A58 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[7] 

8 333.2066 

4.04, 
4.46, 
5.7, 
6.3, 

7.78∆ 

[M+H]+ C20H28O4 3 0 
315.2002, 297.1773, 269.1871, 243.1402, 

225.1272 
Aphidicolin A63 Diterpenoid 

Botryotinia fuckeliana 
(fungus) 

[8] 

9 335.2215 4.23 [M+H]+ C20H30O4 3 -2.1 Nf Aphidicolin A33 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

10 335.2227 4.31 [M+H]+ C20H30O4 3 1.5 Nf Aphidicolin A38 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

11 359.1836 4.58 [M+H]+ C17H22N6O3 4 1.1 317.1724 n.a.    

12 387.2141 4.73 [M+Na]+ C21H32O5 3 -1.5 Nf Aphidicolin A70 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

13 359.2191 5 [M+Na]+ C20H32O4 3 -1.9 Nf Aphidicolin A35 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

14 373.1984 5 [M+Na]+ C20H30O5 3 -1.9 Nf Aphidicolin A11 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

15 303.2327 5.16 [M+H]+ C20H30O2 3 1 
285.2225, 267.2115, 173.1342, 161.1338, 
159.1189, 149.1324, 145.0996, 133.1012, 

121.1028, 119.0856, 109.1018 
Wentinoid C or D Diterpenoid 

Aspergillus wentii 
(fungus) 

[7] 

16 357.2038 5.24 [M+Na]+ C20H30O4 3 -1.1 Nf Aphidicolin A54 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 
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No. 
m/z 

value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical family Biological origin Ref 

17 359.2196 5.32 [M+Na]+ C20H32O4 3 -0.6 Nf Aphidicolin A46 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

18 335.222 5.32 [M+H]+ C20H30O4 3 -0.6 

299.1965, 289.2251, 271.2039, 257.1883, 
253.1990, 229.1680, 227.1432, 219.1374, 
213.1630, 205.1536, 203.1424, 199.1478, 
189.1649, 185.1324, 175.1089, 173.1331, 
171.1170, 167.1059, 161.1303, 159.1160, 
157.1013, 149.0942, 147.1154, 145.1038, 
139.1182, 137.0944, 135.1199, 133.1020, 
131.0872, 123.1195, 121.1002, 119.0865, 
111.0840, 109.1014, 107.0857, 93.0710 

Aphidicolin A37 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

19 319.2271 5.47 [M+H]+ C20H30O3 3 -0.6 
275.0874, 233.0437, 189.1269, 167.0352, 

149.0978, 93.0702 
Wentinoid F Diterpenoid 

Aspergillus wentii 
(fungus) 

[7] 

20 335.2227 5.55 [M+H]+ C20H30O4 3 0.6 Nf Aphidicolin A41 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

21 317.2123 5.62 [M+H]+ C20H28O3 3 1.9 Nf n.a.    

22 374.2335 5.63 [M+H]+ C22H31NO4* 4 1.1 
356.2203, 338.2126, 224.1295, 222.1142, 

133.1017 
n.a.    

23 376.2492 5.78 [M+H]+ C22H33NO4 2 1.1 
358.2390, 340.2285, 314.2489, 253.1965, 

241.1965 
Periconiasin I Cytochalasan Periconia sp. (fungus) [7] 

24 373.1996 5.92 [M+Na]+ C20H30O5 3 1.3 
358.2399, 340.2212, 314.2465, 260.1649, 

241.1958 
Aphidicolin A61 Diterpenoid 

Botryotinia fuckeliana 
(fungus) 

[5] 

25 403.2103 6.15 [M+Na]+ C21H32O6 3 1.5 Nf n.a.    

26 331.1918 6.15 [M+H]+ C20H26O4 3 2.7 
285.1854, 271.1707, 255.1385, 253.1597, 
246.1269, 243.1754, 227.1445, 191.0710, 

185.0972, 175.0763, 163.0763 
Hawaiinolide B Diterpenoid 

Paraconiothyrium 
hawaiiense (fungus) 

[9] 

27 359.2206 6.22 [M+Na]+ C20H32O4 3 2.2 Nf Aphidicolin A48 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

28 583.1831 6.22 [M+H]+ C30H30O12 3 2.6 

511.1395, 493.1300, 465.1280, 423.1118, 
405.1028, 389.1071, 361.1062, 345.1097, 
333.1063, 301.1031, 283.0966, 273.0782, 
269.0845, 257.0845, 255.0650, 245.0871, 
235.0582, 231.0632, 229.0855, 227.0734, 
219.0664, 191.0723, 167.0353, 161.0597, 

151.0392, 123.0456 

Talarodilactone B Macrolide 
Talaromyces 

rugulosus (fungus) 
[10] 

29 335.2208 6.54 [M+H]+ C20H30O4 3 -4.2 Nf Aphidicolin A64 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

30 402.2286 6.54 [M+H]+ C23H31NO5 3 1.5 
384.2193, 374.2318, 356.2223, 338.2108, 

241.1943 
CJ-16,264 

Pyrrolizidine 
alkaloid 

Unknown fungus [11] 

31 387.2153 6.69 [M+Na]+ C21H32O5 3 1.5 Nf Brassicicene F Diterpenoid 
Alternaria brassicicola 

(fungus) 
[12] 

32 319.2279 6.8 [M+H]+ C20H30O3 3 1.9 
301.2173, 291.2337, 283.2069, 273.2217, 
255.2120, 211.1494, 193.1600, 189.1641, 

Aphidicolin A57 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 
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No. 
m/z 

value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical family Biological origin Ref 

185.1329, 175.1488, 173.1328, 171.1180, 
165.0913, 163.1123, 161.1332, 159.1173, 
157.1016, 149.1327, 147.1174, 145.1021, 
137.1330, 135.1169, 133.1013, 123.1166, 
121.1021, 119.0860, 109.1019, 107.0860, 

105.0706, 93.0700 

33 317.2125 6.95 [M+H]+ C20H28O3 3 2.5 

317.2117, 300.2907, 282.2806, 270.2800, 
243.1767, 201.1281, 189.1275, 173.1335, 
159.1172, 145.1019, 133.1013, 119.0860, 

95.0864 

n.a.    

34 351.2173 7.11 [M+H]+ C20H30O5 3 0.6 Nf Aphidicolin A53 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

35 317.2119 7.17 [M+H]+ C20H28O3 3 0.6 Nf n.a.    

36 235.1341 7.25 [M+H]+ C14H18O3 3 3 

207.1382, 203.1069, 193.1229, 191.1428, 
189.1278, 185.0968, 179.1072, 175.1121, 
161.0964, 159.1173, 157.1014, 147.1168, 
144.0936, 142.0781, 139.0398, 133.1015, 

129.0697, 119.0860, 105.0702 

n.a.    

37 567.1875 7.32 [M+H]+ C30H30O11 3 1.6 

531.1674, 513.1566, 495.1455, 485.1612, 
467.1511, 391.1179, 389.1031, 373.1081, 
371.0923, 363.1235, 275.0925, 273.0772, 
267.0664, 259.0970, 257.0821, 241.0869, 
229.0868, 217.0868, 167.0346, 153.0550, 

151.0397, 123.0446 

n.a.    

38 319.2287 7.51 [M+H]+ C20H30O3 3 4.4 Nf n.a.    

39 317.2125 7.7 [M+H]+ C20H28O3 3 2.5 

299.2018, 281.1901, 271.2071, 253.1964, 
243.1376, 201.1267, 173.1336, 159.1179, 
145.1019, 139.0778, 133.1020, 119.0862, 

95.0862 

n.a.    

40 317.2125 7.88 [M+H]+ C20H28O3 3 2.5 Nf n.a.    

41 417.2249 8.16 [M+Na]+ C22H34O6 3 -1 Nf Aphidicolin A32 Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

42 331.1914 8.16 [M+H]+ C20H26O4 3 1.5 
285.1862, 271.1705, 255.1378, 253.1606, 
246.1281, 243.1753, 227.1440, 191.0714, 

185.0970, 175.0758, 163.0769 
Hawaiinolide A Diterpenoid 

Paraconiothyrium 
hawaiiense (fungus) 

[9] 

43 498.3797 8.35 [M+H]+ C28H51NO6* 4 0.4 480.3681, 236.1501, 162.1126, 144.1023 n.a.    

44 498.3795 8.54 [M+H]+ C28H51NO6* 4 0 
480.3691, 436.3773, 236.1502, 162.1126, 

144.1023 
n.a.    

45 287.2377 8.7 [M+H]+ C20H30O 3 0.7 
269.2265, 241.1960, 227.1789, 215.1799, 
213.1643, 199.1494, 185.1323, 175.1504, 
173.1328, 171.1169, 161.1331, 159.1170, 

Conidiogenone B Diterpenoid 
Penicillium sp. 

(fungus) 
[13] 
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No. 
m/z 

value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical family Biological origin Ref 

157.1014, 151.1124, 147.1160, 145.1029, 
133.1035, 131.0861, 119.0863 

46 401.2299 8.78 [M+Na]+ C22H34O5 3 -1.2 Nf 
a: aphidicolin A23, 
b: aphidicolin A50 

Diterpenoid 
Botryotinia fuckeliana 

(fungus) 
[5] 

47 347.222 8.78 [M+H]+ C21H30O4 3 -0.6 
329.2059, 269.1911, 251.1773 
225.1639,159.1180, 145.1011 

Aspergillodiol 
Hydropyrano-

indeno derivative 
Aspergillus versicolor 

(fungus) 
[14] 

48 500.3948 9.06 [M+H]+ C28H53NO6* 4 -0.6 
482.3836, 438.3966, 236.1499, 162.1135, 

144.1021 
n.a.    

49 551.1915 9.17 [M+H]+ C30H30O10 4 -0.4 
497.1592, 391.1183, 373.1078, 267.0645, 
259.0966, 257.0809, 241.0867, 229.0860, 

217.0868, 153.0541, 151.0395 
n.a.    

50 301.2168 9.25 [M+H]+ C20H28O2 3 0 

283.2092, 255.2111, 227.1792, 185.1351, 
175.1486, 173.1334, 171.1149, 159.1779, 
157.1020, 147.1188, 145.1016, 133.1026, 
121.1039, 119.0863, 107.0864, 105.0708, 

95.0862 

Harziandione Diterpenoid 
Trichoderma 

atroviride (fungus) 
[15] 

51 303.2333 9.33 [M+H]+ C20H30O2 3 3 

285.2242, 177.1627, 175.1490 151.9207, 
149.0956, 147.1167, 139.0779, 123.1156, 
121.1021, 109.1024, 107.0853, 105.0681, 

95.0868, 93.0696, 81.0703, 79.0540 

Botrysphin B Diterpenoid 
Botryosphaeria 
laricina (fungus) 

[16] 
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Table S7. Putative annotation of metabolites detected in the crude extract of Pseudogymnoascus destructans strain CHT56 cultivated on CAG 
medium. Each detected compound is given with the experimentally determined m/z value and the predicted putative molecular formula. Putative identifications 
were based on the accurate mass, predicted putative molecular formulae, the retention time (R t in min), the fragmentation pattern and biological origin. *Only 
putative molecular formula with best ppm shown (more than 1 molecular formula possible). ∆Different isomers with same m/z value and molecular formula, 
which cannot be differentiated based on MS/MS data. IC: Identification confidence level after Sumner et al. 2007 [3]. Nf: No fragmentation pattern detected or 
fragmentation below noise threshold of 5e1. n.a. = putatively novel compound (known NPs do not match). Ref = reference. 

No. m/z value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern Putative identification 
Chemical 

family 
Biological origin Ref 

52 413.1804 3.91 [M-H2O]+ C17H22N10O4* 4 1.5 
249.118, 245.1402, 221.1146, 

129.0537 
n.a.    

53 267.1223 4.84 [M+H]+ C14H18O5 4 -3.4 
249.1100, 221.1175, 151.0368, 

123.0437, 99.0797, 71.0863 
n.a.    

54 291.1222 4.96 [M+H]+ C16H18O5 4 -3.4 
273.1115, 245.1171, 193.0531, 

99.0804 
n.a.    

55 281.1017 5.11 [M+H]+ C14H16O6 3 -2.8 
221.0442, 211.0230, 207.1018, 

191.0332, 165.0531 
Corynechromone E or F 

Chromone 
derivative 

Corynespora 
cassiicola (fungus) 

[17] 

56 253.1067 5.14 [M+H]+ C13H16O5 3 -3.6 
235.0970, 207.1010, 193.0438, 
183.0279, 165.0173, 139.0372, 

137.0223 
Acremostrictin Sesquiterpenoid 

Acremonium strictum 
(fungus) 

[18] 

57 265.1065 5.34 [M+H]+ C14H16O5 4 -4.1 
247.0953, 237.1100, 219.1009, 
209.0434, 201.0900, 177.0532, 

165.0532 
n.a.    

58 265.1069 5.48 [M+H]+ C14H16O5 4 -2.6 
247.0973, 219.1008, 209.0424, 
201.0903, 177.0530, 165.0533 

n.a.    

59 291.1227 5.59 [M+H]+ C16H18O5 4 -1.7 
273.1115, 245.1171, 193.0531, 

99.0804 
n.a.    

60 249.1116 5.82 [M+H]+ C14H16O4 3 -4.4 221.1166 Phialofurone 
Benzofuran 
derivative 

Phialocephala sp. 
(fungus) 

[19] 

61 295.1172 6.05 [M+H]+ C15H18O6 3 -3.4 
267.1231, 251.1295, 235.0968, 
221.0431, 217.0852, 207.1008, 

197.0437, 165.0538 

3,4-dihydro-6-methoxy-8-
hydroxy-3,4,5-trimethyl-

isocoumarin-7-carboxylic acid 
methyl ester 

Isocoumarin 
derivative 

Unknown fungus [20] 

62 211.0596 6.28 [M+H]+ C10H10O5 3 -4.7 179.0332, 151.0377, 128.9502 Hypoxyphenone 
Benzoic acid 

derivative 
Hypoxylon sp. 

(fungus) 
[21] 

63 525.3033 6.46 [M+H]+ C23H44N2O11 4 1.9 Nf n.a.    

64 467.2999 6.46 [M+H]+ C26H42O7 4 -2.1 
177.1277, 175.1137, 149.1330, 
135.1166, 133.1003, 121.0978, 
113.0946, 109.1005, 95.0862 

n.a.    

65 529.2076 6.61 [M+H]+ C28H32O10 3 0.4 Nf Aspermeroterpene A Meroterpenoid 
Aspergillus terreus 

(fungus) 
[22] 

66 357.2034 6.75 [M+H]+ C18H24N6O2* 4 -1.4 Nf n.a.    

67 529.2073 6.87 [M+H]+ C28H32O10 3 -0.2 Nf Aspermeroterpene B Meroterpenoid 
Aspergillus terreus 

(fungus) 
[22] 
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No. m/z value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern Putative identification 
Chemical 

family 
Biological origin Ref 

68 789.2764 
7.06-
7.18 

[M+H]+ C42H44O15 4 0.8 Nf n.a.    

69 
1053.376

6 
7.09 [M+H]+ C52H36N28* 4 0.9 

971.3932, 735.2479, 435.2361, 
247.0930 

n.a.    

70 317.2102 
7.41, 
7.9∆ 

[M+H]+ C20H28O3 3 -4.7 
299.2006, 281.1910, 263.1822, 
237.1586, 237.1611, 197.1319, 

151.1088, 137.0890 

(9ξ,13α)-6,9-dihydroxypimara-
5,8(14),15-trien-7-one 

Pimarane 
diterpenoid 

Epicoccum sp. 
(fungus) 

[23] 

71 789.2755 7.41 [M+H]+ C42H44O15 4 -0.4 555.1884, 408.3155 n.a.    

72 393.2422 8.2 [M+H]+ C26H32O3 4 -2 

315.1731, 293.2056, 273.1625, 
249.1645, 243.1741, 235.1513, 
225.1621, 173.1361, 171.1132, 
159.1169, 133.0636, 105.0683 

n.a.    

73 393.2424 9.07 [M+H]+ C26H32O3 4 -1.5 

375.2322, 243.1759, 225.1634, 
223.1468, 195.1156, 183.1155, 
169.1017, 159.1152, 157.0998, 
145.1002. 133.0650, 131.0474 

n.a.    

74 263.2363 10.47 [M+H]+ C18H30O 4 -4.6 
245.2263, 175.1476, 149.1320, 
133.1000, 123.1158, 121.1015, 

109.0997, 81.0693 
n.a.    

75 337.1665 10.47 [M+H]+ C14H21N8Cl 4 2.7 185.0091 n.a.    
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Table S8. Putative annotation of metabolites detected in the crude extract of Penicillium sp. strain CKT35 cultivated on PDA medium. Each detected 
compound is given with the experimentally determined m/z value and the predicted putative molecular formula. Putative identifications were based on the 
accurate mass, predicted putative molecular formulae, the retention time (Rt in min), the fragmentation pattern and biological origin. *Only putative molecular 
formula with best ppm shown (more than 1 molecular formula possible). ∆Different isomers with same m/z value and molecular formula, which cannot be 
differentiated based on MS/MS data. IC: Identification confidence level after Sumner et al. 2007 [3]. Nf: No fragmentation pattern detected or fragmentation 
below noise threshold of 5e1. n.a. = putatively novel compound (known NPs do not match). Ref = reference. 

No. m/z value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern Putative identification 
Chemical 

family 
Biological origin Ref 

76 207.0302 
2.14, 
2.64, 
4.86∆ 

[M+H]+ C10H6O5 3 4.3 
179.0345, 165.0189, 161.0234, 

137.0238 
Flaviolin 

Naphthoquinone 
derivative 

Several fungal taxa, 
e.g. Aspergillus 

niger 
[24] 

77 209.0454 2.33 [M+H]+ C10H8O5 2 1.9 
191.0349, 181.0501, 167.0342, 
163.0397, 147.0449, 135.0445 

Penibenzone C 
Phthalide 
derivative 

Penicillium 
purpurogenum 

(fungus) 
[25] 

78 195.0299 2.53 [M+H]+ C9H6O5 4 3.1 
167.0345, 163.0031, 135.0089, 

119.0136 
n.a.    

79 193.0512 3.07 [M+H]+ C10H8O4 3 5.7 175.0393 Penicifuran C Benzofuran 
Penicillium sp. 

(fungus) 
[26] 

80 209.0459 3.23 [M+H]+ C10H8O5 2 4.3 163.0398 Acetophthalidin 
Phthalide 
derivative 

Penicillium sp. 
(fungus) 

[27] 

81 293.1273 3.77 [M+Na]+ C16H18N2O2 3 2.4 214.0741 Quinolactacin A 
Quinolone 

alkaloid 
Penicillium sp. 

(fungus) 
[28] 

82 193.0509 4.31 [M+H]+ C10H8O4 3 4.1 175.0393, 149.0592, 121.0658 Penicifuran D Benzofuran 
Penicillium sp. 

(fungus) 
[26] 

83 337.1292 4.59 [M+H]+ C17H20O7 2 1.5 Nf 4'-hydroxy-mycophenolic acid Meroterpenoid 
Penicillium sp. 

(fungus) 
[29] 

84 319.1176 5.1 [M+H]+ C17H18O6 2 -1.9 Nf 
4-hydroxy-6-methoxy-γ,7-dimethyl-

3-oxo-5-phthalansorbic acid 
Meroterpenoid 

Penicillium 
rugulosum (fungus) 

[30] 

85 321.1345 5.76 [M+H]+ C17H20O6 2 2.2 
303.1235, 275.12987, 

207.0662, 195.0657, 159.0446) 
Mycophenolic acid Meroterpenoid 

Penicillium sp. 
(fungus) 

[29] 

86 441.2284 6.47 [M+H]+ C26H32O6 3 1.6 
363.1965, 211.1483, 173.1311, 

171.1171, 151.0382 
Tropolactone C Meroterpenoid 

Aspergillus sp. 
(fungus) 

[31] 

87 501.2503 6.47 [M+H]+ C28H36O8 3 0.2 

409.2018, 391.1942, 381.2094, 
363.1965, 335.2033, 221.1305, 
217.1243, 213.1653, 211.1483, 
203.1084, 187.1500, 183.1351, 
177.0918, 171.1171, 157.1011, 

151.0382 

Citreohybridonol Meroterpenoid 
Penicillium 

atrovenetum 
(fungus) 

[32] 

88 471.2703 6.55 [M+H]+ C23H38N2O8* 4 -0.6 439.2438, 261.1821, 232.0702 n.a.    

89 523.2224 6.91 [M+H]+ C32H30N2O5 2 -1.7 
256.1335, 238.1228, 134.0960, 
122.0595, 117.0701, 105.0338 

Asperphenamate B 
Phenylalanine 

derivative 
Penicillium spp. 

(fungus) 
[33] 

90 335.1501 7.14 [M+H]+ C18H22O6 2 1.8 
303.1234, 285.1124, 275.1286, 
207.0660, 195.0656, 159.0443 

Mycophenolic acid methyl ester Meroterpenoid Penicillium sp. [34] 
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No. m/z value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern Putative identification 
Chemical 

family 
Biological origin Ref 

91 629.0908 7.29 [M+H]+ C28H16N6O12* 4 0.6 
593.0682, 552.0537, 534.0625, 

335.0278, 253.0173 
n.a.    

92 487.27 7.4 [M+H]+ C28H38O7 2 0.8 

377.2110, 349.2166, 243.1750, 
225.1644, 215.1801, 199.1489, 
185.1326, 175.1487, 159.1171, 
157.1014, 151.0391, 145.1013 

Andrastin A Meroterpenoid 
Penicillium sp. 

(fungus) 
[35] 

93 473.254 7.52 [M+H]+ C27H36O7 3 0.2 

MS2 (many ions, only >200 
noted): 353.2104, 343.2300, 

311.1978, 293.1867, 283.2126, 
237.0764, 217.1185, 209.1330, 
197.0464, 191.0735, 187.1497, 
185.1344, 183.1164, 177.0534, 
173.1350, 171.1151, 159.1188, 
157.0966, 145.1013, 131.0849 

Citreohybridone C Meroterpenoid 
Penicillium citreo-

viride (fungus) 
[36] 

94 568.2222 7.76 [M+Na]+ C35H27N7* 4 -0.7 
331.1059, 260.1011, 238.1237, 
181.0751, 122.0594, 117.0715, 

105.0346) 
n.a.    

95 581.3674 7.76 [M+H]+ C29H44N10O3* 4 -0.3 367.2092, 237.1466 n.a.    

96 507.2307 8.03 [M+H]+ C33H26N6 2 2 
256.1349, 238.1242, 224.1082, 
122.0608, 117.0708, 105.0345 

Asperphenamate 
Phenylalanine 

derivative 
Penicillium spp. 

(fungus) 
[33] 

97 376.2852 11.62 [M+H]+ C23H37NO3 4 0 138.0554, 120.0449, 92.0501 n.a.    
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Table S9. Putative annotation of metabolites detected in the crude extracts of Boeremia exigua strain CKT91 cultivated on CAG and PDA media. 
Each detected compound is given with the experimentally determined m/z value and the predicted putative molecular formula. Putative identifications were 
based on the accurate mass, predicted putative molecular formulae, the retention time (Rt in min), the fragmentation pattern and biological origin. ∆Different 
isomers with same m/z value and molecular formula, which cannot be differentiated based on MS/MS data. IC: Identification confidence level after Sumner et 
al. 2007 [3]. Nf: No fragmentation pattern detected or fragmentation below noise threshold of 5e1. n.a. = putatively novel compound (known NPs do not match). 
Ref = reference. 

No. m/z value 
 Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical 

family 
Biological 

origin 
Medium Ref 

98 303.1199 2.67 [M+H]+ C12H18N2O7 4 2.3 Nf n.a.   PDA  

99 600.2635 5.78 [M+H]+ C24H37N7O11 4 1 Nf n.a.   CAG, 
PDA 

 

100 480.2745 5.92 [M+H]+ C29H37NO5 2 -1 

462.2639, 444.2558, 426.2426, 416.2584, 
398.2487, 378.2067, 278.1534, 264.1393, 
252.1384, 240.1393, 209.1315, 187.1104, 
172.0756, 159.1155 145.1000, 120.0790, 

105.0688, 91.0529 

Cytochalasin B2 Cytochalasan 
Phoma sp. 
(fungus) 

CAG, 
PDA 

[37] 

101 464.2794 

6.12, 
7.6, 
8.39, 
8.5, 
9.45, 
9.74∆ 

[M+H]+ C29H37NO4 3 -1.5 

447.2738, 446.2693, 429.2610, 428.2582, 
418.2767, 410.2479, 400.2635, 281.1872 

, 280.1693, 268.1689, 266.1530, 
264.1843, 263.1788, 254.1529, 252.1370, 
172.0747, 161.0949, 157.1004, 147.1151, 
145.1000, 143.0845, 133.0997, 131.0843, 
120.0798, 119.0840, 105.0687, 91.0533 

Deoxaphomin Cytochalasan 
Phoma exigua 

(fungus) 
CAG, 
PDA 

[38] 

102 480.2748 6.3 [M+H]+ C29H37NO5 2 -0.4 
462.2648, 444.2540, 416.2583, 282.1481, 

264.1377, 120.0796 
Cytochalasin B Cytochalasan 

Phoma exigua 
(fungus) 

CAG, 
PDA 

[38] 

103 480.2743 6.41 [M+H]+ C29H37NO5 2 -1.5 
462.2609, 444.2491, 240.1376, 212.1434, 

195.1154, 120.0796 
Cytochalasin B6 Cytochalasan 

Phoma sp. 
(fungus) 

CAG, 
PDA 

[39] 

104 480.2746 7 [M+H]+ C29H37NO5 2 -0.8 

462.2639, 444.2563, 398.2440, 278.1548, 
264.1373, 240.1374, 226.1206, 200.1076, 
186.1276, 159.1150, 145.1015, 133.1019, 

120.0789, 91.0525 

Cytochalasin B4 Cytochalasan 
Phoma sp. 
(fungus) 

CAG, 
PDA 

[39] 

105 510.2865 7.09 [M+H]+ C30H39NO6 2 1.8 

478.2596, 460.2494, 442.2400, 414.2450, 
406.2306, 396.2238, 388.2231, 376.1968, 
278.1477, 264.1334, 240.1387, 209.1319, 
186.0871, 149.0972, 131.0830, 119.0824 

Cytochalasin Z11 Cytochalasan 
Endothia 

gyrosa (fungus) 
PDA [40] 

106 478.2589 7.24 [M+H]+ C29H35NO5 2 -0.8 

460.2487, 442.2378, 432.2536, 414.2420, 
278.1541, 266.1538, 264.1380, 252.1379, 
250.1227, 240.1375, 198.0917, 185.0943, 
172.0744, 157.1004, 145.1001, 143.0848, 
133.1000, 131.0834, 120.0796, 119.0846, 

105.0692, 91.0534 

Cytochalasin B3 Cytochalasan 
Phoma sp. 
(fungus) 

CAG, 
PDA 

[39] 

107 448.2843 
8.7, 

10.98∆ 
[M+H]+ C29H37NO3 3 -2 

449.2923, 430.2736, 229.1962, 215.1794, 
200.0701, 172.0741, 121.1012, 109.1021, 

107.0821, 95.0857 
Deoxaphomin C Cytochalasan 

Phoma sp. 
(fungus) 

CAG, 
PDA 

[37] 
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No. m/z value 
 Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical 

family 
Biological 

origin 
Medium Ref 

108 355.2838 9.78 [M+H]+ C21H38O4 4 -2.8 

337.2741, 263.2357, 245.2267, 213.9730, 
175.1456, 163.1457, 149.1315, 135.1169, 
123.1169, 121.0997, 116.0520, 109.1000, 

97.0990, 81.0698 

n.a.   PDA  

109 427.3204 10.2 [M+H]+ C28H42O3 2 -1.9 
409.3159, 391.3037, 283.1731, 125.1308, 

69.0689 
Dankasterone B Ergosterol 

Gymnascella 
dankaliensis 

(fungus) 
PDA [41] 

110 432.2898 10.5 [M+H]+ C29H37NO2 2 -1.2 
241.1952, 217.1948, 200.0696, 172.0747, 

147.1157, 121.1003, 109.0999 
Proxiphomin Cytochalasan 

Phoma sp. 
(fungus) 

CAG, 
PDA 

[39] 

111 395.3304 11.82 [M+H]+ C28H42O 4 -2.5 
311.2373, 307.2408, 293.2247, 251.1765, 
211.1485, 199.1459, 159.1105, 109.1014, 

83.0846, 69.0697 
n.a.   PDA  
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Table S10. Putative annotation of metabolites detected in the crude extracts of Streptomyces sp. strain CKT43 cultivated on GYM and MB media. 
Each detected compound is given with the experimentally determined m/z value and the predicted putative molecular formula. Putative identifications were 
based on the accurate mass, predicted putative molecular formulae, the retention time (Rt in min), the fragmentation pattern and biological origin. *Only putative 
molecular formula with best ppm shown (more than 1 molecular formula possible). IC: Identification confidence level after Sumner et al. 2007 [3]. Nf: No 
fragmentation pattern detected or fragmentation below noise threshold of 5e1. n.a. = putatively novel compound (known NPs do not match). Ref = reference. 

No. m/z value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical family Biological origin Medium Ref 

112 160.0767 1.45 [M+H]+ C10H9NO 4 3.1 132.0818 n.a.   MB  

113 265.1423 3.72 [M+H]+ C11H16N6O2 4 3.8 Nf n.a.   MB, 
GYM 

 

114 263.1251 4.01 [M+H]+ C11H14N6O2 4 -1.9 Nf n.a.   MB, 
GYM 

 

115 263.1249 4.12 [M+H]+ C11H14N6O2 4 -2.7 Nf n.a.   MB, 
GYM 

 

116 235.1317 4.51 [M+H]+ C10H14N6O 4 4.3 195.1388, 177.1278 n.a.   MB  

117 235.1319 4.85 [M+H]+ C10H14N6O 4 5.1 195.1378, 177.1292 n.a.   MB  

118 743.4458 4.76 [M+H]+ C37H58N8O8* 4 0.3 
341.2543, 298.2151, 284.1961, 276.1321, 

157.0986, 86.0920 
n.a.   GYM  

119 233.1158 5.08 [M+H]+ C10H12N6O 4 2.6 157.9664 n.a.   MB  

120 249.1475 5.19 [M+H]+ C11H16N6O 4 4.4 209.1536, 191.1433, 163.1482 n.a.   MB, 
GYM 

 

121 249.1472 5.3 [M+H]+ C11H16N6O 4 3.2 209.1569, 191.1430 n.a.   GYM  

122 221.191 5.38 [M+H]+ C15H24O 4 2.3 203.1797, 147.1173, 141.9590, 97.9693 n.a.   MB  

123 225.1501 5.52 [M+H]+ C13H20O3 2 4.4 

207.1390, 197.1548, 189.1286, 179.1438, 
165.1284, 161.1334, 151.0760, 147.1176, 
147.0811, 137.0605. 133.0656, 125.0604, 
119.0864, 107.0862, 107.0500, 105.0706 

MKN-003A Butenolide 
Streptomyces sp. 

(bacterium) 
MB, 
GYM 

[42] 

124 227.1656 5.75 [M+H]+ C13H22O3 3 4 Nf MKN-003C Butenolide 
Streptomyces sp. 

(bacterium) 
MB [42] 

125 955.5981 5.75 [M+H]+ 
C48H78N10O10 

Or 

C46H66N24* 

4 0.3 

626.3671, 539.3618, 511.3620, 470.2799, 
468.3213, 428.2272, 412.2930, 400.2314, 
371.2073, 369.2507, 357.1931, 355.2360, 
341.2551, 324.2289, 313.2219, 308.2020, 
300.1698, 298.2097, 284.1980, 272.1780, 
270.1830, 259.1266, 256.1674, 253.1931, 
242.1522, 239.1759, 231.1698, 230.1304, 
213.1609, 211.1805, 211.1448, 199.447, 
197.1678, 187.0869, 185.1291, 171.1505, 
171.1134, 159.0932, 157.0972, 143.1185, 

86.0971 

n.a.   MB  
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No. m/z value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical family Biological origin Medium Ref 

126 898.6118 6.02 [M+H]+ C47H79N9O8 2 -1.3 

785.5298, 615.4265, 445.2813, 412.2908, 
397.2446, 332.1974, 298.2133, 284.1965, 
261.1606, 253.1929, 233.1674, 228.1719, 
213.1601, 199.1820, 197.1653, 185.1291, 
157.1363, 155.1204, 129.1028, 86.0971, 

84.0820 

Surugamide B Cyclic octapeptide 
Streptomyces sp. 

(bacterium) 
MB, 
GYM 

[43] 

127 898.6117 6.1 [M+H]+ C47H79N9O8 2 -1.4 

686.4632, 615.4197, 554.3472, 397.2428, 
369.2845, 298.2137, 284.1965, 261.1610, 
233.1666, 227.1764, 213.1611, 197.1669, 
185.1291, 171.1122, 129.1036, 86.0971, 

84.0809 

Surugamide C Cyclic octapeptide 
Streptomyces sp. 

(bacterium) 
MB, 
GYM 

[43] 

128 898.6121 6.18 [M+H]+ C47H79N9O8 2 -1 

785.5309, 601.4060, 502.3380, 445.2841, 
431.2659, 397.2429, 374.2444, 369.2854, 
360.2286, 332.1981, 261.1602, 253.1920, 

242.1852, 239.1767, 233.1660, 
199.1831,157.1340, 129.1031, 120.0808, 

86.0979, 84.0811 

Surugamide D Cyclic octapeptide 
Streptomyces sp. 

(bacterium) 
MB, 
GYM 

[43] 

129 912.6266 6.29 [M+H]+ C48H81N9O8 2 -2.2 
445.2818, 374.2439, 298.2127, 261.1596, 

129.1012 
Surugamide A Cyclic octapeptide 

Streptomyces sp. 
(bacterium) 

MB, 
GYM 

[43] 

130 448.3065 6.61 [M+H]+ C26H41NO5* 4 0.4 
430.2956, 412.2844, 355.2642, 337.2538, 

319.2439, 213.1642 
n.a.   MB  

131 389.2693 6.79 [M+H]+ C24H36O4 4 0.3 
371.2574, 353.2473, 335.2369, 325.2511, 
317.2269, 239.1788, 229.1589, 177.1292, 

109.0649, 97.0651 
n.a.   MB  

132 1054.629 6.97 [M+H]+ C51H87N7O16* 4 0.2 Nf n.a.   MB  

133 669.4541 7.43 [M+H]+ C32H64N2O12* 4 0.4 
339.2649, 313.1871, 297.1458, 240.0987, 

228.2325, 203.1395, 186.1132 
n.a.   MB  

134 600.1503 7.51 [M+H]+ C30H13N15O* 4 -0.3 550.1147, 540.1298, 522.1205 n.a.   GYM  

135 683.4688 7.84 [M+H]+ 
C31H54N16O2 

Or 
C33H66N2O12* 

4 -0.9 
353.2797, 313.1877, 297.1457, 242.2488, 

240.0988, 203.1399, 186.1134 
n.a.   MB  

136 683.4688 7.9 [M+H]+ 
C31H54N16O2 

Or 
C33H66N2O12* 

4 -0.9 
353.2797, 313.1878, 297.1456, 242.2488, 

240.0988, 203.1399, 186.1132 
n.a.   MB  

137 697.4856 8.33 [M+H]+ C34H68N2O12* 4 0.7 
313.1876, 297.1454, 256.2643, 240.0979, 

203.1400, 186.1130 
n.a.   MB  

138 315.2528 8.38 [M+H]+ C18H34O4 4 -2.2 97.1003, 83.0846, 75.0433 n.a.   MB, 
GYM 

 

139 315.2523 8.46 [M+H]+ C18H34O4 4 -3.8 111.1182, 97.1002, 83.0843, 75.0430 n.a.   MB, 
GYM 

 

140 205.1964 8.71 [M+H]+ C15H24 4 3.9 
149.1333, 135.1174, 123.1174, 121.1017, 

109.1018, 107.0859, 95.0865 
n.a.   MB, 

GYM 
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No. m/z value 
Rt 

(min) 
Adduct 

Putative 
molecular 
formula 

IC ppm Fragmentation pattern 
Putative 

identification 
Chemical family Biological origin Medium Ref 

141 219.1741 9.03 [M+H]+ C15H22O 3 -3.7 177.1264, 163.1107, 149.0943 Anaephene A 
Alkylphenol 
derivative 

Hormoscilla sp. 
(bacterium) 

MB, 
GYM 

[44] 

142 357.2634 9.32 [M+H]+ C20H36O5 4 -2 117.0534, 83.0846 n.a.   GYM  

143 785.3582 9.32 [M+H]+ C33H36N24O* 4 0 Nf n.a.   MB, 
GYM 

 

144 799.3724 9.67 [M+H]+ 
C33H42N20O5 

Or 
C35H54N6O15* 

4 -0.1 711.3188 n.a.   GYM  

145 507.2712 9.79 [M+H]+ C26H38N2O8 2 1.2 237.0884, 136.0401 
Deformylated 
antimycin A2a 

Macrolide 
Streptomyces sp. 

(bacterium) 
MB [45] 

146 521.2866 10.2 [M+H]+ C27H40N2O8 2 0.6 237.0881, 136.0396 
Deformylated 
antimycin A1a 

Macrolide 
Streptomyces sp. 

(bacterium) 
MB, 
GYM 

[45] 

147 343.2843 10.24 [M+H]+ C20H38O4 4 -1.5 
325.2723, 251.2372, 233.2257, 163.1481, 
149.1321, 135.1162, 121.1004, 109.1017, 

107.0851, 97.0989, 95.0828, 81.0697 
n.a.   GYM  

148 331.2845 10.31 [M+H]+ C19H38O4 4 -0.9 Nf n.a.   GYM  
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Figure S1. Venn diagram of exclusive and shared peaks of three Streptomyces sp. extracts 
(CHG40-GYM, CHG48-GYM, CHG64-GYM) and one N. prasina extract (CKG58-GYM). 
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Figure S2. Putatively identified compounds detected in crude extracts of microorganisms 
associated with the gut of C. intestinalis. Chemical structures are labelled with their respective peak 
number (see Tables S5-S10).  
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S3. FBMN of Streptomyces sp. extract CHG48-GYM. The width of edges represents the 
cosine similarity between two nodes. See Table S5 for putatively annotated compounds. 
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Figure S4. FBMN of Micromonospora sp. extract CKG20-GYM. The width of edges represents the 
cosine similarity between two nodes. The FBMN was generated with edges having cosine score above 
0.8. See Table S6 for putatively annotated compounds. 
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Figure S5. FBMN of Bacillus sp. extract CKG24-GYM. The width of edges represents the cosine 
similarity between two nodes. See Table S7 for putatively annotated compounds. 

 



Appendix – Chapter 3 

230 
 

 

Figure S6. FBMN of Trichoderma sp. extracts CHG34-CAG and CHG34-PDA. The width of edges 
represents the cosine similarity between two nodes. Nodes are color-coded by the respective extracts: 
light green: CHG34-CAG, dark green: CHG34-PDA. ISF: abundant in source fragments of detected 
metabolites. See Table S8 for putatively annotated compounds. 
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Figure S7. FBMN of Fusarium sp. extracts CHG38-CAG and CHG38-PDA. The width of edges 
represents the cosine similarity between two nodes. Nodes are color-coded by the respective extracts: 
light blue: CHG38-CAG, dark blue: CHG38-PDA. See Table S9 for putatively annotated compounds. 
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Figure S8. FBMN of Penicillium sp. extracts CKG23-CAG and CKG23-PDA. The width of edges 
represents the cosine similarity between two nodes. Nodes are color-coded by the respective extracts: 
light purple: CKG23-CAG, dark purple: CKG23-PDA. See Table S10 for putatively annotated 
compounds. 
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Figure S9. Experimental (black) and library (green) MS/MS spectra of bonactin (14), putatively 
identified in Streptomyces sp. extract CHG48-GYM. The spectral match was generated by the online 
platform GNPS [1].  

 

 

Figure S10. Experimental (black) and library (green) MS/MS spectra of homononactyl 
homononactate (18), putatively identified in Streptomyces sp. extract CHG48-GYM. The spectral 
match was generated by the online platform GNPS [1]. 
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Figure S11. Annotated MS/MS spectra of putatively novel lipopeptides detected in Trichoderma 
sp. extracts CHG34-CAG and CHG34-PDA. The putative amino acid sequences were predicted 
based on the experimentally determined MS/MS fragmentation pattern of m/z 770.5386 [M+H]+ (103; 
top) and m/z 754.5423 [M+H]+ (105; bottom; here shown for extract CHG34-PDA). Ala: alanine, Gly: 
glycine, Leu/Ile: (iso)leucine, Leuol/Ileol: (iso)leucinol, Oc: octanoyl, Ser: serine, Val: valine. 
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Figure S12. Comparative metabolome analyses of Penicillium sp. extracts CKG23-CAG and 
CKG23-PDA. (a) Venn diagram of shared and exclusive peaks detected in extract CKG23-CAG (light 
purple) and CKG23-PDA (dark purple). (b) Zearalenone cluster produced by Penicillium sp. isolate 
CKG23 (see Figure S8 for full FBMN). The width of edges represents the cosine similarity between two 
nodes. (c) Putatively annotated metabolites of the zearalenone cluster are displayed with their m/z 
values and observed adducts. Compound numbers are in accordance with Table S10. 



Appendix – Chapter 3 

236 
 

Table S1. Taxonomic classification of microbial strains isolated from the gut of C. intestinalis sampled in Helgoland and Kiel Fjord. Strain codes are 
based on the respective sampling location and sampled tissue (CHG = C. intestinalis from Helgoland, gut; CKG = C. intestinalis from Kiel Fjord, gut). The three 
closest related strains are given according to the BLAST search [2]. RG = risk group (according to TRBA 460 and TRBA 466). Acc. no.: Accession number. 

Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CHG1 MB MW065489 16S 

Uncultured Vibrio sp. 

Uncultured Vibrio sp. 

Vibrio owensii 

MG554543.1 

MG554505.1 

CP025797.1 

Vibrio sp. (Vibrionales) 1 

CHG2 MB MW065490 16S 

Ruegeria sp. 

Ruegeria sp. 

Ruegeria atlantica 

KY363633.1 

KX833139.1 

JN128252.1 

Ruegeria atlantica 

(Rhodobacterales) 
1 

CHG3 MB MW065491 16S 

Bacterium b1cb16 

Shewanella sp. 

Shewanella piezotolerans 

EF207071.1 

MF975607.1 

CP000472.1 

Shewanella sp. 

(Alteromonadales) 
1 

CHG4 MB MW065492 16S 

Citrobacter amalonaticus 

Citrobacter farmeri 

Citrobacter sp. 

MG238567.1 

CP022695.1 

LT556085.1 

Citrobacter sp. 

(Enterobacterales) 
2 

CHG5 MB MW065493 16S 

Shewanella woodyi 

Shewanella woodyi 

Shewanella woodyi 

NR_114412.1 

NR_074846.1 

CP000961.1 

Shewanella woodyi 

(Alteromonadales) 
1 

CHG6 TSB MW065494 16S 

Shewanella schlegeliana 

Shewanella sairae 

Shewanella schlegeliana 

MG388302.1 

AB274769.1 

AB274767.1 

Shewanella sp. 

(Alteromonadales) 
1 

CHG7 TSB MW065495 16S 

Shewanella putrefaciens 

Shewanella hafniensis 

Shewanella xiamenensis 

MG976650.1 

MF612155.1 

MF033476.1 

Shewanella sp. 

(Alteromonadales) 
2 

CHG8 TSB MW065496 16S 

Shewanella sp. 

Shewanella sp. 

Shewanella algae 

KJ748462.1 

KJ748460.1 

KX218308.1 

Shewanella sp. 

(Alteromonadales) 
2 

CHG9 TSB MW065497 16S 

Escherichia coli 

Escherichia coli 

Escherichia coli 

CP025753.1 

CP025747.1 

CP025739.1 

Escherichia coli 

(Enterobacterales) 
2 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CHG10 CMN MW065498 16S 

Vibrio alginolyticus 

Vibrio alginolyticus 

Vibrio alginolyticus 

KY229785.1 

JN188414.1 

KY684259.1 

Vibrio sp. (Vibrionales) 2 

CHG11 CMN MW065499 16S 

Ruegeria sp. 

Ruegeria sp. 

Ruegeria atlantica 

KY363633.1 

KX833139.1 

HQ908680.1 

Ruegeria atlantica 

(Rhodobacterales) 
1 

CHG12 CMN MW065500 16S 

Shewanella kaireitica 

Uncultured bacterium clone 

SanDiego_a2585 

Uncultured bacterium clone 

SanDiego_a2547 

KX078089.1 

KF799676.1 

KF799675.1 

Shewanella sp. 

(Alteromonadales) 
1 

CHG16 WSP MW065501 16S 

Vibrio sp. 

Vibrio sp. 

Vibrio owensii 

MK533523.1 

MK533517.1 

CP033138.1 

Vibrio sp. (Vibrionales) 1 

CHG19 WSP MW064137 ITS 

Fungal sp. isolate whc1 

Arthrinium arundinis 

Arthrinium sacchari 

MH465392.1 

KX778674.1 

KX778672.1 

Arthrinium sp. (Xylariales) 1 

CHG20 WSP MW065502 16S 

Citrobacter freundii 

Citrobacter freundii complex 

Citrobacter freundii 

CP027849.1 

CP026231.1 

CP011657.1 

Citrobacter freundii 

(Enterobacterales) 
2 

CHG21 WSP MW065503 16S 

Citrobacter braakii 

Citrobacter sp. 

Citrobacter braakii 

MH368419.1 

MH368123.1 

CP022049.2 

Citrobacter braakii 

(Enterobacterales) 
2 

CHG22 WSP MW064138 ITS 

Uncultured Penicillium clone  

WPW-OTU-32 

Penicillium hoeksii 

Penicillium hoeksii 

KT581734.1 

NR_137913.1 

KY305048.1 

Penicillium hoeksii (Eurotiales) 1 

CHG24 WSP MW064139 ITS 

Aspergillus niger 

Fungal sp. SNB-LAP1-7-61 

Aspergillus niger 

MG647867.1 

KU977335.1 

MH050790.1 

Aspergillus sp. (Eurotiales) 2 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CHG25 WSP MW064140 ITS 

Penicillium expansum 

Penicillium sp. 

Penicillium ulaiense 

MF303721.1 

KP403971.1 

LN871568.1 

Penicillium sp. (Eurotiales) 1 

CHG26 WSP MW064141 ITS 

Uncultured Galactomyces clone P71B  

Geotrichum candidum 

Geotrichum candidum 

MG193553.1 

MH680587.1 

MF782775.1 

Galactomyces candidum 

(Saccharomycetales) 
1 

CHG28 WSP MW064142 ITS 

Trichoderma harzianum 

Trichoderma sp. 

Trichoderma harzianum 

MF871539.1 

MH285106.1 

KY750434.1 

Trichoderma sp. (Hypocreales) 1 

CHG29 PDA MW064143 ITS 

Phoma sp. 

Uncultured Didymella clone 191_K9ov 

Stagonosporopsis cucurbitacearum 

KF525844.1 

KY430454.1 

KU168143.1 

Phoma sp. (Pleosporales) 1 

CHG32 TSB MW065504 16S 

Vibrio rumoiensis 

Vibrio sp. 

Vibrio owensii 

AP018685.1 

MG262453.1 

MH368433.1 

Vibrio sp. (Vibrionales) 1 

CHG34 WSP MW064144 ITS 

Trichoderma sp. 

Trichoderma harzianum 

Trichoderma harzianum 

MH285106.1 

MF871539.1 

KY750434.1 

Trichoderma sp. (Hypocreales) 1 

CHG35 PDA MW064145 ITS 

Penicillium sp. 

Penicillium antarcticum 

Penicillium atrovenetum 

KY401117.1 

KP016829.1 

KF679753.1 

Penicillium sp. (Eurotiales) 1 

CHG38 WSP MW064146 ITS 

Fusarium graminearum 

Fusarium graminearum 

Fusarium graminearum 

MK079896.1 

MK079895.1 

MK079894.1 

Fusarium sp. (Hypocreales) 1 

CHG39 WSP MW065505 16S 

Bacillus subtilis 

Bacillus subtilis 

Bacillus velezensis 

MG977677.1 

MG976620.1 

MG970354.1 

Bacillus sp. (Bacillales) 1 

CHG40 TSB MW065506 16S 

Streptomyces sp. 

Streptomyces parvus 

Streptomyces lavendulae 

KY613504.1 

KY213676.1 

KY213666.1 

Streptomyces sp. 

(Streptomycetales) 
1 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CHG41 TSB MW065507 16S 

Bacillus licheniformis 

Uncultured bacterium clone OTU3 

Bacillus licheniformis 

KY886241.1 

KP975259.1 

KC522129.1 

Bacillus licheniformis (Bacillales) 1 

CHG42 TSB MW065508 16S 

Shewanella algae 

Shewanella algae 

Shewanella haliotis 

NR_114236.1 

NR_117771.1 

NR_117770.1 

Shewanella sp. 

(Alteromonadales) 
2 

CHG43 MB MW065509 16S 

Vibrio splendidus  

Vibrio sp. 

Vibrio anguillarum 

MH010050.1 

MG788349.1 

CP023433.1 

Vibrio sp. (Vibrionales) 2 

CHG44 MB MW064147 ITS 

Aspergillus oryzae 

Aspergillus oryzae 

Aspergillus flavus 

MH746006.1 

MH625703.1 

MH578599.1 

Aspergillus sp. (Eurotiales) 2 

CHG47 WSP MW064148 ITS 

Arthrinium sp. 

Arthrinium sp. 

Arthrinium arundinis 

MH059547.1 

MH059539.1 

MK256947.1 

Arthrinium sp. (Xylariales) 1 

CHG48 WSP MW065510 16S 

Streptomyces sp. 

Streptomyces sp. 

Streptomyces pratensis 

MG637270.1 

MG637268.1 

MK484235.1 

Streptomyces sp. 

(Streptomycetales) 
1 

CHG49 PDA MW064175 18S 

Uncultured fungus clone nco40d10c1 

Uncultured fungus clone nco40a09c1 

Pyrenophora tritici-repentis 

KC670836.1 

KC670799.1 

U42486.1 

Pleosporaceae (Pleosporales) 1 

CHG52 WSP MW064149 ITS 

Penicillium cosmopolitanum 

Penicillium cosmopolitanum 

Penicillium cosmopolitanum 

MH864385.1 

MH864384.1 

MH864377.1 

Penicillium sp. (Eurotiales) 1 

CHG53 PDA MW064150 ITS 

Trichoderma sp. 

Trichoderma sp. 

Trichoderma koningii 

MH794211.1 

MH284929.1 

KX343123.1 

Trichoderma sp. (Hypocreales) 1 

CHG56 TSB MW064151 ITS 

Aspergillus nidulans 

Fungal sp. isolate Aspergillus 

quadrilineatus 

Aspergillus nidulans 

MG459155.1 

MH041155.1 

MG991576.1 

Aspergillus sp. (Eurotiales) 1 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CHG59 PDA MW064152 ITS 

Tamaricicola sp. 

Tamaricicola sp. 

Comoclathris spartii 

MG977427.1 

MG977425.1 

KU714703.1 

Tamaricicola sp. (Pleosporales) 1 

CHG60 TSB MW064153 ITS 

Peroneutypa sp. 

Eutypella scoparia 

Eutypella sp. 

MF359647.1 

EU436688.1 

JQ922161.1 

Peroneutypa sp. (Xylariales) 1 

CHG61 TSB MW065511 16S 

Uncultured bacterium clone 

FRA_187_C04_2008-07-09  

Uncultured Vibrio sp. 

Vibrio anguillarum 

FN434816.1 

MG554532.1 

CP022468.1 

Vibrio sp. (Vibrionales) 2 

CHG64 TSB MW065512 16S 

Streptomyces microflavus 

Streptomyces sp. 

Streptomyces sp. 

MG855947.1 

MH251131.1 

MH250821.1 

Streptomyces sp. 

(Streptomycetales) 
1 

CKG1 MB MW065513 16S 

Pseudomonas sp. 

Uncultured marine bacterium isolate 

TGGE gel band 22TGGE1 

Pseudomonas anguilliseptica 

KX621130.1 

KJ814609.1 

DQ005209.1 

Pseudomonas sp. 

(Pseudomonadales) 
1 

CKG2 MB MW065514 16S 

Rhodococcus sp. 

Rhodococcus antrifimi 

Rhodococcus antrifimi 

MG515722.1 

LN867321.1 

NR_145614.1 

Rhodococcus sp. 

(Corynebacteriales) 
2 

CKG3 MB MW065515 16S 

Shewanella sp. 

Shewanella sp.  

Shewanella aestuarii 

FR821223.1 

FR744880.1 

KX271676.1 

Shewanella sp. 

(Alteromonadales) 
1 

CKG4 MB MW065516 16S 

Vibrio sp. 

Vibrio anguillarum 

Vibrio anguillarum 

MG788349.1 

CP023433.1 

CP023293.1 

Vibrio sp. (Vibrionales) 2 

CKG5 MB MW065517 16S 

Nocardiopsis alba 

Nocardiopsis alba 

Nocardiopsis alba 

MH843138.1 

MH843137.1 

MH843136.1 

Nocardiopsis sp. 

(Streptosporangiales) 
1 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CKG6 MB MW065518 16S 

Shewanella aestuarii 

Shewanella aestuarii 

Shewanella aestuarii 

KX271676.1 

KX271675.1 

KX271674.1 

Shewanella aestuarii 

(Alteromonadales) 
1 

CKG7 MB MW065519 16S 

Vibrio owensii 

Vibrio owensii 

Vibrio owensii 

LC369696.1 

MG896198.1 

MG896189.1 

Vibrio sp. (Vibrionales) 1 

CKG8 MB MW065520 16S 

Vibrio sp. 

Vibrio anguillarum 

Vibrio anguillarum 

MG788349.1 

CP023433.1 

CP023293.1 

Vibrio sp. (Vibrionales) 2 

CKG9 CMN MW065521 16S 

Vibrio sp. 

Vibrio anguillarum 

Vibrio anguillarum 

MG788349.1 

CP023433.1 

CP023293.1 

Vibrio sp. (Vibrionales) 2 

CKG10 CMN MW065522 16S 

Uncultured Vibrio sp. clone HH101354 

Uncultured Vibrio sp. clone HH101351 

Vibrio anguillarum 

MG554532.1 

MG554529.1 

CP022468.1 

Vibrio sp. (Vibrionales) 2 

CKG11 CMN MW065523 16S 

Shewanella aestuarii 

Shewanella aestuarii 

Shewanella aestuarii 

KX271676.1 

KX271675.1 

KX271674.1 

Shewanella aestuarii 

(Alteromonadales) 
1 

CKG12 TSB MW065524 16S 

Vibrio owensii 

Vibrio campbellii 

Vibrio sp. 

MG896198.1 

CP026321.1 

KY655411.1 

Vibrio sp. (Vibrionales) 1 

CKG13 TSB MW065525 16S 

Uncultured marine bacterium isolate 

TGGE gel band 22TGGE1 

Pseudomonas sp.  

Pseudomonas peli 

KJ814609.1 

JQ012964.1 

MG687270.1 

Pseudomonas sp. 

(Pseudomonadales) 
1 

CKG14 TSB MW065526 16S 

Shewanella sp. 

Shewanella sp.  

Shewanella aestuarii 

FR821223.1 

FR744880.1 

KX271676.1 

Shewanella sp. 

(Alteromonadales) 
1 

CKG15 TSB MW065527 16S 

Shewanella sp. 

Shewanella sp.  

Shewanella colwelliana 

MF045123.1 

KU647920.1 

KC534404.1 

Shewanella colwelliana 

(Alteromonadales) 
1 



Appendix – Chapter 3 

242 
 

Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CKG16 TSB MW064154 ITS 

Eutypa lata 

Amphisphaeria umbrina 

Uncultured Eutypella clone G17312 

MF359647.1 

KY962999.1 

JQ922161.1 

Eutypa lata (Xylariales) 1 

CKG19 TSB MW065528 16S 

Bacillus pumilus  

Bacillus pumilus  

Bacillus zhangzhouensis 

CP027034.1 

KY623354.1 

MG937731.1 

Bacillus sp. (Bacillales) 2 

CKG20 TSB MW065529 16S 

Micromonospora sp.  

Micromonospora sp.  

Micromonospora aurantiaca 

EU437811.1 

LC383890.1 

MH333275.1 

Micromonospora sp. 

(Micromonosporales) 
1 

CKG21 CMN MW065530 16S 

Bacillus hwajinpoensis 

Bacillus hwajinpoensis 

Bacillus hwajinpoensis 

MG651497.1 

MG651463.1 

MG651074.1 

Bacillus hwajinpoensis 

(Bacillales) 
1 

CKG22 PDA MW064155 ITS 

Penicillium antarcticum 

Penicillium sp. 

Penicillium sp. 

MH828228.1 

KY401122.1 

KY401117.1 

Penicillium sp. (Eurotiales) 1 

CKG23 WSP MW064156 ITS 

Penicillium antarcticum 

Penicillium sp. 

Penicillium sp. 

MH828228.1 

KY401122.1 

KY401117.1 

Penicillium sp. (Eurotiales) 1 

CKG24 WSP MW065531 16S 

Bacillus subtilis 

Bacillus amyloliquefaciens 

Bacillus subtilis 

KC428745.1 

JX517210.1 

GQ280056.1 

Bacillus sp. (Bacillales) 1 

CKG25 WSP MW064157 ITS 

Geotrichum candidum 

Galactomyces candidum 

Geotrichum candidum 

KF713521.1 

KF298070.1 

KY009607.1 

Galactomyces candidum 

(Saccharomycetales) 
1 

CKG27 WSP MW065532 16S 

Bacillus muralis 

Bacillus sp. 

[Brevibacterium] frigoritolerans 

MF506797.1 

MG062899.2 

MF467864.1 

Bacillus sp. (Bacillales) 2 

CKG29 WSP MW065533 16S 

Bacillus amyloliquefaciens 

Bacillus amyloliquefaciens 

Bacillus subtilis 

MG136848.1 

MG136846.1 

MG977677.1 

Bacillus sp. (Bacillales) 1 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CKG30 WSP MW065534 16S 

Bacillus pumilus  

Bacillus pumilus  

Bacillus zhangzhouensis 

CP027034.1 

KY623354.1 

MG937731.1 

Bacillus sp. (Bacillales) 2 

CKG31 PDA MW065535 16S 

Vibrio sp. 

Shewanella sp. 

Shewanella kaireitica 

LC416561.1 

MH333258.1 

KX078089.1 

Shewanella kaireitica 

(Alteromonadales) 
1 

CKG32 WSP MW064158 ITS 

Fusarium graminearum 

Fusarium graminearum 

Fusarium graminearum 

MF800908.1 

KY466827.1 

KY466825.1 

Fusarium sp. (Hypocreales) 1 

CKG33 WSP MW064159 ITS 

Mucor hiemalis 

Mucor hiemalis 

Mucor hiemalis 

HQ845045.1 

HM037964.1 

HM037963.1 

Mucor hiemalis (Mucorales) 1 

CKG36 TSB MW065536 16S 

Bacillus sp. 

Bacillus cereus 

Bacillus cereus 

CP020437.2 

MG977683.1 

MG966498.1 

Bacillus sp. (Bacillales) 2 

CKG37 CMN MW064160 ITS 

Sarocladium strictum 

Sarocladium strictum 

Sarocladium strictum 

MH880255.1 

LC314675.1 

MF663649.1 

Sarocladium strictum 

(Hypocreales) 
1 

CKG38 CMB MW065537 16S 

Pseudomonas sp. 

Pseudomonas sp. 

Pseudomonas anguilliseptica 

KT710819.1 

KT710818.1 

JX177684.1 

Pseudomonas anguilliseptica 

(Pseudomonadales) 
1 

CKG39 TSB MW065538 16S 

Bacillus licheniformis 

Bacillus licheniformis 

Bacillus licheniformis 

MG980062.1 

MG280960.1 

MG189544.1 

Bacillus sp. (Bacillales) 1 

CKG40 WSP MW065539 16S 

Uncultured Klebsiella sp. clone JXS1-28 

Klebsiella sp.  

Raoultella ornithinolytica 

JN873189.1 

KM873628.1 

CP010557.1 

Klebsiella sp. (Enterobacterales) 2 

CKG42 WSP MW064161 ITS 

Elaphocordyceps sp. 

Elaphocordyceps sp. 

Tolypocladium sp. 

KC237381.1 

KC237380.1 

KX034386.1 

Elaphocordyceps sp. 

(Hypocreales) 
1 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CKG43 WSP MW065540 16S 

Bacillus subtilis 

Bacillus siamensis 

Bacillus siamensis 

MG928427.1 

KY962351.1 

KY962340.1 

Bacillus sp. (Bacillales) 1 

CKG44 WSP MW064162 ITS 

Neonectria coccinea 

Uncultured Neonectria clone AEW3_110 

Neonectria coccinea 

KJ022022.1 

KF823598.1 

KC660506.1 

Neonectria coccinea 

(Hypocreales) 
1 

CKG45 WSP MW064163 ITS 

Purpureocillium lilacinum 

Purpureocillium lilacinum 

Purpureocillium lilacinum 

KY007618.1 

MH865347.1 

MH865301.1 

Purpureocillium lilacinum 

(Hypocreales) 
2 

CKG46 TSB MW065541 16S 

Nocardiopsis sp. 

Nocardiopsis prasina 

Nocardiopsis prasina 

MK045298.1 

MF594115.1 

MF170851.1 

Nocardiopsis prasina 

(Streptosporangiales) 
1 

CKG47 CMN MW065542 16S 

Vibrio sp. 

Vibrio anguillarum 

Vibrio anguillarum 

MG788349.1 

CP023433.1 

CP023293.1 

Vibrio sp. (Vibrionales) 2 

CKG49 WSP MW064164 ITS 

Mucor circinelloides 

Mucor circinelloides 

Mucor circinelloides 

MH911362.1 

KC329629.1 

JX241658.1 

Mucor circinelloides (Mucorales) 1 

CKG50 CMN MW065543 16S 

Sporosarcina sp. 

Sporosarcina sp. 

Sporosarcina aquimarina 

KX108967.1 

KT368976.1 

KF800793.1 

Sporosarcina sp. (Bacillales) 1 

CKG51 CMN MW064165 ITS 

Penicillium polonicum 

Penicillium polonicum 

Penicillium sp. 

KY978579.1 

KY993979.1 

KY092668.1 

Penicillium sp. (Eurotiales) 1 

CKG52 CMN MW065544 16S 

Vibrio sp. 

Vibrio anguillarum 

Vibrio anguillarum 

MG788349.1 

CP023433.1 

CP023293.1 

Vibrio sp. (Vibrionales) 2 

CKG53 CMN MW065545 16S 

Streptomyces sp. 

Streptomyces sp. 

Streptomyces lividans 

MK134635.1 

MK134629.1 

MG856044.1 

Streptomyces sp. 

(Streptomycetales) 
2 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CKG54 CMB MW064176 18S 

Cordyceps farinosa 

Fungal sp. J271 

Isaria farinosa 

MH857775.1 

KC242715.1 

KC242708.1 

Cordyceps farinosa 

(Hypocreales) 
1 

CKG55 MB MW065546 16S 

Nocardiopsis alba 

Nocardiopsis alba 

Nocardiopsis alba 

MH333283.1 

MF321814.1 

MF321809.1 

Nocardiopsis alba 

(Streptosporangiales) 
1 

CKG57 CMB MW064166 ITS 

Aaosphaeria arxii 

Arthopyrenia sp. 

Massarina igniaria 

MH861193.1 

KU747910.1 

KR534712.1 

Arthopyrenia sp. (Pleosporales) 1 

CKG58 CMB MW065547 16S 

Nocardiopsis sp. 

Nocardiopsis prasina 

Nocardiopsis prasina 

MK045298.1 

MF594115.1 

MF170851.1 

Nocardiopsis prasina 

(Streptosporangiales) 
1 

CKG60 MB MW065548 16S 

Enterobacter sp. 

Citrobacter gillenii 

Citrobacter gillenii 

MF429589.1 

MH392488.1 

MG757538.1 

Citrobacter sp. 

(Enterobacterales) 
2 

CKG62 PDA MW064167 ITS 

Trichoderma sp. 

Trichoderma lixii 

Trichoderma harzianum 

MK290992.1 

MK288146.1 

MK209008.1 

Trichoderma sp. (Hypocreales) 1 

CKG63 WSP MW064168 ITS 

Penicillium psychrosexualis 

Penicillium psychrosexualis 

Penicillium psychrosexualis 

MH864839.1 

MH864838.1 

MH864787.1 

Penicillium sp. (Eurotiales) 1 

CKG64 CMB MW064169 ITS 

Penicillium polonicum 

Penicillium polonicum 

Penicillium polonicum 

MK271277.1 

MK267441.1 

MK077720.1 

Penicillium sp. (Eurotiales) 1 

CKG66 CMB MW064170 ITS 

Uncultured fungus clone 

ZB042802405(86) 

Fungal sp. strain PS14 

Acrostalagmus luteoalbus 

MF962944.1 

MH456880.1 

KT824244.1 

Acrostalagmus luteoalbus 

(Hypocreales) 
1 

CKG67_I CMB MW064171 ITS 

Purpureocillium lilacinum 

Purpureocillium lilacinum 

Purpureocillium lilacinum 

LC413751.1 

MF996819.1 

KF706346.1 

Purpureocillium lilacinum 

(Hypocreales) 
2 
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Strain 

code 

Isolation 

medium 
Acc. no. Amplicon Closest related species (BLAST) 

Acc. no. 

closest related 

species 

Lowest taxonomic 

classification (order) 
RG 

CKG67_II WSP MW065549 16S 

Nocardiopsis alba 

Nocardiopsis alba 

Nocardiopsis alba 

MH333283.1 

MH071379.1 

MF321814.1 

Nocardiopsis alba 

(Streptosporangiales) 
1 

CKG68 WSP MW064172 ITS 

Purpureocillium lilacinum 

Purpureocillium lilacinum 

Purpureocillium lilacinum 

MH865347.1 

MH865301.1 

MH865154.1 

Purpureocillium lilacinum 

(Hypocreales) 
2 

CKG70 TSB MW064173 ITS 

Plectosphaerella cucumerina 

Fungal sp. strain S255T 

Fungal sp. strain S255S 

MH791266.1 

KU839553.1 

KU839552.1 

Plectosphaerella cucumerina 

(Glomerellales) 
1 

CKG71 TSB MW064174 ITS 

Sarocladium strictum 

Fungal sp. strain S254T 

Fungal sp. strain S254S 

KY465763.1 

KU839539.1 

KU839538.1 

Sarocladium strictum 

(Hypocreales) 
1 
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Table S2. Antimicrobial and anticancer activities (% inhibition at a test concentration of 100 µg/mL) of microbial crude extracts. Inhibition values are 
given as average values of the two biological and two technical replicates. Some bacterial isolates were only cultivated on MB medium, since they did not grow 
on GYM medium. Extracts selected by the bioactivity selection criterion (see Section 2.3.) are highlighted in blue. MRSA: Methicillin-resistant Staphylococcus 
aureus, Efm: Enterococcus faecium, Ab: Acinetobacter baumannii, Ec: Escherichia coli, Kp: Klebsiella pneumoniae, Psa: Pseudomonas aeruginosa, Ca: 
Candida albicans, Cn: Cryptococcus neoformans, A375: Malignant melanoma, A549: Lung carcinoma, HCT116: Colon cancer, MB231: Breast cancer; “-“: 
Inhibition ≤20%; in bold: Inhibition values ≥80%; AC: extract was selected based on high anticancer activity (inhibition ≥80%); AM: extract was selected based 
on high antimicrobial activity (inhibition ≥80%). 

Strain Identification Medium MRSA Efm Ab Ec Kp Psa Ca Cn A375 A549 HCT116 MB231 Selected? 

CHG2 Ruegeria atlantica MB 73 - - - - - - - 29 - - 36  

CHG3 Shewanella sp. MB 92 52 - - - - - - - - - -  

CHG5 Shewanella woodyi MB 95 78 - - - - - - - - - -  

CHG6 Shewanella sp. 
GYM 100 92 - - - - - - - - - -  

MB 95 80 - 40 - - - - - - - -  

CHG12 Shewanella sp. MB 88 100 - - - - - - - - - 26  

CHG16 Vibrio sp. MB 98 100 - - - - - - - - - -  

CHG19 Arthrinium sp. 
CAG - - - - - 65 - - 71 78 75 78  

PDA - - - - - - - - 26 53 25 44  

CHG22 Penicillium hoeksii 
CAG 85 - - - - - - - 25 31 25 29  

PDA 84 - - - - - - - 63 48 59 48  

CHG25 Penicillium sp. 
CAG 99 100 98 100 100 100 - - 98 93 98 92 Yes (AC) 

PDA 98 84 97 100 100 99 - - 99 98 99 95 Yes (AC) 

CHG26 Galactomyces candidum 
CAG 96 33 - - - - - - - - - -  

PDA 54 - - - - - - - - - - -  

CHG29 Phoma sp. 
CAG - - - - - - - - - - - -  

PDA - - - - - - - - - - - -  

CHG32 Vibrio sp. MB 79 - - - - - - - - - - -  

CHG34 Trichoderma sp. 

CAG 41 - - - - - 24 - 97 96 95 93 Yes (AC) 

PDA 94 100 - - - - 100 92 98 99 99 98 
Yes (AC & 

AM) 

CHG35 Penicillium sp. 
CAG 100 100 99 99 100 84 - 21 72 93 95 64 Yes (AC) 

PDA 98 74 98 98 100 77 - - 89 98 98 72 Yes (AC) 

CHG38 Fusarium sp. CAG 100 100 - - - - 92 96 98 65 93 40 
Yes (AC & 

AM) 
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Strain Identification Medium MRSA Efm Ab Ec Kp Psa Ca Cn A375 A549 HCT116 MB231 Selected? 

PDA 100 100 - - - - 88 - 56 - 24 - Yes (AM) 

CHG39 Bacillus sp. 
GYM 97 100 - - - - - - 69 73 48 69  

MB 96 94 - - - - - - 30 29 - 31  

CHG40 Streptomyces sp. 
GYM 100 100 - - - - 61 37 98 99 98 99 Yes (AC) 

MB 100 87 - - - - - - 51 51 55 61  

CHG41 Bacillus licheniformis 
GYM 69 - - - - - - - 62 33 38 51  

MB 66 - - - - - - - 25 33 - 33  

CHG48 Streptomyces sp. 
GYM 100 100 - - - - 100 97 98 92 88 93 

Yes (AC & 

AM) 

MB 100 100 - - - - - 72 71 69 71 74  

CHG49 Pleosporaceae 
CAG 99 84 97 100 100 100 38 53 99 95 98 94 Yes (AC) 

PDA 98 68 98 100 100 82 28 - 97 97 98 53 Yes (AC) 

CHG52 Penicillium sp. 
CAG 92 88 - - - - - - 30 - 33 -  

PDA 95 96 - - - - - - - - 20 -  

CHG53 Trichoderma sp. 
CAG - - - - - - - - - - - -  

PDA - - - - - - - - - - - -  

CHG56 Aspergillus sp. 
CAG 67 - - - - - - - 22 26 34 46  

PDA 70 - - - - - - - 30 37 34 59  

CHG59 Tamaricicola sp. 
CAG 92 - - 36 - - - - - - - -  

PDA 91 - - 37 - - - - - - - -  

CHG60 Peroneutypa sp. 
CAG 35 - - 33 - - - - - 47 35 46  

PDA 32 - - - - - - - - 33 36 25  

CHG64 Streptomyces sp. 
GYM 100 97 - - - - - - 99 98 99 98 Yes (AC) 

MB 100 98 - - - - - - - 58 23 50  

CKG5 Nocardiopsis sp. 
GYM - 46 - - - - - - 29 - 48 -  

MB 84 94 - - - - - - 22 - 70 -  

CKG6 Shewanella aestuarii MB 100 94 - - - - - - - - - -  

CKG7 Vibrio sp. MB 34 - - - - - - - - - - -  

CKG12 Vibrio sp. MB 100 74 - - - - - - - - - -  

CKG13 Pseudomonas sp.  MB 35 - - - - - - - - - - -  

CKG15 Shewanella colwelliana MB 100 100 - - - - - - - - - -  

CKG16 Eutypa lata CAG 46 - - 31 - - - - - 26 34 33  
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Strain Identification Medium MRSA Efm Ab Ec Kp Psa Ca Cn A375 A549 HCT116 MB231 Selected? 

PDA - - - 29 - - - - - 33 26 32  

CKG20 Micromonospora sp. 
GYM 100 100 - - - - - - 98 100 99 100 Yes (AC) 

MB 53 - - - - - - - - - - -  

CKG21 Bacillus hwajinpoensis 
GYM 65 - - - - - - - - 20 - -  

MB 100 100 - - - - - - - - - -  

CKG23 Penicillium sp. 
CAG 100 98 100 100 100 89 - - 97 98 98 97 Yes (AC) 

PDA 100 100 98 100 100 75 - 41 95 98 77 92 Yes (AC) 

CKG24 Bacillus sp. 
GYM 100 100 - - - - - 94 72 98 63 34 

Yes (AC & 

AM) 

MB 100 100 - - - - - - 51 54 43 59  

CKG25 Galactomyces candidum 
CAG 100 100 100 100 100 85 - - 96 99 92 82 Yes (AC) 

PDA 99 99 100 100 100 93 - - 98 99 99 93 Yes (AC) 

CKG31 Shewanella kaireitica 
GYM 100 100 34 - - - - - - 27 26 25  

MB 100 100 - - - - - - - 20 - -  

CKG32 Fusarium sp. 
CAG 100 100 - - - - 89 40 61 20 29 - Yes (AM) 

PDA 99 86 - - - - 60 - 21 - - -  

CKG33 Mucor hiemalis 
CAG 62 - - - - - - - - 27 27 48  

PDA 77 - - - - - - - - - - -  

CKG37 Sarocladium strictum 
CAG 100 94 - 38 - - - - - - - -  

PDA 95 47 - 41 - - - - 78 48 58 56  

CKG38 Pseudomonas anguilliseptica 
GYM 100 100 - - - - 85 49 68 24 91 88 

Yes (AC & 

AM) 

MB 100 97 - - - - 80 73 - - - - Yes (AM) 

CKG39 Bacillus sp. 
GYM - - - - - - - - 26 - - -  

MB 37 - - - - - - - 31 - - -  

CKG42 Elaphocordyceps sp. 
CAG 76 - - - - - - - 37 - - -  

PDA 82 66 - - - - 35 - 38 26 - -  

CKG43 Bacillus sp. 
GYM 92 100 - - - - - - 38 - 24 -  

MB 94 100 - - - - - - 26 - - -  

CKG44 Neonectria coccinea 
CAG 54 - - - - - - - 24 - - 28  

PDA - - - - - - - - - - - -  

CKG49 Mucor circinelloides CAG 89 98 - - - - - - 21 35 44 22  
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Strain Identification Medium MRSA Efm Ab Ec Kp Psa Ca Cn A375 A549 HCT116 MB231 Selected? 

PDA 100 100 - - - - - - 66 37 79 43  

CKG50 Sporosarcina sp. 
GYM 100 96 - - - - - - - - - -  

MB 100 98 - - - - - - - - 20 -  

CKG54 Cordyceps farinosa 
CAG 98 95 - - - - - - 56 - 30 -  

PDA 99 97 - - - - - - 52 24 42 -  

CKG57 Arthopyrenia sp. 
CAG 66 - - - - - - - - - - -  

PDA 52 - - - - - - - - - - -  

CKG58 Nocardiopsis prasina 
GYM 81 98 - - - - 81 54 99 99 99 98 

Yes (AC & 

AM) 

MB 100 99 - - - - 26 - 38 - 61 -  

CKG62 Trichoderma sp. 

CAG 30 - - 31 - - 88 - 28 - - -  

PDA 70 100 - 31 - - 93 74 98 98 99 98 
Yes (AC & 

AM) 

CKG63 Penicillium sp. 
CAG 96 25 26 - - 21 36 - 45 50 30 64  

PDA 76 22 84 71 82 59 - - 51 80 49 77 Yes (AC) 

CKG64 Penicillium sp. 
CAG - - - - 37 - - - - 21 - 37  

PDA 70 - - - - - - - - 34 30 45  

CKG66 Acrostalagmus luteoalbus 
CAG 100 100 86 28 - 22 - - 87 89 83 89 Yes (AC) 

PDA 87 51 - - - - - - 25 - 70 -  

CKG70 Plectosphaerella cucumerina 
CAG 56 - - - - - - - - - - -  

PDA 69 - - - - - - - - - - -  
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Table S3. Statistical comparison of chemically distinct bacterial crude extracts. ANOSIM was 
based on Euclidean distance. Group 1 included the following extracts: Pseudomonas anguilliseptica 
extracts CKG38-GYM and CKG38-MB and Streptomyces sp. extracts CHG40-GYM and CHG64-GYM. 

Comparison R value p value 

All 1 0.0001 

Group 1 x Group 2 (CHG48-GYM, CKG58-GYM) 1 0.0022 

Group 1 x Group 3 (CKG20-GYM) 1 0.0229 

Group 1 x Group 4 (CKG24-GYM) 1 0.0232 

 

 

Table S4. Statistical comparison of chemically distinct fungal crude extracts. ANOSIM was based 
on Euclidean distance. Group 1 included the following extracts: Acrostalagmus luteoalbus extract 
CKG66-CAG, Galactomyces candidum extracts CKG25-CAG and CKG25-PDA, Penicillium sp. extracts 
CHG25-CAG, CHG25-PDA, CHG35-CAG, CHG35-PDA, CKG23-CAG and CKG63-PDA and 
Pleosporaceae extracts CHG49-CAG and CHG49-PDA. 

Comparison R value p value 

All 0.8363 0.0001 

Group 1 x Group 2 (CHG34-CAG, CHG34-PDA, CKG62-PDA) 0.9369 0.0001 

Group 1 x Group 3 (CHG38-CAG, CHG38-PDA, CKG32-CAG) 0.6822 0.0001 

Group 1 x Group 4 (CKG23-PDA) 0.9996 0.0055 
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Table S5. Putatively identified compounds produced by Streptomyces sp. extract CHG48-GYM. Putative annotations were based on the accurate mass, 
the predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. *MF with best ppm error displayed; 
IC: Identification confidence level [3]; Nf: No fragmentation detected or below noise threshold (5e1); Ref = reference(s). 

No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical 

family 
Biological origin Ref 

1 225.1104 [M+H]+ 3.07 1.8 C8H12N6O2 181.1201, 164.1114, 141.9593, 97.9700 4 n.a.    

2 208.0976 [M+H]+ 3.1 1 C11H13NO3 
190.0865, 166.0866, 164.1073, 146.0968, 135.0804, 

131.0732, 122.0962, 118.0657 
3 Streptazolin 

Oxazolidone 
alkaloid 

Streptomyces 
viridochromogenes 

[4] 

3 250.1422 [M+Na]+ 3.53 1.2 C12H21NO3 138.053 3 Streptenol E Acetamide Streptomyces sp. [5] 

4 239.1261 [M+H]+ 3.72 2.1 C9H14N6O2 
216.0758, 210.1890, 198.0604, 195.1371, 172.0880, 

155.0949, 141.9587 
4 n.a.    

5 620.235 [M+H]+ 3.96 1.1 C30H37NO13 142.1230, 98.0971 4 n.a.    

6 604.2402 [M+H]+ 4.04 1.3 C30H37NO12 572.0979, 142.1230, 124.1113, 98.0970, 79.0555 3 
Platensimycin 

B4 
Diterpenoid 
glycoside 

Streptomyces 
platensis 

[6] 

7 366.1893 [M+Na]+ 4.12 0 C17H29NO6 

308.1821, 290.1734, 270.1647, 252.1608, 224.1649, 
198.0766, 180.0642, 172.0989, 166.1217, 154.1225, 
152.0704, 142.0490, 137.0591, 114.0552, 109.1009 

3 Alpiniamide A 
Linear 

polyketide 
Streptomyces sp. [7] 

8 253.1415 [M+H]+ 4.28 0.8 C10H17N6O2 
228.0977, 209.1505, 205.6684, 186.9429, 182.0986, 

165.6180 
4 n.a.    

9 253.142 [M+H]+ 4.44 2.8 C10H17N6O2 210.0668, 195.9134, 170.9937 4 n.a.    

10 308.1867 [M-H2O]+ 4.76 1.6 C17H27NO5 
252.1580, 198.0758, 180.0665, 172.0976, 166.1222, 

152.0706, 142.0513, 137.0609, 109.1020 
4 n.a.    

11 713.2711 [M+H]+ 5.5 0.1 C39H40N2O11 142.1232, 98.0974 4 n.a.    

12 387.238 [M+H]+ 5.7 -0.8 C20H34O7 
165.1138, 167.1079, 143.0687, 125.0604, 121.1022, 

111.0808, 93.0695 
2 

Nonactyl 
nonactoate 

Nonactic acid 
polyketide 

Streptomyces sp. [8] 

13 558.1771 [M+H]+ 6.01 -1.1 C32H23N5O5* 174.0918, 162.0919 4 n.a.    

14 401.254 [M+H]+ 6.24 0.2 C21H36O7 
199.1332, 181.1228, 167.1066, 143.0703, 125.0966, 

111.0810, 107.0859 
2 Bonactin 

Nonactic acid 
polyketide 

Streptomyces sp. [9] 

15 421.2201 [M+Na]+ 6.35 0.9 C21H34O7 239.1254, 223.0950 4 n.a.    

16 413.2513 [M+Na]+ 6.42 -0.5 C20H38O7* 227.1261, 209.1144 4 n.a.    

17 309.1684 [M+H]+ 6.62 2.9 C13H20N6O3 265.1174, 221.1151, 207.0990 4 n.a.    

18 415.2705 [M+H]+ 6.82 2.2 C22H38O7 
199.1374, 181.1226, 163.1117, 143.0700, 139.1125, 

135.1168,125.0959, 107.0853, 81.0709 
2 

Homononactyl 
homononactate 

Nonactic acid 
polyketide 

Streptomyces 
griseus 

[10] 

19 321.1682 [M+H]+ 6.89 2.2 C14H20N6O3 221.1156 4 n.a.    

20 312.1967 [M+H]+ 7.49 1 C20H25NO2 
216.1390, 200.1078, 188.1083, 172.1142, 162.0898, 

151.1139 
4 n.a.    

21 807.395 [M+H]+ 7.73 -2.4 C46H54N4O9 
789.3856, 771.2729, 434.1707, 396.1556, 378.1438, 

336.1355, 297.1229, 285.1239 
4 n.a.    



Appendix – Chapter 3 

253 
 

No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical 

family 
Biological origin Ref 

22 289.175 [M+Na]+ 7.93 -1 C12H22N6O Nf 4 n.a.    

23 585.3634 [M+H]+ 8.12 -0.9 C31H52O10 
199.1380, 185.1173, 181.1227, 167.1063, 143.0731, 

125.0962, 111.0792, 93.0702 
4 n.a.    

24 352.1552 [M+H]+ 8.4 0.9 C21H21NO4 174.0921, 162.0919 4 n.a.    

25 807.3981 [M+H]+ 8.56 1.5 C46H54N4O9 
789.3876, 771.2750, 434.1710, 396.1559, 378.1448, 

365.1138, 336.1154, 297.1230, 285.1233 
4 n.a.    

26 621.3619 [M+Na]+ 8.6 0.6 C32H54O10 423.2351, 419.2396, 225.1102, 221.1153 4 n.a.    

27 684.3649 [M+H]+ 8.87 0 C40H49N3O7* 273.1241, 174.0922, 162.0919 4 n.a.    

28 560.4683 [M+H]+ 9.06 0.7 C35H61NO2 542.4562, 524.4463 4 n.a.    

29 546.4896 [M+H]+ 9.87 1.8 C35H63NO3 528.4788, 510.4700 4 n.a.    

30 783.4903 [M+H]+ 10.09 1 C42H70O13 
199.1337, 185.1174, 181.1226, 167.1068, 143.0703, 

125.0961, 111.0809 
4 n.a.    

31 797.5042 [M+H]+ 10.48 -1.1 C43H72O13 
199.1342, 181.1236, 167.1073, 143.0718, 125.0973, 

107.0860 
4 n.a.    

32 811.5203 [M+H]+ 10.85 -0.6 C44H74O13 Nf 4 n.a.    

33 737.4476 [M+H]+ 11.77 0 C40H64O12 
MS6: 185.1191, 167.1073, 149.0946, 143.0683, 

121.1022, 111.0811 
2 Nonactin 

Nonactic acid 
polyketide 

Streptomyces spp. [11] 
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Table S6. Putatively identified compounds produced by Micromonospora sp. extract CKG20-GYM. Putative annotations were based on the accurate 
mass, the predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. ∆Different isomers with same 
m/z value and molecular formula, which cannot be differentiated based on MS/MS data; IC: Identification confidence level [3]; Ref = reference(s). 

No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm 
Putative 

MF 
Fragmentation pattern IC Putative identification 

Chemical 
family 

Biological origin Ref 

34 243.1348 [M+H]+ 2.47 1.2 C11H18N2O4 
201.1239, 165.1032, 154.0877, 137.1081, 

100.0399 
4 n.a.    

35 218.1417 [M+H]+ 3.2 5 C11H15N5 162.9784, 150.0785 4 n.a.    

36 280.124 [M+H]+ 4.17 -6.1 C8H17N5O6 262.1132, 196.0661 4 n.a.    

37 197.118 [M+H]+ 5.67 1 C11H16O3 158.9618, 117.9348, 96.9611 4 n.a.    

38 420.3119 [M-H2O]+ 6.8 1.2 C25H43NO5 

378.2987, 332.2931, 315.2679, 229.1942, 
203.1753, 175.1504, 149.1352, 135.1159, 

107.0873 
4 n.a.    

39 369.218 [M+H]+ 7.48 0.5 C22H28N2O3 256.0851 4 n.a.    

40 479.2547 [M+H]+ 7.72 0.2 C28H34N2O5 287.0663, 275.0670, 259.0480 4 n.a.    

41 466.2933 [M+H]+ 7.85 -0.2 C22H44NO7P 325.2744, 294.2796 4 n.a.    

42 454.2929 [M+H]+ 8.08 -1.1 C21H44NO7P 313.2740, 282.2794 2 
1-palmitoyl-2-hydroxy-sn-

glycero-3-
phosphoethanolamine 

Glycero-
phospholipid 

In cell membranes 
of all organisms 

 

43 330.2435 [M+H]+ 8.11 0.6 C21H31NO2 312.2322 4 n.a.    

44 463.2597 [M+H]+ 8.2 0 C28H34N2O4 271.0725, 259.0725, 243.0536 2 Diazepinomicin 
Phenazine 

alkaloid 
Micromonospora sp. [12] 

45 480.3098 [M+H]+ 
8.38, 
8.51∆ 

1.7 C23H46NO7P 339.2955, 308.2907 2 
1-(9Z-octadecenoyl)-sn-

glycero-3-
phosphoethanolamine 

Glycero-
phospholipid 

In cell membranes 
of all organisms 

 

46 479.2547 [M+H]+ 8.62 0.2 C28H34N2O5 258.0409, 240.0301, 146.0241, 112.0401 4 n.a.    

47 408.0832 [M+H]+ 8.78 0 C20H13N3O7 

390.0728, 372.0609, 362.0768, 349.0473, 
344.0648, 321.0529, 259.0353, 245.0565, 

233.0556, 176.0353 
4 n.a.    

48 411.2281 [M+H]+ 8.9 -0.7 C24H30N2O4 
393.2157, 383.2320, 285.0869, 271.0714, 

259.0710, 243.0767 
3 Diazaquinomycin D 

Phenazine 
alkaloid 

Streptomyces sp. [13] 

49 619.4077 [M+H]+ 8.93 1 C33H54N4O7 

427.3684, 400.3203, 376.3233, 305.2831, 
297.1194, 280.0945, 279.1076, 262.0820, 
252.0987, 224.1024, 220.0929, 208.1091, 
202.0814, 193.0606, 167.0832, 149.0701, 
123.0920, 121.0773, 109.1015, 96.0452 

4 n.a.    

50 482.325 [M+H]+ 9.09 0.8 C23H48NO7P 341.3052, 310.3102 2 
1-stearoyl-2-hydroxy-sn-

glycero-3-
phosphoethanolamine 

Glycero-
phospholipid 

In cell membranes 
of all organisms 
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No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm 
Putative 

MF 
Fragmentation pattern IC Putative identification 

Chemical 
family 

Biological origin Ref 

51 607.4077 [M+H]+ 9.27 1 C32H54N4O7 

388.3211, 297.1197, 293.2846, 280.0937, 
252.0986, 220.0934, 202.0833, 167.0821, 

149.0676, 121.0761 
2 Rakicidin A 

Cyclic 
depsipeptide 

Micromonospora sp. [14] 

52 621.4227 [M+H]+ 9.73 0 C33H56N4O7 

402.3372, 350.3409, 307.2997, 297.1193, 
280.0944, 252.0985, 220.0929, 167.0816, 

149.0691, 121.0767 
2 Rakicidin B 

Cyclic 
depsipeptide 

Micromonospora sp.  

53 635.4383 [M+H]+ 10.19 -0.2 C34H58N4O7 

416.3523, 364.3604, 321.3148, 297.1199, 
280.0939, 252.0980, 220.0930, 202.0839, 

167.0817, 149.0708, 121.0757 
2 Rakicidin E 

Cyclic 
depsipeptide 

Micromonospora sp. [15] 
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Table S7. Putatively identified compounds produced by Bacillus sp. extract CKG24-GYM. Putative annotations were based on the accurate mass, the 
predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. ±Parent mass out of detection limit (>1200 
Da) and therefore, the ppm error and fragmentation pattern were not determined; *MF with best ppm error displayed; IC: Identification confidence level [3]; Nf: 
No fragmentation detected or below noise threshold (5e1); Ref = reference(s). 

No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biologica
l origin 

Ref 

54 367.0508 [M+H]+ 3.63 -1.4 C12H14O13 
287.0525, 258.0562, 241.9696, 238.0435, 188.0169, 

168.9262, 164.9999, 146.9907 
4 n.a.    

55 424.2082 [M+H]+ 3.71 -0.5 C20H29N3O7 
407.1817, 390.1540, 330.1343, 274.0708, 250.1446, 

232.1337, 215.1069, 159.0442 
2 Amicoumacin-A Isocoumarin  

Bacillus 
subtilis 

[16] 

56 439.2083 [M+H]+ 4.12 0.7 C21H30N2O8 
422.1824, 250.1440, 232.1337, 215.1070, 176.0702, 

159.0444, 149.0598 
4 n.a.    

57 255.1207 [M+H]+ 4.25 0.4 C9H14N6O3 195.9121 4 n.a.    

58 250.1127 [M+H]+ 5.04 -4.4 C5H14N8O4 194.0496, 182.0501 4 n.a.    

59 392.1711 [M+H]+ 5.43 0.5 C20H25NO7 
276.1247, 250.1441, 232.1328, 215.1074, 159.0440, 

149.0598, 125.0238 
3 

Bacillcoumacin 
D 

Isocoumarin 
Bacillus 

sp. 
[17] 

60 390.1556 [M+H]+ 5.55 0.8 C20H23NO7 250.1441, 232.1340, 215.1073, 159.0442, 123.0087 3 
Antibiotic AI-77-

F or -H 
Isocoumarin 

Bacillus 
spp. 

F: [18], 
H: [19] 

61 1071.5811 [M+H]+ 6.05 -2.8 C50H78N12O14 

535.3573, 455.3136, 437.3194, 392.1531, 354.2751, 
341.2750, 323.2671, 313.1513, 299.2645, 295.1353, 
278.1133, 260.1039, 250.1231, 212.1082, 208.1156, 

198.2230, 167.0809, 136.0747 

3 Bacillomycin F2 
Cyclic 

lipopeptide 
Bacillus 
subtilis 

[20], 
[21] 

62 1085.5974 [M+H]+ 6.45 -1.9 C51H80N12O14 

680.4345, 663.4116, 645.3961, 618.3965, 566.3553, 
549.3728, 531.3541, 507.3527, 469.3383, 451.3282, 
406.1735, 392.1518, 389.1490, 375.1311, 368.2910, 
355.2957, 351.2631, 323.1372, 313.2847, 295.1401, 
278.1146, 277.1303, 275.1039, 268.2650, 264.0987, 
261.0894, 260.1024, 250.1191, 243.1082, 233.0928, 
216.0988, 212.2379, 209.0939, 208.1094, 198.0890, 

188.1048, 184.1085, 167.0820, 136.0761 

3 Bacillomycin F3 
Cyclic 

lipopeptide 
Bacillus 
subtilis 

[20], 
[21] 

63 1099.6122 [M+H]+ 6.88 -2.7 C52H82N12O14 

694.4479, 677.4232, 660.3998, 632.4120, 580.4044, 
563.3820, 545.3659, 483.3513, 465.3430, 406.1723, 
392.1563, 389.1466, 382.3062, 375.1307, 369.3107, 
365.2799, 351.2995, 337.2898, 327.3002, 323.1351, 
313.1502, 309.2888, 295.1408, 278.1149, 275.1031, 
264.0986, 261.0858, 250.1187, 233.0918, 226.2534, 
212.1035, 209.0947, 188.1048, 184.1090, 167.0815, 

136.0763 

3 Bacillomycin F5 
Cyclic 

lipopeptide 
Bacillus 
subtilis 

[20], 
[21] 

64 781.4157 [M+H]+ 7.08 -0.8 C44H60O12 

557.3537, 539.3503, 419.2196, 405.2093, 401.2106, 
399.1993, 389.2074, 373.2114, 371.2022, 367.1888, 
365.1761, 359.2000, 351.1960, 349.1813, 343.2067, 
341.1881, 335.2000, 333.1837, 331.1708, 323.1975, 
321.1785, 305.1885, 303.1775, 209.0880, 173.1329, 

3 Aurantinin B 
Polyketide 
glycoside 

Bacillus 
aurantinus 

[22] 
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No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biologica
l origin 

Ref 

171.1176, 161.1315, 159.1180, 147.1168, 145.1039, 
121.1011, 119.0865 

65 746.4219 [M+2H]2+ 7.14 n.a.± C74H114N12O20 n.a.± 3 SNA 60-367-5 
Cyclic 

lipopeptide 
Bacillus 

sp. 
[23] 

66 739.4143 [M+2H]2+ 7.14 n.a.± C73H112N12O20 n.a.± 3 SNA 60-367-6 
Cyclic 

lipopeptide 
Bacillus 

sp. 
[23] 

67 663.3561 [M+H]+ 7.24 -0.6 
C26H38N20O2 or 

C28H50N6O12* 
501.3020, 421.1306, 365.1053 4 n.a.    

68 753.4296 [M+2H]2+ 7.37 n.a.± C75H116N12O20 n.a.± 3 
a: SNA 60-367-
12, b: SNA 60-

367-13 

Cyclic 
lipopeptide 

Bacillus 
sp. 

[23] 

69 738.4238 [M+2H]2+ 7.56 n.a.± C74H114N12O19 n.a.± 3 SNA 60-367-17 
Cyclic 

lipopeptide 
Bacillus 

sp. 
[23] 

70 738.4249 [M+2H]2+ 7.64 n.a.± C74H114N12O19 n.a.± 3 SNA 60-367-18 
Cyclic 

lipopeptide 
Bacillus 

sp. 
[23] 

71 731.4171 [M+2H]2+ 7.64 n.a.± C73H112N12O19 n.a.± 3 SNA 60-367-19 
Cyclic 

lipopeptide 
Bacillus 

sp. 
[23] 

72 745.4335 [M+2H]2+ 7.82 n.a.± C75H116N12O19 n.a.± 3 SNA 60-367-23 
Cyclic 

lipopeptide 
Bacillus 

sp. 
[23] 

73 512.3693 [M+H]+ 8.25 -1.4 
C27H49N3O6 or 

C24H41N13* 
268.2627, 115.0873, 102.0553, 84.0438 4 n.a.    

74 1008.6603 [M+H]+ 10.24 0.6 C51H89N7O13 

455.3112, 441.2708, 437.3002, 427.3160, 409.3047, 
395.2667, 342.2245, 328.1873, 324.2168, 314.2333, 
283.2020, 245.1858, 229.1185, 227.1759, 212.2019, 
201.1239, 199.1811, 195.1743, 185.1657, 183.1133, 

154.1599, 86.0973 

3 
Anteiso-C13-

[Leu7]-surfactin 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[24] 

75 1064.5789 [M+H]+ 10.29 0.4 
C48H74N19O7Cl 

or 

C50H86N5O17Cl* 

Nf 4 n.a.    

76 994.6426 [M+H]+ 10.41 -1.4 C50H87N7O13 

455.3094, 441.2723, 437.2990, 342.2255, 328.1864, 
324.2165, 314.2322, 296.2226, 285.1454, 283.2004, 
269.1878, 231.1687, 229.1176, 227.1760, 215.1026, 
212.2016, 201.1236, 199.1812, 195.1743, 185.1639, 

86.0975 

3 Lipopeptide NO 
Cyclic 

lipopeptide 
Bacillus 
subtilis 

[25] 

77 1022.6801 [M+H]+ 10.64 4.7 C52H91N7O13 

469.3278, 451.3170, 441.2706, 423.3218, 395.2657, 
356.2436, 342.2031, 338.2332, 328.1876, 310.2383, 
296.1983, 285.1457, 283.2006, 269.1866, 267.2441, 
255.1708, 245.1868, 229.1192, 227.1763, 215.1034, 
213.1604, 209.1902, 201.1241, 199.1811, 185.1653, 

183.1132, 170.1181, 154.1593, 86.0974 

3 
Iso-C14-[Val7]-

surfactin 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[24] 

78 1078.5947 [M+H]+ 10.66 0.5 
C51H88N5O17Cl 

or 

C49H76N19O7Cl* 

Nf 4 n.a.    

79 1022.6746 [M+H]+ 10.76 -0.7 C52H91N7O13 

469.3280, 451.3169, 441.2711, 423.3229, 395.2647, 
356.2435, 342.2023, 338.2332, 310.2377, 296.1992, 
285.1464, 283.2021, 269.1866, 267.2444, 255.1700, 

3 
n-C14-[Val7]-

surfactin 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[24] 
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No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biologica
l origin 

Ref 

245.1868, 243.1360, 229.1189, 227.1763, 215.1030, 
213.1584, 209.1903, 201.1242, 199.1811, 185.1656, 

183.1134, 154.1593, 86.0974 

80 1064.5792 [M+H]+ 10.78 0.7 
C48H74N19O7Cl 

or 

C50H86N5O17Cl* 

Nf 4 n.a.    

81 1008.6598 [M+H]+ 10.8 0.1 C51H89N7O13 

469.3280, 451.3174, 441.2707, 427.3165, 395.2650, 
356.2438, 342.2028, 338.2325, 328.1869, 310.2381, 
296.1968, 285.1455, 283.2013, 269.1865, 255.1698, 
253.2272, 243.1342, 231.1708, 229.1192, 227.1756, 
213.1611, 201.1238, 199.1807, 185.1652, 86.0971 

3 
n-C13-[Leu7]-

surfactin 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[24] 

82 1036.692 [M+H]+ 10.95 1 C53H93N7O13 

483.3431, 465.3328, 455.3480, 441.2714, 437.3377, 
395.2664, 370.2592, 352.2489, 342.2029, 328.1875, 
324.2541, 311.1967, 296.1978, 285.1458, 283.2004, 
269.1868, 267.2441, 255.1712, 253.2282, 245.1872, 
240.2331, 229.1195, 227.1764, 215.1037, 213.1607, 
201.1243, 199.1815, 185.1657, 183.1137, 170.1186, 

154.1597, 86.0977 

3 
Anteiso-C15-

[Leu7]-surfactin 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[24] 

83 1092.6073 [M+H]+ 10.97 0.1 
C46H74N25O5Cl 

or 

C48H86N11O15Cl* 

Nf 4 n.a.    

84 1022.6751 [M+H]+ 11.16 -0.2 C52H91N7O13 

483.3442, 465.3320, 441.2701, 395.2653, 370.2591, 
356.2491, 342.2023, 328.1870, 324.2528, 296.1963, 
285.1446, 283.2008, 269.1873, 255.1707, 240.2331, 
231.1708, 229.1192, 227.1765, 215.1028, 213.1597, 
201.1245, 199.1814, 185.1651, 183.1138, 86.0979 

3 
Anteiso-C15-

[Val7]-surfactin 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[24] 

85 1036.6903 [M+H]+ 11.18 -1.2 C53H93N7O13 

483.3438, 465.3333, 455.3474, 441.2715, 437.3364, 
395.2658, 370.2595, 352.2492, 342.2029, 328.1875, 
324.2541, 311.1971, 296.1976, 285.1454, 283.2013, 
269.1869, 267.2441, 255.1713, 245.1871, 240.2327, 
229.1191, 227.1764, 223.2063, 215.1031, 213.1602, 
201.1242, 199.1816, 185.1657, 183.1132, 170.1179, 

154.1593, 86.0977 

3 
n-C14-[Leu7]-

surfactin 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[24] 

86 1036.687 [M+H]+ 11.48 -3.8 C53H93N7O13 

497.3574, 483.3420, 479.3447, 465.3322, 455.3483, 
441.2713, 395.2702, 384.2736, 370.2583, 366.2633, 
356.2750, 352.2485, 342.2026, 338.2686, 326.2470, 
324.2563, 311.1976, 296.1982, 285.1438, 283.2013, 
269.1826, 267.2478, 254.2482, 245.1890, 243.1348, 
231.1699, 229.1181, 227.1755, 215.1025, 213.1602, 
201.1240, 199.1809, 185.1648, 183.1124, 170.1178, 

86.0976 

3 
Anteiso-C15-

[Ile7]-surfactin 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[24] 

87 1064.7209 [M+H]+ 11.65 -1.3 C55H97N7O13 

511.3743, 493.3648, 483.3786, 441.2816, 398.2912, 
395.2643, 380.2790, 352.2855, 342.2029, 328.1868, 
296.1967, 285.1422, 283.2024, 268.2642, 255.1717, 
245.1867, 233.2294, 229.1197, 227.1754, 215.1038, 

3 KMM 1364E 
Cyclic 

lipopeptide 
Bacillus 
pumilus 

[26] 
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No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biologica
l origin 

Ref 

201.1240, 199.1813, 185.1668, 183.1134, 154.1599, 
86.0986 
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Table S8. Putatively identified compounds produced by Trichoderma sp. extracts CHG34-CAG and CHG34-PDA. Putative annotations were based on 
the accurate mass, the predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. ∆Different isomers 
with same m/z value and molecular formula, which cannot be differentiated based on MS/MS data; ±Parent mass out of detection limit (>1200 Da) and therefore, 
the ppm error and fragmentation pattern were not determined; *MF with best ppm error displayed; IC: Identification confidence level [3]; Nf: No fragmentation 
detected or below noise threshold (5e1); Ref = reference(s). 

No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biological 
origin 

Medium Ref 

88 237.1132 [M+H]+ 4.51 2.1 C13H16O4 

195.9131, 167.4925, 165.0561, 
141.9551, 139.0753, 125.0237, 

123.0437, 113.0982 
3 Trichosorbicillin E Sorbicillinoid 

Trichoderma 
reesei 

CAG, 
PDA 

[27] 

89 410.218 [M+H]+ 5.22 0.2 C21H31NO7 242.0663, 224.0546, 124.0363 4 n.a.   CAG  

90 562.3585 [M+Na]+ 5.23 0.7 C27H49N5O6* 320.1957 4 n.a.   PDA  

91 473.1602 [M+H]+ 5.42 0.4 C28H24O7 

455.1462, 445.1667, 399.1595, 
371.1277, 367.1292, 353.1223, 
343.1312, 325.1264, 321.1139, 
315.1418, 301.1224, 293.1167, 
279.0644, 277.1200, 275.0994, 
269.0819, 265.1236, 253.0858, 
247.1097, 243.1052, 241.0905, 

237.0936, 209.0972 

4 n.a.   CAG  

92 451.2694 [M+H]+ 5.52 -0.4 C25H38O7 

289.2172, 271.2065, 217.1958, 
215.1443, 205.1220, 197.1335, 
187.1477, 185.1332, 182.1101, 
171.1170, 169.1024, 159.1187, 
157.1004, 155.0854, 151.1133, 
147.1177, 145.1024, 137.0966, 
133.1015, 131.0863, 127.0398, 
119.0860, 105.0706, 99.0446 

4 n.a.   PDA  

93 473.1603 [M+H]+ 5.69 0.6 C28H24O7 

455.1467, 445.1640, 427.1577, 
399.1595, 381.1467, 371.1253, 
353.1160, 343.1339, 325.1219, 
321.1107, 303.1033, 293.1172, 
279.0655, 275.1062, 269.0769, 
265.1217, 253.0830, 247.1122, 
243.0975, 241.0873, 209.0973 

4 n.a.   CAG  

94 391.2457 [M+Na]+ 5.96 -0.8 C21H36O5 359.219 4 n.a.   CAG  

95 259.1335 [M-H2O]+ 6.36 0.4 C16H20O4 

241.1224, 223.1130, 213.1285, 
197.1323, 195.1142, 185.1317, 
180.0920, 171.1167, 169.1014, 
167.0865, 165.0684, 157.1010, 
155.0842, 145.1008, 143.0855, 
141.0714, 129.0699, 105.0713 

4 n.a.   CAG  
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No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biological 
origin 

Medium Ref 

96 277.144 [M+H]+ 6.6 0 C16H20O4 
231.1372, 201.0457, 195.9114, 

143.0857, 129.0681 
4 n.a.   CAG  

97 331.1521 [M+H]+ 6.76 0.6 C15H18N6O3 
299.1237, 211.1088, 189.1274, 

133.0657 
4 n.a.   CAG  

98 588.39 [M+H]+ 6.86 0 C34H53NO7* 

423.2950, 253.1597, 251.1447, 
235.1489, 225.1640, 223.1465, 
148.0973, 130.0874, 102.0919 

4 n.a.   CAG, 
PDA 

 

99 189.1278 [M+H]+ 6.87 0.5 C13H16O 
171.1169, 147.1166, 145.1010, 

133.0649, 105.0698 
4 n.a.   CAG  

100 439.3324 [M+H]+ 7.11 -0.2 C28H42N2O2 

279.2345, 209.1549, 173.1328, 
161.1080, 149.1325, 137.1328, 

109.1021, 95.0867, 81.0709 
4 n.a.   CAG, 

PDA 
 

101 344.3164 [M+H]+ 7.4 -0.3 C20H41NO3 

344.3129, 300.2899, 282.2793, 
270.2758, 264.2762, 252.2674, 

88.0771 
4 n.a.   CAG, 

PDA 
 

102 345.1677 [M+Na]+ 7.76 -0.3 C18H26O5 Nf 4 n.a.   CAG  

103 770.5386 [M+H]+ 7.79 -0.8 C38H71N7O9 

453.3084, 354.2396, 326.2451, 
300.2278, 241.1562, 184.1345, 

143.1185, 86.0972 
4 n.a.   CAG, 

PDA 
 

104 1197.756 [M+Na]+ 7.93 -2.3 C58H102N12O13 

983.5846, 955.5931,897.5527, 
870.5408, 843.5667, 757.4554, 
730.4795, 645.4308, 547.3153, 
489.2869, 462.2697, 403.2706 

3 Trichodermide C Peptaibol 
Trichoderma 

viride 
CAG, 
PDA 

[28]  

105 754.5424 [M+H]+ 8.12 -2.4 C38H71N7O8 
453.2956, 354.2416, 326.2400, 
241.1605, 184.1328, 86.0979 

3 n.a.   
CAG, 
PDA 

 

106 498.379 [M+H]+ 8.29 -1 C28H51NO6* 480.3684, 236.1504 4 n.a.   CAG, 
PDA 

 

107 751.9497 [M+2Na]2+ 8.29 -0.7 C71H123N15O17 n.a.± 3 Tv29-14S-Vc Peptaibol 
Trichoderma 

virens 
CAG, 
PDA 

[29] 

108 836.4872 [M+H]+ 8.29 0.5 
C38H69N5O15 

or 

C36H57N19O5* 

369.2141, 256.1304 4 n.a.   CAG, 
PDA 

 

109 623.4496 [M+H]+ 8.29 0 C32H58N6O6* 
324.2295, 215.1763, 211.1452, 

183.1501 
4 n.a.   CAG, 

PDA 
 

110 1197.7583 [M+Na]+ 8.39 -0.3 C58H102N12O13 

1179.7465, 955.5943, 897.5522, 
870.5418, 757.4579, 645.4301, 
631.4155, 561.3373, 547.3219 

3 Trichorozin-II Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[30] 

111 553.3351 [M+H]+ 8.41 0.2 C26H44N6O7* 
355.1985, 256.1306, 228.1352, 

128.0710, 101.0719 
4 n.a.   PDA  

112 623.4495 [M+H]+ 8.41 -0.2 C32H58N6O6* 
324.2296, 215.1762, 211.1454, 

183.1503 
4 n.a.   CAG, 

PDA 
 

113 961.6072 [M+H]+ 8.41 -0.1 
C44H72N20O5 

or 

C46H84N6O15* 

355.1985, 256.1304 4 n.a.   CAG, 
PDA 
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No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biological 
origin 

Medium Ref 

114 345.168 [M+Na]+ 8.45 0.6 C18H26O5 Nf 4 n.a.   CAG  

115 623.4493 [M+H]+ 8.45 -0.5 C32H58N6O6* 
324.2290, 215.1765, 211.1449, 

183.1499 
4 n.a.   CAG, 

PDA 
 

116 553.335 [M+H]+ 8.45 0 C26H44N6O7* 
355.1923, 256.1304, 228.1354, 

128.0707, 101.0713 
4 n.a.   CAG, 

PDA 
 

117 837.4725 [M+H]+ 8.45 0.4 
C39H64N8O12 

or 

C37H52N22O2* 

370.1981, 257.1146, 128.0712 4 n.a.   CAG, 
PDA 

 

118 623.4493 [M+H]+ 8.52 -0.5 C32H58N6O6* 
324.2288, 215.1760, 211.1449, 

183.1497 
4 n.a.   CAG, 

PDA 
 

119 758.9578 [M+2Na]2+ 8.52 -0.4 C72H125N15O17 n.a.± 3 Tv29-14S-VI Peptaibol 
Trichoderma 

virens 
CAG, 
PDA 

[29] 

120 850.5023 [M+H]+ 8.52 -0.2 
C39H71N5O15 

or 

C37H59N19O5* 

383.2293, 270.1457, 142.0862 4 n.a.   CAG, 
PDA 

 

121 874.5392 [M+2H]2+ 8.59 1.7 C81H142N20O22 n.a.± 3 Trichorzin MA-2 Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[31] 

122 1136.6675 [M+H]+ 8.59 -0.4 
C52H89N13O15 

or 

C50H77N27O5* 

Nf 4 n.a.   CAG, 
PDA 

 

123 623.4504 [M+H]+ 8.67 -0.8 C33H54N10O2* 
324.2294, 215.1759, 211.1451, 

183.1497 
4 n.a.   CAG, 

PDA 
 

124 975.6241 [M+H]+ 8.67 -0.2 
C46H70N24O or 

C48H82N10O11

* 

369.2148, 270.1460 4 n.a.   CAG, 
PDA 

 

125 874.5398 [M+2H]2+ 8.78 1.7 C81H142N20O22 n.a.± 3 Trichokindin Ia Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

126 1136.6686 [M+H]+ 8.78 0.6 
C52H89N13O15 

or 

C50H77N27O5* 

697.3896, 484.2784, 399.2252, 
286.1411, 268.1303 197.0926 

4 n.a.   CAG, 
PDA 

 

127 623.4493 [M+H]+ 8.85 -1 C33H54N10O2* 
324.2296, 215.1763, 211.1452, 

183.1502 
4 n.a.   CAG, 

PDA 
 

128 975.6257 [M+H]+ 8.85 0.1 
C51H90O17 or 

C49H78N14O7* 
369.2148, 256.1304 4 n.a.   CAG, 

PDA 
 

129 976.6094 [M+H]+ 8.96 -0.2 C49H77N13O8* 370.1984, 342.2027, 257.1147 4 n.a.   CAG, 
PDA 

 

130 623.4506 [M+H]+ 8.98 -0.5 C33H54N10O2* 
324.2290, 296.1980, 215.1765, 

211.1454, 183.1500 
4 n.a.   CAG, 

PDA 
 

131 867.5361 [M+2H]2+ 8.98 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 

 

132 892.5373 [M+H+Na]2+ 8.98 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 

 

133 892.5372 [M+H+Na]2+ 9.04 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 
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No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biological 
origin 

Medium Ref 

134 909.527 [M+2H]2+ 9.04 -0.9 C82H140N22O24 n.a.± 3 Trichobrachin B-I Peptaibol 
Trichoderma 

longibrachiatu
m 

CAG, 
PDA 

[33] 

135 989.6424 [M+H]+ 9.04 1.1 
C50H80N14O7 

or C52H92O17* 
383.2299, 270.1472 4 n.a.   CAG, 

PDA 
 

136 623.4505 [M+H]+ 9.04 -0.6 C33H54N10O2* 324.2296, 211.1455, 183.1503 4 n.a.   CAG, 
PDA 

 

137 623.4506 [M+H]+ 9.08 -0.3 C33H54N10O2* 324.2294, 211.1452, 183.1503 4 n.a.   CAG, 
PDA 

 

138 892.5372 [M+H+Na]2+ 9.08 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 

 

139 989.6392 [M+H]+ 9.08 0.6 
C48H88N6O15 

or 

C46H76N20O5* 

383.2303, 270.1464 4 n.a.   CAG, 
PDA 

 

140 892.5383 [M+H+Na]2+ 9.15 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 

 

141 623.4499 [M+H]+ 9.21 0.5 C32H58N6O6* 
324.2297, 215.1770, 211.1457, 

183.1502 
4 n.a.   CAG, 

PDA 
 

142 990.6248 [M+H]+ 9.21 0.9 C47H71N23O2* 
384.2148, 356.2190, 271.1308, 

142.0871 
4 n.a.   CAG, 

PDA 
 

143 874.5402 [M+2H]2+ 9.25 1.7 C81H142N20O22 n.a.± 3 Trichokindin Ib Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

144 874.5392 [M+2H]2+ 9.38 1.7 C81H142N20O22 n.a.± 3 Trichokindin IIa Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

145 1136.6674 [M+H]+ 9.38 -0.4 
C52H89N13O15 

or 

C50H77N27O5* 

697.3872, 484.2768, 399.2243, 
286.1408, 268.1303, 197.0931 

4 n.a.   CAG, 
PDA 

 

146 1164.6991 [M+H]+ 9.41 -0.1 
C52H81N27O5 

or 

C54H93N13O15 

498.2934, 399.2248, 286.1414, 
268.1305, 197.0930 

4 n.a.   CAG, 
PDA 

 

147 881.5459 [M+2H]2+ 9.5 0.4 C82H144N20O22 n.a.± 3 Trichokindin IIb Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

148 844.5923 [M+2H]2+ 9.57 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 

 

149 873.55 [M+2H]2+ 9.57 2.2 C82H144N20O21 n.a.± 3 Neoatroviridin B Peptaibol 
Trichoderma 

atroviride 
CAG, 
PDA 

[34] 

150 881.5432 [M+2H]2+ 9.57 0.4 C82H144N20O22 n.a.± 3 Trichokindin IIIa/b Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

151 881.547 [M+2H]2+ 9.61 0.4 C82H144N20O22 n.a.± 3 Trichokindin IV Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

152 902.5486 [M+2H]2+ 9.61 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 

 

153 913.543 [M+2Na]2+ 9.61 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 
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No. m/z value Adduct 
Rt 

(min) 
ppm Putative MF Fragmentation pattern IC 

Putative 
identification 

Chemical 
family 

Biological 
origin 

Medium Ref 

154 881.5477 [M+2H]2+ 9.74 0.4 C82H144N20O22 n.a.± 3 Trichokindin Va/b Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

155 888.5443 [M+2H]2+ 9.99 -0.8 C83H146N20O22 n.a.± 3 Trichokindin VI Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

156 891.5471 [M+H+Na]2+ 9.99 n.a.± C83H146N20O21 n.a.± 3 Neoatroviridin D Peptaibol 
Trichoderma 

atroviride 
CAG, 
PDA 

[34] 

157 888.555 [M+2H]2+ 10.14 -0.8 C83H146N20O22 n.a.± 3 Trichokindin VII Peptaibol 
Trichoderma 
harzianum 

CAG, 
PDA 

[32] 

158 916.5155 [M+2H]2+ 10.14 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 

 

159 481.2935 [M+Na]+ 
10.33, 
10.39∆ 

1 C28H42O5 423.2865, 355.2252 3 Ergokonin B Ergosterol 
Trichoderma 

koningii 
CAG, 
PDA 

[35] 

160 873.5497 [M+2H]2+ 10.33 2.2 C82H144N20O21 n.a.± 3 Neoatroviridin C Peptaibol 
Trichoderma 

atroviride 
CAG, 
PDA 

[34] 

161 895.5413 [M+2H]2+ 10.39 n.a.± n.a.± n.a.± 4 n.a.   CAG, 
PDA 
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Table S9. Putatively identified compounds produced by Fusarium sp. extracts CHG38-CAG and CHG38-PDA. Putative annotations were based on the 
accurate mass, predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. *MF with best ppm error; 
IC: Identification confidence level [3]; Nf: No fragmentation detected or below noise threshold (5e1); Ref = reference(s). 

No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical family 

Biological 
origin 

Medium Ref 

162 235.0614 [M+H]+ 2.97 3.4 C12H10O5 

217.0504, 193.0493, 189.0548, 
175.0385, 161.0598, 151.0394, 
149.0594, 125.0603, 111.0084 

3 Diploquinone A Naphthoquinone Diplodia mutila PDA [36] 

163 277.0715 [M+H]+ 3.09 1.1 C14H12O6 

259.0608, 235.0603, 231.0657, 
217.0498, 193.0496, 191.0697, 

123.0438 
3 Norjavanicin Naphthoquinone Fusarium sp. PDA [37] 

164 235.0977 [M+H]+ 3.52 3 C13H14O4 
217.0866, 191.0711, 176.0474, 
163.0749, 151.0393, 135.0808 

2 Aloesol Chromone Fusarium sp. PDA [38] 

165 233.0820 [M+H]+ 3.63 2.6 C13H12O4 217.0872, 191.0711, 151.0393 2 Macrocarpone C Chromone 
Fusarium 
tricinctum 

PDA [39] 

166 279.0881 [M+H]+ 3.7 4.3 C14H14O6 

261.0784, 243.0665, 219.0664, 
201.0530, 191.0708, 177.0186, 

173.0605, 163.0770 
3 (-)-Citreoisocoumarin Isocoumarin 

Fusarium 
tricinctum 

PDA [39] 

167 191.0710 [M+H]+ 3.97 1 C11H10O3 
176.0488, 151.0390, 149.9310, 

135.0444, 110.0086 
4 n.a.   PDA  

168 359.1109 [M+Na]+ 4.37 0.6 C17H20O7 
324.5316, 322.0607, 291.0259, 
271.0585, 253.8915, 252.3335 

3 
3-O-

Ethyldihydrofusarubin 
A or B 

Naphthoquinone 
Fusarium 

solani 
PDA [40] 

169 339.1803 [M+H]+ 4.58 -1.5 C18H26O6 

303.1549, 285.1486, 267.1371, 
259.1721, 257.1524, 229.0869, 
217.0846, 215.0682, 189.0564, 
177.0592, 175.0392, 167.0347, 
161.0622, 149.0613, 135.1176 

2 2'-hydroxyzearalanol 
Zearalenone 
(Macrolide) 

Penicillium sp. CAG [41] 

170 249.0768 [M+H]+ 5.46 2 C13H12O5 217.0504, 192.0427, 153.0183 4 n.a.   PDA  

171 259.0615 [M+H]+ 5.66 3.5 C14H10O5 
244.0369, 231.0674, 213.0604, 

191.0726 
3 Huperxanthone B Xanthone 

Aspergillus 
versicolor 

PDA [42] 

172 384.3954 [M+H]+ 5.96 0 C23H49N3O 367.3683, 296.2959 4 n.a.   PDA  

173 629.3642 [M+Na]+ 6.23 0.6 C34H54O9 557.3420, 387.2336 4 n.a.   CAG, 
PDA 

 

174 690.2125 [M+H]+ 6.56 1.6 C40H23N11O2 373.0741, 355.0630 4 n.a.   CAG  

175 412.4270 [M+H]+ 6.59 0.7 C25H53N3O 324.3275 4 n.a.   PDA  

176 319.1553 [M+H]+ 6.63 2.5 C18H22O5 

301.1441, 283.1342, 265.1237, 
255.1386, 241.0873, 231.0662, 
229.0860, 227.0712, 217.0859, 
215.0706, 213.0561, 205.0868, 
203.0716, 189.0562, 187.0764, 
185.0606, 175.0762, 169.0662, 

157.0653 

2 Zearalenone 
Zearalenone 
(Macrolide) 

Fusarium 
graminearum 

CAG [43] 
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No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical family 

Biological 
origin 

Medium Ref 

177 575.1199 [M+H]+ 7.32 1.6 C30H22O12* 287.0563, 274.0464, 259.0613 4 n.a.   CAG, 
PDA 

 

178 273.0771 [M+H]+ 7.43 2.9 C15H12O5 
258.0524, 255.0665, 230.0581, 

227.0702 
3 Griseoxanthone C Xanthone 

Fusarium 
equiseti 

PDA [44] 

179 303.1605 [M-H2O]+ 7.47 3 C18H24O5 
285.1493, 229.0855, 215.0695, 
205.0511, 191.0348, 163.0399 

2 Zearalanone 
Zearalenone 
(Macrolide) 

Fusarium spp. CAG [45] 

180 289.1786 [M+Na]+ 7.91 2.1 C16H26O3 Nf 4 n.a.   PDA  

181 691.4647 [M+H]+ 8.95 0.1 C37H62N4O8* 

659.4388, 428.3079, 377.3063, 
359.2942, 331.2998, 313.2980, 
303.2622, 263.2337, 235.2063, 
232.1362, 220.1098, 181.0634, 
172.1087, 164.0696, 155.0792, 
147.0751, 130.0498, 121.1051 

4 n.a.   CAG  

182 659.4385 [M+H]+ 9.07 0.2 C36H58N4O7 

428.3166, 377.3065, 359.2950, 
331.2991, 303.2691, 263.2368, 
232.1301, 215.1033, 185.0930, 
172.1086, 164.0710, 155.0815, 

147.0771, 130.0506 

3 Fusaristatin A Cyclic lipopeptide Fusarium sp. 
CAG, 
PDA 

[46] 

183 695.3956 [M+H]+ 9.52 1.2 C44H54O7 

379.3360, 309.2571, 295.2407, 
253.1958, 239.1786, 213.1648, 
201.1647, 199.1482, 187.1492, 
185.1322, 173.1342, 171.1174, 
161.1311, 159.1167, 157.1026, 
149.1328, 147.1171, 145.1016, 
143.0850, 133.1014, 131.0849 

4 n.a.   PDA  

184 437.3425 [M+H]+ 10.67 1.1 C30H44O2 

401.3213, 381.2794, 367.2639, 
353.2500, 341.2487, 339.2319, 
327.2321, 313.2170, 307.2427, 
267.2122, 225.1645, 211.1495, 
197.1337, 183.1170, 169.1021, 

157.1024 

4 n.a.   CAG, 
PDA 

 

185 737.4779 [M-H2O]+ 10.82 -0.3 C48H66O7* 

701.4548, 593.3277, 575.3162, 
567.3481, 441.2057, 381.2049, 
363.1950, 313.1449, 295.1334, 
293.1901, 275.1901, 267.1755, 
249.1637, 225.1637, 209.1335, 
201.0553, 199.0755, 195.1171, 

183.1152 

4 n.a.   CAG  

186 468.3607 [M+H]+ 11.44 0.8 C31H47O3 

437.3426, 393.2792, 365.2496, 
352.2406, 339.2327, 337.2165, 
319.2072, 307.2425, 293.2269, 
265.1950, 251.1812, 249.1646, 
237.1648, 235.1481, 223.1490, 
211.1495, 209.1336, 196.1250, 
183.1177, 181.1023, 169.1022 

4 n.a.   CAG  
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No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical family 

Biological 
origin 

Medium Ref 

187 793.5020 [M+H]+ 11.54 0.5 C47H64N6O5* 761.4775, 743.4667, 651.4027 4 n.a.   CAG  

188 755.4899 [M+H]+ 11.54 1.6 C48H66O7 Nf 4 n.a.   CAG  

189 437.3420 [M+H]+ 11.59 0 C30H44O2 

419.3311, 401.3185, 381.2783, 
357.1451, 335.2753, 313.2141, 
299.2004, 275.1782, 259.1690, 
223.1484, 211.1479, 195.1165, 
183.1165, 169.1019, 159.1168, 

145.0999 

4 n.a.   PDA  

190 436.3340 [M+H]+ 11.68 -0.2 C30H43O2 

421.3112, 385.2896, 365.2484, 
337.2177, 323.2018, 317.2274, 
311.2021, 301.1965, 297.1866, 
261.1650, 235.1489, 209.1336, 

195.1180 

4 n.a.   CAG, 
PDA 

 

191 437.3424 [M+H]+ 11.69 0.9 C30H44O2 

421.3102, 419.3308, 401.3206, 
385.2891, 337.2167, 323.2014, 
317.2267, 313.2159, 311.2007, 
301.1959, 297.1853, 275.1794, 
263.1789, 261.1641, 259.1678, 
253.1947, 249.1632, 235.1484, 
223.1482, 221.1327, 211.1483, 
209.1327, 197.1323, 195.1172, 

183.1167, 169.1006 

4 n.a.   PDA  

192 753.4741 [M+H]+ 11.82 -0.4 C49H60N4O3* 

735.4622, 656.3732, 638.3626, 
623.3362, 605.3292, 587.3196, 
565.3297, 523.2813, 521.2742, 
509.2715, 497.2628, 495.2540, 
481.2378, 477.2425, 469.2356, 
467.2224, 463.2249, 313.1443, 
295.1342, 221.1326, 201.0557, 

199.0752, 195.1175 

4 n.a.   CAG  

193 436.3335 [M+H]+ 11.93 -1.3 C30H43O2 

421.3098, 403.2995, 393.2770, 
385.2880, 340.2391, 325.2155, 
323.2359, 321.2568, 319.2407, 
307.2062, 293.2261, 279.2098, 
265.1939, 251.1783, 249.1631, 
237.1637, 235.1479, 225.1630, 
223.1380, 211.1479, 208.1323, 
197.1318, 195.1164, 184.1246, 

169.1005, 155.0851 

4 n.a.   CAG, 
PDA 
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Table S10. Putatively identified compounds produced by Penicillium sp. extracts CKG23-CAG and CKG23-PDA. Putative annotations were based on 
the accurate mass, the predicted putative molecular formulae (MF), the retention time (Rt), the fragmentation pattern and the biological origin. ∆Different isomers 
with same m/z value and molecular formula, which cannot be differentiated based on MS/MS data; *MF with best ppm error displayed; IC: Identification 
confidence level [3]; Nf: No fragmentation detected or below noise threshold (5e1); Ref = reference(s). 

No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical 

family 
Biological 

origin 
Medium Ref 

194 245.082 [M+H]+ 1.24 2.4 C14H12O4 

227.0711, 217.0858, 209.0590, 
199.0762, 189.0916, 185.0596, 
181.0651, 175.0771, 173.0607, 
171.0809, 161.0609, 157.0655, 
153.0705, 151.0388, 147.0443, 
143.0853, 135.0447, 123.0446, 

107.0495 

3 
3-

methylbisnoryangonin 
Styrylpyrone 

Penicillium 
glabrum 

CAG, 
PDA 

[47] 

195 157.0059 [M+H]+ 2.14 1.9 C7H5O2Cl 
129.0107, 121.0266, 101.0160, 

94.0412 
4 n.a.   CAG  

196 233.082 [M+H]+ 2.84 2.6 C13H12O4 

194.9539, 191.0710, 187.0742, 
173.0598, 149.0604, 147.0451, 
123.0438, 121.0669, 85.0288 

4 n.a.   PDA  

197 325.1292 [M+H]+ 3.46 1.5 C16H20O7 

289.1072, 247.0972, 233.0819, 
231.0664, 227.1076, 213.0559, 
191.0341, 189.0549, 183.0296, 

165.0552 

3 
11,12-

Dihydroxycurvularin 
Zearalenone 
(Macrolide) 

Penicillium 
citreo-viride 

PDA [48] 

198 327.1235 [M+H]+ 3.9 0.9 C19H18O5 309.1131, 294.0894, 285.0765 3 
1,7-Dihydroxy-2-

methoxy-3-
prenylxanthone 

Xanthone Phomopsis sp. CAG [49] 

199 309.1345 [M+H]+ 4 2.3 C16H20O6 

273.1129, 255.1038, 231.1031, 
229.1228, 215.0716, 213.0914, 
201.0553, 189.0924, 187.0768, 
177.0551, 175.0400, 173.0602, 

161.0605, 149.0605 

3 
(3S,7S)-7-

hydroxyresorcylide 
Zearalenone 
(Macrolide) 

Penicillium sp. PDA [50] 

200 273.0409 [M+H]+ 4.12 3.7 C14H8O6 
245.0457, 227.0340, 217.0508, 

199.0397 
3 

2,8-dihydroxy-9-oxo-
9H-xanthene-6-
carboxylic acid 

Xanthone 
Arthrinium 
arundinis 

PDA [51] 

201 399.1813 [M+H]+ 
4.55, 
4.87∆ 

1.3 C23H26O6 

381.1706, 363.1587, 355.1514, 
352.1281, 348.1369, 339.1246, 

327.1208, 311.0899 
3 Seco-penicitrinol A Xanthone 

Penicillium 
citrinum 

CAG [52] 

202 289.0717 [M+H]+ 4.57 1.7 C15H12O6 
274.0483, 270.0526, 246.0534, 

243.0657, 200.0488 
3 Drimiopsin I Xanthone Penicillium sp. PDA [53] 

203 511.2927 [M+H]+ 4.96 1.4 C28H38N4O5 

265.1557, 247.1459, 219.1503, 
199.1437, 171.1505, 166.0866, 

120.0811, 72.0825 
2 Bilaid A Tetrapeptide Penicillium sp. PDA [54] 

204 447.2936 [M+Na]+ 5.22 0.4 C21H44O8 Nf 4 n.a.   PDA  

205 309.1343 [M+H]+ 5.25 1.6 C16H20O6 

291.1229, 273.1129, 255.1022, 
245.1183, 231.0663, 227.1073, 
217.0497, 213.0556, 207.0497, 

3 
(3S,7R)-7-

hydroxyresorcylide 
Zearalenone 
(Macrolide) 

Penicillium sp. PDA [50] 
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No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical 

family 
Biological 

origin 
Medium Ref 

195.0292, 193.0501, 191.0343, 
183.0292, 181.0136, 177.0192, 
167.0341, 165.0184, 159.0445, 

99.0812, 81.0706 

206 457.2601 [M+H]+ 5.47 -0.7 C28H32N4O2 

440.2370, 439.2495, 399.2179, 
385.2024, 382.1931, 381.1940, 
368.1750, 340.1801, 326.1655, 
323.1541, 309.1378, 299.1517, 
297.1387, 255.1489, 238.1450, 
210.1285, 198.1156, 197.1081, 
185.1075, 183.0918, 181.0893, 

168.0813, 159.0927 

2 Communesin A Indole alkaloid Penicillium sp. CAG [55] 

207 427.1757 [M+H]+ 5.47 0 C24H26O7 

381.1703, 363.1595, 354.1459, 
348.1355, 339.1234, 326.1150, 
321.1122, 311.0921, 308.1045, 

297.0759 

4 n.a.   CAG  

208 293.1393 [M+H]+ 5.97 1.4 C16H20O5 

275.1283, 257.1166, 239.1059, 
231.1375, 229.1238, 215.0709, 
205.0494, 201.0546, 189.0547, 
187.0414, 179.0341, 177.0546, 
175.0388, 173.0599, 163.0749, 
161.0593, 151.0390, 149.0599, 

99.0811, 81.0702 

3 Dihydroresorcylide 
Zearalenone 
(Macrolide) 

Penicillium 
brocae 

CAG, 
PDA 

[56] 

209 529.2708 [M+H]+ 6 1.1 C32H36N2O5 
331.1811, 200.1068, 185.0722, 

130.0658 
3 Chaetoglobosin D 

Cytochalasan 
alkaloid 

Penicillium 
expansum 

CAG [57] 

210 509.2773 [M+H]+ 6.11 -0.8 C29H32N8O* 

311.1388, 283.1449, 263.1399, 
247.1446, 235.1447, 219.1502, 
199.1440, 171.1498, 136.0762, 

120.0815 

4 n.a.   PDA  

211 357.1341 [M+H]+ 6.22 0.8 C20H20O6 

342.1103, 327.0872, 315.0868, 
313.0717, 301.0714, 286.0481, 

257.0454, 229.0506 
4 n.a.   PDA  

212 529.27 [M+H]+ 6.29 -0.4 C32H36N2O5 
200.1071, 198.0916, 185.0718, 
174.0925, 157.1017, 130.0657 

2 Chaetoglobosin A 
Cytochalasan 

alkaloid 
Penicillium 

chrysogenum 
CAG [58] 

213 307.1551 [M+H]+ 6.38 2 C17H22O5 

265.1435, 201.1277, 155.0864, 
135.0807, 133.1008, 131.0864, 

105.0695 
3 Expansolide A or B Sesquiterpenoid 

Penicillium 
expansum 

CAG [59] 

214 707.2095 [M+H]+ 6.42 -1 
C36H30N6O10 

or C34H18N20* 

668.0617, 602.0138, 584.0034, 
573.0614, 365.0998, 296.0298, 

275.0551 
4 n.a.   PDA  

215 313.1084 [M+H]+ 6.64 2.6 C18H16O5 
297.0768, 271.0612, 257.0456, 

229.0503 
4    PDA  

216 289.0716 [M+H]+ 6.72 1.4 C15H12O6 

274.0482, 270.0525, 246.0518, 
243.0660, 232.0370, 228.0396, 

200.0479 
3 Drimiopsin H Xanthone Penicillium sp. PDA [53] 
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No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical 

family 
Biological 

origin 
Medium Ref 

217 305.1296 [M+H]+ 6.72 2 C19H16N2O2 
277.1343, 234.1274, 220.1120, 

187.0869, 132.0810 
4 n.a.   CAG  

218 339.0871 [M+H]+ 6.85 0.6 C19H14O6 

324.0636, 321.0758, 311.0922, 
296.0687, 293.0815, 283.0966, 
269.0456, 265.0869, 249.0918 

4 n.a.   PDA  

219 509.2922 [M+H]+ 7.04 1 C32H36N4O2 

491.2809, 451.2503, 437.2342, 
381.1972, 367.1808, 357.2074, 
343.1924, 340.1916, 326.1661, 
323.1545, 309.1391, 255.1501, 
253.1346, 197.1083, 185.1085, 
183.0922, 159.0922, 95.0501 

2 Communesin B Indole alkaloid Penicillium sp. CAG [55] 

220 357.1341 [M+H]+ 7.05 0.8 C20H20O6 

341.1023, 327.0877, 313.1076, 
311.0921, 301.0721, 286.0482, 
273.0771, 258.0528, 247.0608, 

230.0600 

4 n.a.   PDA  

221 359.1135 [M+H]+ 
7.22, 
7.71∆ 

1.1 C19H18O7 

341.1030, 326.0796, 323.0922, 
313.1078, 302.0749, 271.0614, 

257.0455 
3 Penixanthone D Xanthone Penicillium sp. PDA [60] 

222 487.27 [M+H]+ 7.22 0.8 C28H38O7 

395.2227, 377.2127, 367.2277, 
349.2178, 243.1752, 225.1640, 
215.1806, 185.1337, 183.1183, 
175.1487, 171.1180, 161.1338, 

151.0396 

2 Andrastin A Meroterpenoid Penicillium sp. CAG [61] 

223 319.1455 [M+H]+ 7.28 2.5 C20H18N2O2 
291.1506, 234.1290, 201.1029, 
188.0718, 132.0817, 91.0551 

4 n.a.   CAG  

224 307.1552 [M+H]+ 7.42 2.1 C17H22O5 

289.1434, 271.1339, 243.1392, 
229.0860, 193.0503, 191.0710, 
189.0561, 175.0766, 165.0543, 

163.0751 

3 
a: 5-oxolasiodiplodin, 
b: 7-oxolasiodiplodin 

Zearalenone 
(Macrolide) 

a: Lasiodiplodia 
theobromae, b: 

Lasiodiplodia sp. 
PDA 

a: 
[62], 
b: 

[63] 

225 355.1188 [M+H]+ 7.54 1.7 C20H18O6* 339.0874, 325.0719, 311.0926 4 n.a.   PDA  

226 357.1346 [M+H]+ 8 2.2 C20H20O6 

342.1128, 327.0954, 315.0874, 
313.0724, 301.0730, 286.0486, 
281.0819, 273.0769, 258.0534, 

255.0661, 247.0605 

4 n.a.   PDA  

227 711.2451 [M+H]+ 8.12 -0.6 C41H54N4O8* 
679.2186, 636.2005, 356.1266, 
341.1040, 327.1239, 232.0929 

4 n.a.   PDA  

228 367.2253 [M+Na]+ 8.13 1.1 C22H32O3 

320.1843, 252.0905, 242.1019, 
234.1131, 224.0923, 198.1151, 

149.0231, 138.0189 
4 n.a.   CAG  

229 389.2327 [M+H]+ 8.39 -0.3 C23H32O5 Nf 4 n.a.   CAG  

230 865.5916 [M+H]+ 8.8 0.1 C47H76N8O7* 

594.4034, 526.3393, 481.3192, 
413.2555, 408.3224, 368.2338, 
340.2582, 300.1718, 295.2392, 

4 n.a.   CAG  
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No. 
m/z 

value 
Adduct 

Rt 
(min) 

ppm Putative MF Fragmentation pattern IC 
Putative 

identification 
Chemical 

family 
Biological 

origin 
Medium Ref 

272.1769, 267.2441, 227.1761, 
199.1817, 159.0919 

231 500.3957 [M+H]+ 8.95 1.2 C28H53NO6* 482.3847, 236.1509, 144.1026 4 n.a.   PDA  

232 371.1132 [M+H]+ 9.49 0.3 C20H18O7 

339.0872, 329.1029, 311.0927, 
296.0686, 287.0559, 283.0973, 
273.0402, 269.0455, 265.0868, 

255.0296, 241.0500 

3 Chaetoxanthone A Xanthone Chaetomium sp. PDA [64] 

233 467.0751 [M+H]+ 9.49 -0.4 C24H6N10O2* 

426.0487, 423.0406, 421.0434, 
412.9966, 405.0294, 403.0327, 
390.0050, 388.0096, 385.0206, 

371.9950, 369.9992 

4 n.a.   PDA  

234 279.233 [M+H]+ 9.66 2.1 C18H30O2 

261.2221, 223.1700, 209.1532, 
201.0458, 195.1395, 191.1436, 
187.1490, 177.1271, 173.1328, 
163.1481, 159.1174, 151.1479, 
149.1330, 147.1175, 145.1004, 
137.1334, 135.1168, 131.0853, 
123.1168, 121.1018, 109.1015, 
107.0859, 95.0860, 93.0696, 

81.0707 

4 n.a.   PDA  

235 279.2333 [M+H]+ 9.74 3.2 C18H30O2 

261.2222, 209.1537, 201.0462, 
195.1386, 191.1434, 187.1488, 
177.1286, 173.1329, 163.1490, 
159.1176, 151.1487, 149.1335, 
147.1167, 145.1022, 137.1336, 
135.1173, 133.1024, 131.0863, 
123.1177, 121.1020, 109.1017, 
107.0863, 95.0861, 93.0698, 

81.0708, 79.0556 

4 n.a.   PDA  

236 343.1188 [M+H]+ 9.82 1.7 C19H18O6 

327.0860, 313.0720, 301.0718, 
287.0565, 275.0558, 259.0612, 

233.0453, 213.0556 
3 Umbilicaxanthone A Xanthone 

Umbilicaria 
proboscidea 

PDA [65] 

237 843.3354 [M+H]+ 9.82 0 
C46H46N6O10 

or C44H34N20* 
364.0936 4 n.a.   PDA  

238 714.4153 [M+H]+ 10.44 -0.7 C47H55NO5* 696.4050, 571.2720 4 n.a.   PDA  

239 850.4537 [M+H]+ 10.93 0.8 
C49H51N15 or 

C51H63NO10* 

377.3211, 341.1031, 326.0794, 
313.1082 

4 n.a.   PDA  
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